FR2707627A1 - Process and mix for preparing a concrete which has a remarkable compressive strength and fracturing energy, and concretes obtained - Google Patents

Process and mix for preparing a concrete which has a remarkable compressive strength and fracturing energy, and concretes obtained Download PDF

Info

Publication number
FR2707627A1
FR2707627A1 FR9308062A FR9308062A FR2707627A1 FR 2707627 A1 FR2707627 A1 FR 2707627A1 FR 9308062 A FR9308062 A FR 9308062A FR 9308062 A FR9308062 A FR 9308062A FR 2707627 A1 FR2707627 A1 FR 2707627A1
Authority
FR
France
Prior art keywords
concrete
better
steel wool
mpa
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9308062A
Other languages
French (fr)
Other versions
FR2707627B1 (en
Inventor
Richard Pierre
Cheyrezy Marcel
Dugat Jerome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bouygues SA
Original Assignee
Bouygues SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bouygues SA filed Critical Bouygues SA
Priority to FR9308062A priority Critical patent/FR2707627B1/en
Priority to FR9402800A priority patent/FR2707977B1/en
Priority to EP94921000A priority patent/EP0658152B1/en
Priority to DE69407553T priority patent/DE69407553T2/en
Priority to US08/268,989 priority patent/US5522926A/en
Priority to AT94921000T priority patent/ATE161526T1/en
Priority to RU95106480A priority patent/RU2122531C1/en
Priority to JP50331995A priority patent/JP3461830B2/en
Priority to ES94921000T priority patent/ES2111314T3/en
Priority to AU71886/94A priority patent/AU678271B2/en
Priority to KR1019950700771A priority patent/KR0179719B1/en
Priority to PCT/FR1994/000798 priority patent/WO1995001317A1/en
Priority to CA002143660A priority patent/CA2143660C/en
Publication of FR2707627A1 publication Critical patent/FR2707627A1/en
Priority to FI950914A priority patent/FI114701B/en
Priority to NO19950779A priority patent/NO317271B1/en
Application granted granted Critical
Publication of FR2707627B1 publication Critical patent/FR2707627B1/en
Priority to HK98104978A priority patent/HK1005910A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/184Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type based on an oxide other than lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2046Shock-absorbing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Process for obtaining a concrete which has a compressive strength of at least 400 MPa and a fracturing energy of at least 1000 J/m<2>, characterised in that it comprises a transformation of the products of hydration of the cement to crystalline hydrates of xonotlite type, so as to remove from the concrete, after its setting, virtually all of the free water and at least 50 %, preferably at least 70 % and, still better, at least 80 % of the chemically bound water. Figure 1 shows the influence of the cure temperature on the drying. Application to the production of prefabricated articles and of moulded articles.

Description

L'invention concerne un béton ayant une résistance à la compression d'au moins 400 MPa et une énergie de fracturation d'au moins 1 000 J/m2, utilisable pour la réalisation de pièces préfabriquées et de pièces moulées. The invention relates to a concrete having a compressive strength of at least 400 MPa and a fracturing energy of at least 1000 J / m2, which can be used for the production of prefabricated parts and molded parts.

Selon l'invention, pour obtenir un tel béton, on transforme les produits d'hydratation du ciment en hydrates cristallins de type xonotlite de façon à éliminer du béton, après la prise, la quasitotalité de reau libre et au moins 50 %, de préférence au moins 70 % et encore mieux au moins 80 %, de l'eau chimiquement liée. According to the invention, to obtain such a concrete, the hydration products of the cement are transformed into crystalline hydrates of the xonotlite type so as to remove from the concrete, after setting, almost all of the free water and at least 50%, preferably. at least 70% and even better at least 80%, chemically bound water.

1l est connu de chauffer le béton en autoclave pour transformer les hydrates amorphes du béton de type [CaO SiO2, H2O], en un hydrate cristallin appelé tobermorite dont la formule est [CaO]5 [SiO2]6, [H2OJ5, mais cette technique ne constitue pas une solution satisfaisante au présent problème car la tobermorite comporte cinq fois plus d'eau que la xonotlite dont la formule est [CaO]6 [SiO2]6 [H20]1 -
En outre, l'invention vise à fournir un procédé tel que la transformation du produit d'hydratation du ciment puisse être obtenu par un simple chauffage, dans les conditions ambiantes de pression et d'hygrométrie.
It is known to heat concrete in an autoclave to transform the amorphous hydrates of concrete of the [CaO SiO2, H2O] type, into a crystalline hydrate called tobermorite, the formula of which is [CaO] 5 [SiO2] 6, [H2OJ5, but this technique does not constitute a satisfactory solution to the present problem because tobermorite contains five times more water than xonotlite whose formula is [CaO] 6 [SiO2] 6 [H20] 1 -
In addition, the invention aims to provide a process such that the transformation of the hydration product of the cement can be obtained by simple heating, under ambient conditions of pressure and hygrometry.

Dans un mode de réalisation particulier du procédé de l'invention, on prépare un béton de porosité cumulée inférieure à 0,01 cm3/gramme (telle que mesurée au porosimètre à mercure), contenant du quartz broyé et de la laine d'acier et, après la prise, on soumet ce béton à une température d'au moins 250"C, de préférence d'au moins 400"C, dans les conditions ambiantes de pression et d'hygrométrie, pendant un temps suffisant pour obtenir et transformer des produits d'hydratation du ciment en hydrates cristallins de type xonotlite. In a particular embodiment of the process of the invention, a concrete is prepared with a cumulative porosity of less than 0.01 cm3 / gram (as measured with a mercury porosimeter), containing ground quartz and steel wool and , after setting, this concrete is subjected to a temperature of at least 250 "C, preferably at least 400" C, under ambient conditions of pressure and hygrometry, for a time sufficient to obtain and transform cement hydration products to crystalline hydrates of the xonotlite type.

La vapeur d'eau dégagée au cours du chauffage reste confinée au coeur du béton en raison de la faible porosité de ce dernier; le quartz broyé favorise la formation d'hydrates cristallins plus riches en CaO que les hydrates amorphes et la laine d'acier donne à la matrice une résistance suffisante dans la phase transitoire pendant laquelle la pression de vapeur d'eau dans les pores est maximale. The water vapor released during heating remains confined to the core of the concrete due to the low porosity of the latter; ground quartz promotes the formation of crystalline hydrates richer in CaO than amorphous hydrates and steel wool gives the matrix sufficient strength in the transient phase during which the water vapor pressure in the pores is maximum.

Dans ces conditions, la vapeur d'eau emprisonnée réalise au sein du béton des conditions hydrothermales nécessaires à la transformation des hydrates amorphes ou semi-cristallins en cristaux de xonotlite. Under these conditions, the trapped water vapor achieves within the concrete the hydrothermal conditions necessary for the transformation of amorphous or semi-crystalline hydrates into xonotlite crystals.

La durée de la cure est généralement de plusieurs heures. The duration of the cure is generally several hours.

Dans des modes de réalisation préférée, le procédé de l'invention présente encore une ou plusieurs des caractéristiques suivantes: - on soumet le béton frais, pendant sa prise, à une pression de serrage d'au moins 5MPa ou mieux d'au moins 50 MPa; - on prépare le béton en malaxant un mélange comportant les proportions suivantes, exprimées en parties en poids (p): a) 100 p de ciment Portland, b) 30 à 100 p, ou mieux 40 à 70 p, de sable fin ayant une grosseur de grains de 150 à 400 microns, c) 10 à 40 p, ou mieux 20 à 30 p, de silice amorphe ayant une grosseur de grains inférieure à 0,5 microns, d) 20 à 60 p, ou mieux 30 à 50 p, de quartz broyé ayant une grosseur de grains inférieure à 10 microns, e) 25 à 100 p, ou mieux 45 à 80 p, de laine d'acier, f) éventuellement d'autres adjuvants, g) 13 à 26p, ou mieux 15 à 22p, d'eau; - on incorpore au mélange 0,6 à 3,0 p, ou mieux 1,4 à 2,6 p d'un superplastifiant; - on utilise de la laine d'acier broyée de 1 à 5 mm (taille de la grille de coupe au broyeur). In preferred embodiments, the method of the invention also has one or more of the following characteristics: the fresh concrete is subjected, during its setting, to a clamping pressure of at least 5 MPa or better of at least 50 MPa; - the concrete is prepared by kneading a mixture comprising the following proportions, expressed in parts by weight (p): a) 100 p of Portland cement, b) 30 to 100 p, or better 40 to 70 p, of fine sand having a grain size 150 to 400 microns, c) 10 to 40 p, or better 20 to 30 p, of amorphous silica having a grain size of less than 0.5 microns, d) 20 to 60 p, or better 30 to 50 p, of ground quartz having a grain size of less than 10 microns, e) 25 to 100 p, or better 45 to 80 p, of steel wool, f) optionally other additives, g) 13 to 26p, or better 15 to 22p, of water; - 0.6 to 3.0 p, or better still 1.4 to 2.6 p, of a superplasticizer are incorporated into the mixture; - ground steel wool is used from 1 to 5 mm (size of the cutting grid at the grinder).

On décrira ci-après un exemple de préparation d'un béton conforme à la présente invention. An example of the preparation of a concrete in accordance with the present invention will be described below.

Exemple
On prépare des échantillons de béton en malaxant un mélange contenant sensiblement, pour 100 p en poids de ciment Portland: 50 p. de sable fin (grosseur de grains 150-400 microns), 23 p. de silice amorphe (grosseur de grains inférieure à 0,5 microns), 39 p. de quartz broyé (grosseur de grains inférieure à 10 microns), 2p. de superplastifiant (extrait sec), 63p. de laine d'acier inoxydable AISI 430 broyée à 3 mm (taille de la grille de coupe au broyeur), commercialisée par la société GERVOIS, 18 p d'eau.
Example
Concrete samples are prepared by mixing a mixture containing substantially, per 100 p by weight of Portland cement: 50 p. fine sand (grain size 150-400 microns), 23 p. of amorphous silica (grain size less than 0.5 microns), 39 p. of crushed quartz (grain size less than 10 microns), 2p. of superplasticizer (dry extract), 63p. of AISI 430 stainless steel wool ground to 3 mm (size of the cutting grid on the grinder), marketed by the company GERVOIS, 18 p of water.

Le superplastifiant est par exemple de type polyacrylate, mélamine ou naphtalène. The superplasticizer is, for example, of the polyacrylate, melamine or naphthalene type.

On cuit ces échantillons à différentes températures et on mesure la dessication des éprouvettes. On constate (fig. 1) que cette dessication augmente faiblement avec la température de cure jusqu'à 220"C et au-delà de 250"C. Par contre, cette dessication est intense aux environs de 230-240"C. Cette température correspond à la transformation des hydrates amorphes ou semi-cristallins en xonotlite. These samples are fired at different temperatures and the desiccation of the test pieces is measured. It can be seen (fig. 1) that this desiccation increases slightly with the curing temperature up to 220 "C and above 250" C. On the other hand, this desiccation is intense at around 230-240 "C. This temperature corresponds to the transformation of amorphous or semi-crystalline hydrates into xonotlite.

Pour que cette transformation s'effectue complètement, il convient donc de cuire l'échantillon à une température égale ou supérieure à 250"C. For this transformation to take place completely, the sample should therefore be fired at a temperature equal to or greater than 250 ° C.

Les conditions de cure conduisent à exposer la laine d'acier à des conditions de haute température associée à une forte humidité. The curing conditions lead to exposing the steel wool to high temperature conditions associated with high humidity.

Malgré le confinement dans la matrice cimentaire, la laine en acier ordinaire est sévèrement corrodée. Les oxydes de fer résultant de cette corrosion sont visibles sur les parements de l'échantillon. Dans le cas d'utilisation d'acier inox, la corrosion est beaucoup plus limitée et aucune trace de rouille n'apparaît sur le parement.Despite confinement in the cementitious matrix, regular steel wool is severely corroded. The iron oxides resulting from this corrosion are visible on the facings of the sample. In the case of stainless steel use, corrosion is much more limited and no trace of rust appears on the facing.

Les performances mécaniques du béton de Invention peuvent être améliorées en appliquant à l'échantillon de béton frais, une pression de serrage comprise entre 5 et 50 MPa. Cette pression a pour objet de supprimer la porosité de l'échantillon due à Pair occlus, et de diminuer la teneur en eau du béton frais par essorage. The mechanical performance of the concrete of the invention can be improved by applying to the sample of fresh concrete, a clamping pressure of between 5 and 50 MPa. The purpose of this pressure is to eliminate the porosity of the sample due to the occluded air, and to reduce the water content of the fresh concrete by dewatering.

On observe par exemple, les résultats indiqués dans le tableau ci-après:
RESISTANCES A LA COMPRESSION

Figure img00040001
For example, the results indicated in the table below are observed:
COMPRESSION RESISTANCES
Figure img00040001

<tb> <SEP> TEMPERATURE <SEP> DE <SEP> CURE
<tb> <SEP> 250"C <SEP> 400"C <SEP>
<tb> Echantillon <SEP> standard <SEP> 488 <SEP> MPa <SEP> 524 <SEP> MPa
<tb> Echantillon <SEP> comprimé
<tb> pendant <SEP> la <SEP> prise <SEP> 631 <SEP> MPa <SEP> 673 <SEP> MPa
<tb>
Le béton traditionnel est caractérisé par sa résistance à 28 jours, mesurée sur cylindre. Les bétons courants ont des résistances en compression, comprises entre 25 et 45 MPa. Les bétons dits à haute performance ont des résistances de 50 à 60 MPa. Les bétons dits à très hautes performances ont des résistances qui peuvent dépasser légèrement 100 MPa.
<tb><SEP> TEMPERATURE <SEP> DE <SEP> CURE
<tb><SEP> 250 "C <SEP>400" C <SEP>
<tb> Sample <SEP> standard <SEP> 488 <SEP> MPa <SEP> 524 <SEP> MPa
<tb> Sample <SEP> compressed
<tb> during <SEP> the <SEP> take <SEP> 631 <SEP> MPa <SEP> 673 <SEP> MPa
<tb>
Traditional concrete is characterized by its resistance to 28 days, measured on a cylinder. Common concretes have compressive strengths of between 25 and 45 MPa. So-called high performance concretes have strengths of 50 to 60 MPa. So-called very high performance concretes have strengths which can slightly exceed 100 MPa.

Le béton de poudres réactives a une résistance à la compression qui peut atteindre 250 MPa. Reactive powder concrete has a compressive strength which can reach 250 MPa.

Les résistances obtenues avec le béton de l'invention sont comprises entre 400 et 680 MPa. The strengths obtained with the concrete of the invention are between 400 and 680 MPa.

Des essais en flexion trois points sur éprouvettes 4 x 4 x16 entaillées, ont permis de mesurer des énergies de fracturation allant de 1200 J/m2 à 1 800 J/m2, alors que les bétons courants, les bétons à haute performance et les bétons à très hautes performances ont tous des énergies de fracturation inférieures à 150 J/m2. Three-point bending tests on notched 4 x 4 x16 specimens made it possible to measure fracturing energies ranging from 1,200 J / m2 to 1,800 J / m2, while common concretes, high-performance concretes and high-performance concretes. very high performances all have fracturing energies of less than 150 J / m2.

Claims (11)

REVENDICATIONS 1. Procédé pour obtenfr un béton ayant une résistance à la compression d'au moins 400 MPa et une énergie de fracturation d'au moins 1 000 J/m2, caractérisé en ce qu'il comporte une transformation des produits d'hydratation du ciment en hydrates cristallins de type xonotlite, de façon à éliminer du béton, après la prise, la quasi-totalité de l'eau libre et au moins 50 %, de préférence au moins 70 % et encore mieux, au moins 80 % de l'eau chimiquement liée.1. Process for obtaining a concrete having a compressive strength of at least 400 MPa and a fracturing energy of at least 1000 J / m2, characterized in that it comprises a transformation of the hydration products of the cement crystalline hydrates of the xonotlite type, so as to remove from the concrete, after setting, almost all of the free water and at least 50%, preferably at least 70% and even better, at least 80% of the chemically bound water. 2. Procédé selon la revendication 1, caractérisé en ce que l'on prépare un béton de porosité cumulée inférieure à 0,01 cm3/gramme, contenant du quartz broyé et de la laine d'acier, et que l'on chauffe ce béton, après la prise, à une température d'au moins 250"C. 2. Method according to claim 1, characterized in that one prepares a concrete of cumulative porosity of less than 0.01 cm3 / gram, containing crushed quartz and steel wool, and that this concrete is heated. , after setting, at a temperature of at least 250 "C. 3. Procédé selon la revendication 2, caractérisé en ce qu'on utilise de la laine d'acier broyée de 1 à 5 mm (taille de la grille de coupe au broyeur).3. Method according to claim 2, characterized in that use is made of ground steel wool from 1 to 5 mm (size of the cutting grid at the grinder). 4. Procédé selon rune des revendications 2 et 3, caractérisé en ce qu'on utilise de la laine d'acier inoxydable.4. Method according to one of claims 2 and 3, characterized in that stainless steel wool is used. 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on cure le béton à une température au moins égale à 250 C, ou mieux, au moins égale à 400"C, à la pression ambiante et à l'hygrométrie ambiante.5. Method according to one of claims 1 to 4, characterized in that the concrete cures at a temperature at least equal to 250 C, or better, at least equal to 400 "C, at ambient pressure and at l ambient humidity. 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on soumet le béton frais pendant la prise à une pression d'au moins 5 MPa, ou mieux, d'au moins 50 MPa.6. Method according to one of claims 1 to 5, characterized in that the fresh concrete is subjected during setting to a pressure of at least 5 MPa, or better still, of at least 50 MPa. 7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on prépare le béton en malaxant un mélange comportant les proportions suivantes, exprimées en parties en poids (p): a) 100 p. de ciment Portland, b) 30 à 100 p., ou mieux 40 à 70 p., de sable fin ayant une grosseur de grains de 150 à 400 microns, c) 10 à 40 p. ou mieux 20 à 30 p., de silice amorphe ayant une grosseur de grains inférieure à 0,5 microns, d) 20 à 60 p., ou mieux 30 à 50 p, de quartz broyé ayant une grosseur de grains inférieure à 10 microns, e) 25 à 100 p., ou mieux 45 à 80 p. de laine d'acier, f) éventuellement un superplastifiant, g) éventuellement d'autres adjuvants, h) 13 à 26 p., ou mieux 15 à 22 p., d'eau.7. Method according to one of claims 1 to 6, characterized in that the concrete is prepared by kneading a mixture comprising the following proportions, expressed in parts by weight (p): a) 100 p. of Portland cement, b) 30 to 100 p., or better 40 to 70 p., of fine sand having a grain size of 150 to 400 microns, c) 10 to 40 p. or better 20 to 30 p., of amorphous silica having a grain size of less than 0.5 microns, d) 20 to 60 p., or better 30 to 50 p, of ground quartz having a grain size of less than 10 microns , e) 25 to 100 p., or better 45 to 80 p. of steel wool, f) optionally a superplasticizer, g) optionally other adjuvants, h) 13 to 26 p., or better 15 to 22 p., water. 8. Procédé selon la revendication 5, caractérisé en ce que ledit mélange contient 0,6 à 3,0 p., ou mieux 1,4 à 2,6 p., d'un superplastifiant.8. Method according to claim 5, characterized in that said mixture contains 0.6 to 3.0 p., Or better 1.4 to 2.6 p., Of a superplasticizer. 9. Procédé selon l'une des revendications 7 à 8, caractérisé en ce que ledit mélange contient sensiblement, pour 100 p. de ciment9. Method according to one of claims 7 to 8, characterized in that said mixture contains substantially, for 100 p. cement Portland, 50 p. de sable, 23 p. de silice, 39 p. de quartz, 2 p. de superplastifiant, 63 p. de laine d'acier, 18 p. d'eau.Portland, 50 p. of sand, 23 p. silica, 39 p. quartz, 2 p. superplasticizer, 63 p. of steel wool, 18 p. of water. 10. Les mélanges pour préparer un béton, tels que définis dans l'une des revendications 7 et 8.10. Mixtures for preparing a concrete, as defined in one of claims 7 and 8. 11. Les bétons préparés par un procédé selon l'une des revendications 1 à 9. 11. Concretes prepared by a process according to one of claims 1 to 9.
FR9308062A 1993-07-01 1993-07-01 Process and mixture for preparing a concrete having a remarkable compressive strength and fracturing energy and concretes obtained. Expired - Fee Related FR2707627B1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
FR9308062A FR2707627B1 (en) 1993-07-01 1993-07-01 Process and mixture for preparing a concrete having a remarkable compressive strength and fracturing energy and concretes obtained.
FR9402800A FR2707977B1 (en) 1993-07-01 1994-03-10 Method and composition for manufacturing concrete elements having remarkable compressive strength and fracturing energy and elements thus obtained.
PCT/FR1994/000798 WO1995001317A1 (en) 1993-07-01 1994-06-30 Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
US08/268,989 US5522926A (en) 1993-07-01 1994-06-30 Method and a composition for preparing concrete elements having remarkable compressive strength and fracture energy, and elements obtained thereby
AT94921000T ATE161526T1 (en) 1993-07-01 1994-06-30 METHOD AND COMPOSITION FOR PRODUCING CONCRETE ELEMENTS WITH HIGH COMPRESSIVE STRENGTH AND HIGH BRIDGE ENERGY, AND COMPONENTS PRODUCED IN THIS WAY
RU95106480A RU2122531C1 (en) 1993-07-01 1994-06-30 METHOD OF PREPARING CONCRETE HAVING COMPRESSION STRENGTH OF AT LEAST 400 MPa AND CRACKING ENERGY OF AT LEAST 1000 Y/m2, MIXTURE FOR PREPARING THEREOF, AND PRODUCTS MADE FROM SAID CONCRETE
JP50331995A JP3461830B2 (en) 1993-07-01 1994-06-30 METHOD AND COMPOSITION FOR PRODUCING CONCRETE COMPONENTS WITH SIGNIFICANT COMPRESSION RESISTANCE AND FRACTURE ENERGY AND COMPONENTS OBTAINED BY THE SAME
ES94921000T ES2111314T3 (en) 1993-07-01 1994-06-30 PROCEDURE AND COMPOSITION TO MANUFACTURE CONCRETE ELEMENTS THAT HAVE A COMPRESSIVE RESISTANCE AND A HIGHLIGHTING FRACTURING ENERGY AND ELEMENTS SO OBTAINED.
EP94921000A EP0658152B1 (en) 1993-07-01 1994-06-30 Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
KR1019950700771A KR0179719B1 (en) 1993-07-01 1994-06-30 Method and a composition for preparing concrete elements having remarkable compressive strength and fracture energy
DE69407553T DE69407553T2 (en) 1993-07-01 1994-06-30 METHOD AND COMPOSITION FOR THE PRODUCTION OF CONCRETE ELEMENTS WITH HIGH PRESSURE STRENGTH AND HIGH BRIDGE ENERGY, AND COMPONENTS MANUFACTURED IN THIS WAY
CA002143660A CA2143660C (en) 1993-07-01 1994-06-30 Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
AU71886/94A AU678271B2 (en) 1993-07-01 1994-06-30 Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
FI950914A FI114701B (en) 1993-07-01 1995-02-28 A method and composition for the production of concrete elements of high compressive strength and fracture energy, and the elements thus obtained
NO19950779A NO317271B1 (en) 1993-07-01 1995-02-28 Methods and compositions for the production of concrete with outstanding high compressive strength and fracture energy, and elements produced thereby
HK98104978A HK1005910A1 (en) 1993-07-01 1998-06-05 Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy and elements thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9308062A FR2707627B1 (en) 1993-07-01 1993-07-01 Process and mixture for preparing a concrete having a remarkable compressive strength and fracturing energy and concretes obtained.

Publications (2)

Publication Number Publication Date
FR2707627A1 true FR2707627A1 (en) 1995-01-20
FR2707627B1 FR2707627B1 (en) 1995-10-13

Family

ID=9448793

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9308062A Expired - Fee Related FR2707627B1 (en) 1993-07-01 1993-07-01 Process and mixture for preparing a concrete having a remarkable compressive strength and fracturing energy and concretes obtained.

Country Status (1)

Country Link
FR (1) FR2707627B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033522A1 (en) * 1980-02-04 1981-08-12 Mitsubishi Kasei Corporation Process for preparing calcium silicate shaped product
JPS5832012A (en) * 1981-08-12 1983-02-24 Mitsubishi Chem Ind Ltd Preparation of xonotlite
JPS58199758A (en) * 1982-05-14 1983-11-21 住友セメント株式会社 Heat resistant cementitious hardened body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033522A1 (en) * 1980-02-04 1981-08-12 Mitsubishi Kasei Corporation Process for preparing calcium silicate shaped product
JPS5832012A (en) * 1981-08-12 1983-02-24 Mitsubishi Chem Ind Ltd Preparation of xonotlite
JPS58199758A (en) * 1982-05-14 1983-11-21 住友セメント株式会社 Heat resistant cementitious hardened body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8314, Derwent World Patents Index; Class E33, AN 83-33052K *
DATABASE WPI Section Ch Week 8401, Derwent World Patents Index; Class L02, AN 84-003530 *

Also Published As

Publication number Publication date
FR2707627B1 (en) 1995-10-13

Similar Documents

Publication Publication Date Title
EP0658152B1 (en) Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
CN112028564B (en) By using CO2Recycled concrete block prepared from reinforced recycled powder
CA2985958C (en) Concrete composition with very low shrinkage
CN113896498B (en) Preparation method of calcium silicate board
Largeau et al. Effect of Iron Powder (Fe 2 O 3) on Strength, Workability, and Porosity of the Binary Blended Concrete
FR2707627A1 (en) Process and mix for preparing a concrete which has a remarkable compressive strength and fracturing energy, and concretes obtained
Singh et al. Effect of curing methods on the property of red mud based geopolymer mortar
JP5025305B2 (en) Alkali-aggregate reaction inhibitor
JP5724188B2 (en) Concrete production method
RU2303013C1 (en) Lime silicic binder, method of preparation of lime silicic binder and silicate mixture on its base for manufacture of molded articles of autoclave hardening
JPS62207744A (en) High strength mortar concrete
RU2371277C1 (en) Method for making of moulding material for sand-cement moulds
JPH0454629B2 (en)
JP6868079B2 (en) Manufacturing method of hardened cementum
JP4462538B2 (en) Method for producing high crystalline tobermorite content concrete and kneading material for producing high crystalline tobermorite content concrete
Niş The compressive strength development of alkali activated fly ash/slag concretes with different alkali activator ratios
CN115304317B (en) Oil well cement slurry system resistant to high-temperature strength degradation
JPH05310454A (en) Production of light-weight concrete having low shrinkage
CA3221121A1 (en) Adjuvant for increasing the short-term mechanical strength of a hydraulic composition with a reduced clinker content
Ghernouti et al. Effect of Natural Pozzolan and Calcined Paper Sludge as Pozzolanic Additions on the Physicals and Mechanicals Properties of Heat Treated Self-Compacting Mortars
JPS58199758A (en) Heat resistant cementitious hardened body
JPH04295035A (en) Cement building material product
CN117164297A (en) Low-hydration-heat ultrahigh-performance large-volume concrete and preparation method thereof
JPH04357146A (en) Production of hardened body of cement having high bulk specific gravity
JPH03122037A (en) Centrifugal compaction forming of secondary product of cement

Legal Events

Date Code Title Description
ST Notification of lapse
CL Concession to grant licences