FR2673778A1 - Electrical circuit comprising a voltage-controlled oscillator - Google Patents

Electrical circuit comprising a voltage-controlled oscillator Download PDF

Info

Publication number
FR2673778A1
FR2673778A1 FR9102551A FR9102551A FR2673778A1 FR 2673778 A1 FR2673778 A1 FR 2673778A1 FR 9102551 A FR9102551 A FR 9102551A FR 9102551 A FR9102551 A FR 9102551A FR 2673778 A1 FR2673778 A1 FR 2673778A1
Authority
FR
France
Prior art keywords
voltage
control voltage
oscillator
frequency
nominal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR9102551A
Other languages
French (fr)
Inventor
Seng Thierry
Etienne Thierry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALE International SAS
Original Assignee
Alcatel Business Systemes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Business Systemes SA filed Critical Alcatel Business Systemes SA
Priority to FR9102551A priority Critical patent/FR2673778A1/en
Publication of FR2673778A1 publication Critical patent/FR2673778A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/366Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current
    • H03B5/368Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current the means being voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/362Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier being a single transistor

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

The invention relates to an electrical circuit comprising a voltage-controlled oscillator (2), the oscillator having to have a nominal oscillation frequency imposed by a control voltage (Uc) and the oscillation frequency being capable of varying about this nominal frequency as a function of a variation in the control voltage, the circuit being characterised in that it also comprises a matching stage (1) receiving the said control voltage on its input and delivering an intermediate control voltage (Ui) to the oscillator, the matching stage making use of means for adjusting the intermediate voltage allowing the nominal frequency to be obtained for an imposed control voltage value. The invention also relates to the method of setting up the nominal frequency of the oscillator of this electrical circuit.

Description

Circuit électrique comprenant un oscillateur commandé en tension.Electrical circuit comprising a voltage controlled oscillator.

La présente invention concerne un circuit électrique comprenant un oscillateur commandé en tension. Elle concerne aussi un procédé de calage de la fréquence nominale de l'oscillateur de ce circuit. The present invention relates to an electrical circuit comprising a voltage controlled oscillator. It also relates to a method of setting the nominal frequency of the oscillator of this circuit.

Les oscillateurs commandés en tension utilisent généralement une diode varicap pour ajuster la fréquence d'oscillation à la valeur désirée. L'ajustement se fait au moyen d'une tension de commande. Voltage controlled oscillators generally use a varicap diode to adjust the oscillation frequency to the desired value. The adjustment is made by means of a control voltage.

Etant données les tolérances des composants électroniques, la valeur de la tension de commande permettant d'obtenir une fréquence d'oscillation déterminée variera d'un oscillateur à un autre conçu identique au premier. Ainsi, pour une série d'oscillateurs en principe identiques, les tensions de commande seront toutes différentes.Given the tolerances of the electronic components, the value of the control voltage making it possible to obtain a determined oscillation frequency will vary from one oscillator to another designed identical to the first. Thus, for a series of oscillators in principle identical, the control voltages will all be different.

Dans le cas où les oscillateurs sont destinés à fonctionner à une fréquence fixe, ceci n'est pas gênant. Par contre, lorsqu'on demande aux oscillateurs de pouvoir fonctionner à une fréquence nominale avec une possibilité de variation de la fréquence autour de cette fréquece nominale, des difficultés apparaissent. En effet, la tension de commande est variable dans une certaine plage. L'idéal est alors que la fréquence nominale soit obtenue pour une valeur de tension de commande située au centre de la plage de variation. Ainsi on peut obtenir la meme excursion de fréquence de part et d'autre de cette valeur de tension de commande. Cependant, ceci n'est pratiquement jamais réalisé. In the case where the oscillators are intended to operate at a fixed frequency, this is not a problem. On the other hand, when the oscillators are asked to operate at a nominal frequency with the possibility of varying the frequency around this nominal frequency, difficulties arise. Indeed, the control voltage is variable within a certain range. The ideal is then that the nominal frequency is obtained for a control voltage value located in the center of the variation range. Thus the same frequency excursion can be obtained on either side of this control voltage value. However, this is hardly ever achieved.

Pour remédier à cet inconvénient, il est connu d'obtenir le calage à la fréquence nominale soit par un tri des composants (résistances, selfs, condensateurs), soit en utilisant des composants ajustables (potentiomètre, condensateur variable, self ajustable). To overcome this drawback, it is known to obtain calibration at the nominal frequency either by sorting the components (resistors, inductors, capacitors), or by using adjustable components (potentiometer, variable capacitor, adjustable inductor).

Ces méthodes ne sont pas satisfaisantes. En effet, des composants triés reviennent plus chers et les composants ajustables sont non seulement chers mais peu fiables puisque leurs caractéristiques évoluent avec le temps. These methods are not satisfactory. Indeed, sorted components are more expensive and the adjustable components are not only expensive but unreliable since their characteristics change over time.

La présente invention permet de pallier ces inconvénients par l'utilisation d'un étage d'adapatation entre la tension de commande et l'oscillateur. En fonction de la tension de commande, l'étage d'adaptation génère une tension de commande intermédiaire en entrée de l'oscillateur, cette tension intermédiaire correspondant à la caractéristique de l'élément permettant l'asservissement de la fréquence (la varicap) et le calage à la fréquence nominale. La plage de variation de la tension de commande en entrée est dimensionnée pour assurer les deux fonctions. The present invention overcomes these drawbacks by the use of a matching stage between the control voltage and the oscillator. Depending on the control voltage, the adaptation stage generates an intermediate control voltage at the input of the oscillator, this intermediate voltage corresponding to the characteristic of the element allowing the frequency control (the varicap) and setting at nominal frequency. The range of variation of the input control voltage is dimensioned to provide the two functions.

L'invention a donc pour objet un circuit électrique comprenant un oscillateur commandé en tension, l'oscillateur devant avoir une fréquence nominale d'oscillation imposée par une tension de commande et la fréquence d'oscillation pouvant varier autour de cette fréquence nominale en fonction d'une variation de la tension de commande, le circuit étant caractérisé en ce qu'il comprend également un étage d'adaptation recevant sur son entrée ladite tension de commande et délivrant à l'oscillateur une tension intermédiaire de commande, l'étage d'adaptation disposant de moyens d'ajustage de la tension intermédiaire permettant d'obtenir la fréquence nominale pour une valeur de tension de commande imposée. The subject of the invention is therefore an electrical circuit comprising a voltage-controlled oscillator, the oscillator having to have a nominal oscillation frequency imposed by a control voltage and the oscillation frequency possibly varying around this nominal frequency as a function of a variation of the control voltage, the circuit being characterized in that it also comprises an adaptation stage receiving on its input said control voltage and delivering to the oscillator an intermediate control voltage, the stage of adaptation having means for adjusting the intermediate voltage making it possible to obtain the nominal frequency for an imposed control voltage value.

L'invention a aussi pour objet un procédé de calage de la fréquence nominale de l'oscillateur du circuit électrique décrit ci-dessus, caractérisé en ce que
- on impose à l'entrée de l'étage d'adaptation la tension de commande à laquelle on veut faire correspondre la fréquence nominale.
The invention also relates to a method for setting the nominal frequency of the oscillator of the electrical circuit described above, characterized in that
- the control voltage to which the nominal frequency is to be applied is imposed on the input of the adaptation stage.

- on agit sur les moyens d'ajustage pour rendre la tension intermédiaire telle que l'oscillateur oscille à la fréquence nominale. - We act on the adjustment means to make the intermediate voltage such that the oscillator oscillates at the nominal frequency.

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif, accompagnée des dessins annexés parmi lesquels
- la Figure 1 représente de façon schématique la structure d'un circuit électrique selon l'invention,
- la Figure 2 est un schéma électrique illustrant un exemple de réalisation d'un circuit selon l'invention.
The invention will be better understood and other advantages and features will appear on reading the description which follows, given without limitation, accompanied by the appended drawings among which
FIG. 1 schematically represents the structure of an electrical circuit according to the invention,
- Figure 2 is an electrical diagram illustrating an exemplary embodiment of a circuit according to the invention.

L'invention s'applique à tous les types d'oscillateurs commandables en tension. Ainsi, l'oscillateur peut être du type
Colpitts, Clapp, Pierce, Wien, à circuit intégré, à transistors.
The invention applies to all types of voltage controllable oscillators. Thus, the oscillator can be of the type
Colpitts, Clapp, Pierce, Wien, integrated circuit, transistor.

L'étage d'adaptation peut comprendre un amplificateur opérationnel ou un pont diviseur ou un générateur de courant ou un générateur de tension ou un étage à transistor ou un opto-coupleur. The adaptation stage may include an operational amplifier or a divider bridge or a current generator or a voltage generator or a transistor stage or an opto-coupler.

Selon la Figure 1, un étage d'adaptation 1 reçoit en entrée la tension de commande U et délivre une tension intermédiaire de
c commande U. à l'oscillateur 2. La fréquence de sortie f de l'oscillateur est fonction de la tension intermédiaire Ui, laquelle est une adaptation de la tension de commande U aux caractéristiques
c de l'oscillateur.
According to FIG. 1, an adaptation stage 1 receives as input the control voltage U and delivers an intermediate voltage of
c control U. to oscillator 2. The output frequency f of the oscillator is a function of the intermediate voltage Ui, which is an adaptation of the control voltage U to the characteristics
c of the oscillator.

Dans l'exemple d'application illustré par la Figure 2, l'oscillateur 2 est du type Colpitts. Il comprend un transistor T, une résistance de collecteur Rl, une résistance d'émetteur R2, un pont de polarisation de base constitué par les résistances R3 et R4, des condensateurs Cl et C2 situés respectivement entre la base et l'émetteur et entre l'émetteur et la masse, un quartz Q, une self L, une diode varicap D reliée à la masse par un circuit parallèle comprenant la résistance R5 et le condensateur C3. Le signal de sortie, de fréquence f, est disponible par l'intermédiaire du condensateur C4. In the application example illustrated in Figure 2, the oscillator 2 is of the Colpitts type. It includes a transistor T, a collector resistor Rl, an emitter resistor R2, a basic bias bridge formed by the resistors R3 and R4, capacitors Cl and C2 located respectively between the base and the emitter and between l emitter and ground, a quartz Q, a choke L, a varicap diode D connected to ground by a parallel circuit comprising the resistor R5 and the capacitor C3. The output signal, of frequency f, is available via the capacitor C4.

L'étage d'adaptation 1 comprend, dans cet exemple de réalisation, un amplificateur opérationnel A monté classiquement avec des résistances R6 et R7 sur ses entrées et une résistance R8 entre l'une de ses entrées et sa sortie qui est reliée à l'oscillateur par la résistance Rg pour fournir sur la cathode de la diode varicap D la tension intermédiaire de commande Ui. L'extrémité libre de la résistance R6 sera reliée à la tension continue de commande U . Une
c résistance R10 relie le point P, correspondant à l'extrémité libre de
R7, à l'alimentation du circuit +V.
The adaptation stage 1 comprises, in this embodiment, an operational amplifier A conventionally mounted with resistors R6 and R7 on its inputs and a resistor R8 between one of its inputs and its output which is connected to the oscillator by the resistor Rg to supply the intermediate control voltage Ui on the varicap diode D cathode. The free end of the resistor R6 will be connected to the direct control voltage U. A
c resistance R10 connects point P, corresponding to the free end of
R7, at the + V circuit supply.

Le calage de la fréquence nominale de l'oscillateur se fait de la façon suivante. On dispose d'une tension de commande U pouvant varier
c dans une certaine plage (par exemple entre 1 volt et 4 volts). On fixe alors la tension de commande au milieu de la plage (2,5 volts pour l'exemple choisi). Entre le point P et la masse, on vient brancher un générateur de tension continue variable E. On mesure la valeur de la fréquence f en sortie de l'oscillateur et on règle la tension continue imposée entre le point P et la masse jusqu'à l'obtention de la fréquence nominale désirée. Une fois connue la tension qui doit exister entre le point P et la masse pour avoir la fréquence nominale, on calcule quelle est la valeur à donner à la résistance R11 que l'on viendra brancher entre le point P et la masse une fois le générateur E retiré.
The setting of the nominal frequency of the oscillator is done as follows. There is a control voltage U which can vary
c within a certain range (for example between 1 volt and 4 volts). The control voltage is then fixed in the middle of the range (2.5 volts for the example chosen). Between point P and ground, we connect a variable DC voltage generator E. We measure the value of frequency f at the output of the oscillator and we adjust the DC voltage imposed between point P and ground until obtaining the desired nominal frequency. Once the voltage which must exist between point P and earth to have the nominal frequency is known, we calculate what is the value to give to the resistor R11 which we will connect between point P and earth once the generator E withdrawn.

Les résistances de l'étage d'adaptation 2 sont choisies de façon que pour le calcul de R11 n'intervient que la tension V et la résistance Rlo. Ceci est possible si les résistances R7 et R8 sont suffisamment grandes par rapport à R10 et Roll.  The resistors of the adaptation stage 2 are chosen so that for the calculation of R11 only the voltage V and the resistance Rlo intervene. This is possible if the resistors R7 and R8 are large enough compared to R10 and Roll.

On obtiendra un calage précis de la fréquence nominale en utilisant des résistances de précision à l % près par exemple. En fait, Rlo est fixée une fois pour toutes sur tous les circuits. Ce n'est que R11 qui variera d'un circuit à l'autre. A precise setting of the nominal frequency will be obtained by using precision resistors to within 1%, for example. In fact, Rlo is fixed once and for all on all circuits. Only R11 will vary from circuit to circuit.

De cette manière, l'oscillateur délivre un signal calé à la fréquence nominale pour une tension de commande située exactement au milieu de la plage de variation de tension. Il est alors possible d'obtenir la même excursion de fréquence en faisant varier la tension de commande de part et d'autre de cette tension de calage. In this way, the oscillator delivers a signal calibrated at the nominal frequency for a control voltage located exactly in the middle of the voltage variation range. It is then possible to obtain the same frequency excursion by varying the control voltage on either side of this setting voltage.

Dans le cadre d'une fabrication industrielle, on définira quelle valeur doit avoir le gain de la partie amplificatrice de l'étage d'adaptation ainsi que la valeur de la résistance R10 pour que, en fonction de l'oscillateur et de la tension de commande désirée, le calage de la fréquence nominale et l'asservissement en fréquence puissent s'effectuer sans problème. Ceci est un simple problème de mise au point en laboratoire. In the context of industrial manufacturing, we will define which value must have the gain of the amplifying part of the adaptation stage as well as the value of the resistance R10 so that, depending on the oscillator and the voltage of desired command, the setting of the nominal frequency and frequency control can be carried out without problem. This is a simple laboratory development problem.

L'invention permet d'obtenir des circuits possédant une meilleure fiabilité que les circuits incorporant des composants variables tels que les potentiomètres qui se dérèglent avec le temps et qui coûtent chers. The invention makes it possible to obtain circuits having better reliability than circuits incorporating variable components such as potentiometers which become disrupted over time and which are expensive.

L'invention permet aussi une automatisation plus poussée que pour les circuits de l'art antérieur. En effet, les opérations de branchement du générateur E, de réglage de la tension que doit délivrer ce générateur pour avoir la fréquence nominale, de calcul de la résistance Rll peuvent se faire de manière automatisée. The invention also allows further automation than for circuits of the prior art. Indeed, the operations of connecting the generator E, of adjusting the voltage which this generator must deliver in order to have the nominal frequency, of calculating the resistance R11 can be done in an automated manner.

L'opérateur n'a plus qu a insérer la résistance déterminée par le calcul.The operator only has to insert the resistance determined by the calculation.

A titre d'exemple, les composants de l'oscillateur peuvent avoir les valeurs suivantes R1 = R2 = 680 St ; R3 =12 kn; R4 = 5,1 k #;
C1 = 330 pF; C2 = 220 pF ; L = 2,2
R5 = 10 kfl; C3 représente deux condensateurs en parallèle de 120 pF et 22 pF; C4 = 100 nF. Les composants de l'étage d'adaptation peuvent avoir les valeurs suivantes
R7 = Rg = 100 k#; R8 = 150 k # ; R6 = 10 kn; R10 = 4,53 k Q -
L'étage d'adaptation, selon le type choisi, offre la possibilité de dimensionner la plage de réglage (large ou étroite) en accord avec les tensions de commande disponibles. Le coefficient de sensibilité peut être défini à volonté, élevé ou faible, par exemple en Hz/mV ou en Hz/V.
As an example, the components of the oscillator can have the following values R1 = R2 = 680 St; R3 = 12 kn; R4 = 5.1k #;
C1 = 330 pF; C2 = 220 pF; L = 2.2
R5 = 10 kfl; C3 represents two capacitors in parallel of 120 pF and 22 pF; C4 = 100 nF. The components of the adaptation stage can have the following values
R7 = Rg = 100 k #; R8 = 150 k #; R6 = 10 kn; R10 = 4.53 k Q -
The adaptation stage, depending on the type chosen, offers the possibility of dimensioning the adjustment range (wide or narrow) in accordance with the available control voltages. The sensitivity coefficient can be defined at will, high or low, for example in Hz / mV or in Hz / V.

Claims (6)

RevendicationsClaims 1 - Circuit électrique comprenant un oscillateur (2) commandé en tension, l'oscillateur devant avoir une fréquence nominale d'oscillation imposée par une tension de commande et la fréquence d'oscillation pouvant varier autour de cette fréquence nominale en fonction d'une variation de la tension de commande, le circuit étant caractérisé en ce qu'il comprend également un étage d'adaptation (1) recevant sur son entrée ladite tension de commande (Uc) et délivrant à l'oscillateur une tension intermédiaire de commande (Ui), l'étage d'adaptation disposant de moyens d'ajustage de la tension intermédiaire permettant d'obtenir la fréquence nominale pour une valeur de tension de commande imposée.1 - Electric circuit comprising an oscillator (2) controlled in voltage, the oscillator having to have a nominal oscillation frequency imposed by a control voltage and the oscillation frequency being able to vary around this nominal frequency according to a variation of the control voltage, the circuit being characterized in that it also comprises an adaptation stage (1) receiving at its input said control voltage (Uc) and delivering to the oscillator an intermediate control voltage (Ui) , the adaptation stage having means for adjusting the intermediate voltage making it possible to obtain the nominal frequency for an imposed control voltage value. 2 - Circuit électrique selon la revendication 1, caractérisé en ce que l'étage d'adaptation (1) comprend un amplificateur opérationnel ou un pont diviseur ou un générateur de courant ou un générateur de tension ou un étage d'adaptation à transistor ou un optocoupleur, l'étage d'adaptation recevant sur une première entrée la tension de commande (Uc) et sur une deuxième entrée une tension ajustable, la tension de sortie de l'amplificateur opérationnel constituant la tension intermédiaire de commande (U.).2 - Electrical circuit according to claim 1, characterized in that the adaptation stage (1) comprises an operational amplifier or a divider bridge or a current generator or a voltage generator or a transistor adaptation stage or a optocoupler, the adaptation stage receiving on a first input the control voltage (Uc) and on a second input an adjustable voltage, the output voltage of the operational amplifier constituting the intermediate control voltage (U.). 3 - Circuit électrique selon la revendication 2, caractérisé en ce que la tension ajustable est fournie par un pont à résistances (Rlo, R11).3 - Electrical circuit according to claim 2, characterized in that the adjustable voltage is supplied by a resistance bridge (Rlo, R11). 4 - Procédé de calage de la fréquence nominale de l'oscillateur du circuit électrique selon la revendication 1, caractérisé en ce que4 - Method for setting the nominal frequency of the oscillator of the electric circuit according to claim 1, characterized in that - on impose à l'entrée de l'étage d'adaptation (1) la tension de commande à laquelle on veut faire correspondre la fréquence nominale, - the control voltage to which the nominal frequency is to be matched is imposed at the input of the adaptation stage (1), - on agit sur les moyens d'ajustage pour rendre la tension intermédiaire telle que l'oscillateur (2) oscille à la fréquence nominale. - We act on the adjustment means to make the intermediate voltage such that the oscillator (2) oscillates at the nominal frequency. 5 - Procédé selon la revendication 4, caractérisé en ce que les moyens d'ajustage comprennent le branchement d'un générateur de tension continue variable (E). 5 - Method according to claim 4, characterized in that the adjustment means comprise the connection of a variable DC voltage generator (E). 6 - Procédé selon la revendication 5, caractérisé en ce que les moyens d'ajustage comprennent le remplacement dudit générateur (E) par un pont de résistances (R10, R11) branché sur une alimentation continue et fournissant une tension égale à celle fournie par la tension dudit générateur pour la fréquence nominale d'oscillation. 6 - Method according to claim 5, characterized in that the adjustment means comprise the replacement of said generator (E) by a resistance bridge (R10, R11) connected to a continuous supply and providing a voltage equal to that supplied by the voltage of said generator for the nominal oscillation frequency.
FR9102551A 1991-03-04 1991-03-04 Electrical circuit comprising a voltage-controlled oscillator Withdrawn FR2673778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR9102551A FR2673778A1 (en) 1991-03-04 1991-03-04 Electrical circuit comprising a voltage-controlled oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9102551A FR2673778A1 (en) 1991-03-04 1991-03-04 Electrical circuit comprising a voltage-controlled oscillator

Publications (1)

Publication Number Publication Date
FR2673778A1 true FR2673778A1 (en) 1992-09-11

Family

ID=9410295

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9102551A Withdrawn FR2673778A1 (en) 1991-03-04 1991-03-04 Electrical circuit comprising a voltage-controlled oscillator

Country Status (1)

Country Link
FR (1) FR2673778A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158182A (en) * 1978-07-31 1979-06-12 Harris Corporation Low noise oscillator circuit
JPS57188129A (en) * 1981-05-15 1982-11-19 Pioneer Electronic Corp Electronic tuning receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158182A (en) * 1978-07-31 1979-06-12 Harris Corporation Low noise oscillator circuit
JPS57188129A (en) * 1981-05-15 1982-11-19 Pioneer Electronic Corp Electronic tuning receiver

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOTOROLA TECHNICAL DEVELOPMENTS. vol. 9, Août 1989, SCHAUMBURG, ILLINOIS US pages 75 - 76; JOEY L.H. OOI: 'Low voltage VCO with differential control voltage for wideband tuning.' *
NEW ELECTRONICS.INCORPORATING ELECTRONICS TODAY.vol. 15, no. 19, Octobre 1982, LONDON GB page 21; R.C. MARMION: 'Linear voltage controlled crystal oscillator.' *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 36 (E-158)(1181) 15 Février 1983 & JP-A-57 188 129 ( PIONEER K.K. ) 19 Novembre 1982 *

Similar Documents

Publication Publication Date Title
EP1424776A1 (en) Voltage controlled oscillator circuit for a low power electronic device
FR2546686A1 (en) VARIABLE FREQUENCY OSCILLATING CIRCUIT IN THE FORM OF AN INTEGRATED CIRCUIT
FR2501434A1 (en) CONTROLLED FREQUENCY OSCILLATOR HAVING A PIEZOELECTRIC ELEMENT AND HAVING AN EXTENSIVE FREQUENCY VARIATION RANGE
FR2485295A1 (en) REACTION IMPEDANCE CONTROL CIRCUIT
FR2672705A1 (en) GENERATOR CIRCUIT FOR A VARIABLE REFERENCE VOLTAGE BASED ON THE TEMPERATURE, IN PARTICULAR FOR REGULATING THE CHARGING VOLTAGE OF A BATTERY BY AN ALTERNATOR.
FR2824681A1 (en) BROADBAND DIFFERENTIAL AMPLIFIER HAVING A TIF DEVICE TO COMPENSATE FOR LOSS OF HIGH FREQUENCY GAIN
FR3035285A1 (en) CIRCUIT FOR AMPLIFYING RADIO FREQUENCY SIGNAL POWER
EP0910002B1 (en) Method for providing a current of high accuracy
FR2808138A1 (en) RLC CIRCUIT MAGNETIC FIELD TRANSMISSION ANTENNA PILOT
FR2685474A1 (en) OPERATING CIRCUIT FOR INDUCTIVE SENSOR WHOSE INDUCTANCE DEPENDS ON THE SIZE TO BE MEASURED.
FR2673778A1 (en) Electrical circuit comprising a voltage-controlled oscillator
EP0524294B1 (en) Amplification circuit with exponential gain control
EP0230693A1 (en) High-frequency differential amplifier stage and amplifier with such a differential amplifier stage
EP0554196A1 (en) Telephone line current modulator
EP0829796B1 (en) Voltage controller with attenuated temperature sensitivity
EP1311065A1 (en) Tuner comprising a voltage converter
EP0017301B1 (en) Frequency shift modulator
EP0201964A1 (en) Amplifier for high frequencies
EP0859458A1 (en) Circuit for frequency modulation of a quartz oscillator
FR2578666A1 (en) CONTROL CIRCUIT WITH COMPENSATION FOR VARIATIONS IN ANODIC VOLTAGE, FOR VERTICAL DEVICE STAGE OF TELEVISION
EP1102148B1 (en) Low temperature corrected voltage generating device
EP0716503B1 (en) Amplifier with reduced distortion
EP0236158B1 (en) Voltage regulator
FR2580125A1 (en)
EP0619645A1 (en) Circuit arrangement with a linearised and symmetrised response, oscillator using such a circuit arrangement and remote control transmitter using such an oscillator

Legal Events

Date Code Title Description
ST Notification of lapse