FR2642561A1 - Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium - Google Patents

Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium Download PDF

Info

Publication number
FR2642561A1
FR2642561A1 FR8901281A FR8901281A FR2642561A1 FR 2642561 A1 FR2642561 A1 FR 2642561A1 FR 8901281 A FR8901281 A FR 8901281A FR 8901281 A FR8901281 A FR 8901281A FR 2642561 A1 FR2642561 A1 FR 2642561A1
Authority
FR
France
Prior art keywords
sep
uranium
thorium
aqueous solution
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR8901281A
Other languages
French (fr)
Inventor
Claude Musikas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR8901281A priority Critical patent/FR2642561A1/en
Publication of FR2642561A1 publication Critical patent/FR2642561A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

According to this process the aqueous solution is brought into contact with an organic solvent containing at least one N,N-dialkylamide of formula: in which R<1> is a branched alkyl radical, R<2>, R<3>, R<4> and R<5> are linear or branched alkyl radicals and a and b are integers from 1 to 6, and then the aqueous solution containing Th(IV) is separated from the organic solvent containing U(VI). By way of example, the N,N-dialkylamide employed corresponds to the formula:

Description

Procédé pour séparer L'uranium (VI > du thorium (IV)
présents dans une solution aqueuse au moyen d'un
N,N-dialkymide, utiLisabLe nota--ent pour séparer
L'uranium produit par irradiation du thoriui.
Process for separating uranium (VI> from thorium (IV)
present in an aqueous solution by means of a
N, N-dialkymide, USEFUL NOTE TO SEPARATE
Uranium produced by irradiation of thoriui.

La présente invention a pour objet un procédé pour séparer l'uranium (VI) du thorium tIV) présents dans une solution aqueuse, en particulier une solution nitrique. The present invention relates to a process for separating uranium (VI) from thorium tIV) present in an aqueous solution, in particular a nitric solution.

ElLe s'appLique en particulier à la séparation de l'uranium présent en faiblie quantité dans des soLutions concentrées de thorium, en présence ou non de produits de fission. It is particularly applicable to the separation of uranium present in small quantities in concentrated solutions of thorium, in the presence or absence of fission products.

Des solutions concentrées en thorium 232 contenant de faibles quantités d'uranium 232 peuvent être produites en particulier par double décroissance e ce qui conduit à la transformation du thorium en uranium. Après cette irradiation, la séparation de l'uranium produit pose certains problèmes en raison de la concentration éLevée en thorium de la solution. La mesure des faibles quantités d'uranium permettrait d'assigner une période pour la double décroissance B et par Là même une masse au neutrino. Concentrated solutions of thorium 232 containing small amounts of uranium 232 can be produced in particular by double decay, which leads to the conversion of thorium into uranium. After this irradiation, the separation of the uranium produced poses certain problems due to the high thorium concentration in the solution. The measurement of small quantities of uranium would make it possible to assign a period for the double decay B and thereby a neutrino mass.

Des solutions de thorium contenant de l'uranium peuvent également se trouver dans les installations de retraitement de combustibles nucléaires irradiés. Solutions of thorium containing uranium can also be found in used nuclear fuel reprocessing facilities.

Dans ces installations, les techniques les plus largement utilisées à l'heure actuelle pour des séparations de ce type sont les techniques d'extraction au moyen de solvants organiques qui peuvent être choisis dans de nombreuses catégories telles que les composés organophosphorés comme le phosphate de tributyle, Les amines, les amides etc. In these installations, the techniques most widely used at present for separations of this type are the extraction techniques using organic solvents which can be chosen from many categories such as organophosphorus compounds such as tributyl phosphate. , Amines, amides etc.

Dans le brevet français FR-A- 2 591 213, on a décrit L'utilisation de N,N-dialkylamides pour extraire simultanément de l'uranium (VI) et du plutonium (IV) ou pour séparer l'uranium (VI) du plutonium (IV). In French patent FR-A-2 591 213, the use of N, N-dialkylamides to simultaneously extract uranium (VI) and plutonium (IV) or to separate uranium (VI) from plutonium (IV).

Les dialkylamides utilisés répondent à la formule

Figure img00020001

dans laquelle R1, R2, R3, R4 et R5 sont des radicaux alkyle linéaires ou ramifiés, et a et b sont des nombres entiers allant de 1 à 6.The dialkylamides used correspond to the formula
Figure img00020001

wherein R1, R2, R3, R4 and R5 are linear or branched alkyl radicals, and a and b are integers ranging from 1 to 6.

Dans ce brevet, on a montré qu'une séparation de l'uranium (VI) et du plutonium CIV) était possible lorsque la solution aqueuse de départ avait une acidité ne dépassant pas 1,2N et que les résultats étaient meilleurs lorsqu'on utilisait un N,N-dialkylamide dans lequel le radical R1 était ramifié. In this patent, it was shown that a separation of uranium (VI) and plutonium (CIV) is possible when the starting aqueous solution has an acidity not exceeding 1.2N and the results are better when using an N, N-dialkylamide in which the radical R1 was branched.

Toutefois, dans ce brevet, la séparation d'uranium (VI) à partir de solutions riches en thorium (IV) contenant tres peu d'uranium (VI) n'a pas été envisagée. However, in this patent, the separation of uranium (VI) from solutions rich in thorium (IV) containing very little uranium (VI) has not been considered.

La présente invention a précisément pour objet un procédé pour séparer l'uranium (VI) du thorium (IV) présents dans une solution aqueuse, qui permet d'obtenir une récupération quantitative de l'uranium (VI) même en présence de quantités élevées de thorium (IV) et dans une Large gamme d'acidité. The present invention specifically relates to a process for separating uranium (VI) from thorium (IV) present in an aqueous solution, which makes it possible to obtain a quantitative recovery of uranium (VI) even in the presence of high quantities of thorium (IV) and in a Wide range of acidity.

Selon l'invention, le procédé pour séparer l'uranium (VI) du thorium (IV) présents dans une solution aqueuse, se caractérise en ce que l'on met en contact ladite solution aqueuse avec un solvant organique comprenant au moins un N,N-dialkylamide de formule

Figure img00030001

dans laquelle R1 est un radical alkyle ramifié de 3 à 12 atomes de carbone, R2 et R4 qui sont identiques ou différents, sont des radicaux alkyle linéaires ou ramifiés de 2 à 4 atomes de carbone, R3 et R5 qui sont identiques. ou différents, sont des radicaux alkyle linaires ou ramifiés de 1 à 6 atomes de carbone, et a et b qui sont identiques ou différents, sont des nombres entiers allant de 1 à 6, et en ce que itou sépare la solution aqueuse contenant le thorium (IV) du solvant organique qui a extrait l'uranium CVI).According to the invention, the process for separating uranium (VI) from thorium (IV) present in an aqueous solution is characterized in that said aqueous solution is brought into contact with an organic solvent comprising at least one N, N-dialkylamide of the formula
Figure img00030001

in which R1 is a branched alkyl radical of 3 to 12 carbon atoms, R2 and R4 which are the same or different, are linear or branched alkyl radicals of 2 to 4 carbon atoms, R3 and R5 which are identical. or different, are linear or branched alkyl radicals of 1 to 6 carbon atoms, and a and b which are the same or different, are integers ranging from 1 to 6, and in that itou separates the aqueous solution containing the thorium (IV) of the organic solvent which extracted the uranium CVI).

Dans La formule donnée ci-dessus, a et b sont généralement tous deux égaux à 1. In the formula given above, a and b are usually both equal to 1.

De préférence, R2 et R4 représentent Le radical éthyle. Preferably, R2 and R4 represent the ethyl radical.

Selon L'invention, R1 est un radical alkyle ramifié de 3 à 12 atomes de carbone, par exemple le radical isopropyle. According to the invention, R1 is a branched alkyl radical of 3 to 12 carbon atoms, for example the isopropyl radical.

A titre d'exemple de N,N-dialkylamide utilisabLe dans le procédé de l'invention, on peut citer celui retondant à la formule

Figure img00030002
As an example of N, N-dialkylamide which can be used in the process of the invention, mention may be made of the one corresponding to the formula
Figure img00030002

Les N, N-dialkylamides de formule (I) utilisés dans t'invention peuvent être préparés par des procédés classiques, par e-xemple par réaction du chlorure d'acide de formule : R1COCl avec l'amine secondaire de formule :

Figure img00040001

dans lesquelles R1, R2, R3, R4, R5 a et b ont la signification donnée ci-dessus, comme il est décrit dans FR-A- 2 591 213.The N, N-dialkylamides of formula (I) used in the invention can be prepared by conventional methods, for example by reaction of the acid chloride of formula: R1COCl with the secondary amine of formula:
Figure img00040001

in which R1, R2, R3, R4, R5 a and b have the meaning given above, as described in FR-A-2 591 213.

Les chlorures d'acide de départ R1COCl peuvent être préparés par des procédés classiques, par exemple par chioruration de l'acide correspondant. The starting acid chlorides R1COCl can be prepared by conventional methods, for example by chlorination of the corresponding acid.

Le solvant organique utilisé dans l'inven- tion, comprend généralement un diluant inerte. Ce diluant peut être constitué par un carbure aromatique tel que le benzène, Le xyLène, le mésitylène, le tertiobutylbenzêne, un alcool comme le décanol, ou de préférence par un hydrocarbure aliphatique, en particulier un hydrocarbure saturé linéaire ou ramifié tel que le dodécane ou le tétrapropylène hydrogéné (TPH). The organic solvent used in the invention generally comprises an inert diluent. This diluent can be constituted by an aromatic carbide such as benzene, xylene, mesitylene, tert-butylbenzene, an alcohol such as decanol, or preferably by an aliphatic hydrocarbon, in particular a linear or branched saturated hydrocarbon such as dodecane or hydrogenated tetrapropylene (TPH).

L'utilisation d'hydrocarbures saturés
Linéaires ou ramifiés permet d'obtenir les avantages suivants :
- le solvant organique a une densité inférieure, ce qui permet d'assurer la séparation de la solution aqueuse et du solvant organique par décantation dans de meilleures conditions, et
- les hydrocarbures saturés présentent une meilleure stabilité chimique en milieu nitrique, des points éclair plus enlevés, et ils sont moins toxiques que les carbures aromatiques.
The use of saturated hydrocarbons
Linear or branched provides the following advantages:
- the organic solvent has a lower density, which makes it possible to ensure the separation of the aqueous solution and the organic solvent by settling under better conditions, and
- Saturated hydrocarbons have better chemical stability in a nitric medium, flash points more removed, and they are less toxic than aromatic carbides.

Généralement, la concentration en N, N-dialkylamide du solvant organique est de 0;2 à 2 mol/l. Generally, the concentration of N, N-dialkylamide in the organic solvent is 0.2 to 2 mol / l.

Selon l'invention, la solution aqueuse de départ contenant l'uranium (VI) et le thorium (IV) est généralement une solution acide, en particu
Lier une solution d'acide nitrique. L'acidité de cette solution peut varier dans une large gamme sans nuire à l'extraction séLective de L'uranium (VI).
According to the invention, the starting aqueous solution containing uranium (VI) and thorium (IV) is generally an acid solution, in particular
Bind a nitric acid solution. The acidity of this solution can vary over a wide range without adversely affecting the selective extraction of uranium (VI).

Ainsi, on obtient des résultats sensiblement équivalents lorsque la concentration en acide nitrique de la solution varie de 1 à 6mol/l. Thus, substantially equivalent results are obtained when the nitric acid concentration in the solution varies from 1 to 6 mol / l.

Comme on l'a vu précédemment, la concentration en thorium de la solution aqueuse de départ peut être importante et se situer par exemple dans la gamme allant de O à 2 mol/l. As seen above, the thorium concentration of the starting aqueous solution can be high and be for example in the range from 0 to 2 mol / l.

Le procédé de l'invention peut être mis en oeuvre dans tout appareillage classique d'extraction liquide-liquide permettant de réaLiser la mise en contact de ia solution aqueuse et du solvant organique et leur séparation dans de bonnes conditions. On peut utiliser en particulier des colonnes d'extraction liquide-liquide, des batteries de mélangeurs-décanteurs, des colonnes pulsées, des extracteurs-centrifuges, etc. The process of the invention can be implemented in any conventional liquid-liquid extraction apparatus making it possible to bring the aqueous solution into contact with the organic solvent and their separation under good conditions. It is in particular possible to use liquid-liquid extraction columns, batteries of mixer-settlers, pulsed columns, extractors-centrifuges, etc.

Généralement, on opère à La pression et à la température ambiante, avec des rapports en volume solution aqueuse/solvant organique qui peuvent varier de 10 à 0,1. Generally, the operation is carried out at pressure and at ambient temperature, with aqueous solution / organic solvent volume ratios which can vary from 10 to 0.1.

Après séparation de la solution aqueuse et du solvant organique, on peut récupérer L'uranium extrait dans le soLvant organique par réextraction dans des solutions aqueuses nitriques ayant une acidité faible, par exemple une concentration en acide nitrique de 0,01 à 1 moL/l. After separation of the aqueous solution and the organic solvent, the uranium extracted in the organic solvent can be recovered by re-extraction in aqueous nitric solutions having low acidity, for example a nitric acid concentration of 0.01 to 1 mol / l. .

D'autres caractéristiques et avantages de l'invention apparaitront mieux à la lecture des exemples suivants donnes bien entendu à titre ilLustratif et non limitatif, en reférence au dessin annexé sur lequel
- la figure 1 est un diagramme illustrant les variations du coefficient de distribution de
U(VI) et de Th(IV) en fonction de la concentration en acide nitrique de la solution aqueuse de départ, et
- la figure 2 est un diagramme. illustrant les variations du coefficient de distribution de
U(VI) et de Th(IV) en fonction de la concentration en thorium de la solution aqueuse de départ.
Other characteristics and advantages of the invention will appear better on reading the following examples, of course given by way of illustration and not limitation, with reference to the appended drawing in which
- Figure 1 is a diagram illustrating the variations of the distribution coefficient of
U (VI) and Th (IV) depending on the nitric acid concentration of the starting aqueous solution, and
- Figure 2 is a diagram. illustrating the variations in the distribution coefficient of
U (VI) and Th (IV) as a function of the thorium concentration of the starting aqueous solution.

Dans les exemples qui suivent, on utilise comme N,N-dialkylamide, le DOiBA de formule :

Figure img00060001

a Lne concentration de lmol/L dans un diluant constitué par du tétrapropylène hydrogéné CTPH). In the examples which follow, the DOiBA of formula is used as N, N-dialkylamide:
Figure img00060001

a Lne concentration of lmol / L in a diluent consisting of hydrogenated tetrapropylene (CTPH).

Le DOjBA a été préparé par réaction de

Figure img00060002
DOjBA was prepared by reaction of
Figure img00060002

avec (C4Hg(C2H5)CHCH2)2NH- Exemples 1 à 6. with (C4Hg (C2H5) CHCH2) 2NH- Examples 1 to 6.

Gans ces exemples, on met en contact une solution aqueuse nitrique contenant lmol/l de thorium (IV)et 0,01 mol/I d'uranium (VI) sous forme de nitrates, et ayant une concentration en acide nitrique qui varie selon les exemples de O à 5,84, avec un volume du solvant organique à Imolil de DOiBA dans du TPH. In these examples, an aqueous nitric solution containing lmol / l of thorium (IV) and 0.01 mol / l of uranium (VI) in the form of nitrates, and having a nitric acid concentration which varies according to the conditions, is brought into contact. examples 0 to 5.84, with one volume of the organic solvent to Imolil of DOiBA in TPH.

Après 5 min d'agitation, on laisse décanter les deux phases et on mesure ensuite leurs concentrations en Th (IV) et en U (VI) par colorimétrie. After 5 min of stirring, the two phases are allowed to settle and their Th (IV) and U (VI) concentrations are then measured by colorimetry.

Pour Th (IV), on a utilisé la méthode au thoron alors que pour U (VI), on a utilisé la méthode au sulfocyanure. A partir de ces résultats, on détermine les coefficients de distribution DM de l'uranium et du thorium qui correspondent au rapport de la concentration de l'élément M (U ou Th) dans le solvant organique sur la concentration de ce même élément dans la solution aqueuse.For Th (IV) the thoron method was used while for U (VI) the sulfocyanide method was used. From these results, the MD distribution coefficients of uranium and thorium are determined which correspond to the ratio of the concentration of the element M (U or Th) in the organic solvent to the concentration of this same element in the aqueous solution.

Les résultats obtenus avec les solutions aqueuses d'acidités différentes des exemples 1 à 6 sont donnés dans Le tableau 1 et sur la figure 1 qui est un graphique représentant Les variations des coefficients de distribution D' de l'uranium et du thorium en fonction de la concentration en HN03 de la solution aqueuse (en mol.l~1). The results obtained with the aqueous solutions of different acidities of Examples 1 to 6 are given in Table 1 and in Figure 1 which is a graph representing the variations of the distribution coefficients D 'of uranium and thorium as a function of the HN03 concentration of the aqueous solution (in mol.l ~ 1).

Au vu de ces résultats, on constate que tes coefficients de distribution de L'uranium sont suffisants, à toute acidité, pour obtenir son extraction quantitative. De même, les coefficients de distribution du thorium (IV) sont suffisamment faibles pour obtenir de bons facteurs de décontamination, même en présence d'un large excès de thorium. In view of these results, it can be seen that your uranium distribution coefficients are sufficient, at any acidity, to obtain its quantitative extraction. Likewise, the distribution coefficients of thorium (IV) are sufficiently low to obtain good decontamination factors, even in the presence of a large excess of thorium.

Exemptes 7 à 14. Free 7 to 14.

Dans ces exemples, on suit le même mode opératoire que dans les exemples 1 à 6 en utilisant à chaque fois une solution aqueuse nitrique ayant une concentration en acide nitrique de 0,73 molli, une concentration en uranium CVI) de O,Dlmol/l et une concentration en thorium (IV) qui varie de O à 1,7mol/l selon les exemples. On met en contact un volume de cette solution aqueuse avec un volume du solvant organique utilisé dans les exemples 1 à 6. In these examples, the same procedure is followed as in Examples 1 to 6, each time using an aqueous nitric solution having a nitric acid concentration of 0.73 moli, a uranium concentration CVI) of 0.1 Dlmol / l and a thorium (IV) concentration which varies from 0 to 1.7 mol / l according to the examples. A volume of this aqueous solution is brought into contact with a volume of the organic solvent used in Examples 1 to 6.

Après 5 min d'agitation, on sépare les deux phases et on détermine leurs teneurs respectives en thorium (IV) et en uranium (VI) de la même façon que dans les exemples 1 à 6. On en déduit les coefficients de distribution de l'uranium et du thorium. After 5 min of stirring, the two phases are separated and their respective thorium (IV) and uranium (VI) contents are determined in the same way as in Examples 1 to 6. The distribution coefficients of l are deduced therefrom. uranium and thorium.

Les résultats obtenus sont donnés dans le tableau 2 et sur la figure 2 qui représente les variations des coefficients de distribution Dn de
U(VI) et Th(IV) en fonction de la concentration en Th(IV)de la solution aqueuse (en mol.l 1)
Au vu de ces résultats, on constate que les meilleurs facteurs de décontamination en uranium (VI) sont obtenus lorsque la concentration en thorium (IV) est la plus élevée.
The results obtained are given in Table 2 and in Figure 2 which represents the variations of the distribution coefficients Dn of
U (VI) and Th (IV) depending on the Th (IV) concentration of the aqueous solution (in mol.l 1)
In view of these results, it can be seen that the best uranium (VI) decontamination factors are obtained when the thorium (IV) concentration is the highest.

Ainsi, le procédé de l'invention peut être utilisé avantageusement pour séparer l'uranium (VI) de solutions ayant une concentration élevée en thorium (IV). Thus, the process of the invention can be used advantageously to separate uranium (VI) from solutions having a high concentration of thorium (IV).

Tableau 1

Figure img00090001
Table 1
Figure img00090001

<tb> <SEP> CHNO <SEP> DTh <SEP> (IV) <SEP> DU(VI) <SEP> DU(VI)/DTh(IV) <SEP>
<tb> Ex.
<tb>
<tb><SEP> CHNO <SEP> DTh <SEP> (IV) <SEP> DU (VI) <SEP> DU (VI) / DTh (IV) <SEP>
<tb> Ex.
<tb>

<SEP> mol <SEP> 1-1
<tb> <SEP> 1 <SEP> 0 <SEP> 0,006 <SEP> 11 <SEP> 1833
<tb> <SEP> 2 <SEP> 0,73 <SEP> 0,O08 <SEP> 14,6 <SEP> 1825
<tb> <SEP> 2 <SEP> <SEP> 3 <SEP> 1,46 <SEP> 0,01 <SEP> 16,6 <SEP> 1660
<tb> <SEP> 4 <SEP> 2,92 <SEP> 0,0112 <SEP> 10,9 <SEP> 964
<tb> <SEP> 5 <SEP> 5 <SEP> 4,38 <SEP> 0,02 <SEP> 9 <SEP> 450
<tb> <SEP> 6 <SEP> 6 <SEP> 5,84 <SEP> 0,Q42 <SEP> 7,3 <SEP> 173,8
<tb>
Tableau 2

Figure img00090002
<SEP> mol <SEP> 1-1
<tb><SEP> 1 <SEP> 0 <SEP> 0.006 <SEP> 11 <SEP> 1833
<tb><SEP> 2 <SEP> 0.73 <SEP> 0, O08 <SEP> 14.6 <SEP> 1825
<tb><SEP> 2 <SEP><SEP> 3 <SEP> 1.46 <SEP> 0.01 <SEP> 16.6 <SEP> 1660
<tb><SEP> 4 <SEP> 2.92 <SEP> 0.0112 <SEP> 10.9 <SEP> 964
<tb><SEP> 5 <SEP> 5 <SEP> 4.38 <SEP> 0.02 <SEP> 9 <SEP> 450
<tb><SEP> 6 <SEP> 6 <SEP> 5.84 <SEP> 0, Q42 <SEP> 7.3 <SEP> 173.8
<tb>
Table 2
Figure img00090002

<tb> <SEP> Ex. <SEP> CTh(IV) <SEP> (IV) <SEP> DuCvI) <SEP> DTh(VI) <SEP> DUTh(YI)DU(IV)/DTh(IV) <SEP>
<tb> <SEP> mol <SEP> 1-'
<tb> <SEP> 7 <SEP> 0 <SEP> 0 <SEP> 0,053 <SEP> - <SEP>
<tb> Z <SEP> 8 <SEP> <SEP> 1 <SEP> 0,1 <SEP> 0,0003 <SEP> 0,161 <SEP> 536
<tb> <SEP> 9 <SEP> 9 <SEP> 0,2 <SEP> 0.00065 <SEP> 0,325 <SEP> 500
<tb> <SEP> 10 <SEP> 10 <SEP> 0,4 <SEP> 0,00252 <SEP> 0,945 <SEP> 375
<tb> Il <SEP> 11 <SEP> 0,6 <SEP> 0,0048 <SEP> 2,569 <SEP> 535
<tb> <SEP> 12 <SEP> 0,8 <SEP> 0,0078 <SEP> 5,57 <SEP> 714
<tb> <SEP> 13 <SEP> 1 <SEP> 0,008 <SEP> 13,91 <SEP> 1738
<tb> <SEP> 14 <SEP> 1,7 <SEP> 0,0295 <SEP> 52,5 <SEP> 1791
<tb>
<tb><SEP> Ex. <SEP> CTh (IV) <SEP> (IV) <SEP> DuCvI) <SEP> DTh (VI) <SEP> DUTh (YI) DU (IV) / DTh (IV) <SEP>
<tb><SEP> mol <SEP> 1- '
<tb><SEP> 7 <SEP> 0 <SEP> 0 <SEP> 0.053 <SEP> - <SEP>
<tb> Z <SEP> 8 <SEP><SEP> 1 <SEP> 0.1 <SEP> 0.0003 <SEP> 0.161 <SEP> 536
<tb><SEP> 9 <SEP> 9 <SEP> 0.2 <SEP> 0.00065 <SEP> 0.325 <SEP> 500
<tb><SEP> 10 <SEP> 10 <SEP> 0.4 <SEP> 0.00252 <SEP> 0.945 <SEP> 375
<tb> Il <SEP> 11 <SEP> 0.6 <SEP> 0.0048 <SEP> 2.569 <SEP> 535
<tb><SEP> 12 <SEP> 0.8 <SEP> 0.0078 <SEP> 5.57 <SEP> 714
<tb><SEP> 13 <SEP> 1 <SEP> 0.008 <SEP> 13.91 <SEP> 1738
<tb><SEP> 14 <SEP> 1.7 <SEP> 0.0295 <SEP> 52.5 <SEP> 1791
<tb>

Claims (7)

REVENDICATIONS 1. Procédé pour séparer L'U(VI) du Th(IV) présents dans une solution aqueuse, caractérisé en ce que l'on met en contact ladite solution aqueuse avec un solvant organique comprenant au moins un 1. Process for separating U (VI) from Th (IV) present in an aqueous solution, characterized in that said aqueous solution is brought into contact with an organic solvent comprising at least one
Figure img00100001
Figure img00100001
dans laqueLle R1 est un radical alkyle ramifié de 3 à 12 atomes de carbone, R2 et R4 qui sont identiques ou différents, sont des radicaux alkyle linéaires ou ramifiés de 2 à 4 atomes de carbone, R3 et R5 qui sont identiques ou différents, sont des radicaux atkyce linéaires ou ramifiés de 1 à 6 atomes de carbone, et a et b qui sont identiques ou différents, sont des nombres entiers allant de 1 à 6, et en ce que l'on sépare la solution aqueuse contenant in which R1 is a branched alkyl radical of 3 to 12 carbon atoms, R2 and R4 which are identical or different, are linear or branched alkyl radicals of 2 to 4 carbon atoms, R3 and R5 which are identical or different, are linear or branched atkyce radicals of 1 to 6 carbon atoms, and a and b which are the same or different, are integers ranging from 1 to 6, and in that the aqueous solution containing Le tnorium CIV) du solvant organique qui a extrait t'uranium (VI). The tnorium CIV) of the organic solvent which extracted the uranium (VI).
2. Procédé selon revendication 1, caractérisé en ce que a et b sont tous deux égaux à 1. 2. Method according to claim 1, characterized in that a and b are both equal to 1. 3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que R2 et R4 représentent le radical éthyle. 3. Method according to any one of claims 1 and 2, characterized in that R2 and R4 represent the ethyl radical. 4. Procédé selon La revendication 1, caractérisé en ce que le N,N-dialkyLamide répond à La formule 4. Method according to claim 1, characterized in that the N, N-dialkyLamide corresponds to the formula
Figure img00100002
Figure img00100002
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la solution aqueuse est une solution d'acide nitrique. 5. Method according to any one of claims 1 to 4, characterized in that the aqueous solution is a nitric acid solution. 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la concentration en thorium de la solution aqueuse est de 0 à 2 mol/l. 6. Method according to any one of claims 1 to 5, characterized in that the thorium concentration of the aqueous solution is from 0 to 2 mol / l. 7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la concentration en N, N-dialkylamide du solvant organique est de 0,2 à 2 mol/l. 7. Method according to any one of claims 1 to 6, characterized in that the concentration of N, N-dialkylamide of the organic solvent is 0.2 to 2 mol / l.
FR8901281A 1989-02-01 1989-02-01 Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium Withdrawn FR2642561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8901281A FR2642561A1 (en) 1989-02-01 1989-02-01 Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8901281A FR2642561A1 (en) 1989-02-01 1989-02-01 Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium

Publications (1)

Publication Number Publication Date
FR2642561A1 true FR2642561A1 (en) 1990-08-03

Family

ID=9378364

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8901281A Withdrawn FR2642561A1 (en) 1989-02-01 1989-02-01 Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium

Country Status (1)

Country Link
FR (1) FR2642561A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954354A1 (en) * 2009-12-22 2011-06-24 Commissariat Energie Atomique PROCESS FOR PURIFYING URANIUM FROM A NATURAL URANIUM CONCENTRATE
WO2011147871A1 (en) * 2010-05-27 2011-12-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for treating spent nuclear fuel not requiring a plutonium reductive back-extraction operation
WO2017017207A1 (en) * 2015-07-29 2017-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving the reductive back-extraction of plutonium
WO2018138441A1 (en) 2017-01-26 2018-08-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dissymmetric n,n-dialkylamides used particularly for separating uranium(vi) from plutonium(iv), synthesis thereof and uses of same
US10252983B2 (en) 2015-07-29 2019-04-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dissymmetric N,N-dialkylamides, the synthesis thereof and uses of same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816628A (en) * 1956-09-26 1959-07-15 Atomenergi Ab A method of extracting uranium compounds from their solutions
GB1154875A (en) * 1965-09-25 1969-06-11 Kernforschung Gmbh Ges Fuer Method of Extracting Metal Values, especially Fissile Nuclear Materials, by means of an Organic Extraction Mixture
EP0228940A1 (en) * 1985-12-05 1987-07-15 Commissariat A L'energie Atomique Process for extracting uranium and/or plutonium IV from an aqueous solution by means of N,N-dialkylamides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816628A (en) * 1956-09-26 1959-07-15 Atomenergi Ab A method of extracting uranium compounds from their solutions
GB1154875A (en) * 1965-09-25 1969-06-11 Kernforschung Gmbh Ges Fuer Method of Extracting Metal Values, especially Fissile Nuclear Materials, by means of an Organic Extraction Mixture
EP0228940A1 (en) * 1985-12-05 1987-07-15 Commissariat A L'energie Atomique Process for extracting uranium and/or plutonium IV from an aqueous solution by means of N,N-dialkylamides

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010334932B2 (en) * 2009-12-22 2014-11-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives A method for purifying the uranium from a natural uranium concentrate
WO2011076739A1 (en) 2009-12-22 2011-06-30 Commissariat à l'énergie atomique et aux énergies alternatives Liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate
FR2954354A1 (en) * 2009-12-22 2011-06-24 Commissariat Energie Atomique PROCESS FOR PURIFYING URANIUM FROM A NATURAL URANIUM CONCENTRATE
RU2542868C2 (en) * 2009-12-22 2015-02-27 Коммиссариат А Л'Энержи Атомик Э Оз Энержи Альтернатив Method of purifying uranium from natural uranium concentrate
GB2488089A (en) * 2009-12-22 2012-08-15 Commissariat A L A Nergie Atomique Et Aux A Nergies Alternatives Liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate
CN102753711A (en) * 2009-12-22 2012-10-24 原子能与替代能源署 liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate
GB2488089B (en) * 2009-12-22 2013-02-27 Commissariat A L A Nergie Atomique Et Aux A Nergies Alternatives A method for purifying the uranium from a natural uranium concentrate
CN102753711B (en) * 2009-12-22 2013-08-21 原子能与替代能源署 Method for purifying uranium from natural uranium concentrate
US8795611B2 (en) 2009-12-22 2014-08-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for purifying the uranium from a natural uranium concentrate
RU2558332C2 (en) * 2010-05-27 2015-07-27 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
US8795610B2 (en) 2010-05-27 2014-08-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for reprocessing spent nuclear fuel not requiring a plutonium-reducing stripping operation
FR2960690A1 (en) * 2010-05-27 2011-12-02 Commissariat Energie Atomique PROCESS FOR PROCESSING NUCLEAR FUELS USING NO PLUTONIUM REDUCING EXTRACTION OPERATION
WO2011147871A1 (en) * 2010-05-27 2011-12-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for treating spent nuclear fuel not requiring a plutonium reductive back-extraction operation
RU2558332C9 (en) * 2010-05-27 2015-09-10 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
CN107851470A (en) * 2015-07-29 2018-03-27 原子能和替代能源委员会 The method for handling the aqueous solution of nitric acid as caused by dissolving spent nuclear fuel, this method carry out in single cycle and need not be related to the operation of reproducibility removing plutonium
FR3039696A1 (en) * 2015-07-29 2017-02-03 Commissariat Energie Atomique ONE-CYCLE TREATMENT METHOD, FREE OF PLUTONIUM REDUCTIVE EXTRACTION OPERATION, OF A NITRIC AQUEOUS SOLUTION OF DISSOLUTION OF US NUCLEAR FUEL
WO2017017207A1 (en) * 2015-07-29 2017-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving the reductive back-extraction of plutonium
GB2555552A (en) * 2015-07-29 2018-05-02 Commissariat Energie Atomique Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle
US10249396B2 (en) 2015-07-29 2019-04-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for the treatment of an aqueous nitric solution resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving reductive stripping of plutonium
US10252983B2 (en) 2015-07-29 2019-04-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dissymmetric N,N-dialkylamides, the synthesis thereof and uses of same
RU2702739C2 (en) * 2015-07-29 2019-10-10 Арева Нс Novel asymmetric n,n-dialkylamides, synthesis thereof and use thereof
GB2555552B (en) * 2015-07-29 2020-07-22 Commissariat Energie Atomique Method for the treatment of an aqueous nitric solution resulting from dissolving spent nuclear fuel, said method being performed in a single cycle
WO2018138441A1 (en) 2017-01-26 2018-08-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dissymmetric n,n-dialkylamides used particularly for separating uranium(vi) from plutonium(iv), synthesis thereof and uses of same
US11578031B2 (en) 2017-01-26 2023-02-14 Commissariat À L'Énergie Atomique Et Aux Ênergies Alternatives Dissymmetric N,N-dialkylamides used particularly for separating uranium(VI) from plutonium(IV), synthesis thereof and uses of same

Similar Documents

Publication Publication Date Title
JP4497724B2 (en) Microbial production method of acetic acid and solvent for extraction of acetic acid from fermentation broth
EP0002970B1 (en) Process for the extraction of gallium and gallium recovered thereby
Deblay et al. Separation of l‐valine from fermentation broths using a supported liquid membrane
EP0110789B1 (en) Process for recovering actinides and/or lanthanides present in their trivalent state in an aqueous acidic solution
FR2642561A1 (en) Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium
WO2000073521A1 (en) Method for separating in an aqueous medium lanthanides and/or actinides by combined complexing-nanofiltration, and novel complexing agents therefor
EP0228940B1 (en) Process for extracting uranium and/or plutonium iv from an aqueous solution by means of n,n-dialkylamides
FR3068257A1 (en) CARBAMIDES FOR THE SEPARATION OF URANIUM (VI) AND PLUTONIUM (IV) WITHOUT REDUCTION OF PLUTONIUM (IV)
FR2518890A1 (en) LIQUID-LIQUID EXTRACTION USING MICROEMULSIONS OF SUBSTANCES DISSOLVED IN WATER
CA1309595C (en) Rare earths liquid-liquid extraction separation process
Furusaki et al. Extraction of amino acids by reversed micelles
EP0381579A1 (en) Method of extracting uranium (VI) and/or plutonium (IV) present in an aqueous acid solution by means of a mixture of N,N-dialkyl amides, for use in the reprocessing of irradiated nuclear fuels
KR100557009B1 (en) Method for extracting organic acid continuously
JPH0238997A (en) Separation of uranium and plutonium from nuclear fuel regeneration treatment solution
EP0844292B1 (en) Composition and use thereof in conversion of a gas containing hydrogen sulfide and sulfur dioxide to sulfur
CN1138738C (en) Recovery method for fluorine series solvent
DE2354038B2 (en) Process for the production of essential and fatty oils and the like
FR2585692A1 (en) Process for the recovery of actinides and/or of lanthanides by extraction from an organic solvent containing a propanediamide
Leu Distribution of ethanol between binary organic solvents and water
AU2008203194B2 (en) Microbial process for the perparation of acetic acid as well as solvent for its extraction from the fermentation broth
AU2006201913B2 (en) Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth
EP1174435A3 (en) Process for preparing complexes between platinum and alkenylsiloxane compounds, in particular platinum-divinyltetramethylsiloxane
EP0298843A1 (en) Process for separating rare earths by liquid-liquid extraction using solvents containing halogens or carboxylic acids
AU2003204990A8 (en) Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

Legal Events

Date Code Title Description
ST Notification of lapse