FR2642561A1 - Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium - Google Patents
Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium Download PDFInfo
- Publication number
- FR2642561A1 FR2642561A1 FR8901281A FR8901281A FR2642561A1 FR 2642561 A1 FR2642561 A1 FR 2642561A1 FR 8901281 A FR8901281 A FR 8901281A FR 8901281 A FR8901281 A FR 8901281A FR 2642561 A1 FR2642561 A1 FR 2642561A1
- Authority
- FR
- France
- Prior art keywords
- sep
- uranium
- thorium
- aqueous solution
- separating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
- G21C19/44—Reprocessing of irradiated fuel of irradiated solid fuel
- G21C19/46—Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0204—Obtaining thorium, uranium, or other actinides obtaining uranium
- C22B60/0217—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
- C22B60/0221—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- High Energy & Nuclear Physics (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
Procédé pour séparer L'uranium (VI > du thorium (IV)
présents dans une solution aqueuse au moyen d'un
N,N-dialkymide, utiLisabLe nota--ent pour séparer
L'uranium produit par irradiation du thoriui. Process for separating uranium (VI> from thorium (IV)
present in an aqueous solution by means of a
N, N-dialkymide, USEFUL NOTE TO SEPARATE
Uranium produced by irradiation of thoriui.
La présente invention a pour objet un procédé pour séparer l'uranium (VI) du thorium tIV) présents dans une solution aqueuse, en particulier une solution nitrique. The present invention relates to a process for separating uranium (VI) from thorium tIV) present in an aqueous solution, in particular a nitric solution.
ElLe s'appLique en particulier à la séparation de l'uranium présent en faiblie quantité dans des soLutions concentrées de thorium, en présence ou non de produits de fission. It is particularly applicable to the separation of uranium present in small quantities in concentrated solutions of thorium, in the presence or absence of fission products.
Des solutions concentrées en thorium 232 contenant de faibles quantités d'uranium 232 peuvent être produites en particulier par double décroissance e ce qui conduit à la transformation du thorium en uranium. Après cette irradiation, la séparation de l'uranium produit pose certains problèmes en raison de la concentration éLevée en thorium de la solution. La mesure des faibles quantités d'uranium permettrait d'assigner une période pour la double décroissance B et par Là même une masse au neutrino. Concentrated solutions of thorium 232 containing small amounts of uranium 232 can be produced in particular by double decay, which leads to the conversion of thorium into uranium. After this irradiation, the separation of the uranium produced poses certain problems due to the high thorium concentration in the solution. The measurement of small quantities of uranium would make it possible to assign a period for the double decay B and thereby a neutrino mass.
Des solutions de thorium contenant de l'uranium peuvent également se trouver dans les installations de retraitement de combustibles nucléaires irradiés. Solutions of thorium containing uranium can also be found in used nuclear fuel reprocessing facilities.
Dans ces installations, les techniques les plus largement utilisées à l'heure actuelle pour des séparations de ce type sont les techniques d'extraction au moyen de solvants organiques qui peuvent être choisis dans de nombreuses catégories telles que les composés organophosphorés comme le phosphate de tributyle, Les amines, les amides etc. In these installations, the techniques most widely used at present for separations of this type are the extraction techniques using organic solvents which can be chosen from many categories such as organophosphorus compounds such as tributyl phosphate. , Amines, amides etc.
Dans le brevet français FR-A- 2 591 213, on a décrit L'utilisation de N,N-dialkylamides pour extraire simultanément de l'uranium (VI) et du plutonium (IV) ou pour séparer l'uranium (VI) du plutonium (IV). In French patent FR-A-2 591 213, the use of N, N-dialkylamides to simultaneously extract uranium (VI) and plutonium (IV) or to separate uranium (VI) from plutonium (IV).
Les dialkylamides utilisés répondent à la formule
dans laquelle R1, R2, R3, R4 et R5 sont des radicaux alkyle linéaires ou ramifiés, et a et b sont des nombres entiers allant de 1 à 6.The dialkylamides used correspond to the formula
wherein R1, R2, R3, R4 and R5 are linear or branched alkyl radicals, and a and b are integers ranging from 1 to 6.
Dans ce brevet, on a montré qu'une séparation de l'uranium (VI) et du plutonium CIV) était possible lorsque la solution aqueuse de départ avait une acidité ne dépassant pas 1,2N et que les résultats étaient meilleurs lorsqu'on utilisait un N,N-dialkylamide dans lequel le radical R1 était ramifié. In this patent, it was shown that a separation of uranium (VI) and plutonium (CIV) is possible when the starting aqueous solution has an acidity not exceeding 1.2N and the results are better when using an N, N-dialkylamide in which the radical R1 was branched.
Toutefois, dans ce brevet, la séparation d'uranium (VI) à partir de solutions riches en thorium (IV) contenant tres peu d'uranium (VI) n'a pas été envisagée. However, in this patent, the separation of uranium (VI) from solutions rich in thorium (IV) containing very little uranium (VI) has not been considered.
La présente invention a précisément pour objet un procédé pour séparer l'uranium (VI) du thorium (IV) présents dans une solution aqueuse, qui permet d'obtenir une récupération quantitative de l'uranium (VI) même en présence de quantités élevées de thorium (IV) et dans une Large gamme d'acidité. The present invention specifically relates to a process for separating uranium (VI) from thorium (IV) present in an aqueous solution, which makes it possible to obtain a quantitative recovery of uranium (VI) even in the presence of high quantities of thorium (IV) and in a Wide range of acidity.
Selon l'invention, le procédé pour séparer l'uranium (VI) du thorium (IV) présents dans une solution aqueuse, se caractérise en ce que l'on met en contact ladite solution aqueuse avec un solvant organique comprenant au moins un N,N-dialkylamide de formule
dans laquelle R1 est un radical alkyle ramifié de 3 à 12 atomes de carbone, R2 et R4 qui sont identiques ou différents, sont des radicaux alkyle linéaires ou ramifiés de 2 à 4 atomes de carbone, R3 et R5 qui sont identiques. ou différents, sont des radicaux alkyle linaires ou ramifiés de 1 à 6 atomes de carbone, et a et b qui sont identiques ou différents, sont des nombres entiers allant de 1 à 6, et en ce que itou sépare la solution aqueuse contenant le thorium (IV) du solvant organique qui a extrait l'uranium CVI).According to the invention, the process for separating uranium (VI) from thorium (IV) present in an aqueous solution is characterized in that said aqueous solution is brought into contact with an organic solvent comprising at least one N, N-dialkylamide of the formula
in which R1 is a branched alkyl radical of 3 to 12 carbon atoms, R2 and R4 which are the same or different, are linear or branched alkyl radicals of 2 to 4 carbon atoms, R3 and R5 which are identical. or different, are linear or branched alkyl radicals of 1 to 6 carbon atoms, and a and b which are the same or different, are integers ranging from 1 to 6, and in that itou separates the aqueous solution containing the thorium (IV) of the organic solvent which extracted the uranium CVI).
Dans La formule donnée ci-dessus, a et b sont généralement tous deux égaux à 1. In the formula given above, a and b are usually both equal to 1.
De préférence, R2 et R4 représentent Le radical éthyle. Preferably, R2 and R4 represent the ethyl radical.
Selon L'invention, R1 est un radical alkyle ramifié de 3 à 12 atomes de carbone, par exemple le radical isopropyle. According to the invention, R1 is a branched alkyl radical of 3 to 12 carbon atoms, for example the isopropyl radical.
A titre d'exemple de N,N-dialkylamide utilisabLe dans le procédé de l'invention, on peut citer celui retondant à la formule
As an example of N, N-dialkylamide which can be used in the process of the invention, mention may be made of the one corresponding to the formula
Les N, N-dialkylamides de formule (I) utilisés dans t'invention peuvent être préparés par des procédés classiques, par e-xemple par réaction du chlorure d'acide de formule : R1COCl avec l'amine secondaire de formule :
dans lesquelles R1, R2, R3, R4, R5 a et b ont la signification donnée ci-dessus, comme il est décrit dans FR-A- 2 591 213.The N, N-dialkylamides of formula (I) used in the invention can be prepared by conventional methods, for example by reaction of the acid chloride of formula: R1COCl with the secondary amine of formula:
in which R1, R2, R3, R4, R5 a and b have the meaning given above, as described in FR-A-2 591 213.
Les chlorures d'acide de départ R1COCl peuvent être préparés par des procédés classiques, par exemple par chioruration de l'acide correspondant. The starting acid chlorides R1COCl can be prepared by conventional methods, for example by chlorination of the corresponding acid.
Le solvant organique utilisé dans l'inven- tion, comprend généralement un diluant inerte. Ce diluant peut être constitué par un carbure aromatique tel que le benzène, Le xyLène, le mésitylène, le tertiobutylbenzêne, un alcool comme le décanol, ou de préférence par un hydrocarbure aliphatique, en particulier un hydrocarbure saturé linéaire ou ramifié tel que le dodécane ou le tétrapropylène hydrogéné (TPH). The organic solvent used in the invention generally comprises an inert diluent. This diluent can be constituted by an aromatic carbide such as benzene, xylene, mesitylene, tert-butylbenzene, an alcohol such as decanol, or preferably by an aliphatic hydrocarbon, in particular a linear or branched saturated hydrocarbon such as dodecane or hydrogenated tetrapropylene (TPH).
L'utilisation d'hydrocarbures saturés
Linéaires ou ramifiés permet d'obtenir les avantages suivants :
- le solvant organique a une densité inférieure, ce qui permet d'assurer la séparation de la solution aqueuse et du solvant organique par décantation dans de meilleures conditions, et
- les hydrocarbures saturés présentent une meilleure stabilité chimique en milieu nitrique, des points éclair plus enlevés, et ils sont moins toxiques que les carbures aromatiques.The use of saturated hydrocarbons
Linear or branched provides the following advantages:
- the organic solvent has a lower density, which makes it possible to ensure the separation of the aqueous solution and the organic solvent by settling under better conditions, and
- Saturated hydrocarbons have better chemical stability in a nitric medium, flash points more removed, and they are less toxic than aromatic carbides.
Généralement, la concentration en N, N-dialkylamide du solvant organique est de 0;2 à 2 mol/l. Generally, the concentration of N, N-dialkylamide in the organic solvent is 0.2 to 2 mol / l.
Selon l'invention, la solution aqueuse de départ contenant l'uranium (VI) et le thorium (IV) est généralement une solution acide, en particu
Lier une solution d'acide nitrique. L'acidité de cette solution peut varier dans une large gamme sans nuire à l'extraction séLective de L'uranium (VI). According to the invention, the starting aqueous solution containing uranium (VI) and thorium (IV) is generally an acid solution, in particular
Bind a nitric acid solution. The acidity of this solution can vary over a wide range without adversely affecting the selective extraction of uranium (VI).
Ainsi, on obtient des résultats sensiblement équivalents lorsque la concentration en acide nitrique de la solution varie de 1 à 6mol/l. Thus, substantially equivalent results are obtained when the nitric acid concentration in the solution varies from 1 to 6 mol / l.
Comme on l'a vu précédemment, la concentration en thorium de la solution aqueuse de départ peut être importante et se situer par exemple dans la gamme allant de O à 2 mol/l. As seen above, the thorium concentration of the starting aqueous solution can be high and be for example in the range from 0 to 2 mol / l.
Le procédé de l'invention peut être mis en oeuvre dans tout appareillage classique d'extraction liquide-liquide permettant de réaLiser la mise en contact de ia solution aqueuse et du solvant organique et leur séparation dans de bonnes conditions. On peut utiliser en particulier des colonnes d'extraction liquide-liquide, des batteries de mélangeurs-décanteurs, des colonnes pulsées, des extracteurs-centrifuges, etc. The process of the invention can be implemented in any conventional liquid-liquid extraction apparatus making it possible to bring the aqueous solution into contact with the organic solvent and their separation under good conditions. It is in particular possible to use liquid-liquid extraction columns, batteries of mixer-settlers, pulsed columns, extractors-centrifuges, etc.
Généralement, on opère à La pression et à la température ambiante, avec des rapports en volume solution aqueuse/solvant organique qui peuvent varier de 10 à 0,1. Generally, the operation is carried out at pressure and at ambient temperature, with aqueous solution / organic solvent volume ratios which can vary from 10 to 0.1.
Après séparation de la solution aqueuse et du solvant organique, on peut récupérer L'uranium extrait dans le soLvant organique par réextraction dans des solutions aqueuses nitriques ayant une acidité faible, par exemple une concentration en acide nitrique de 0,01 à 1 moL/l. After separation of the aqueous solution and the organic solvent, the uranium extracted in the organic solvent can be recovered by re-extraction in aqueous nitric solutions having low acidity, for example a nitric acid concentration of 0.01 to 1 mol / l. .
D'autres caractéristiques et avantages de l'invention apparaitront mieux à la lecture des exemples suivants donnes bien entendu à titre ilLustratif et non limitatif, en reférence au dessin annexé sur lequel
- la figure 1 est un diagramme illustrant les variations du coefficient de distribution de
U(VI) et de Th(IV) en fonction de la concentration en acide nitrique de la solution aqueuse de départ, et
- la figure 2 est un diagramme. illustrant les variations du coefficient de distribution de
U(VI) et de Th(IV) en fonction de la concentration en thorium de la solution aqueuse de départ.Other characteristics and advantages of the invention will appear better on reading the following examples, of course given by way of illustration and not limitation, with reference to the appended drawing in which
- Figure 1 is a diagram illustrating the variations of the distribution coefficient of
U (VI) and Th (IV) depending on the nitric acid concentration of the starting aqueous solution, and
- Figure 2 is a diagram. illustrating the variations in the distribution coefficient of
U (VI) and Th (IV) as a function of the thorium concentration of the starting aqueous solution.
Dans les exemples qui suivent, on utilise comme N,N-dialkylamide, le DOiBA de formule :
a Lne concentration de lmol/L dans un diluant constitué par du tétrapropylène hydrogéné CTPH). In the examples which follow, the DOiBA of formula is used as N, N-dialkylamide:
a Lne concentration of lmol / L in a diluent consisting of hydrogenated tetrapropylene (CTPH).
Le DOjBA a été préparé par réaction de
DOjBA was prepared by reaction of
avec (C4Hg(C2H5)CHCH2)2NH- Exemples 1 à 6. with (C4Hg (C2H5) CHCH2) 2NH- Examples 1 to 6.
Gans ces exemples, on met en contact une solution aqueuse nitrique contenant lmol/l de thorium (IV)et 0,01 mol/I d'uranium (VI) sous forme de nitrates, et ayant une concentration en acide nitrique qui varie selon les exemples de O à 5,84, avec un volume du solvant organique à Imolil de DOiBA dans du TPH. In these examples, an aqueous nitric solution containing lmol / l of thorium (IV) and 0.01 mol / l of uranium (VI) in the form of nitrates, and having a nitric acid concentration which varies according to the conditions, is brought into contact. examples 0 to 5.84, with one volume of the organic solvent to Imolil of DOiBA in TPH.
Après 5 min d'agitation, on laisse décanter les deux phases et on mesure ensuite leurs concentrations en Th (IV) et en U (VI) par colorimétrie. After 5 min of stirring, the two phases are allowed to settle and their Th (IV) and U (VI) concentrations are then measured by colorimetry.
Pour Th (IV), on a utilisé la méthode au thoron alors que pour U (VI), on a utilisé la méthode au sulfocyanure. A partir de ces résultats, on détermine les coefficients de distribution DM de l'uranium et du thorium qui correspondent au rapport de la concentration de l'élément M (U ou Th) dans le solvant organique sur la concentration de ce même élément dans la solution aqueuse.For Th (IV) the thoron method was used while for U (VI) the sulfocyanide method was used. From these results, the MD distribution coefficients of uranium and thorium are determined which correspond to the ratio of the concentration of the element M (U or Th) in the organic solvent to the concentration of this same element in the aqueous solution.
Les résultats obtenus avec les solutions aqueuses d'acidités différentes des exemples 1 à 6 sont donnés dans Le tableau 1 et sur la figure 1 qui est un graphique représentant Les variations des coefficients de distribution D' de l'uranium et du thorium en fonction de la concentration en HN03 de la solution aqueuse (en mol.l~1). The results obtained with the aqueous solutions of different acidities of Examples 1 to 6 are given in Table 1 and in Figure 1 which is a graph representing the variations of the distribution coefficients D 'of uranium and thorium as a function of the HN03 concentration of the aqueous solution (in mol.l ~ 1).
Au vu de ces résultats, on constate que tes coefficients de distribution de L'uranium sont suffisants, à toute acidité, pour obtenir son extraction quantitative. De même, les coefficients de distribution du thorium (IV) sont suffisamment faibles pour obtenir de bons facteurs de décontamination, même en présence d'un large excès de thorium. In view of these results, it can be seen that your uranium distribution coefficients are sufficient, at any acidity, to obtain its quantitative extraction. Likewise, the distribution coefficients of thorium (IV) are sufficiently low to obtain good decontamination factors, even in the presence of a large excess of thorium.
Exemptes 7 à 14. Free 7 to 14.
Dans ces exemples, on suit le même mode opératoire que dans les exemples 1 à 6 en utilisant à chaque fois une solution aqueuse nitrique ayant une concentration en acide nitrique de 0,73 molli, une concentration en uranium CVI) de O,Dlmol/l et une concentration en thorium (IV) qui varie de O à 1,7mol/l selon les exemples. On met en contact un volume de cette solution aqueuse avec un volume du solvant organique utilisé dans les exemples 1 à 6. In these examples, the same procedure is followed as in Examples 1 to 6, each time using an aqueous nitric solution having a nitric acid concentration of 0.73 moli, a uranium concentration CVI) of 0.1 Dlmol / l and a thorium (IV) concentration which varies from 0 to 1.7 mol / l according to the examples. A volume of this aqueous solution is brought into contact with a volume of the organic solvent used in Examples 1 to 6.
Après 5 min d'agitation, on sépare les deux phases et on détermine leurs teneurs respectives en thorium (IV) et en uranium (VI) de la même façon que dans les exemples 1 à 6. On en déduit les coefficients de distribution de l'uranium et du thorium. After 5 min of stirring, the two phases are separated and their respective thorium (IV) and uranium (VI) contents are determined in the same way as in Examples 1 to 6. The distribution coefficients of l are deduced therefrom. uranium and thorium.
Les résultats obtenus sont donnés dans le tableau 2 et sur la figure 2 qui représente les variations des coefficients de distribution Dn de
U(VI) et Th(IV) en fonction de la concentration en Th(IV)de la solution aqueuse (en mol.l 1)
Au vu de ces résultats, on constate que les meilleurs facteurs de décontamination en uranium (VI) sont obtenus lorsque la concentration en thorium (IV) est la plus élevée.The results obtained are given in Table 2 and in Figure 2 which represents the variations of the distribution coefficients Dn of
U (VI) and Th (IV) depending on the Th (IV) concentration of the aqueous solution (in mol.l 1)
In view of these results, it can be seen that the best uranium (VI) decontamination factors are obtained when the thorium (IV) concentration is the highest.
Ainsi, le procédé de l'invention peut être utilisé avantageusement pour séparer l'uranium (VI) de solutions ayant une concentration élevée en thorium (IV). Thus, the process of the invention can be used advantageously to separate uranium (VI) from solutions having a high concentration of thorium (IV).
Tableau 1
Table 1
<tb> <SEP> CHNO <SEP> DTh <SEP> (IV) <SEP> DU(VI) <SEP> DU(VI)/DTh(IV) <SEP>
<tb> Ex.
<tb><tb><SEP> CHNO <SEP> DTh <SEP> (IV) <SEP> DU (VI) <SEP> DU (VI) / DTh (IV) <SEP>
<tb> Ex.
<tb>
<SEP> mol <SEP> 1-1
<tb> <SEP> 1 <SEP> 0 <SEP> 0,006 <SEP> 11 <SEP> 1833
<tb> <SEP> 2 <SEP> 0,73 <SEP> 0,O08 <SEP> 14,6 <SEP> 1825
<tb> <SEP> 2 <SEP> <SEP> 3 <SEP> 1,46 <SEP> 0,01 <SEP> 16,6 <SEP> 1660
<tb> <SEP> 4 <SEP> 2,92 <SEP> 0,0112 <SEP> 10,9 <SEP> 964
<tb> <SEP> 5 <SEP> 5 <SEP> 4,38 <SEP> 0,02 <SEP> 9 <SEP> 450
<tb> <SEP> 6 <SEP> 6 <SEP> 5,84 <SEP> 0,Q42 <SEP> 7,3 <SEP> 173,8
<tb>
Tableau 2
<SEP> mol <SEP> 1-1
<tb><SEP> 1 <SEP> 0 <SEP> 0.006 <SEP> 11 <SEP> 1833
<tb><SEP> 2 <SEP> 0.73 <SEP> 0, O08 <SEP> 14.6 <SEP> 1825
<tb><SEP> 2 <SEP><SEP> 3 <SEP> 1.46 <SEP> 0.01 <SEP> 16.6 <SEP> 1660
<tb><SEP> 4 <SEP> 2.92 <SEP> 0.0112 <SEP> 10.9 <SEP> 964
<tb><SEP> 5 <SEP> 5 <SEP> 4.38 <SEP> 0.02 <SEP> 9 <SEP> 450
<tb><SEP> 6 <SEP> 6 <SEP> 5.84 <SEP> 0, Q42 <SEP> 7.3 <SEP> 173.8
<tb>
Table 2
<tb> <SEP> Ex. <SEP> CTh(IV) <SEP> (IV) <SEP> DuCvI) <SEP> DTh(VI) <SEP> DUTh(YI)DU(IV)/DTh(IV) <SEP>
<tb> <SEP> mol <SEP> 1-'
<tb> <SEP> 7 <SEP> 0 <SEP> 0 <SEP> 0,053 <SEP> - <SEP>
<tb> Z <SEP> 8 <SEP> <SEP> 1 <SEP> 0,1 <SEP> 0,0003 <SEP> 0,161 <SEP> 536
<tb> <SEP> 9 <SEP> 9 <SEP> 0,2 <SEP> 0.00065 <SEP> 0,325 <SEP> 500
<tb> <SEP> 10 <SEP> 10 <SEP> 0,4 <SEP> 0,00252 <SEP> 0,945 <SEP> 375
<tb> Il <SEP> 11 <SEP> 0,6 <SEP> 0,0048 <SEP> 2,569 <SEP> 535
<tb> <SEP> 12 <SEP> 0,8 <SEP> 0,0078 <SEP> 5,57 <SEP> 714
<tb> <SEP> 13 <SEP> 1 <SEP> 0,008 <SEP> 13,91 <SEP> 1738
<tb> <SEP> 14 <SEP> 1,7 <SEP> 0,0295 <SEP> 52,5 <SEP> 1791
<tb> <tb><SEP> Ex. <SEP> CTh (IV) <SEP> (IV) <SEP> DuCvI) <SEP> DTh (VI) <SEP> DUTh (YI) DU (IV) / DTh (IV) <SEP>
<tb><SEP> mol <SEP> 1- '
<tb><SEP> 7 <SEP> 0 <SEP> 0 <SEP> 0.053 <SEP> - <SEP>
<tb> Z <SEP> 8 <SEP><SEP> 1 <SEP> 0.1 <SEP> 0.0003 <SEP> 0.161 <SEP> 536
<tb><SEP> 9 <SEP> 9 <SEP> 0.2 <SEP> 0.00065 <SEP> 0.325 <SEP> 500
<tb><SEP> 10 <SEP> 10 <SEP> 0.4 <SEP> 0.00252 <SEP> 0.945 <SEP> 375
<tb> Il <SEP> 11 <SEP> 0.6 <SEP> 0.0048 <SEP> 2.569 <SEP> 535
<tb><SEP> 12 <SEP> 0.8 <SEP> 0.0078 <SEP> 5.57 <SEP> 714
<tb><SEP> 13 <SEP> 1 <SEP> 0.008 <SEP> 13.91 <SEP> 1738
<tb><SEP> 14 <SEP> 1.7 <SEP> 0.0295 <SEP> 52.5 <SEP> 1791
<tb>
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8901281A FR2642561A1 (en) | 1989-02-01 | 1989-02-01 | Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8901281A FR2642561A1 (en) | 1989-02-01 | 1989-02-01 | Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2642561A1 true FR2642561A1 (en) | 1990-08-03 |
Family
ID=9378364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8901281A Withdrawn FR2642561A1 (en) | 1989-02-01 | 1989-02-01 | Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2642561A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2954354A1 (en) * | 2009-12-22 | 2011-06-24 | Commissariat Energie Atomique | PROCESS FOR PURIFYING URANIUM FROM A NATURAL URANIUM CONCENTRATE |
WO2011147871A1 (en) * | 2010-05-27 | 2011-12-01 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for treating spent nuclear fuel not requiring a plutonium reductive back-extraction operation |
WO2017017207A1 (en) * | 2015-07-29 | 2017-02-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving the reductive back-extraction of plutonium |
WO2018138441A1 (en) | 2017-01-26 | 2018-08-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dissymmetric n,n-dialkylamides used particularly for separating uranium(vi) from plutonium(iv), synthesis thereof and uses of same |
US10252983B2 (en) | 2015-07-29 | 2019-04-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dissymmetric N,N-dialkylamides, the synthesis thereof and uses of same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB816628A (en) * | 1956-09-26 | 1959-07-15 | Atomenergi Ab | A method of extracting uranium compounds from their solutions |
GB1154875A (en) * | 1965-09-25 | 1969-06-11 | Kernforschung Gmbh Ges Fuer | Method of Extracting Metal Values, especially Fissile Nuclear Materials, by means of an Organic Extraction Mixture |
EP0228940A1 (en) * | 1985-12-05 | 1987-07-15 | Commissariat A L'energie Atomique | Process for extracting uranium and/or plutonium IV from an aqueous solution by means of N,N-dialkylamides |
-
1989
- 1989-02-01 FR FR8901281A patent/FR2642561A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB816628A (en) * | 1956-09-26 | 1959-07-15 | Atomenergi Ab | A method of extracting uranium compounds from their solutions |
GB1154875A (en) * | 1965-09-25 | 1969-06-11 | Kernforschung Gmbh Ges Fuer | Method of Extracting Metal Values, especially Fissile Nuclear Materials, by means of an Organic Extraction Mixture |
EP0228940A1 (en) * | 1985-12-05 | 1987-07-15 | Commissariat A L'energie Atomique | Process for extracting uranium and/or plutonium IV from an aqueous solution by means of N,N-dialkylamides |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010334932B2 (en) * | 2009-12-22 | 2014-11-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | A method for purifying the uranium from a natural uranium concentrate |
WO2011076739A1 (en) | 2009-12-22 | 2011-06-30 | Commissariat à l'énergie atomique et aux énergies alternatives | Liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate |
FR2954354A1 (en) * | 2009-12-22 | 2011-06-24 | Commissariat Energie Atomique | PROCESS FOR PURIFYING URANIUM FROM A NATURAL URANIUM CONCENTRATE |
RU2542868C2 (en) * | 2009-12-22 | 2015-02-27 | Коммиссариат А Л'Энержи Атомик Э Оз Энержи Альтернатив | Method of purifying uranium from natural uranium concentrate |
GB2488089A (en) * | 2009-12-22 | 2012-08-15 | Commissariat A L A Nergie Atomique Et Aux A Nergies Alternatives | Liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate |
CN102753711A (en) * | 2009-12-22 | 2012-10-24 | 原子能与替代能源署 | liquid/liquid extraction method for purifying uranium from nitric acid dissolution of natural uranium concentrate |
GB2488089B (en) * | 2009-12-22 | 2013-02-27 | Commissariat A L A Nergie Atomique Et Aux A Nergies Alternatives | A method for purifying the uranium from a natural uranium concentrate |
CN102753711B (en) * | 2009-12-22 | 2013-08-21 | 原子能与替代能源署 | Method for purifying uranium from natural uranium concentrate |
US8795611B2 (en) | 2009-12-22 | 2014-08-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for purifying the uranium from a natural uranium concentrate |
RU2558332C2 (en) * | 2010-05-27 | 2015-07-27 | Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив | Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium |
US8795610B2 (en) | 2010-05-27 | 2014-08-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Process for reprocessing spent nuclear fuel not requiring a plutonium-reducing stripping operation |
FR2960690A1 (en) * | 2010-05-27 | 2011-12-02 | Commissariat Energie Atomique | PROCESS FOR PROCESSING NUCLEAR FUELS USING NO PLUTONIUM REDUCING EXTRACTION OPERATION |
WO2011147871A1 (en) * | 2010-05-27 | 2011-12-01 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for treating spent nuclear fuel not requiring a plutonium reductive back-extraction operation |
RU2558332C9 (en) * | 2010-05-27 | 2015-09-10 | Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив | Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium |
CN107851470A (en) * | 2015-07-29 | 2018-03-27 | 原子能和替代能源委员会 | The method for handling the aqueous solution of nitric acid as caused by dissolving spent nuclear fuel, this method carry out in single cycle and need not be related to the operation of reproducibility removing plutonium |
FR3039696A1 (en) * | 2015-07-29 | 2017-02-03 | Commissariat Energie Atomique | ONE-CYCLE TREATMENT METHOD, FREE OF PLUTONIUM REDUCTIVE EXTRACTION OPERATION, OF A NITRIC AQUEOUS SOLUTION OF DISSOLUTION OF US NUCLEAR FUEL |
WO2017017207A1 (en) * | 2015-07-29 | 2017-02-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving the reductive back-extraction of plutonium |
GB2555552A (en) * | 2015-07-29 | 2018-05-02 | Commissariat Energie Atomique | Method for the treatment of an aqueous nitric solution used resulting from dissolving spent nuclear fuel, said method being performed in a single cycle |
US10249396B2 (en) | 2015-07-29 | 2019-04-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for the treatment of an aqueous nitric solution resulting from dissolving spent nuclear fuel, said method being performed in a single cycle and without requiring any operation involving reductive stripping of plutonium |
US10252983B2 (en) | 2015-07-29 | 2019-04-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dissymmetric N,N-dialkylamides, the synthesis thereof and uses of same |
RU2702739C2 (en) * | 2015-07-29 | 2019-10-10 | Арева Нс | Novel asymmetric n,n-dialkylamides, synthesis thereof and use thereof |
GB2555552B (en) * | 2015-07-29 | 2020-07-22 | Commissariat Energie Atomique | Method for the treatment of an aqueous nitric solution resulting from dissolving spent nuclear fuel, said method being performed in a single cycle |
WO2018138441A1 (en) | 2017-01-26 | 2018-08-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dissymmetric n,n-dialkylamides used particularly for separating uranium(vi) from plutonium(iv), synthesis thereof and uses of same |
US11578031B2 (en) | 2017-01-26 | 2023-02-14 | Commissariat À L'Énergie Atomique Et Aux Ênergies Alternatives | Dissymmetric N,N-dialkylamides used particularly for separating uranium(VI) from plutonium(IV), synthesis thereof and uses of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4497724B2 (en) | Microbial production method of acetic acid and solvent for extraction of acetic acid from fermentation broth | |
Deblay et al. | Separation of l‐valine from fermentation broths using a supported liquid membrane | |
EP0110789B1 (en) | Process for recovering actinides and/or lanthanides present in their trivalent state in an aqueous acidic solution | |
FR2751962A1 (en) | PROCESS FOR PURIFYING LACTAMS | |
FR2642561A1 (en) | Process for separating uranium(VI) from thorium(IV) which are present in an aqueous solution by means of an N,N-dialkylamide, which can be used especially for separating the uranium produced by irradiation of thorium | |
FR3062128A1 (en) | DISSYMETRIC N, N-DIALKYLAMIDES, PARTICULARLY USEFUL FOR SEPARATING URANIUM (VI) FROM PLUTONIUM (IV), THEIR SYNTHESIS AND USES THEREOF | |
EP0083272A1 (en) | Liquid-liquid extraction by means of microemulsions of substances dissolved in water | |
WO2000073521A1 (en) | Method for separating in an aqueous medium lanthanides and/or actinides by combined complexing-nanofiltration, and novel complexing agents therefor | |
EP0228940B1 (en) | Process for extracting uranium and/or plutonium iv from an aqueous solution by means of n,n-dialkylamides | |
FR3068257A1 (en) | CARBAMIDES FOR THE SEPARATION OF URANIUM (VI) AND PLUTONIUM (IV) WITHOUT REDUCTION OF PLUTONIUM (IV) | |
CA1309595C (en) | Rare earths liquid-liquid extraction separation process | |
Furusaki et al. | Extraction of amino acids by reversed micelles | |
EP0381579A1 (en) | Method of extracting uranium (VI) and/or plutonium (IV) present in an aqueous acid solution by means of a mixture of N,N-dialkyl amides, for use in the reprocessing of irradiated nuclear fuels | |
FR2684670A1 (en) | NITROGENIC HETEROCYCLIC SUBSTITUTING AMIDES, PROCESS FOR THEIR PREPARATION AND THEIR USE FOR SELECTIVELY EXTRACTING ACTINIDES (III) AND SEPARATING THEM IN PARTICULAR FROM LANTHANIDES (III). | |
KR100557009B1 (en) | Method for extracting organic acid continuously | |
DE2354038C3 (en) | ||
JPH0238997A (en) | Separation of uranium and plutonium from nuclear fuel regeneration treatment solution | |
CN1138738C (en) | Recovery method for fluorine series solvent | |
FR2585692A1 (en) | Process for the recovery of actinides and/or of lanthanides by extraction from an organic solvent containing a propanediamide | |
Leu | Distribution of ethanol between binary organic solvents and water | |
AU2008203194B2 (en) | Microbial process for the perparation of acetic acid as well as solvent for its extraction from the fermentation broth | |
AU2006201913B2 (en) | Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth | |
EP1174435A3 (en) | Process for preparing complexes between platinum and alkenylsiloxane compounds, in particular platinum-divinyltetramethylsiloxane | |
FR2510554A1 (en) | Alkylene oxide polyaddition products prepn. - using polymers contg. aromatic amine system in lateral chains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |