FR2615871A1 - Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique - Google Patents
Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique Download PDFInfo
- Publication number
- FR2615871A1 FR2615871A1 FR8707372A FR8707372A FR2615871A1 FR 2615871 A1 FR2615871 A1 FR 2615871A1 FR 8707372 A FR8707372 A FR 8707372A FR 8707372 A FR8707372 A FR 8707372A FR 2615871 A1 FR2615871 A1 FR 2615871A1
- Authority
- FR
- France
- Prior art keywords
- protective coating
- superalloy
- powder
- composition
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
- C25D15/02—Combined electrolytic and electrophoretic processes with charged materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/934—Electrical process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12042—Porous component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12049—Nonmetal component
- Y10T428/12056—Entirely inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12153—Interconnected void structure [e.g., permeable, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Electrochemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Un revêtement de pièce de turbomachine en superalliage est constitué d'une structure métallique présentant une forme cellulaire à porosité contrôlée, de composition M Cr Al Y, M désignant Ni, Co ou Fe, obtenue par dépôt électro-phorétique, consolidée par un traitement d'aluminisation en phase vapeur et complétée par un matériau céramique projeté à la flamme plasma. Le procédé de réalisation du revêtement est également concerné.
Description
DESCRIPTION 2615871
La présente invention concerne des pièces de turbomachine constituées en un superalliage présentant de bonnes propriétés de résistance mécanique et de tenue aux hautes températures, notamment à base de nickel, comportant un revêtement de protection contre la corrosion/oxydation. Elle concerne également un procédé de réalisation dudit revêtement protecteur sur pièces de turbomachiné en superalliage. La recherche de hautes performances dans le développement des turbomachines et en particulier dans les applications aéronautiques a conduit à des températures de fonctionnement toujours plus élevées en même temps que la rationalisation de l'exploitation des matériels impose d'accroître la durée de vie des pièces et il en est résulté la mise au point de nombreuses solutions concernant les revêtements de protection contre l'oxydation/corrosion pour les pièces de turbomachine
soumises à de hautes températures.
US-A-4 328 285 fournit l'exemple de pièces de turbine à gaz en superalliage, protégées par une sous-couche métallique, de composition du type M Cr A1 Y, M désignant Fe, Ni, Co ou un mélange de ces métaux, appliquée par projection à la flamme plasma et suivie d'un revêtement à base de céramique comportant de l'oxyde de zirconium et au moins 15 % en poids d'oxyde de cérium, également obtenu
par projection à la flamme plasma.
US-A 4 248 940 fournit un autre exemple de revêtement pour pièces en superalliage formant barrière thermique, obtenu par projection à la flamme plasma et à partir d'un mélange de poudres comprenant un matériau d'accrochage du type M Cr Al Y, M désignant Fe, Ni, Co ou un mélange de ceux-ci et un matériau de type céramique à base d'oxyde de' zirconium stabilisé par un autre oxyde, le revêtement comportant un pourcentage croissant de céramique à partir
du substrat.
Toutefois, aucune solution connue antérieure ne donne entière satisfaction, en fonction des conditions particulières d'utilisation et compte-tenu d'exigences croissantes de tenue en service et d'amélioration des propriétés d'isolation thermique et de résistance aux différents agents combinés d'oxydation et de corrosion de diverses natures. Un phénomène particulièrement sensible a été observé et qui peut être décrit comme l'apparition et la propagation de criques ou fissures sous l'effet de contraintes qui se développent dans le revêtement et ont
une origine, en particulier, thermique.
Le but de l'invention est ainsi d'obtenir une structure améliorée du revêtement au moyen de l'application d'un procédé amélioré de réalisation. Cette structure obtenue par l'invention vise en particulier à modifier le mode de rupture observé sur le revêtement dans des conditions
critiques de fonctionnement des pièces revêtues.
Une pièce de turbomachine en superalliage comportant un revêtement protecteur ainsi amélioré est caractérisée en ce que ledit revêtement protecteur est constitué d'une structure métallique de composition M Cr A1 Y, M désignant un métal choisi dans le groupe formé par nickel, cobalt, fer ou un mélange de ceux-ci avec adjonction éventuelle de tantale, présentant une forme cellulaire a porosité contrôlée, c'est à dire présentant des pores d'une taille déterminée et à répartition régulière, obtenue par dépôt électrophorétique, dans des conditions choisies en fonction de la structure cellulaire recherchée, cette structure métallique comportant en outre une composition modifiée et une liaison avec ledit substrat
3 2615871
en superalliage obtenues au moyen d'un traitement de consolidation par aluminisation en phase vapeur, dans des conditions de température et de durée connues en soi pour l'application audit superalliage et d'un matériau à base de céramique appliqué par une projection du type
atmosphérique à la flamme plasma.
Le revêtement protecteur de pièce de turbomachine en superalliage conforme à l'invention procure des avantages significatifs de durée de vie et de tenue en service améliorées. Un essai d'explication du phénomène observé
peut être amorcé à partir des essais effectués.
Les figures la, lb, et lc donnent une représentation schématique vue en section d'un substrat 1 a revêtu selon une technique antérieure avec souscouche métallique lb et couche externe céramique lc obtenues par projection à la flamme plasma. A partir de l'amorçage d'une fissure critique 2 montrée à la figure lb, en poursuivant l'application de chocs thermiques représentatifs des conditions de fonctionnement d'une pièce revêtue, la figure lc montre l'apparition d'une rupture du revêtement
à partir de la propagation de ladite fissure 2.
Les figures 2a, 2b, 2c, donnent une représentation schématique analogue à celle des figures la, lb et lc pour un substrat 2a. revêtu, conforme à l'invention, dans lequel
la structure métallique 2b obtenue par dépôt électro-
phorétique présente la forme cellulaire recherchée, à
porosité contrôlée.
A la suite de chocs thermiques, une fissure critique 2 est également amorcée, comme visible à la figure 2b. Mais l'analogie s'arrête là, car l'invention permet d'obtenir un mécanisme de fissuration différent. Comme représenté à la figure 2c, on observe d'une part en 3 une déviation de la fissure qui n'a plus, comme sur la figure lc 2615871 représentant la technique antérieure, une propagation dans une direction parallèle à la surface du revêtement ou aux plans des différentes interfaces métal/céramique. Enfin, on observe en 4 un arrêt de propagation de la fissure au niveau d'un élément de structure cellulaire métallique plus résistant à la fissuration. Cette ébauche d'explication reste toutefois partielle et d'autres avantages de la structure du revêtement conforme à l'invention conduisant à une amélioration des résultats doivent être soulignés. La modification du mode de rupture est également obtenue grâce à une amélioration de l'adhérence mécanique à l'interface métal/céramique, la structure cellulaire favorisant notamment une interpénétration entre les deux couches. En outre, à l'interface céramique/métal la structure obtenue induit une modification de la répartition des contraintes d'o il résulte,non seulement, comme exposé ci-dessus, des propriétés particulières de propagation de fissure, mais également et de manière avantageuses, des conditions particulières d'apparition ou amorçage desdites fissures ou criques induisant notamment leur retard. Selon les applications de l'invention, une structure du type représenté aux figures 2a, 2b et 2c peut être recherchée ou dans certains cas, une structure du type représenté à la figure 2d dans laquelle la structure cellulaire métallique 2b affleure à la surface externe du revêtement
protecteur final obtenu.
Ces avantages et résultats améliorés que présentent les pièces en superalliage comportant le revêtement protecteur conforme à l'invention sont obtenus en appliquant un procédé de réalisation dudit revêtement protecteur caractérisé en ce qu'il comporte les étapes suivantes: a) dépôt électrophorétique d'une structure métallique de composition M Cr A1 Y, M désignant un métal choisi dans le groupe formé par Ni, Co,, Fe ou un mélange de ceux-ci, avec adjonction éventuelle de Ta, dans des conditions déterminées de manière à obtenir une forme cellulaire pour ladite structure, c'est à dire présentant des pores
2615871
d'une taille déterminée et a répartition régulière; b) - traitement thermochimique d'aluminisation en phase vapeur dans des conditions de température et de durée connues en soi pour l'application audit superalliage, de manière à assurer une consolidation de ladite structure obtenue à l'étape (a) du procédé; c) - projection de type atmosphérique à la flamme plasma d'une poudre à base de céramique, de manière à constituer
le revêtement protecteur complet.
Pour chaque application particulière, les paramètres, à chaque étape, sont définis conformément aux
caractéristiques énoncées.
D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture qui va suivre de la
description d'exemples de réalisation et d'essais
effectués, en référence aux dessins annexés sur lesquels: - les figures la, lb et lc concernant une technique antérieure ont été précédemment décrites ainsi que les figures analogues 2a, 2b, 2c et'2d montrant un résultat avantageux de l'invention; - les figures 3a, 3b représentent des éprouvettes utilisées pour effectuer des essais de tenue de revêtement protecteur sur pièce en superalliage conforme à l'invention; - Les figures 4, 5 et 6 représentent des courbes de variation de masse de poudre déposée en fonction de divers paramètres de dépôt électrophorétique;
6 2 6 152615871
- la figure 7 est un schéma de structure cellulaire obtenue après dépôt électrophorétique; - Lesfigures 7a et 7b sont des schémas de structure du revêtement final obtenu; - les figures 8a, 8b, Sc montrent des photos en microscopie électronique à balayage de structures différentes obtenues selon les valeurs de paramètres du dépôt électrophorétique; - les figures 9a, 9b montrent deux photos prises en microscopie électronique à balayage de structures obtenues après traitement de consolidation du dépôt électrophorétique et les figures 9c et 9d montrent les détails de la liaison entre la couche déposée et le substrat; - la figure 10 montre une photo prise en microscopie électronique à balayage d'une structure de revêtement final obtenu selon l'invention et la figure lOa montre un détail agrandi de la figure 10; - la figure 11 représente schématiquement un cycle thermique appliqué à une éprouvette d'essai revêtue selon l'invention; - la figure 12 représente schématiquement les résultats d'essais de tenue aux chocs thermiques réalisés selon le
cycle de la figure 11.
Des éprouvettes 10 et 11 représentées aux figures 3a et 3b sont utilisées pour réaliser un revêtement protecteur conforme à l'invention. Dans cet exemple, le matériau de base des éprouvettes 10 et 11 est un superalliage à base de nickel dont la composition en pourcentages pondéraux
7 2615871
est indiqué ci-après: C 0,05-0,15; Si 1 maximum; Mn 1 maximum; Cr 20,5-23, 0; Fe 17,0-20,0; Mo 8,0-10,0; Co 0,50-2,50; W 0,20-1,0 et Ni complément à 100. Après une préparation, d'un genre connu en soi, -comportant uniquement un polissage et un nettoyage, une éprouvette, telle que 10 ou 11, est montée dans un dispositif connu en soi permettant d'effectuer un dépôt électrophorétique,
ladite éprouvette étant montée en position de cathode.
Dans l'exemple, le bain utilisé est à base de méthanol CH3 OH, l'électrolyte est le chlorure d'aluminium A12 C16. Diverses concentrations d'électrolyte ont été testées, notamment à 0,5g/1 et la concentration est restée inférieure à l,5g/1. La poudre à déposer, du type M Cr AI Y correspond dans l'exemple à la composition pondérale suivante: Cr 21; Al 8,47; Y 0,59; Ta 5,7 et Ni complément et est constituée de particules sphériques dont le
diamètre est compris entre 45 m et 75 L m.
Diverses quantités de poudre, entre 1500 et 2000 g/l ont également été testées et de bons résultats sont obtenus en
utilisant 2000 g/l.
Le champ électrique appliqué reste inférieur à une valeur de 2500 V. cm-1 et la densité de courant à une valeur inférieure à 100 m A.cm-2. La température du bain est maintenue à une température comprise entre 15 et 35 OC et de bons résultats sont obtenus à une température ambiante comprise entre 18 et 21 C. Au cours du dépôt électrophorétique, les différentes réactions chimiques peuvent être schématisées suivant le processus ci-après: - la mise en solution du chlorure d'aluminium dans le méthanol donne lieu aux réactions: 2 CH30H + A12C16 > 2 [CH3OH, Al Cl3] CH3 0 Al C12+ HCl puis CH3 0 AlC12 CHC + Al 0 CI HC1 +CHH CH3HCH3 Cl + H20 et on obtient le complexe [Al 0 Cl, n H20; le chlorure de méthyl CH3 Cl dégage à l'état gazeux et l'oxychlorure d'aluminium qui est une molécule très polaire va engendrer une densité surfacique de charge; - lors de l'introduction de la poudre M Cr Ai Y, le complexe Al 0 Cl, n H2 O]vient s'adsorber en surface de M Cr A1 Y qui est mis en suspension; - après l'application du champ électrique, une électrophorèse et une électrolyse simultanées se produisent; dans les conditions et paramètres de réalisation indiqués, la tension entre les électrodes correspond à la tension fournie par le générateur et simultanément au dépôt de poudre M Cr A1 Y sur la surface de la cathode constituée par la pièce ou éprouvette 10 ou 11 à revêtir; il se produit également un dégagement d'hydrogène à la cathode. Dans les conditions indiquées qui ont été déterminées, le dépôt obtenu présente une structure cellulaire provoquée
9 2615871
par ledit dégagement d'hydrogène.
Une répartition régulière des pores est obtenue dans les conditions indiquées et la taille des pores peut être ajustée en fonction de la structure souhaitée, selon l'application particulière envisagée, en faisant varier certains paramètres de l'opération de dépôt électrophorétique, notament la valeur du champ électrique
ou de la température.
La figure 4 représente des courbes de variation de la masse de poudre déposée en mg/cm2, reportée en ordonnées, en fonction du temps de dépôt en secondes, reporté en abcisses, pour des conditions fixées de température à 23 C, de concentration d'électrolyte à lg/l, d'apport de poudre M Cr AI Y à 2000 g/l et selon la valeur du champ électrique indiquée ci-après: - 54 V. cm -lpour la courbe 4 A - 108 V. cm -lpour la courbe 4 B - 180 V. cm-lpour la courbe 4 C - 360 V. cm-lpour la courbe 4 D - 710 V. cm-lpour la courbe 4 E De manière analogue, la figure 5 représente des courbes de variation de la masse de poudre déposée en mg/cm2 reportée en ordonnées en fonction de la valeur du champ électrique appliqué en V..cm -1 reportée en abcisses pour les mêmes conditions de température, concentration d'électrolyte et quantité de poudre M Cr Al Y qu'à la figure 4 et, selon le temps de dépôt retenu a savoir: - 9 s pour la courbe 5 A, - 15 s pour la courbe 5 B, - 30 s pour la courbe 5 C, - 60 s pour la courbe 5 D.
2 6 1 615871
De manière analogue, la figure 6 représente des courbes de variation de la masse de poudre déposée en mg/cm2 reportée en ordonnées en fonction de la température du bain en C reportée en abcisses pour les mêmes conditions de concentration d'électrolyte et quantité de poudre M Cr Ai qu'aux figures 4 et 5, avec un temps de dépôt de secondes et selon la valeur du champ électrique retenue, à savoir: - 55 V. cm -1 pour la courbe.6 A 80.V. cm 1 pour la courbe 6 B - 110V. cm 1 pour la courbe 6 C La figure 7 montre une représentation schématique d'un exemple de structure cellulaire de la sous-couche métallique obtenue par dépôt électrophorétique selon l'invention. Une répartition régulière de cellules 12 est obtenue. Les figures 8a, 8b, 8c, 8d montrent différents types de structure obtenus en faisant varier les paramètres du dépôt électrophorétique, notamment la valeur du champ électrique ou la température, les autres conditions étant fixées et le temps de dépôt, égal à 9 secondes étant
identique.
Ainsi la structure de la figure 8a présente des petites cellules, de taille d inférieure à 100 P- met elle c est obtenue à 8 C et 100 V.cm'-1 Par contre, la structure de la figure 8b présente de grosses cavités de taille dc de l'ordre de 500 t met
elle est obtenue à 31WC et 130 V. cm1.
De faibles densités de cellules peuvent également être obtenues et des variations d'épaisseur de couche selon la valeur du champ électrique. Ainsi la figure 8c montre une là 2615871 structure de dépôt monocouche d'une épaisseur de l'ordre de 50 tL m, obtenu à 23 C et 20 V. cm-1 alors que la figure 8d montre une structure relativement compacte de dépôt épais, de l'ordre de 500 L m d'épaisseur, obtenu à 23 C et 110 V. cm 1. Le bain utilisé de méthanol avec un électrolyte de chlorure d'aluminium présente des avantages supplémentaires de permettre.des temps de dépôts très courts, évitant l'échauffement du bain, d'éviter des dépôts parasites, la présence d'hydroxychlorure d'aluminium étant notamment inférieure à lmg/cm2. En outre, le séchage du dépôt à sa sortie du bain électrophorétique est immédiat par suite de la faible
pression de vapeur du méthanol.
La recherche d'une tenue mécanique suffisante, entre autres, du dépôt électrophorétique de M Cr Al Y obtenu conduit à prévoir un traitement de consolidation de la structure cellulaire métallique revêtant les pièces en superalliage. Ledit traitement vise également à assurer au revêtement des propriétés satisfaisantes de protection chimique. La méthode retenue est d'effectuer un traitement thermochimique d'aluminisation en phase vapeur. Les conditions de température et de durée de ce traitement déterminées pour le superalliage constituant le substrat de base des pièces à revêtir sont de pratique courante et ont été décrites, notamment par FR-A 1433 497 et il n'est pas nécessaire de développer d'autres détails de mise en
oeuvre qui sont connus.
Les figures 9a et 9b montrent deux photos prises en microscopie électronique à balayage d'éprouvettes ayant subi ce traitement d'aluminisation en phase vapeur. Pour la figure 9a, la durée a été de 1 heure à 1155"C. La
12 2615871
structure initiale est préservée et la vue en coupe d l'éprouvette représentée à la figure 9c ainsi que le détail de la liaison entre le substrat et le dépôt représenté à la figure 9d montre l'absence de décollement et la bonne liaison avec le substrat. Pour la figure 9b, la durée a été de 3 heures à 1150 C. Une bonne consolidation est également obtenue, mais le dépôt est
légèrement moins poreux.
Le revêtement est complété par l'application d'un matériau céramique formant barrière thermique. Le constituant choisi est l'oxyde de zirconium Zr 02 dont la stabilité de phase est assurée par un autre oxyde mélangé. Dans l'exemple réalisé, la poudre utilisée comporte 8% de Y2 03 en pourcentage pondéral mélangé à Zr 02, la granulométrie étant comprise entre 45 et 75 t m. Une projection de type atmosphérique à la flamme plasma dans les condition opératoires courantes pour ce genre d'application a été effectuée pour obtenir l'apport de matériau céramique dans le revêtement. Après projection de la céramique, la forme cellulaire initiale de la structure métallique consolidée est conservée. La figure 7a montre ainsi une représentation schématique d'une pièce obtenue après revêtement montranten 10 le substrat en superalliage, en 12a la structure métallique à forme cellulaire et en 13 le matériau céramique. En fonction des applications particulières, une structure du type représenté à la figure 7a peut être recherchée ou dans certains cas, comme représenté à la figure 7b, la structure cellulaire métallique 12a est affleurante à la surface du revêtement obtenu après application du matériau céramique 13. La figure 10 montre une photo prise au microscope électronique à balayage montrant un exemple de réalisation conforme à l'invention et montrant le remplissage des cellules de la structure métallique par le matériau céramique et la figure lOa montre un détail agrandi. Différents essais de projection à la flamme plasma de la céramique concernée ont été mis en oeuvre avec succès en faisant varier la morphologie de la structure cellulaire de la sous-couche métallique utilisée, notamment avec des structures dont la taille
13 2615871
des cellules est, soit dc inférieur à 100 - m, soit dc compris entre 100 et 300 Q m, soit dc supérieur à
300 t m.
Des essais ont été réalisés afin de tester la tenue à des conditions représentatives des conditions d'utilisation des pièces en superalliage revêtues. Un essai particulier et significatif concerne la tenue aux chocs thermiques. Il consiste à faire subir aux éprouvettes revêtues conformément à l'invention des cycles thermiques selon le cycle représenté à la figure 11 et se décomposant en 15 minutes à 110 C suivi d'un refroidissement à l'air ambiant
en 15 minutes.
La figure 12 schématise les résultats obtenus sur six éprouvettes. Deux éprouvettes témoins Tl et T2 ont été revêtues uniquement par projection à la flamme plasma d'une sous-couche métallique M Cr Al Y et d'une couche externe céramique alors que quatre éprouvettes E1, E2,
E3, E4 ont reçu un revêtement conforme à l'invention.
Une durée de vie nettement supérieure représentée sur la figure 12 par le nombre de cycles en ordonnées correspondent à chaque éprouvette. Sur les éprouvettes témoins T1 et T2 une fissuration et un décollement du revêtement céramique sont observés. L'éprouvette E1 à une durée égale à celle de T2 présente une faible fissuration mais pas de décollement. Les éprouvettes E2 et E3 ont une durée de vie supérieure à T2 et à 2083 cycles (au lieu de 780 cycles pour T2), E3 Présente de la fissuration mais pas de décollement. E4 a été soumis à un cyclage thermique plus sévère comportant 8 minutes à 1100 C et 2 minutes de refroidissement forcé à l'air comprimé mais présente cependant une durée de vie supérieure à 2000 cycles. De ces résultats et des observations micrographiques effectuées, on a pu déduire
14- 2615871
que les buts visés sont atteints; en particulier, la modification de la répartition des contraintes, notamment d'origine thermique, à l'interface entre la structure cellulaire métallique et la couche externe céramique a été obtenue. Comme noté précédemment, en référence aux figures 2a, 2b et 2c, la propagation de fissures est contrariée ou bloquée par la présence de cellules dans la sous-couche
métallique mais il semble également qu'un niveau de con-
traintes plus faible obtenu à l'interface métal/céramique soit obtenu grâce à une ductilité améliorée de la structure metallique due à sa forme cellulaire. Il résulte de la structure cellulaire particulièrement une adaptation améliorée aux dilatations d'origine thermique et des points d'amorçage de rupture peuvent se présenter à l'interface métal/céramique de manière très dispersée permettant une répartition des contraintes à un niveau plus faible en chaque point. En fait le niveau de contraintes résultant des dilatations différentielles métal/céramique n'est plus déterminé par les dimensions des pièces revêtues mais par la taille et la répartition des cellules formées dans le revêtement. D'autres avantages ont été relevés résultant de la structure particulière du revêtement protecteur conforme à l'invention. En particulier, le pouvoir isolant thermique du revêtement est augmenté par suite de la présence de pores dans la structure métallique qui sont remplis de matériau céramique. Par ailleurs, le traitement thermochimique d'aluminisation en phase vapeur appliqué selon l'invention en plus de la consolidation de la structure cellulaire métallique assure également la protection chimique excellente que procure ledit traitement. D'autres exemples d'application ont également été mis en oeuvre en utilisant des plaquettes planes de 30X30X5 mm en superalliage et ont conduit aux mêmes bons résultats, ce qui montre que des pièces de superalliage de formes
diverses peuvent être revêtues conformément à l'invention.
2615871
Claims (5)
1. Pièce de turbomachine constituée en un superalliage présentant de bonnes propriétés de résistance mécanique et de tenue aux hautes températures, notamment à base de nickel, comportant un revêtement de protection contre la corrosion/oxydation caractérisée en ce que ledit revêtement protecteur est constitué d'une structure métallique de composition M Cr A1 Y, M désignant un métal choisi dans le groupe formé par nickel, cobalt, fer ou un mélange de ceux-ci avec adjonction éventuelle de tantale, présentant une forme cellulaire à porosité contrôlée, c'est à dire présentant des cellules (12) ou pores d'une taille déterminée et à répartition régulière, obtenue par dépôt électrophorétique, dans des conditions choisies en fonction de la structure cellulaire recherchée, cette structure métallique comportant en outre une composition modifiée et une liaison avec ledit substrat en superalliage obtenues au moyen d'un traitement de consolidation par aluminisation en phase vapeur, dans des conditions de température et de durée connues en soi pour l'application audit superalliage et d'un matériau à base de céramique appliqué par une projection du type
atmosphérique à la flamme plasma.
2. Pièce de turbomachine selon la revendication 1 dont le matériau céramique entrant dans le revêtement protecteur est composée de zircone Zr 02 stabilisé à 8 % pondéral
de Y2 03 et est obtenue à partir d'une poudre dont la -
granulométrie est comprise entre 45 et 75 &m.
3. Pièces de turbomachine selon l'une des revendications 1
ou 2 constituée en un superalliage à base de nickel comportant un revêtement protecteur dont la structure métallique est obtenue à partir d'une poudre dont la composition pondérale est la suivante:
16 2615871
Cr: 21; A1: 8,47; Y: 0,59; Ta: 5,7; Ni complément à 100 et dont le diamètre des particules est compris entre m et 75 m, et présente une forme cellulaire obtenue en réalisant le dépôt électrophorétique dans les conditions suivantes: - bain: méthanol CH O30H, - électrolyte: chlorure d'aluminium A12 Cl6, dans des concentrations ne dépassant pas 1,5 g/l, poudre de ladite composition: entre 1500 et 2000 g/l, -1 - champ électrique appliqué inférieur à 2500 V. cm - densité de courant inférieure à 100 mA. cm-2 - - température du bain comprise entre 15 et 35*C - le temps de dépôt variant de 1 seconde à 3 minutes, en fonction de l'épaisseur de structure recherchée et selon la valeur du champ électrique appliqué, ladite structure cellulaire du revêtement protecteur étant consolidée par un traitement d'aluminisation en phase vapeur connu en'soi effectué à 1150 C pendant une
durée variant de 1 à 3 heures.
4. Procédé de réalisation d'un revêtement de protection contre la corrosion/oxydation sur une pièce de turbomachine constituée en un superalliage présentant de bonnes propriétés de résistance mécanique et de tenue aux hautes températures, notamment à base de nickel caractérisé en ce qu'il comporte les étapes suivantes: a) - Dépôt électrophorétique d'une structure métallique de composition M Cr Al Y, M désignant un métal choisi dans le groupe formé par Ni, Co, Fe ou un mélange de ceux-ci, avec adjonction éventuelle de Ta, dans des conditions déterminées de manière à obtenir une forme cellulaire pour ladite structure, c'est à
17 2615871
dire présentant des pores d'une taille déterminée et à répartition régulière; b) - traitement thermochimique d'aluminisation en phase vapeur dans des conditions de température et de durée connues en soi pour l'application audit superalliage, de manière à assurer une consolidation de ladite structure métallique obtenue à l'étape (a) du procédé; c) projection de type atmosphérique à la flamme plasma d'une poudre à base de céramique, de manière à
constituer le revêtement protecteur complet.
5. Procédé de réalisation d'un revêtement protecteur selon la revendication 4 appliqué à une pièce de turbomachine en superalliage à base de nickel dans lequel le dépôt effectué à l'étape (a) du procédé s'applique à une poudre de composition définie par les pourcentages pondéraux de ses éléments à savoir: Cr: 21; A: 8,47; Y: 0,59; Ta: 5,7 et Ni complément et est soumis aux conditions suivantes de mise en oeuvre: bain: méthanol CH3 OH - électrolyte: chlorure d'aluminium A12 Cl6, dans des
concentrations ne dépassant pas 1,5 g/l; -
- poudre de ladite composition pondérale: entre 1500 et 2000 g/l; - champ électrique appliqué inférieur à 2500 V. cm-1; - densité de courant inférieure à 100 m A. cm2; - température du bain comprise entre 15 et 35 C; - le temps de dépôt variant entre 1 seconde et 3 minutes, en fonction des épaisseurs de couche recherchées et
selon la valeur du champ électrique appliqué.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8707372A FR2615871B1 (fr) | 1987-05-26 | 1987-05-26 | Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique |
ES198888401192T ES2029719T3 (es) | 1987-05-26 | 1988-05-17 | Piezas de maquina termica de aleacion que comprende un revestimiento protector metaloceramico. |
DE8888401192T DE3868707D1 (de) | 1987-05-26 | 1988-05-17 | Legiertes maschinenteil fuer waermekraftmaschine mit einer metallkeramischen schutzschicht. |
EP88401192A EP0295975B1 (fr) | 1987-05-26 | 1988-05-17 | Pièces de machine thermique en alliage comportant un revêtement protecteur métallocéramique |
US07/197,318 US5057379A (en) | 1987-05-26 | 1988-05-23 | Heat engine parts made of alloy and having a metallic-ceramic protective coating and method of forming said coating |
JP63126902A JPH0631441B2 (ja) | 1987-05-26 | 1988-05-24 | 合金製熱機関部材上への金属セラミック保護被膜の形成方法 |
CA000567649A CA1335439C (fr) | 1987-05-26 | 1988-05-25 | Pieces de machine thermique en alliage comportant un revetement protecteur metalloceramique |
US07/583,084 US5124006A (en) | 1987-05-26 | 1990-09-17 | Method of forming heat engine parts made of a superalloy and having a metallic-ceramic protective coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8707372A FR2615871B1 (fr) | 1987-05-26 | 1987-05-26 | Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2615871A1 true FR2615871A1 (fr) | 1988-12-02 |
FR2615871B1 FR2615871B1 (fr) | 1989-06-30 |
Family
ID=9351454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8707372A Expired FR2615871B1 (fr) | 1987-05-26 | 1987-05-26 | Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique |
Country Status (7)
Country | Link |
---|---|
US (2) | US5057379A (fr) |
EP (1) | EP0295975B1 (fr) |
JP (1) | JPH0631441B2 (fr) |
CA (1) | CA1335439C (fr) |
DE (1) | DE3868707D1 (fr) |
ES (1) | ES2029719T3 (fr) |
FR (1) | FR2615871B1 (fr) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3843834A1 (de) * | 1988-12-24 | 1990-07-05 | Asea Brown Boveri | Hochtemperatur-schutzschicht |
US5194339A (en) * | 1989-06-02 | 1993-03-16 | Sugitani Kinzoku Kogyo Kabushiki Kaisha | Discontinuous casting mold |
GB2241506A (en) * | 1990-02-23 | 1991-09-04 | Baj Ltd | Method of producing a gas turbine blade having an abrasive tip by electrodepo- sition. |
US5236745A (en) * | 1991-09-13 | 1993-08-17 | General Electric Company | Method for increasing the cyclic spallation life of a thermal barrier coating |
WO1993013245A1 (fr) * | 1991-12-24 | 1993-07-08 | Detroit Diesel Corporation | Revetement formant une barriere thermique et procede de depot sur les surfaces des composants d'un chambre de combustion |
DE4238369C2 (de) * | 1992-11-13 | 1996-09-26 | Mtu Muenchen Gmbh | Bauteil aus einem metallischen Grundsubstrat mit keramischer Beschichtung |
US5413871A (en) * | 1993-02-25 | 1995-05-09 | General Electric Company | Thermal barrier coating system for titanium aluminides |
WO1997002947A1 (fr) * | 1995-07-13 | 1997-01-30 | Advanced Materials Technologies, Inc. | Procede de fixation de revetements servant d'ecran thermique sur des substrats en superalliages |
US6210791B1 (en) | 1995-11-30 | 2001-04-03 | General Electric Company | Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation |
US5987882A (en) * | 1996-04-19 | 1999-11-23 | Engelhard Corporation | System for reduction of harmful exhaust emissions from diesel engines |
US6422008B2 (en) | 1996-04-19 | 2002-07-23 | Engelhard Corporation | System for reduction of harmful exhaust emissions from diesel engines |
EP0935009B1 (fr) * | 1998-02-05 | 2002-04-10 | Sulzer Markets and Technology AG | Corps moulé revêtu d'une couche |
US6846574B2 (en) | 2001-05-16 | 2005-01-25 | Siemens Westinghouse Power Corporation | Honeycomb structure thermal barrier coating |
WO2002097162A1 (fr) * | 2001-05-29 | 2002-12-05 | Mcgill University | Revetements barrieres thermiques et leur realisation grace a des procedes electrochimiques |
DE10131362A1 (de) * | 2001-06-28 | 2003-01-09 | Alstom Switzerland Ltd | Verfahren zur Herstellung einer räumlich geformten, folienartig ausgebildeten Trägerschicht aus sprödhartem Material |
US6655369B2 (en) | 2001-08-01 | 2003-12-02 | Diesel Engine Transformations Llc | Catalytic combustion surfaces and method for creating catalytic combustion surfaces |
EP1422054A1 (fr) * | 2002-11-21 | 2004-05-26 | Siemens Aktiengesellschaft | Structure laminée pour de turbine à gaz |
US7273635B2 (en) * | 2003-09-29 | 2007-09-25 | Howmet Corporation | Method of forming aluminide diffusion coatings |
US20070104886A1 (en) | 2005-11-10 | 2007-05-10 | General Electric Company | Electrostatic spray for coating aircraft engine components |
CN100412229C (zh) * | 2005-10-11 | 2008-08-20 | 清华大学 | 一种电泳共沉积制备抗高温氧化混合涂层的方法 |
US7754342B2 (en) * | 2005-12-19 | 2010-07-13 | General Electric Company | Strain tolerant corrosion protecting coating and spray method of application |
US8030592B2 (en) * | 2006-11-22 | 2011-10-04 | Reintjes Marine Surface Technologies, Llc | Apparatus and method for applying antifoulants to marine vessels |
US20100047526A1 (en) * | 2008-08-19 | 2010-02-25 | Merrill Gary B | Subsurface inclusions of spheroids and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure |
US20100047512A1 (en) * | 2008-08-19 | 2010-02-25 | Morrison Jay A | Methodology and tooling arrangements for strengthening a surface bond in a hybrid ceramic matrix composite structure |
US7704596B2 (en) | 2008-09-23 | 2010-04-27 | Siemens Energy, Inc. | Subsurface inclusion of fugitive objects and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure |
US9194243B2 (en) | 2009-07-17 | 2015-11-24 | Rolls-Royce Corporation | Substrate features for mitigating stress |
US8506243B2 (en) * | 2009-11-19 | 2013-08-13 | United Technologies Corporation | Segmented thermally insulating coating |
EP2341166A1 (fr) * | 2009-12-29 | 2011-07-06 | Siemens Aktiengesellschaft | Barrière thermique ceramique nano- et microstructurée |
WO2011085376A1 (fr) | 2010-01-11 | 2011-07-14 | Rolls-Royce Corporation | Éléments d'atténuation d'une contrainte thermique ou mécanique sur un revêtement anticorrosion protégeant de l'environnement |
US9022743B2 (en) | 2011-11-30 | 2015-05-05 | United Technologies Corporation | Segmented thermally insulating coating |
US10040094B2 (en) | 2013-03-15 | 2018-08-07 | Rolls-Royce Corporation | Coating interface |
WO2016133582A1 (fr) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Anneau de cerclage de turbine comportant une couche pouvant être abrasée comprenant une zone avant a fossettes |
US9243511B2 (en) | 2014-02-25 | 2016-01-26 | Siemens Aktiengesellschaft | Turbine abradable layer with zig zag groove pattern |
CN106232946B (zh) | 2014-02-25 | 2018-04-27 | 西门子公司 | 具有气流引导的像素化表面特征样式的涡轮机可磨耗层 |
US8939706B1 (en) | 2014-02-25 | 2015-01-27 | Siemens Energy, Inc. | Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface |
US9151175B2 (en) | 2014-02-25 | 2015-10-06 | Siemens Aktiengesellschaft | Turbine abradable layer with progressive wear zone multi level ridge arrays |
US9909202B2 (en) | 2014-05-02 | 2018-03-06 | General Electric Company | Apparatus and methods for slurry aluminide coating repair |
CN104099616B (zh) * | 2014-07-22 | 2016-03-30 | 宁波威霖住宅设施有限公司 | 一种锌合金高硬度耐磨损仿电镀六价铬的表面处理方法 |
WO2016133982A1 (fr) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Formation de passages de refroidissement dans des composants en superalliage de turbine à combustion recouverts d'isolant thermique |
CN106086997A (zh) * | 2016-06-17 | 2016-11-09 | 中国科学院金属研究所 | 一种热生长Al2O3或Cr2O3膜型M‑Cr‑Al纳米复合镀层及制备和应用 |
US10711624B2 (en) * | 2016-11-17 | 2020-07-14 | Raytheon Technologies Corporation | Airfoil with geometrically segmented coating section |
CN109666962A (zh) * | 2019-01-11 | 2019-04-23 | 江苏和兴汽车科技有限公司 | 一种汽车装饰用铝及铝合金电泳的后处理工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55115972A (en) * | 1979-02-27 | 1980-09-06 | Toshiba Corp | Production of high-temperature gas turbine blade |
WO1982000162A1 (fr) * | 1980-07-02 | 1982-01-21 | Kedward E | Revetement composite electro-depose et procede de formation de celui-ci |
US4576874A (en) * | 1984-10-03 | 1986-03-18 | Westinghouse Electric Corp. | Spalling and corrosion resistant ceramic coating for land and marine combustion turbines |
FR2571386A1 (fr) * | 1984-10-05 | 1986-04-11 | Baj Ltd | Revetements metalliques protecteurs |
US4590090A (en) * | 1982-07-28 | 1986-05-20 | General Electric Company | Method for making interdiffused, substantially spherical ceramic powders |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1433497A (fr) * | 1965-02-16 | 1966-04-01 | Snecma | Procédé de dépôt d'une couche protectrice sur une pièce métallique par une méthode en phase vapeur |
US4248940A (en) * | 1977-06-30 | 1981-02-03 | United Technologies Corporation | Thermal barrier coating for nickel and cobalt base super alloys |
US4095003A (en) * | 1976-09-09 | 1978-06-13 | Union Carbide Corporation | Duplex coating for thermal and corrosion protection |
US4152223A (en) * | 1977-07-13 | 1979-05-01 | United Technologies Corporation | Plasma sprayed MCrAlY coating and coating method |
US4328285A (en) * | 1980-07-21 | 1982-05-04 | General Electric Company | Method of coating a superalloy substrate, coating compositions, and composites obtained therefrom |
US4485151A (en) * | 1982-05-06 | 1984-11-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal barrier coating system |
EP0168868B1 (fr) * | 1984-07-16 | 1989-02-01 | BBC Brown Boveri AG | Procédé pour appliquer une couche protectrice résistant à la corrosion avec des éléments formant des oxydes proctecteurs sur la base d'une aube de turbine à gaz et couche protectrice résistant à la corrosion |
JPS6154932A (ja) * | 1984-08-27 | 1986-03-19 | トヨタ自動車株式会社 | 耐熱部品及びその製造方法 |
GB8706951D0 (en) * | 1987-03-24 | 1988-04-27 | Baj Ltd | Overlay coating |
-
1987
- 1987-05-26 FR FR8707372A patent/FR2615871B1/fr not_active Expired
-
1988
- 1988-05-17 ES ES198888401192T patent/ES2029719T3/es not_active Expired - Lifetime
- 1988-05-17 EP EP88401192A patent/EP0295975B1/fr not_active Expired - Lifetime
- 1988-05-17 DE DE8888401192T patent/DE3868707D1/de not_active Expired - Lifetime
- 1988-05-23 US US07/197,318 patent/US5057379A/en not_active Expired - Fee Related
- 1988-05-24 JP JP63126902A patent/JPH0631441B2/ja not_active Expired - Lifetime
- 1988-05-25 CA CA000567649A patent/CA1335439C/fr not_active Expired - Fee Related
-
1990
- 1990-09-17 US US07/583,084 patent/US5124006A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55115972A (en) * | 1979-02-27 | 1980-09-06 | Toshiba Corp | Production of high-temperature gas turbine blade |
WO1982000162A1 (fr) * | 1980-07-02 | 1982-01-21 | Kedward E | Revetement composite electro-depose et procede de formation de celui-ci |
US4590090A (en) * | 1982-07-28 | 1986-05-20 | General Electric Company | Method for making interdiffused, substantially spherical ceramic powders |
US4576874A (en) * | 1984-10-03 | 1986-03-18 | Westinghouse Electric Corp. | Spalling and corrosion resistant ceramic coating for land and marine combustion turbines |
FR2571386A1 (fr) * | 1984-10-05 | 1986-04-11 | Baj Ltd | Revetements metalliques protecteurs |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 4, no. 174 (C-33)[656], 2 décembre 1980; & JP-A-55 115 972 (TOKYO SHIBAURA DENKI K.K.) 06-09-1980 * |
Also Published As
Publication number | Publication date |
---|---|
EP0295975A1 (fr) | 1988-12-21 |
ES2029719T3 (es) | 1992-09-01 |
US5057379A (en) | 1991-10-15 |
JPH0631441B2 (ja) | 1994-04-27 |
JPS6456880A (en) | 1989-03-03 |
CA1335439C (fr) | 1995-05-02 |
EP0295975B1 (fr) | 1992-03-04 |
DE3868707D1 (de) | 1992-04-09 |
FR2615871B1 (fr) | 1989-06-30 |
US5124006A (en) | 1992-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2615871A1 (fr) | Pieces de turbomachine en superalliage comportant un revetement protecteur metalloceramique | |
EP0792948B1 (fr) | Revêtement de barrière thermique à sous-couche ameliorée et pièces revêtues par une telle barrière thermique | |
EP0848079B1 (fr) | Procédé de réalisation d'un revêtement protecteur à haute efficacité contre la corrosion à haute température pour superalliages, revêtement protecteur obtenu par ce procédé et pièces protégées par ce revêtement | |
CA2357583C (fr) | Procede de realisation d'un revetement de protection formant barriere thermique avec sous-couche de liaison sur un substrat en superalliage et piece obtenue | |
EP2683847B1 (fr) | Procédé de réalisation d'une barrière thermique dans un système multicouche de protection de pièce metallique et pièce munie d'un tel système de protection | |
FR3058469A1 (fr) | Piece de turbomachine revetue d'une barriere thermique et procede pour l'obtenir | |
EP2459780B1 (fr) | Piece comportant un substrat portant une couche de revetement ceramique à base d'oxyde de cérium | |
CA2868953C (fr) | Procede d'obtention d'un revetement d'aluminiure de nickel de type .beta.-nia1 sur un substrat metallique, et piece munie d'un tel revetement | |
EP2459781B1 (fr) | Méthode de fabrication d'une barrière thermique | |
FR2827308A1 (fr) | Procede de reparation globale d'une piece revetue d'une barriere thermique | |
KR101000096B1 (ko) | 수소 분리막 보수 방법 | |
EP0711262A1 (fr) | Procede et composition pour l'assemblage de pieces en ceramique et en alliage refractaire | |
CA2508821C (fr) | Procede de fabrication ou de reparation d'un revetement sur un substrat metallique | |
FR3053076A1 (fr) | Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir | |
US9429035B2 (en) | Method for forming an improved thermal barrier coating (TBC), thermal-barrier-coated article and method for the repair thereof | |
FR2943352A1 (fr) | Procede de collage demontable adapte aux materiaux poreux | |
EP4436940A1 (fr) | Procédé de revêtement par électrophorèse d'une pièce en matériau composite à matrice céramique par une barrière environnementale | |
FR3053075A1 (fr) | Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir | |
BE390840A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |