FR2591033A1 - Photocathode a rendement eleve - Google Patents

Photocathode a rendement eleve Download PDF

Info

Publication number
FR2591033A1
FR2591033A1 FR8517719A FR8517719A FR2591033A1 FR 2591033 A1 FR2591033 A1 FR 2591033A1 FR 8517719 A FR8517719 A FR 8517719A FR 8517719 A FR8517719 A FR 8517719A FR 2591033 A1 FR2591033 A1 FR 2591033A1
Authority
FR
France
Prior art keywords
layers
sub
layer
electrons
photons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8517719A
Other languages
English (en)
Other versions
FR2591033B1 (fr
Inventor
Bernard Munier
Paul De Groot
Claude Weisbech
Yves Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to FR8517719A priority Critical patent/FR2591033B1/fr
Priority to US06/934,481 priority patent/US4749903A/en
Priority to EP86402618A priority patent/EP0228323B1/fr
Priority to DE8686402618T priority patent/DE3670176D1/de
Priority to JP61284112A priority patent/JPS62133634A/ja
Publication of FR2591033A1 publication Critical patent/FR2591033A1/fr
Application granted granted Critical
Publication of FR2591033B1 publication Critical patent/FR2591033B1/fr
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

Un exemple de réalisation comporte : - une couche transparente 1 constituée d'un matériau semi-conducteur de type P**+ dans la largeur de bande interdite est suffisamment grande pour que cette couche soit transparente pour les photons 29 de la lumière à détecter ; - une couche d'absorption constituée de dix premières sous-couches 2 à 13 constituées d'un matériau semi-conducteur de type P**+ ayant une largeur de bande interdite suffisamment petite pour posséder des propriétés électroniques bi-dimensionnelles afin de convertir efficacement les photos 29 en paires électron-trou et dix secondes sous-couches 16 à 27 intercalées entre les premières et constituées du même matériau que la couche transparente 1, ces secondes sous-couches 16 à 27 étant suffisamment minces pour permettre la traversée des électrons par effet tunnel, et les premières sous-couches 2 à 13 ayant une épaisseur suffisante pour permettre l'absorption des photons 29 de toutes les longueurs d'onde de la lumière à détecter ; - une couche de transport 14 constituée du même matériau que les premières sous-couches 2 à 13 ; - une couche 15 de Cs + O permettant d'abaisser le potentiel du vide pour permettre l'émission d'électrons 28 dans le vide. Application aux tubes de prise de vues de télévision et aux tubes intensificateurs d'image. (CF DESSIN DANS BOPI)

Description

Photocathode à rendement élevé.
L'invention concerne une photocathode à rendement élevé pour tubes de prise de vues, tels que les tubes de caméra de télévision et les
tubes intensificateurs (fd'imrage.
Il est connu de réaliser une photocathode comportant principa-
lement: - une couche, dite couche fenêtre, constituée de semi-conducteur de type P+ dont la bande interdite est suffisamment large pour que cette couche soit transparente pour les longueurs d'onde de la lumière à détecter, et qui est collée sur une paroi de verre recevant la lumière à détecter;
- une couche, dite couche d'absorption, constituée d'un semi-
conducteur de type P+ dont la bande interdite a une largeur suffisamment faible pour convertir en paires d'électron-trou les photons de la lumière à détecter; - une couche, dite couche d'émission, constituée (fd'un matériau donnant à l'extrémité de la couche d'absorption une affinité électronique négative pour émettre dans le vide les électrons libérés dans la couche d'absorption. La longueur d'onde maximale détectable est limitée par la largeur de la bande interdite du matériau constituant la couche d'absorption. En appliquant une polarisation positive à l'extrémité de cette couche opposée à la couche fenêtre, il est posible d'utiliser des matériaux ayant une faible
largeur de bande interdite tout en conservant un bon rendement d'émis-
sion, et donc il est possible de détecter de la lumière de longueur d'onde
plus grande. Une polarisation de la couche d'absorption peut être appli-
quée au moyen d'une connexion avec cette couche, ou par une électrode
métallique très mince intercalée entre cette couche et la couche d'émis-
sion. Une telle photocathode est décrite dans l'article de: 3.3. ESCHER et
al, IEEE-EDL2, 123-125 (1981).
Une telle photocathode a un rendement qui est limité notamment par les caractéristiques de la couche d'absorption. En effet, l'épaisseur de cette couche est déterminée en réalisant un compromis entre, d'une part, une absorption élevée des photons de la lumière à détecter, qui nécessite une épaisseur aussi grande que possible, et, d'autre part, un rendement
élevé de la transmission des électrons ainsi qu'un faible courant d'obscu-
rité, qui nécessitent une épaisseur aussi faible que possible de la couche d'absorption et pour obtenir une quantification bi-dimensionnelle des
niveaux d'énergie des électrons et des trous dans le plan des souscouches.
Habituellement l'épaisseur de cette couche est de l'ordre de
I micron, ce qui permet une bonne efficacité de transmission des élec-
trons mais est insuffisant pour absorber tous les photons de la lumière à détecter, notamment les photons correspondant aux longueurs d'onde les plus grandes. Le but de l'invention est de réaliser une photocathode ayant un meilleur rendement que la photocathode de type connu. L'objet de l'invention est une photocathode comportant une couche d'absorption constituée d'une pluralité de sous-couches particulières procurant à la fois
une très bonne absorption des photons, une bonne efficacité de transmis-
sion des électrons libérés par les photons, et un faible courant d'obscu-
rité.
Selon l'invention une photocathode à rendement élevé, est carac-
térisée en ce qu'elle comporte une couche dite d'absorption comportant
une pluralité de premières sous-couches constituées d'un matériau semi-
conducteur ayant une largeur de bande interdite suffisamment petite et
ayant une épaisseur suffisamment grande pour convertir en paires élec-
tron-trou les photons de la lumière à détecter, alternées avec une
pluralité de secondes sous-couches constituées d'un matériau semi-con-
ducteur ayant une largeur de bande interdite supérieure à celle des premières sous-couches, ayant une épaisseur suffisamment faible pour que les électrons puissent les traverser par effet tunnel, les premières et les
secondes sous-couches ayant un dopage permettant d'obtenir une quantifi-
cation bi-dimensionnelle des niveaux d'énergie des électrons et des trous dans le plan des premières sous-couches et ajustant le niveau de Fermi
près du niveau de valence des premières sous-couches.
La figure représente, dans sa partie supérieure, une coupe dune portion d'un exemple de réalisation de la photocathode selon l'invention et, dans sa partie inférieure, un diagramme des niveaux d'énergie E des
porteurs dans cet exemple de réalisation.
Cet exemple de réalisation comporte: - Une première couche 1, collée sur une paroi de verre non représentée et à travers laquelle elle reçoit des photons 29, cette couche I étant transparente pour toutes les longueurs d'onde de la lumière à
détecter et ayant pour fonction de permettre le collage de la photoca-
thode sur la paroi de verre;
- Une couche d'absorption constituée de douze premières sous-
couches 2 à 13 et de douze secondes sous-couches 16 à 27 alternées avec les premières; - Une couche 14 dite couche de transport, ayant pour fonction de transmettre vers le vide des électrons libérés dans la couche d'absorption; - Une dernière couche 15 constituée d'un matériau qui diminue l'affinité électronique de la surface de la couche 14 pour lui permettre
d'émettre dans le vide des électrons 28.
La partie inférieure de la figure représente les courbes Ec et Ev des niveaux d'énergie de la bande de conduction et de la bande de valence dans les couches de semi-conducteur, le niveau de Fermi EF de ces
couches, et le potentiel du vide EYi.
La couche 1 est constituée d'un matériau semi-conducteur de type P constitué de GaO6 A0 4 As dopé avec 5.1017 atomes de zinc par cm3, dont la largeur de bande interdite est égale à 2e.V et qui est donc transparent pour toutes les longueurs d'onde de la lumière à détecter. Les
premières sous-couches 2 à 13 et la couche 14 sont constituées d'un semi-
conducteur de type P+ ayant une largeur de bande interdite inférieure à celle du matériau de la couche 1, par exemple 1,4 e.V, pour absorber tous les photons à convertir en paires électron-trou. Dans cet exemple, les sous-couches 2 à 13 sont constituées de Ga As dopé avec 1019 atomes de zinc par cm3 et ont chacune une épaisseur de 0,025 microns. La couche 14 est constituée de Ga As dopé avec 1019 atomes de zinc par cm3 et a une épaisseur de 0,1 micron. Son épaisseur doit être supérieure à celle de la
zone de charge d'espace due à la présence de la surface du semi-
conducteur, la largeur de cette zone étant inférieure à 0,05 micron.
2 5 9 1 0 3 3
Les secondes sous-couches 16 à 27 sont constituées du même matériau que la couche 1, dans cet exemple de réalisation, et ont donc la même largeur de bande interdite. Elles sont peu ou non dopées de manière à ce que les courbes des niveaux d'énergie permettent cPd'obtenir dans les souscouches 2 à 13 une quantification bi-dimensionnelle des niveaux
d'énergie des électrons et des trous. Cette quantification bi-dimension-
nelle procure une augmentation du coefficient d'absorption des photons.
Les sous-couches 16 à 27 ont chacune une épaisseur de 0,003 micron qui permet aux électrons de les traverser par effet tunnel et qui procure un bon rendement de transmission des électrons libérés par les photons dans les sous-couches 2 à 13. L'épaisseur des sous-couches 16 à 27 doit être
inférieure à 0,0045 micron pour qu'il y ait un bon rendement de transmis-
sion. L'épaisseur des sous-couches 2 à 13 doit être inférieure à 0,03 micron pour obtenir l'augmentation du coefficient d'absorption due à la quantification bi-dimensionnelle des niveaux cd'énergie des électrons et des trous dans le plan des sous-couches 2 à 13, mais doit être suffisamment grande pour ne pas trop élever le seuil d'absorption des photons par effet de confinement quantique pour permettre l'absorption des photons de
grande longueur d'onde.
Le niveau d'énergie Ec de la bande de conduction et le niveau d'énergie Ev de la bande de valence comportent des marches de potentiel, correspondant aux sous-couches 16 à 27. Il est possible de démontrer par le calcul que cette alternance de sous-couches procure un coefficient d'absorption des photons plus élevée qu'une couche d'absorption constituée
d'un matériau semi-conducteur homogène. Dans cet exemple de réalisa-
tion le coefficient d'absorption est multiplié par un facteur 3 par rapport
à une photocathode de type connu.
La couche 15 est constituée dune couche très mince de Cs + O ayant pour effet d'abaisser le potentiel du vide Evi en dessous du niveau de la bande de conduction des sous-couches 2 à 13 pour faciliter l'émission des électrons 28 dans le vide. La couche 15 étant extrêmement mince, les
électrons la traversent par effet tunnel.
La portée de l'invention ne se limite pas à l'exemple de réalisation décrit ci-dessus. De nombreuses variantes sont à la portée de l'homme de l'art, notamment en ce qui concerne le nombre des sous-couches et les
2 5 9 1 0 3 3
matériaux qui les constituent. Le matériau constituant les sous-couches 16 à 27 peut-être différent du matériau de la couche fenêtre 1, avec peu ou pas de dopage, de type P ou N. Le dopage des sous-couches 2 à 13 doit être choisi en conséquence afin que le niveau de Fermi EF de l'ensemble des sous-couches 2 à 13 et 16 à 27 soit proche du niveau de la bande de
valence des sous-couches 2 à 13 et qu'il y ait quantification bidimension-
nelle des niveaux d'énergie des porteurs dans le plan des sous-couches 2 à 13. Il1 est à la portée de l'homme de l'art de choisir les matériaux réalisant ces deux conditions. Par exemple, les sous-couches 2 à 13 peuvent être constituées de Ga Asx Inx Pl- et les sous-couches 16 à 27 peuvent y l-x x l-y être constituées alors de In P. Dans une autre variante, les sous-couches 2 à 13 peuvent être constituées de Ga Sb et les sous-couches 16 à 27 sont alors constituées de Ga AI As Sb. Cependant il peut être souhaitable que le matériau semi-conducteur utilisé pour réaliser les sous-couches 16 à 27 ait un paramètre de maille proche de celui du matériau des sous-couches 2
à 13 afin de ne pas augmenter le courant d'obscurité de la photocathode.
Dans l'exemple de réalisation décrit précédemment le niveau de Fermi EF des différentes couches de semi-conducteur est identique, il n'est pas prévu de polarisation. Pour permettre la détection de photons de longueur d'onde supérieure, il peut être prévu une polarisation réalisée d'une manière analogue à celle de l'art antérieur, au moyen d'une électrode métallique mince située entre la couche 14 et la couche 15 ou au moyen d'une connexion reliant la couche 14 à la borne positive d'un générateur dont la borne négative est connectée à la couche I. L'invention peut être appliquée aux tubes de prise de vues pour
camera de télévision et aux tubes intensificateurs d'image.
2 5 9 1 0 3 3

Claims (2)

  1. REVENDICATIONS
    I. Photocathode à rendement élevé, caractérisé en ce qu'elle comporte une couche dite d'absorption comportant une pluralité de
    premières sous-couches (2 à 13) constituées d'un matériau semi-conduc-
    teur ayant une largeur de bande interdite suffisamment petite et ayant une épaisseur suffisamment grande pour convertir en paires électron-trou les photons (29) de la lumière à détecter, alternées avec une pluralité de
    secondes sous-couches (16 à 27) constituées crd'un matériau semi-conduc-
    teur ayant une largeur de bande interdite supérieure à celle des premières sous-couches (2 à 13), ayant une épaisseur suffisamment faible pour que les électrons puissent les traverser par effet tunnel, les premières et les secondes sous-couches (2 à 13 et 16 à 27) ayant un dopage permettant d'obtenir une quantification bi-dimensionnelle des niveaux crd'énergie des électrons et des trous dans le plan des premières sous-couches (2 à 13) et
    ajustant le niveau de Fermi près du niveau de valence des premières sous-
    couches (2 à 13).
  2. 2. Photocathode selon la revendication 1, caractérisée en ce que les premières sous-couches (2 à 13) composant la couche d'absorption sont constituées de Ga As et ont une épaisseur inférieure à 0,03 micron
    chacune; et en ce que les secondes sous-couches (16 à 27) sont consti-
    tuées de Ga0,6 AI04 As et ont une épaisseur inférieure à 0,0045 micron.
FR8517719A 1985-11-29 1985-11-29 Photocathode a rendement eleve Expired FR2591033B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR8517719A FR2591033B1 (fr) 1985-11-29 1985-11-29 Photocathode a rendement eleve
US06/934,481 US4749903A (en) 1985-11-29 1986-11-24 High-performance photocathode
EP86402618A EP0228323B1 (fr) 1985-11-29 1986-11-25 Photocathode à rendement élevé
DE8686402618T DE3670176D1 (de) 1985-11-29 1986-11-25 Fotokathode mit hohem wirkungsgrad.
JP61284112A JPS62133634A (ja) 1985-11-29 1986-11-28 高性能光電陰極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8517719A FR2591033B1 (fr) 1985-11-29 1985-11-29 Photocathode a rendement eleve

Publications (2)

Publication Number Publication Date
FR2591033A1 true FR2591033A1 (fr) 1987-06-05
FR2591033B1 FR2591033B1 (fr) 1988-01-08

Family

ID=9325295

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8517719A Expired FR2591033B1 (fr) 1985-11-29 1985-11-29 Photocathode a rendement eleve

Country Status (5)

Country Link
US (1) US4749903A (fr)
EP (1) EP0228323B1 (fr)
JP (1) JPS62133634A (fr)
DE (1) DE3670176D1 (fr)
FR (1) FR2591033B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234501A (ja) * 1992-02-25 1993-09-10 Hamamatsu Photonics Kk 光電子放出面及びそれを用いた電子管
FR2688343A1 (fr) * 1992-03-06 1993-09-10 Thomson Tubes Electroniques Tube intensificateur d'image notamment radiologique, du type a galette de microcanaux.
FR2698482B1 (fr) * 1992-11-20 1994-12-23 Thomson Tubes Electroniques Dispositif générateur d'images par effet de luminescence.
US5404026A (en) * 1993-01-14 1995-04-04 Regents Of The University Of California Infrared-sensitive photocathode
JP3565529B2 (ja) * 1996-05-28 2004-09-15 浜松ホトニクス株式会社 半導体光電陰極およびこれを用いた半導体光電陰極装置
FR2758888B1 (fr) * 1997-01-27 1999-04-23 Thomson Csf Procede de modelisation fine du fouillis de sol recu par un radar
FR2777112B1 (fr) 1998-04-07 2000-06-16 Thomson Tubes Electroniques Dispositif de conversion d'une image
CN107895681A (zh) * 2017-12-06 2018-04-10 中国电子科技集团公司第十二研究所 一种光电阴极及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075693A5 (fr) * 1970-01-19 1971-10-08 Varian Associates
US4063269A (en) * 1976-01-09 1977-12-13 Hamamatsu Terebi Kabushiki Kaisha Semiconductor photoelectron emission device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2116866A5 (fr) * 1970-12-10 1972-07-21 Electronique & Physique Dispositif analyseur d'images a heterojonction
US3958143A (en) * 1973-01-15 1976-05-18 Varian Associates Long-wavelength photoemission cathode
US4587456A (en) * 1984-01-17 1986-05-06 Hitachi, Ltd. Image pickup tube target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075693A5 (fr) * 1970-01-19 1971-10-08 Varian Associates
US4063269A (en) * 1976-01-09 1977-12-13 Hamamatsu Terebi Kabushiki Kaisha Semiconductor photoelectron emission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE ELECTRON DEVICE LETTERS, vol. EDL-2, no. 5, mai 1981, pa123-125, IEEE, New York, US; J.S. ESCHER et al.: "Photoelectric imaging in the 0.9-1.6 micron range" *

Also Published As

Publication number Publication date
EP0228323B1 (fr) 1990-04-04
JPS62133634A (ja) 1987-06-16
DE3670176D1 (de) 1990-05-10
US4749903A (en) 1988-06-07
FR2591033B1 (fr) 1988-01-08
EP0228323A1 (fr) 1987-07-08

Similar Documents

Publication Publication Date Title
JP2642114B2 (ja) 赤外線検出器デバイスおよび赤外線を検出するための方法
US4775881A (en) Semiconductor device for detecting electromagnetic radiation or particles
EP0230818B1 (fr) Photocathode à amplification interne
KR20020049159A (ko) 아발란치 광 검출기
CN108878576B (zh) 一种氧化镓基紫外探测器
EP0228323B1 (fr) Photocathode à rendement élevé
FR2757685A1 (fr) Dispositif de detection de rayonnements ionisants a semi-conducteur de haute resistivite
EP1903612A1 (fr) Photodiode à avalanche
FR2757684A1 (fr) Detecteur infrarouge a structure quantique, non refroidie
EP2979301A1 (fr) Dispositif electroluminescent avec capteur integre et procede de controle de l'emission du dispositif
WO2014053386A1 (fr) Dispositif electronique comprenant des nanostructures en filaments et procede de fabrication de tels dispositifs
EP0226503B1 (fr) Photocathode à faible courant d'obscurité
Liu et al. Theoretical study on photoemission of two-dimensional variable-Al composition AlxGa1-xN nanorod array photocathode
EP3281217A1 (fr) Photocathode multibande et détecteur associé
Takasaki et al. Avalanche multiplication of photo-generated carriers in amorphous semiconductor, and its application to imaging device
EP0082787B1 (fr) Photodiode à zones d'absorption et d'avalanche séparées
FR2573574A1 (fr) Photocathode pour le domaine infrarouge
JP6654856B2 (ja) 光電変換素子の製造方法
Cao et al. InGaN nanowire array photocathode with high electron harvesting capability
EP0011021B1 (fr) Procédé de réalisation de composants semi-conducteurs présentant des propriétés de conversion optoélectroniques
EP0001952B1 (fr) Diode émettrice et réceptrice de rayons lumineux de même longueur d'onde prédéterminée
EP0274940A1 (fr) Dispositif de multiplication de porteurs de charge par un phénomène d'avalanche, et son application aux photodétecteurs, aux photocathodes, et aux visionneurs infrarouges
EP2382672B1 (fr) Procédé de fabrication d'une photodiode et photodiode et détecteur de rayonnement electromagnétique correspondants
US20220231214A1 (en) HgCdTe Metasurface-based Terahertz Source and Detector
EP2948988B1 (fr) Structure semiconductrice et procede de fabrication d'une structure semiconductrice

Legal Events

Date Code Title Description
ST Notification of lapse