FR2590638A1 - Variable speed drive device with ball coupling - Google Patents
Variable speed drive device with ball coupling Download PDFInfo
- Publication number
- FR2590638A1 FR2590638A1 FR8616492A FR8616492A FR2590638A1 FR 2590638 A1 FR2590638 A1 FR 2590638A1 FR 8616492 A FR8616492 A FR 8616492A FR 8616492 A FR8616492 A FR 8616492A FR 2590638 A1 FR2590638 A1 FR 2590638A1
- Authority
- FR
- France
- Prior art keywords
- input
- balls
- drive
- axis
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/48—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
- F16H15/50—Gearings providing a continuous range of gear ratios
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Friction Gearing (AREA)
Abstract
Description
La présente invention concerne des perfectionnements auxdispositifs d'entraînement et pLus précisément un dispositif d'entraînement ayant d'excellentes caractéristiques de volume, d'enveloppe et de poids et constituant un dispositif commode pour la modification d'un rapport de nombre de tours. The present invention relates to improvements to the drive devices and more specifically to a drive device having excellent volume, envelope and weight characteristics and constituting a convenient device for modifying a number of revolutions ratio.
Les dispositifs d'entraînement utilisent des éléments roulants sur une surface lisse continue afin qu'ils donnent un. rapport déterminé de nombres de tours entre un organe d'entrée et un organe de sortie. Les éléments d'entraînement sont habituellement lubrifiés par un fluide de traction tel que l'un des fluides "Santotrac" de Monsanto. I1 s'agit essentiellement d'hydrocarbures cycloaliphatiques synthétiques donnant une traction élevée. Le coefficient de traction du fluide est d'environ 50 % supérieur à celui que donnent les huiles minérales classiques. Ce coefficient représente les forces maximales disponibles de traction qui peuvent être obtenues aux interfaces des éléments en contact, et constitue une mesure du couple maximal disponible d'entraînement. The training devices use rolling elements on a continuous smooth surface so that they give one. determined ratio of the number of revolutions between an input member and an output member. The drive elements are usually lubricated with a traction fluid such as one of Monsanto's "Santotrac" fluids. They are essentially synthetic cycloaliphatic hydrocarbons giving high traction. The coefficient of traction of the fluid is approximately 50% higher than that given by conventional mineral oils. This coefficient represents the maximum available traction forces which can be obtained at the interfaces of the elements in contact, and constitutes a measure of the maximum available drive torque.
Lorsque ce couple est dépassé, un glissement important et inacceptable apparaît. Un glissement inférieur à 3% est normal dans la plupart des dispositifs d'entraînement par traction. Des dispositifs d'entraînement sont parfois indiqués comme étant "sans glissement", mais ils présentent en réalité toujours un petit glissement relatif.When this torque is exceeded, a significant and unacceptable slip occurs. Slippage of less than 3% is normal in most traction drives. Driving devices are sometimes referred to as "no slippage", but in reality they always show a small relative slip.
Les divers éléments des dispositifs d'entraînement classiques sont réalisés de diverses manieres. La plupart d'entre eux sont sous forme de bagues, de cônes et de cylindres. De nombreux dispositifs d'entraInement sont combinés à des éléments classiques a engrenage afin qu'ils donnent un rapport déterminé de nombres de tours. The various elements of conventional drive devices are made in various ways. Most of them are in the form of rings, cones and cylinders. Many driving devices are combined with conventional gear elements so that they give a determined number of revolutions.
Les dispositifs classiques d'entraînement présentent un certain nombre de caractéristiques indésirables. Par exemple, de nombreux dispositifs sont encombrants et ont des enveloppes du diamètre, de la longueur et du volume qui sont indésirables, par exemple dans le cas d'un ensemble d'entraînement présentant une nutation qui met en oeuvre des cônes doubles roulant et présentant une nutation à l'intérieur de deux bagues fixes. Les éléments d'entraînement selon ce principe sont aussi de fabrication complexe. Conventional training devices have a number of undesirable features. For example, many devices are bulky and have envelopes of diameter, length and volume which are undesirable, for example in the case of a drive assembly having a nutation which implements double rolling cones and having a nutation inside two fixed rings. The drive elements according to this principle are also complex to manufacture.
Une autre transmission complexe et encombrante met en oeuvre quatre cônes fixes qui sont repoussés contre un rouleau mobile et qui transmettent une rotation à ce dernier.Another complex and bulky transmission uses four fixed cones which are pushed against a moving roller and which transmit a rotation to the latter.
Ce principe met aussi en oeuvre une combinaison de dispositifs d'entraînement à engrenages et par traction, afin qu'un rapport global de nombre de tours soit obtenu.This principle also implements a combination of gear and traction drive devices, so that an overall ratio of number of turns is obtained.
Un autre exemple est constitue par une transmission à poulies jumelles mettant en oeuvre deux courroies d'acier en V entraînant un arbre de sortie par application de forces de traction. Ce dispositif d'entraînement est aussi encombrant et complexe, même lorsqu'il est limité à un seul rapport d'entraînement. Another example is constituted by a transmission with twin pulleys using two V-shaped steel belts driving an output shaft by application of traction forces. This drive device is also bulky and complex, even when it is limited to a single drive ratio.
The NASA Lewis Research Centre a mis au point un dispositif d'entraînement par traction qui comporte un seul étage de rouleaux satellites, deux rangées de cinq rouleaux satellites étagés étant logées entre des rouleaux concentriques central et annulaire. Cette transmission est peu encombrante mais elle ne donne pas les avantages d'un réglage du rapport.des nombres de tours. The NASA Lewis Research Center has developed a traction drive that has a single stage of satellite rollers, two rows of five stepped satellite rollers being housed between concentric central and annular rollers. This transmission is space-saving but it does not give the advantages of adjusting the ratio of the number of revolutions.
L'invention concerne un appareil d'entraînement par traction donnant un rapport variable de nombres de tours, comprenant un organe rotatif d'entrée destiné à tourner autour d'un axe d'entrée, un organe rotatif de sortie et plusieurs billes d'entraînement placées entre les organes d'entrée et de sortie, chaque bille d'entraînement pouvant tourner autour d'un axe de rotation de billes, caractérisé en ce que les variations de l'angle forme par les axes de rotation des billes et par l'axe d'entree donnent un rapport variable des nombres de tours, et en ce que l'appareil comporte en outre un dispositif destiné à appliquer une force préalable aux organes d'entrée et de sortie afin que le couple transmis de l'organe d'entrée à l'organe de sortie puisse être réglé. The invention relates to a traction drive device giving a variable number of revolutions ratio, comprising a rotary input member intended to rotate about an input axis, a rotary output member and several drive balls placed between the input and output members, each drive ball being able to rotate about an axis of rotation of the balls, characterized in that the variations in the angle formed by the axes of rotation of the balls and by the input axis give a variable ratio of the numbers of turns, and in that the apparatus further comprises a device intended to apply a prior force to the input and output members so that the torque transmitted from the member input to the output device can be adjusted.
Ainsi, la présente invention concerne un dispositif d'entraînement par traction à rapport variable qui donne le rapport nécessaire de nombres de tours par mise en oeuvre d'un jeu de billes d'entraînement à axe incliné et de forme géométrique simple, qui sont montees sur un organe de support d'entrée et qui sont maintenues entre une bague externe fendue, une première moitié étant fixée au bâti et l'autre moitié formant l'organe de sortie. Thus, the present invention relates to a traction drive with variable ratio which gives the necessary ratio of numbers of turns by implementing a set of drive balls with an inclined axis and of simple geometric shape, which are mounted on an input support member and which are held between a split outer ring, a first half being fixed to the frame and the other half forming the output member.
Le dispositif résultant d'entraînement se loge avec un faible encombrement dans la cavité d'un dispositif d'entraînement d'un organe interne, par exemple un moteurcouple plat. L'appareil est mécaniquement simple et permet des changements de rapports de nombres de tours par simple modification de l'angle d'inclinaison de l'axe des billes.The resulting drive device is housed with a small footprint in the cavity of a drive device of an internal member, for example a flat torque motor. The device is mechanically simple and allows changes in the number of revolutions ratios by simple modification of the inclination angle of the axis of the balls.
D'autres caractéristiques et avantages d'un appareil d'entraînement par traction à rapports variables de nombres de tours selon l'invention ressortiront mieux de la description detaillee qui va suivre, faite en référence aux dessins annexes sur lesquels
la figure l:est une demi-coupe d'un' exemple de dispositif d'entraînement, dans un mode de réalisation de l'invention
la figure 2 est un schéma mécanique de éléments d'entraînement representés sur la figure l ;;
la figure 3 est un graphique représentant la relation entre le rapport de nombres de tours du dispositif d'entraînement selon l'invention et deux paramètres nominaux représentés sur la figure 2
la figure 4 est une coupe des éléments d'un autre mode de realisation qui comporte un organe flottant de réaction vis-à-vis des forces radiales, destine à encaisser les couples élevés, et un autre dispositif d'entraînement;;
la figure 4A est une coupe suivant la ligne 4A4A de la figure 4
la figure 5 represente une autre configuration de dispositif d'entraînement selon une variante de celui de la figure 1, permettant un réglage préalable de la force de naniére qu'un couple plus élevé puisse être encaissé
la figure 5A est une coupe suivant la ligne 5A 5A de la figure 5
la figure 6 représente une variante de configuration de dispositif d'entraînement, permettant un réglage du rapport de nombres de tours sans remplacement d'éléments; et
la figure 6A est une coupe suivant la ligne VI
VIA de la figure 6.Other characteristics and advantages of a traction drive apparatus with variable ratios of numbers of turns according to the invention will emerge more clearly from the detailed description which follows, made with reference to the accompanying drawings in which
Figure l: is a half-section of an 'example of a driving device, in an embodiment of the invention
Figure 2 is a mechanical diagram of drive elements shown in Figure l ;;
Figure 3 is a graph showing the relationship between the ratio of the revolutions of the drive device according to the invention and two nominal parameters shown in Figure 2
Figure 4 is a section of the elements of another embodiment which comprises a floating member of reaction vis-à-vis the radial forces, intended to collect the high torques, and another drive device;
Figure 4A is a section along line 4A4A of Figure 4
Figure 5 shows another configuration of the drive device according to a variant of that of Figure 1, allowing a prior adjustment of the force of nanometer that a higher torque can be collected
Figure 5A is a section along line 5A 5A of Figure 5
FIG. 6 shows a variant configuration of the drive device, allowing adjustment of the ratio of the number of revolutions without replacing elements; and
Figure 6A is a section along line VI
VIA of figure 6.
On se réfère à la figure 1 ; le dispositif composite de traction à accouplement par billes comporte un organe 1 formant un support d'entrée, porté par un jeu de billes 7 par l'intermédiaire de roulements 8 à l'inte- rieur de bagues 6 et 10 formant le chemin externe de roulement, la bague 6 étant fixée à un organe 15 du boîtier et la bague 10 de sortie étant fixée à un organe 14 de boîtier par I'intermédiaire d'un diaphragme 11 soumis à une force préalable, un organe de sortie 12 et un ou plusieurs roulements :50 de l'organe de sortie.L'induit 2 du moteur d'entrainement est monté sur l'organe 1 d'entrée de même qu'un induit 4 d'un résolveur de position d'entrée du dispositif d'entraînement. I1 est évident que d'autres dispositifs ou moteurs d'entraînement (par exemple à pignons, à bagues moletées, ainsi que d'autres capteurs) de position angulaire, de vitesse etXou d'accélération) peuvent être fixés à l'organe 1 d'entrée. Dans le mode de réalisation représenté, les stators 3 et 5 du moteur et du résolveur sont fixes respectivement aux organes 14 et 15 du boîtier. We refer to Figure 1; the composite traction device with ball coupling comprises a member 1 forming an input support, carried by a set of balls 7 by means of bearings 8 inside rings 6 and 10 forming the external path of bearing, the ring 6 being fixed to a member 15 of the housing and the output ring 10 being fixed to a housing member 14 by means of a diaphragm 11 subjected to a prior force, an output member 12 and one or several bearings: 50 of the output member. The armature 2 of the drive motor is mounted on the input member 1 as well as an armature 4 of an input position resolver of the training. It is obvious that other drive devices or motors (for example with pinions, knurled rings, as well as other sensors) of angular position, speed and (or acceleration) can be fixed to the member 1 d 'Entrance. In the embodiment shown, the stators 3 and 5 of the motor and of the resolver are fixed respectively to the members 14 and 15 of the housing.
Le rapport de nombres de tours de l'organe d'entrée 1 et de l'organe de sortie 12 est déterminé par la position de l'axe de rotation 13 -des billes par rapport à l'axe de rotation de l'organe d'entrée 1. La figure 2 indique la nomenclature utilisée. Sur la figure 2, l1incli- naison de l'axe 13 de rotation de la bille d'un angle Q implique que les rayons 20 et 21 des billes aux points de contact 17 et 16 sont différents. Les rayons des deux organes 10 et 6 en forme de bagues, sur la figure 1, sont indiqués par les références 22 et 23 respectivement sur la figure 2, et ils ne varient pas lorsque l'angle d'inclinaison est modifié. Les rayons 22 et 23 sont égaux.L'emplacement du point 16 de contact est déterminé par la distance 25 de décalage radial au centre de la bille 7 par rapport à l'axe 19 de rotation de l'organe d'entrée, par le rayon 26 de la bille 7 et par les dimensions axiales 27, et l'emplacement est aussi déterminé par l'angle a . te rapport de nombres de tours TR de l'organe de sortie 12 et de l'organe d'entrée 1 peut être exprimé sous la forme
TR = sin (a- 0)
sin(a- 0) - sin(a+ 0)
Lorsque l'angle a a été determiné pour une réalisation donnée, l'angle Q d'inclinaison des billes peut être choisi afin qu il assure un changement du rapport de nombres de tours par réglage ou remplacement des eléments 9 de support représentés sur la figure 1.L'axe 13 de rotation de chaque bille est commandé par les éléments 9 de support de billes qui portent les billes 7 par l'intermédiaire des roulements 8. Les deux organes peuvent être identiques mais ils sont montés avec une orientation de 1800 comme représenté sur la figure 1.The ratio of the number of revolutions of the input member 1 and the output member 12 is determined by the position of the axis of rotation 13 - of the balls relative to the axis of rotation of the member d entry 1. Figure 2 shows the nomenclature used. In FIG. 2, the inclination of the axis 13 of rotation of the ball at an angle Q implies that the radii 20 and 21 of the balls at the contact points 17 and 16 are different. The radii of the two members 10 and 6 in the form of rings, in FIG. 1, are indicated by the references 22 and 23 respectively in FIG. 2, and they do not vary when the angle of inclination is modified. The radii 22 and 23 are equal. The location of the point of contact 16 is determined by the distance 25 of radial offset at the center of the ball 7 relative to the axis 19 of rotation of the input member, by the radius 26 of the ball 7 and by the axial dimensions 27, and the location is also determined by the angle a. the ratio of the number of revolutions TR of the output member 12 and the input member 1 can be expressed in the form
TR = sin (a- 0)
sin (a- 0) - sin (a + 0)
When the angle has been determined for a given embodiment, the angle Q of inclination of the balls can be chosen so that it ensures a change in the ratio of the number of revolutions by adjusting or replacing the support elements 9 shown in FIG. 1 .The axis 13 of rotation of each ball is controlled by the elements 9 for supporting the balls which carry the balls 7 by means of the bearings 8. The two members can be identical but they are mounted with an orientation of 1800 as shown in figure 1.
La figure 3 est un graphique correspondant à l'équation de TR lorsque l'angle a est égal à 304, 45" et 60". Comme l'indique la figure 3, des rapports de nombres de tours allant de 1/1 à plus de 80/1 sont facilement obtenus par réglage ou modification de l'angle Q d'inclinaison des billes. Cet angle 6 peut être modifié par utilisation d'autres organes 9 dans l'organe d'entrée 1 comme indiqué sur la figure 1. Figure 3 is a graph corresponding to the equation of TR when the angle a is equal to 304, 45 "and 60". As indicated in FIG. 3, ratios of number of revolutions ranging from 1/1 to more than 80/1 are easily obtained by adjusting or modifying the angle Q of inclination of the balls. This angle 6 can be modified by using other members 9 in the inlet member 1 as shown in FIG. 1.
On se réfère à nouveau à la figure 1 ; les billes 7 de support sont soumises à une force ou charge préalable aux deux points de contact 16 et 17 au niveau de la bague fixe 6 et de la bague de sortie 10 respectivement, par l'intermédiaire du diaphragme 11 d'application d'une charge préalable. Le couple d'entraînement dont peut disposer le dispositif d'entraînement est déterminé par le couple d'entrée et le rapport de nombres de tours mais il ne peut pas dépasser celui qui provoque un glissement important aux interfaces 16 et 17. Ce couple limite est déterminé non seulement par le coefficient de traction comme indiqué précédemment mais aussi par la force normale agissant sur les billes 7 aux points de contact 16 et 17. We refer again to Figure 1; the support balls 7 are subjected to a force or load prior to the two contact points 16 and 17 at the level of the fixed ring 6 and the output ring 10 respectively, by means of the diaphragm 11 for applying a preload. The drive torque available to the drive device is determined by the input torque and the number of revolutions ratio, but it cannot exceed that which causes significant slip at interfaces 16 and 17. This limit torque is determined not only by the coefficient of traction as indicated above but also by the normal force acting on the balls 7 at the contact points 16 and 17.
Cette charge est créée par positionnement de l'organe 12 de sortie en direction axiale par rapport au boîtier 14 à l'aide d'un écrou 18 de reglage agissant par l'intermédiaire du roulement 50. La position axiale de l'organe 12 de sortie par rapport à celle de la bague de sortie 10 détermine le fléchissement axial du diaphragme 11 et en conséquence la force axiale préalable appliquée entre les organes 10 et 6 par l'intermédiaire des billes 7.This load is created by positioning the outlet member 12 in an axial direction relative to the housing 14 using a adjusting nut 18 acting through the bearing 50. The axial position of the member 12 output relative to that of the output ring 10 determines the axial deflection of the diaphragm 11 and consequently the prior axial force applied between the members 10 and 6 via the balls 7.
L'organe d'entrée 1 est supporté non seulement dans toutes les directions par le mécanisme de réduction de vitesse d'entraînement, mais aussi il occupe peu d'espace par exemple dans la cavité d'induit de moteur-couple plat classique. Ceci permet une réalisation idéale du dispositif réducteur de vitesse d'entraînement à l'intérieur de l'enveloppe que doit avoir l'induit du moteur-couple. The input member 1 is supported not only in all directions by the drive speed reduction mechanism, but also it occupies little space for example in the armature cavity of conventional flat torque motor. This allows an ideal embodiment of the drive speed reduction device inside the envelope which the armature of the torque motor must have.
Le mécanisme d'entraînement constitue un dispositif d'obtention d'un rapport déterminé de nombres de tours qui est moins complexe que ceux qui sont nécessaires dans d'autres dispositifs d'entraînement par traction. En outre, l'analyse des roulements å billes et la technologie de fabrication sont bien etablies et peuvent être appliquées directement au dispositif d'entraînement par traction selon l'invention. L'absence de cônes effilés et d'arbres, par exemple utilisés dans certains dispositifs d'entraînement par traction, accroît la rigidité angulaire de l'ensemble. Le jeu angulaire est nul, comme cela est vérifié dans la plupart des autres dispositifs d'entraînement par traction. The drive mechanism constitutes a device for obtaining a determined ratio of numbers of turns which is less complex than those which are necessary in other traction drive devices. Furthermore, the analysis of the ball bearings and the manufacturing technology are well established and can be applied directly to the traction drive device according to the invention. The absence of tapered cones and shafts, for example used in certain traction drive devices, increases the angular rigidity of the assembly. The angular play is zero, as verified in most other traction drive devices.
Dans le cas des couples de sortie très élevés qui nécessitent des forces axiales préalables importantes, les forces radiales appliquées aux roulements 8 de support des billes 7 peuvent devenir alors difficiles à encaisser. In the case of very high output torques which require significant prior axial forces, the radial forces applied to the bearings 8 for supporting the balls 7 may then become difficult to collect.
Les figures 4 et 4A représentent une configuration dans laquelle les composantes radiales de la charge axiale réagissent par l'intermédiaire des billes 7 si bien que les roulements 8 de support des billes 7 n'encaissent pas cette composante. Sur la figure 4, l'axe 13 d'inclinaison des billes 7 est maintenu comme décrit précédemment, mais la composante radiale de la force préalable (charge axiale) est encaissée par une bague interne flottante 28 de charge, par l'intermédiaire des points internes de contact 29.FIGS. 4 and 4A represent a configuration in which the radial components of the axial load react via the balls 7 so that the bearings 8 for supporting the balls 7 do not receive this component. In FIG. 4, the axis 13 of inclination of the balls 7 is maintained as described above, but the radial component of the prior force (axial load) is collected by a floating internal ring 28 of load, via the points contact internal 29.
L'appareil de la figure 4 permet la réalisation d'une variante de dispositif d'entraînement dans laquelle l'induit 2 du moteur d'entraînement représenté sur la figure 1 est fixé à la bague interne flottante 28 et non à l'organe d'entrée 1. Cette configuration donne un rapport supplementaire de nombres de tours TR' entre l'organe 12 de sortie et l'organe 1 d'entrée, te rapport étant exprimé sous la forme :
TR' = E - 0,5 d
2E - d(0,5-sin a) dans laquelle E'désigne le diamètre primitif d'une bille 7 et d le diamètre de la bille.The apparatus of FIG. 4 allows the production of a variant of a drive device in which the armature 2 of the drive motor shown in FIG. 1 is fixed to the floating internal ring 28 and not to the member d 'input 1. This configuration gives an additional ratio of numbers of revolutions TR' between the output member 12 and the input member 1, the ratio being expressed in the form:
TR '= E - 0.5 d
2E - d (0,5-sin a) in which E denotes the pitch diameter of a ball 7 and d the diameter of the ball.
Les figures 5 et 5A représentent une variante d'un dispositif anti-rotation permettant la fixation de la bague 6 formant le chemin de roulement sur l'organe 15 du boîtier. Cette variante de configuration permet un réglage axial de la position de la bague 6 par rapport à l'organe 15 du boîtier en fonction du couple d'entraînement, par l'intermédiaire de l'angle ss de came formé sur l'organe 6 et qui applique une force de réaction aux billes 28. Ce changement axial de position augmente automatiquement la force prealable axiale appliquee aux billes 7 par le diaphragme 11 si bien que les possibilités d'accouplement par traction sont accrues. et permettent la transmission de ce couple accru sans glissement excessif.La relation entre le changement de force axiale préalable et et le couple d'entraînement T est exprimée sous la forme
- C T
tgI3
tgss dans laquelle C est une constante qui depend de paramètres de réalisation.Figures 5 and 5A show a variant of an anti-rotation device for fixing the ring 6 forming the race on the member 15 of the housing. This variant configuration allows axial adjustment of the position of the ring 6 relative to the member 15 of the housing as a function of the drive torque, via the angle ss of cam formed on the member 6 and which applies a reaction force to the balls 28. This axial change of position automatically increases the axial prior force applied to the balls 7 by the diaphragm 11 so that the possibilities of coupling by traction are increased. and allow the transmission of this increased torque without excessive slippage.The relationship between the change in prior axial force and and the drive torque T is expressed in the form
- CT
tgI3
tgss in which C is a constant which depends on implementation parameters.
Une variante de détermination d'un rapport donné de nombres de tours par sélection d'un angle Q d'inclinaison des billes peut avoir une configuration telle que repré- sentée sur les figures 6 et 6A. L'organe 1' d'entrée est une variante de l'organe 1 d'entrée représenté sur la figure 1. Un montant 30 fixé au flasque de l'organe 1' aboutit à une bille 31 de pivotement qui pilote un support 32 de billes. Le support 32 a un bras 33 de guidage comportant deux plats 34 et une bille 35 de positionnement. A variant of determining a given ratio of numbers of revolutions by selecting an angle Q of inclination of the balls can have a configuration as shown in FIGS. 6 and 6A. The input member 1 ′ is a variant of the input member 1 shown in FIG. 1. An upright 30 fixed to the flange of the member 1 ′ results in a pivoting ball 31 which drives a support 32 of marbles. The support 32 has a guide arm 33 comprising two dishes 34 and a positioning ball 35.
Les plats 34 se logent dans des fentes radiales d'un second flasque de l'organe 1'. Ces fentes 36 permettent un déplacement radial uniquement du bras 33 de guidage et empêchent la rotation du support 32 autour de l'axe de la bille 31. Une plaque 37 dé réglage a des fentes inclinées 38 de guidage qui retiennent le bras 33 de guidage par l'intermédiaire d'une bille 35. Cette plaque 37 de réglage est guidée sur un tourillon 39 de l'organe 1' d'entrée et est verrouillée en place par un collier 40 de serrage.The dishes 34 are housed in radial slots of a second flange of the member 1 '. These slots 36 allow a radial displacement only of the guide arm 33 and prevent the rotation of the support 32 around the axis of the ball 31. An adjustment plate 37 has inclined guide slots 38 which hold the guide arm 33 by via a ball 35. This adjustment plate 37 is guided on a pin 39 of the input member 1 ′ and is locked in place by a clamp 40.
L'angle Q d'inclinaison de la bille peut alors être réglé par réglage en rotation de l'organe 37 par rapport au flasque de l'organe 1'. I1 est évident que ce réglage a a des effets égaux sur l'angle Q d'inclinaison des axes de toutes les billes si bien que le réglage du rapport de nombres de tours est le même pour toutes les billes.The angle Q of inclination of the ball can then be adjusted by adjusting the rotation of the member 37 relative to the flange of the member 1 '. It is obvious that this adjustment has equal effects on the angle Q of inclination of the axes of all the balls so that the adjustment of the ratio of the number of revolutions is the same for all the balls.
Un dispositif convenable d'étalonnage de ce réglage en rotation et du rapport résultant de nombres de tours peut être disposé, par exemple sous forme de graduations 41 représentées sur la figure 6A. Comme l'indique cette dernière figure, la fente 38 de réglage de l'organe 37 peut avoir diverses inclinaisons et configurations afin qu'elle donne une sensibilité déterminée de réglage du rapport de nombres de tours. Lorsque l'angle ss de la figure 6A augmente, la sensibilité du réglage du rapport de nombres de tours de l'organe 37 diminue puisqu'une rotation déterminée de l'organe 37 par rapport à l'organe 36 provoque un plus faible changement de l'angle Q d'inclinaison et un changement résultant du rapport de nombres de tours. La configuration de la figure 6A est celle d'un dispositif d'entraînement à six billes, mais d'autres nombres de billes 7 peuvent être utilisés. A suitable device for calibrating this adjustment in rotation and the ratio resulting from the number of revolutions can be arranged, for example in the form of graduations 41 shown in FIG. 6A. As indicated in this last figure, the slot 38 for adjusting the member 37 can have various inclinations and configurations so that it gives a determined sensitivity for adjusting the ratio of the number of revolutions. When the angle ss of FIG. 6A increases, the sensitivity of the adjustment of the ratio of the number of revolutions of the member 37 decreases since a determined rotation of the member 37 relative to the member 36 causes a smaller change in the angle Q of inclination and a change resulting from the ratio of the number of turns. The configuration of FIG. 6A is that of a drive device with six balls, but other numbers of balls 7 can be used.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80256585A | 1985-11-27 | 1985-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2590638A1 true FR2590638A1 (en) | 1987-05-29 |
Family
ID=25184059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8616492A Pending FR2590638A1 (en) | 1985-11-27 | 1986-11-26 | Variable speed drive device with ball coupling |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS62127556A (en) |
CA (1) | CA1274106A (en) |
FR (1) | FR2590638A1 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462123B2 (en) * | 2003-08-11 | 2008-12-09 | Fallbrook Technologies Inc. | Continuously variable planetary gear set |
US7651437B2 (en) | 2003-02-28 | 2010-01-26 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7670243B2 (en) | 2005-08-24 | 2010-03-02 | Fallbrook Technologies, Inc. | Continuously variable transmission |
US7727101B2 (en) | 2005-10-28 | 2010-06-01 | Fallbrook Technologies Inc. | Electromotive drives |
US7727107B2 (en) | 1997-09-02 | 2010-06-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7762919B2 (en) | 2004-10-05 | 2010-07-27 | Fallbrook Technologies Inc. | Continuously variable transmission |
USRE41892E1 (en) | 1997-09-02 | 2010-10-26 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7871353B2 (en) | 2005-12-09 | 2011-01-18 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7883442B2 (en) | 2001-04-26 | 2011-02-08 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7882762B2 (en) | 2006-01-30 | 2011-02-08 | Fallbrook Technologies Inc. | System for manipulating a continuously variable transmission |
US7914029B2 (en) | 2005-11-22 | 2011-03-29 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8087482B2 (en) | 2006-03-14 | 2012-01-03 | Fallbrook Technologies Inc. | Wheelchair |
US8167759B2 (en) | 2008-10-14 | 2012-05-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8313404B2 (en) | 2007-02-16 | 2012-11-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8313405B2 (en) | 2008-02-29 | 2012-11-20 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US8317651B2 (en) | 2008-05-07 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
US8321097B2 (en) | 2007-12-21 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US8360917B2 (en) | 2009-04-16 | 2013-01-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8376903B2 (en) | 2006-11-08 | 2013-02-19 | Fallbrook Intellectual Property Company Llc | Clamping force generator |
US8393989B2 (en) | 2007-04-24 | 2013-03-12 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
US8398518B2 (en) | 2008-06-23 | 2013-03-19 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8469856B2 (en) | 2008-08-26 | 2013-06-25 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8480529B2 (en) | 2006-06-26 | 2013-07-09 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8506452B2 (en) | 2005-12-30 | 2013-08-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8512195B2 (en) | 2010-03-03 | 2013-08-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8535199B2 (en) | 2008-06-06 | 2013-09-17 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8641577B2 (en) | 2007-06-11 | 2014-02-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8738255B2 (en) | 2007-02-01 | 2014-05-27 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US8818661B2 (en) | 2008-08-05 | 2014-08-26 | Fallbrook Intellectual Property Company Llc | Methods for control of transmission and prime mover |
US8845485B2 (en) | 2011-04-04 | 2014-09-30 | Fallbrook Intellectual Property Company Llc | Auxiliary power unit having a continuously variable transmission |
US8888643B2 (en) | 2010-11-10 | 2014-11-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8900085B2 (en) | 2007-07-05 | 2014-12-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8996263B2 (en) | 2007-11-16 | 2015-03-31 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US9371894B2 (en) | 2007-02-12 | 2016-06-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
US9611921B2 (en) | 2012-01-23 | 2017-04-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US9677650B2 (en) | 2013-04-19 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10047861B2 (en) | 2016-01-15 | 2018-08-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US10458526B2 (en) | 2016-03-18 | 2019-10-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, systems and methods |
US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4535361B2 (en) * | 2001-09-20 | 2010-09-01 | 静雄 三島 | Rotational power transmission device |
JP5885371B1 (en) * | 2015-08-07 | 2016-03-15 | 株式会社エフ・シー・シー | Continuously variable transmission |
-
1986
- 1986-08-15 JP JP19157886A patent/JPS62127556A/en active Pending
- 1986-11-21 CA CA000523524A patent/CA1274106A/en not_active Expired - Fee Related
- 1986-11-26 FR FR8616492A patent/FR2590638A1/en active Pending
Cited By (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7727107B2 (en) | 1997-09-02 | 2010-06-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7837592B2 (en) | 1997-09-02 | 2010-11-23 | Fallbrook Technologies Inc. | Continuously variable transmission |
USRE41892E1 (en) | 1997-09-02 | 2010-10-26 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7883442B2 (en) | 2001-04-26 | 2011-02-08 | Fallbrook Technologies Inc. | Continuously variable transmission |
US10428939B2 (en) | 2003-02-28 | 2019-10-01 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9732848B2 (en) | 2003-02-28 | 2017-08-15 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8628443B2 (en) | 2003-02-28 | 2014-01-14 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7727108B2 (en) | 2003-02-28 | 2010-06-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8469853B2 (en) | 2003-02-28 | 2013-06-25 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9046158B2 (en) | 2003-02-28 | 2015-06-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7731615B2 (en) | 2003-02-28 | 2010-06-08 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7686729B2 (en) | 2003-02-28 | 2010-03-30 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8267829B2 (en) | 2003-02-28 | 2012-09-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7651437B2 (en) | 2003-02-28 | 2010-01-26 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8066614B2 (en) | 2003-02-28 | 2011-11-29 | Fallbrook Technologies, Inc. | Continuously variable transmission |
US7654928B2 (en) * | 2003-08-11 | 2010-02-02 | Fallbrook Technologies Inc. | Continuously variable planetary gear set |
US7462123B2 (en) * | 2003-08-11 | 2008-12-09 | Fallbrook Technologies Inc. | Continuously variable planetary gear set |
US7727110B2 (en) | 2003-08-11 | 2010-06-01 | Fallbrook Technologies Inc. | Continuously variable planetary gear set |
US7540818B2 (en) * | 2003-08-11 | 2009-06-02 | Fallbrook Technologies Inc. | Continuously variable planetary gear set |
US8920285B2 (en) | 2004-10-05 | 2014-12-30 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8123653B2 (en) | 2004-10-05 | 2012-02-28 | Fallbrook Technologies Inc. | Continuously variable transmission |
US10036453B2 (en) | 2004-10-05 | 2018-07-31 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7762919B2 (en) | 2004-10-05 | 2010-07-27 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7963880B2 (en) | 2004-10-05 | 2011-06-21 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7967719B2 (en) | 2004-10-05 | 2011-06-28 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7976426B2 (en) | 2004-10-05 | 2011-07-12 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7762920B2 (en) | 2004-10-05 | 2010-07-27 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8066613B2 (en) | 2004-10-05 | 2011-11-29 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8171636B2 (en) | 2004-10-05 | 2012-05-08 | Fallbrook Technologies Inc. | Method of manufacturing a stator of a cage for a continuously variable transmission (CVT) |
US7785228B2 (en) | 2004-10-05 | 2010-08-31 | Fallbrook Technologies Inc. | Torsion disc for use in a continuously variable transmission |
US7909727B2 (en) | 2004-10-05 | 2011-03-22 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8133149B2 (en) | 2004-10-05 | 2012-03-13 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7670243B2 (en) | 2005-08-24 | 2010-03-02 | Fallbrook Technologies, Inc. | Continuously variable transmission |
US8342999B2 (en) | 2005-10-28 | 2013-01-01 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
US8070635B2 (en) | 2005-10-28 | 2011-12-06 | Fallbrook Technologies Inc. | Electromotive drives |
US9506562B2 (en) | 2005-10-28 | 2016-11-29 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
US7828685B2 (en) | 2005-10-28 | 2010-11-09 | Fallbrook Technologies Inc. | Electromotive drives |
US8550949B2 (en) | 2005-10-28 | 2013-10-08 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
US9950608B2 (en) | 2005-10-28 | 2018-04-24 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
US9022889B2 (en) | 2005-10-28 | 2015-05-05 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
US7727101B2 (en) | 2005-10-28 | 2010-06-01 | Fallbrook Technologies Inc. | Electromotive drives |
US9341246B2 (en) | 2005-11-22 | 2016-05-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10711869B2 (en) | 2005-11-22 | 2020-07-14 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8708360B2 (en) | 2005-11-22 | 2014-04-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9709138B2 (en) | 2005-11-22 | 2017-07-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7914029B2 (en) | 2005-11-22 | 2011-03-29 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8317650B2 (en) | 2005-12-09 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8262536B2 (en) | 2005-12-09 | 2012-09-11 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9121464B2 (en) | 2005-12-09 | 2015-09-01 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US7871353B2 (en) | 2005-12-09 | 2011-01-18 | Fallbrook Technologies Inc. | Continuously variable transmission |
US7959533B2 (en) | 2005-12-09 | 2011-06-14 | Fallbrook Technologies Inc. | Continuously variable transmission |
US10208840B2 (en) | 2005-12-09 | 2019-02-19 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US11454303B2 (en) | 2005-12-09 | 2022-09-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8506452B2 (en) | 2005-12-30 | 2013-08-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9683638B2 (en) | 2005-12-30 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
US11598397B2 (en) | 2005-12-30 | 2023-03-07 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
US8776633B2 (en) | 2006-01-30 | 2014-07-15 | Fallbrook Intellectual Property Company Llc | System for manipulating a continuously variable transmission |
US7882762B2 (en) | 2006-01-30 | 2011-02-08 | Fallbrook Technologies Inc. | System for manipulating a continuously variable transmission |
US8087482B2 (en) | 2006-03-14 | 2012-01-03 | Fallbrook Technologies Inc. | Wheelchair |
US9017207B2 (en) | 2006-06-26 | 2015-04-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8480529B2 (en) | 2006-06-26 | 2013-07-09 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9726282B2 (en) | 2006-06-26 | 2017-08-08 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8376903B2 (en) | 2006-11-08 | 2013-02-19 | Fallbrook Intellectual Property Company Llc | Clamping force generator |
US9086145B2 (en) | 2006-11-08 | 2015-07-21 | Fallbrook Intellectual Property Company Llc | Clamping force generator |
US10703372B2 (en) | 2007-02-01 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US9676391B2 (en) | 2007-02-01 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US8738255B2 (en) | 2007-02-01 | 2014-05-27 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US9328807B2 (en) | 2007-02-01 | 2016-05-03 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US9878719B2 (en) | 2007-02-01 | 2018-01-30 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US10260607B2 (en) | 2007-02-12 | 2019-04-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
US9371894B2 (en) | 2007-02-12 | 2016-06-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
US10094453B2 (en) | 2007-02-16 | 2018-10-09 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8585528B2 (en) | 2007-02-16 | 2013-11-19 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US9239099B2 (en) | 2007-02-16 | 2016-01-19 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8313404B2 (en) | 2007-02-16 | 2012-11-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US10056811B2 (en) | 2007-04-24 | 2018-08-21 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
US8393989B2 (en) | 2007-04-24 | 2013-03-12 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
US9574643B2 (en) | 2007-04-24 | 2017-02-21 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
US9273760B2 (en) | 2007-04-24 | 2016-03-01 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
US8641577B2 (en) | 2007-06-11 | 2014-02-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9945456B2 (en) | 2007-06-11 | 2018-04-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8900085B2 (en) | 2007-07-05 | 2014-12-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9869388B2 (en) | 2007-07-05 | 2018-01-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10260629B2 (en) | 2007-07-05 | 2019-04-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10100927B2 (en) | 2007-11-16 | 2018-10-16 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US11125329B2 (en) | 2007-11-16 | 2021-09-21 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US8996263B2 (en) | 2007-11-16 | 2015-03-31 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US9249880B2 (en) | 2007-12-21 | 2016-02-02 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US9739375B2 (en) | 2007-12-21 | 2017-08-22 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US8321097B2 (en) | 2007-12-21 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US10704687B2 (en) | 2007-12-21 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US8626409B2 (en) | 2007-12-21 | 2014-01-07 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
US8622866B2 (en) | 2008-02-29 | 2014-01-07 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US9182018B2 (en) | 2008-02-29 | 2015-11-10 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US9850993B2 (en) | 2008-02-29 | 2017-12-26 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US8313405B2 (en) | 2008-02-29 | 2012-11-20 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
US8678974B2 (en) | 2008-05-07 | 2014-03-25 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
US8317651B2 (en) | 2008-05-07 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
US9618100B2 (en) | 2008-05-07 | 2017-04-11 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
US10634224B2 (en) | 2008-06-06 | 2020-04-28 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8790214B2 (en) | 2008-06-06 | 2014-07-29 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US9683640B2 (en) | 2008-06-06 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8535199B2 (en) | 2008-06-06 | 2013-09-17 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US10066713B2 (en) | 2008-06-23 | 2018-09-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9074674B2 (en) | 2008-06-23 | 2015-07-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8398518B2 (en) | 2008-06-23 | 2013-03-19 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8641572B2 (en) | 2008-06-23 | 2014-02-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9528561B2 (en) | 2008-06-23 | 2016-12-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8818661B2 (en) | 2008-08-05 | 2014-08-26 | Fallbrook Intellectual Property Company Llc | Methods for control of transmission and prime mover |
US9365203B2 (en) | 2008-08-05 | 2016-06-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US9878717B2 (en) | 2008-08-05 | 2018-01-30 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
US9903450B2 (en) | 2008-08-26 | 2018-02-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8852050B2 (en) | 2008-08-26 | 2014-10-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10704657B2 (en) | 2008-08-26 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8469856B2 (en) | 2008-08-26 | 2013-06-25 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9574642B2 (en) | 2008-10-14 | 2017-02-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8870711B2 (en) | 2008-10-14 | 2014-10-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10253880B2 (en) | 2008-10-14 | 2019-04-09 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8167759B2 (en) | 2008-10-14 | 2012-05-01 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8496554B2 (en) | 2008-10-14 | 2013-07-30 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9920823B2 (en) | 2009-04-16 | 2018-03-20 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8663050B2 (en) | 2009-04-16 | 2014-03-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9279482B2 (en) | 2009-04-16 | 2016-03-08 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8360917B2 (en) | 2009-04-16 | 2013-01-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10746270B2 (en) | 2009-04-16 | 2020-08-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9360089B2 (en) | 2010-03-03 | 2016-06-07 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US10066712B2 (en) | 2010-03-03 | 2018-09-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8512195B2 (en) | 2010-03-03 | 2013-08-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8721485B2 (en) | 2010-03-03 | 2014-05-13 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US8888643B2 (en) | 2010-11-10 | 2014-11-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10197147B2 (en) | 2010-11-10 | 2019-02-05 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9291251B2 (en) | 2010-11-10 | 2016-03-22 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US8845485B2 (en) | 2011-04-04 | 2014-09-30 | Fallbrook Intellectual Property Company Llc | Auxiliary power unit having a continuously variable transmission |
US10428915B2 (en) | 2012-01-23 | 2019-10-01 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US9611921B2 (en) | 2012-01-23 | 2017-04-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
US10323732B2 (en) | 2013-04-19 | 2019-06-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US9677650B2 (en) | 2013-04-19 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US10920882B2 (en) | 2016-01-15 | 2021-02-16 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US11306818B2 (en) | 2016-01-15 | 2022-04-19 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US10047861B2 (en) | 2016-01-15 | 2018-08-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US10458526B2 (en) | 2016-03-18 | 2019-10-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, systems and methods |
US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
US11624432B2 (en) | 2018-11-06 | 2023-04-11 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US11530739B2 (en) | 2019-02-26 | 2022-12-20 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US12000458B2 (en) | 2019-02-26 | 2024-06-04 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
Also Published As
Publication number | Publication date |
---|---|
CA1274106A (en) | 1990-09-18 |
JPS62127556A (en) | 1987-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2590638A1 (en) | Variable speed drive device with ball coupling | |
FR2708068A1 (en) | Continuously variable friction transmission. | |
FR2996276A1 (en) | Continuously variable speed transmission for use as automatic transmission in e.g. electric car, has actuating element cooperating with support to swivel axis relative to frame to vary transmission ratio between input and output shafts | |
FR2740523A1 (en) | DEVICE FOR CONVERTING ROTATION MOVEMENT IN AXIAL DISPLACEMENT | |
EP0122208B1 (en) | Device for conveying rotary motion from a driving to a driven shaft | |
EP1509705B1 (en) | Actuator with two motors, a differential reducer and a torque limiter | |
EP0437157B1 (en) | Pulley for continuously variable transmission, with a torque transmitting membrane | |
EP0498699B1 (en) | Pointing mechanism for a payload, especially for a satellite antenna | |
FR2771153A1 (en) | Epicycloidal or cycloidal reducer for robot articulation | |
EP3805583B1 (en) | Engine and/or generator for a railway vehicle, associated bogie and railway vehicle | |
EP0319354B1 (en) | Driving device of a toothed wheel by way of a self-aligning pinion | |
FR2753925A1 (en) | Joint for use in robot arm | |
FR2485669A1 (en) | Cycloidal bevel gear reduction train - uses double inclined input gear enmeshing with coaxial output gear and fixed concentric, outer gear | |
EP0708271B1 (en) | Epicyclic reduction gear with a fixed frame | |
CA2487063C (en) | Actuator with torque limiter | |
EP0656104B1 (en) | Mechanical device for rotation speed reduction, multiplication and variation | |
EP0463950B1 (en) | Device for displacement of an element and application for the pointing of the reflector of an antenna | |
WO1998046913A1 (en) | Rotary transmission mechanism operating by variable-ratio friction | |
BE354927A (en) | ||
FR2579700A1 (en) | Constant-velocity joint, especially for high speed transmission | |
WO1980001596A1 (en) | Gear train with compensated action | |
EP0972969A1 (en) | Mechanical speed changer between two co-axial shafts | |
FR2788092A1 (en) | Pedal drive transmission for bicycle has pair of discs attached to pedal crank with power take off wheel adjustable mounted for radial movement with respect to discs | |
BE398010A (en) | ||
BE390142A (en) |