FR2567956A1 - Method and installation for determining the bubble point pressure of a fluid produced from a drilling well or circulating in an industrial installation - Google Patents
Method and installation for determining the bubble point pressure of a fluid produced from a drilling well or circulating in an industrial installation Download PDFInfo
- Publication number
- FR2567956A1 FR2567956A1 FR8411559A FR8411559A FR2567956A1 FR 2567956 A1 FR2567956 A1 FR 2567956A1 FR 8411559 A FR8411559 A FR 8411559A FR 8411559 A FR8411559 A FR 8411559A FR 2567956 A1 FR2567956 A1 FR 2567956A1
- Authority
- FR
- France
- Prior art keywords
- fluid
- installation
- pressure
- bubble point
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 35
- 238000009434 installation Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000005553 drilling Methods 0.000 title abstract 2
- 230000005540 biological transmission Effects 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 10
- 238000009530 blood pressure measurement Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/113—Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
- E21B47/114—Locating fluid leaks, intrusions or movements using electrical indications; using light radiations using light radiation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/113—Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/087—Well testing, e.g. testing for reservoir productivity or formation parameters
- E21B49/0875—Well testing, e.g. testing for reservoir productivity or formation parameters determining specific fluid parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/20—Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/02—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
- G01N25/08—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of boiling point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N7/00—Analysing materials by measuring the pressure or volume of a gas or vapour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/56—Control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Measuring Fluid Pressure (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
La présente invention concerne un procédé et une installation pour la détection de la pression du point de bulle d'un fluide produit à partir d'un puits de forage ou en circulation dans une installation industrielle. The present invention relates to a method and an installation for detecting the bubble point pressure of a fluid produced from a wellbore or in circulation in an industrial installation.
L'application décrite ci-après concerne la production d'eau géothermique ou similaire mais peut également concerner toute installation dans laquelle des fluides peuvent subir des changements ou des séparations de phases. The application described below relates to the production of geothermal water or the like but can also relate to any installation in which fluids can undergo changes or phase separations.
La connaissance des proprietés thermodynamiques des fluides géothermiques et de leur évolution au cours du cycle géothermique sont indispensables pour la définition des équipements de surface et de subsurface ainsi que pour l'é- tude du comportement futur de la ressource. Parmi les diverses mesures effectuées sur les fluides géothermiques il en est une qui présente une importance particulière à savoir celle de la pression du point de bulle. Le "point de bulle" est défini comme étant la pression à laquelle apparaît, dans le fluide géothermique, la première bulle lors d'une diminution de la pression de ce fluide. La détermination de ce "point de bulle" est particulièrement critique car au cours du cycle géothermique les fortes chutes de pression en deçà de la pression du point de bulle provoquent la libération de gaz dans le fluide.Ce dégazage, conduisant à la libération de plusieurs gaz acides, entraîne corrélativement une alcal inisat ion de l'eau d'où des conditions plus favorables pour le dépôt de substances minérales, dépôt provoquant à son tour l'entartrage des échangeurs de chaleur en surface et l'érosion mécanique rapide des canalisations et des pompes de l'installation. Par ailleurs la séparation entre phase gazeuse et phase liquide dans le circuit est à l'origine de complications de la circulation hydraulique et de l'abaissement des performances d'échange thermique dans les échangeurs à plaques. Knowledge of the thermodynamic properties of geothermal fluids and their evolution during the geothermal cycle are essential for the definition of surface and subsurface equipment as well as for the study of the future behavior of the resource. Among the various measurements made on geothermal fluids there is one which is of particular importance, namely that of the pressure of the bubble point. The "bubble point" is defined as the pressure at which the first bubble appears in the geothermal fluid when the pressure of this fluid decreases. The determination of this "bubble point" is particularly critical because during the geothermal cycle the large pressure drops below the bubble point pressure cause the release of gas in the fluid. This degassing, leading to the release of several acid gases, correlatively leads to an alkali inisat ion of the water, hence more favorable conditions for the deposition of mineral substances, deposition in turn causing scaling of the heat exchangers on the surface and rapid mechanical erosion of the pipes and installation pumps. Furthermore, the separation between gas phase and liquid phase in the circuit is at the origin of complications of the hydraulic circulation and the lowering of the heat exchange performance in the plate exchangers.
Pour toutes ces raisons il y a lieu de maintenir en permanence, dans le réseau, une pression légèrement supérieure à celle du point de bulle, ce qui exige par conséquent la détection de cette dernière pression. For all these reasons, it is necessary to maintain permanently, in the network, a pressure slightly higher than that of the bubble point, which consequently requires the detection of this last pressure.
Jusqutà présent la mesure du point de bulle d'un fluide géothermique est réalisée à partir d'échantillons prélevés en fond de puits à l'aide d'un échantillonneur particulier. Un tel procédé présente l'inconvénient d'être relativement onéreux, car il exige des moyens importants pour réaliser l'échantillonnage et par ailleurs de ne permettre d'obtenir qu une valeur ponctuelle qui ne peut éviter des erreurs considérables et qui ne représente en fait que le point d'échantillonnage au moment et dans les conditions du prélèvement. Up to now, the measurement of the bubble point of a geothermal fluid has been carried out using samples taken from the bottom of the well using a special sampler. Such a method has the disadvantage of being relatively expensive, since it requires significant means for carrying out the sampling and, moreover, only making it possible to obtain a point value which cannot avoid considerable errors and which in fact only represents than the sampling point at the time and under the conditions of the sample.
La présente invention vise à remédier à ces inconvénients en procurant un procédé et une installation parti culièrement simples à mettre en oeuvre et permettant de détecter in situ et en permanence l'instant où la valeur du point de bulle est atteinte et ce, aussi bien dans la colonne de production que dans l'installation de surface dans les conditions d'écoulement et d'exploitation
A cet effet ce procédé de détection de la pression du point de bulle d'un fluide produit à partir d'un puits de forage ou en circulation dans une installation industrielle est caractérisé en ce qu'on mesure en permanence la transmission de la lumière à travers le fluide, au cours de son écoulement dans un puits équipé ou non d'une colonne de production ou dans une installation de surface, et on détecte, dès que le point de bulle est atteint par suite d'une baisse de la pression du fluide, la variation de la transmission de la lumière qui résulte de l'apparition des premières bulles de gaz dans le fluide.The present invention aims to remedy these drawbacks by providing a method and an installation which are particularly simple to implement and which make it possible to detect in situ and permanently the instant when the value of the bubble point is reached, both in the production column only in the surface installation under flow and operating conditions
To this end, this method of detecting the pressure of the bubble point of a fluid produced from a wellbore or in circulation in an industrial installation is characterized in that the light transmission is continuously measured. through the fluid, during its flow in a well equipped or not with a production column or in a surface installation, and it is detected, as soon as the bubble point is reached as a result of a drop in the pressure of the fluid, the variation in light transmission that results from the appearance of the first gas bubbles in the fluid.
La mesure de la transmission de la lumière à travers le fluide peut être obtenue à partir d'une mesure. d'absorption directe ou bien encore d'une détection en diffraction (effet Tyndall par exemple). The measurement of the transmission of light through the fluid can be obtained from a measurement. direct absorption or even diffraction detection (Tyndall effect for example).
L'invention a également pour objet une installation pour la mise en oeuvre du procédé susmentionné caractérisée en ce qu'elle comprend un ensemble de mesure optique associé à une mesure de pression,comportant, outre le capteur de pression, un émetteur d'un faisceau lumineux séparé d'un récepteur de ce faisceau par un espace accessible en perma nence au fluide dont le point de bulle doit être détecté et des moyens de contrôle reliés électriquement au récepteur du faisceau lumineux pour détecter une variation du courant émis par ce récepteur lorsque la pression du fluide en écoulement tombe en dessous de celle du point de bulle. The invention also relates to an installation for implementing the above-mentioned method, characterized in that it comprises an optical measurement assembly associated with a pressure measurement, comprising, in addition to the pressure sensor, a beam emitter light separated from a receiver of this beam by a space permanently accessible to the fluid whose bubble point must be detected and control means electrically connected to the receiver of the light beam to detect a variation in the current emitted by this receiver when the pressure of the flowing fluid falls below that of the bubble point.
fln décrira ci-aprés,à titre d'exemple non limitatif, une forme d'exécution de la présente invention,en référence au dessin annexé sur lequel:
La figure 1 est un schéma synoptique d'une installation mettant en oeuvre le procédé de détection de la pression du point de bulle suivant l'invention.fln will describe below, by way of nonlimiting example, an embodiment of the present invention, with reference to the appended drawing in which:
Figure 1 is a block diagram of an installation implementing the method of detecting the bubble point pressure according to the invention.
La figure 2 est un diagramme illustrant la variation de la transmission de la lumière dans le fluide géothermique en fonction de sa pression. FIG. 2 is a diagram illustrating the variation of the transmission of light in the geothermal fluid as a function of its pressure.
L'installation représentée sur le dessin est associée à un puits géothermique l dans lequel est collecté un fluide géothermique 2. Ce puits 1 peut être équipé d'une colonne d'exhaure ou de production 3 à l'extrémité inférieure de laquelle est branchée une pompe d'exhaure 4 Le système de production, puits direct 1 ou colonne d'exhaure 3, est relié à une instal.lataon comprenant des pompes de reprise 5 éventuelles et des échangeurs 6 indiqués schématiquement. The installation shown in the drawing is associated with a geothermal well l in which a geothermal fluid 2 is collected. This well 1 can be equipped with a dewatering or production column 3 at the lower end of which is connected a dewatering pump 4 The production system, direct well 1 or dewatering column 3, is connected to an instal.lataon comprising possible recovery pumps 5 and exchangers 6 indicated diagrammatically.
Suivant l'invention on utilise, pour la détection de la pression Pb du point de bulle du fluide géothermique 2, un ensemble 7 qui est descendu dans le puits non équipé ou dans la colonne d dlexhaure 3, au moyen d'un câble 8 enroulé sur un treuil 9 fet ensemble de mesure 7 comprend un émetteur 11 d'un faisceau lumineux, un récepteur 12 de ce faisceau et entre ceux-ci un espace 13 rempli de fluide géothermique 2. Le récepteur 2 est relié, par l'intermédiaire d'un conducteur électrique, à un circuit de contrôle 14 se trouvant en surface. Un capteur de pression, associé à l'ensem b le de mesure, indiquant la pression en chaque point de la colonne d'eau,permet l'interprétation directe des mesures. According to the invention, for the detection of the pressure Pb of the bubble point of the geothermal fluid 2, an assembly 7 is used which is lowered into the unequipped well or into the dlexhaure column 3, by means of a coiled cable 8 on a winch 9 fet measuring assembly 7 comprises a transmitter 11 of a light beam, a receiver 12 of this beam and between them a space 13 filled with geothermal fluid 2. The receiver 2 is connected, via d 'an electrical conductor, to a control circuit 14 located on the surface. A pressure sensor, associated with the measurement set, indicating the pressure at each point in the water column, allows direct interpretation of the measurements.
Comme il est représenté sur le dessin, la transmission de la lumière, de l'émetteur 11 au récepteur 12, varie en fonction de la pression P du fluide géothermique 2, de la façon illustrée par le diagramme de la figure 2. On voit que, tant que la pression P du fluide géothermique 2 est supérieure à celle du point de bulle Pb, la transmission de la lumière L, traduite par un signal electrique, a une valeur constante et que parcontre, aussitôt que la pression P s'abaisse en dessous de celle du point de bulle Pb, la transmission de la lumière diminue brusquement, ce qui se traduit par une augmentation du signal L. I1 est donc facile de détecter l'apparition de la pression du point de bulle
Pb, à partir de la variation du courant électrique émis par le récepteur 12. Le circuit de contrôle 14 émet donc à sa sortie un signal A, qui peut être utilisé en tant que signal d'alarme ou de sécurité, aussitôt que la pression P du fluide géothermique 2 s'abaisse en dessous de la valeur de la pression du point de bulle Pb.As shown in the drawing, the transmission of light from the emitter 11 to the receiver 12 varies as a function of the pressure P of the geothermal fluid 2, as illustrated by the diagram in FIG. 2. It can be seen that , as long as the pressure P of the geothermal fluid 2 is greater than that of the bubble point Pb, the light transmission L, translated by an electrical signal, has a constant value and that, as soon as the pressure P drops in below that of the bubble point Pb, the light transmission abruptly decreases, which results in an increase in the signal L. It is therefore easy to detect the appearance of the pressure of the bubble point
Pb, from the variation of the electric current emitted by the receiver 12. The control circuit 14 therefore emits at its output a signal A, which can be used as an alarm or safety signal, as soon as the pressure P of the geothermal fluid 2 drops below the value of the bubble point pressure Pb.
On peut prévoir additionnellement un autre circuit de mesure 15 relié à l'installation de surface et émettant à sa sortie un signal des mesure d'aiarme ou de sécurité B lorsque la pression du fluide géothermique dans l'installation de surface tombe en dessous de la valeur de la pression du point de bulle Pb. Another measurement circuit 15 can be provided, connected to the surface installation and emitting at its output an alarm or safety measurement signal B when the pressure of the geothermal fluid in the surface installation falls below the bubble point pressure Pb.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8411559A FR2567956B1 (en) | 1984-07-20 | 1984-07-20 | METHOD AND INSTALLATION FOR DETECTING THE BUBBLE POINT PRESSURE OF A FLUID PRODUCED FROM A WELLBORE OR IN CIRCULATION IN AN INDUSTRIAL INSTALLATION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8411559A FR2567956B1 (en) | 1984-07-20 | 1984-07-20 | METHOD AND INSTALLATION FOR DETECTING THE BUBBLE POINT PRESSURE OF A FLUID PRODUCED FROM A WELLBORE OR IN CIRCULATION IN AN INDUSTRIAL INSTALLATION |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2567956A1 true FR2567956A1 (en) | 1986-01-24 |
FR2567956B1 FR2567956B1 (en) | 1987-10-23 |
Family
ID=9306335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8411559A Expired FR2567956B1 (en) | 1984-07-20 | 1984-07-20 | METHOD AND INSTALLATION FOR DETECTING THE BUBBLE POINT PRESSURE OF A FLUID PRODUCED FROM A WELLBORE OR IN CIRCULATION IN AN INDUSTRIAL INSTALLATION |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2567956B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2599424A1 (en) * | 1986-05-30 | 1987-12-04 | Rech Geolog Miniere | Method and installation for stimulating an Artesian geothermal well. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2203720A (en) * | 1934-12-10 | 1940-06-11 | Dale Service Corp | Apparatus for detecting water intrusion in boreholes |
US2682800A (en) * | 1951-08-25 | 1954-07-06 | Robert V Funk | Photoelectric water locating instrument |
FR1345055A (en) * | 1962-10-23 | 1963-12-06 | Schlumberger Prospection | Method and apparatus for the identification of fluids produced in wells and in particular in oil wells |
FR2135013A5 (en) * | 1971-04-23 | 1972-12-08 | Lucas Industries Ltd | |
FR2135014A5 (en) * | 1971-04-23 | 1972-12-08 | Lucas Industries Ltd | |
US4112745A (en) * | 1976-05-05 | 1978-09-12 | Magna Energy, Inc. | High temperature geothermal energy system |
GB2001752A (en) * | 1977-07-27 | 1979-02-07 | Rank Organisation Ltd | Optical detector device |
FR2434923A1 (en) * | 1978-08-30 | 1980-03-28 | Schlumberger Prospection | WELL TEST PROCESS |
-
1984
- 1984-07-20 FR FR8411559A patent/FR2567956B1/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2203720A (en) * | 1934-12-10 | 1940-06-11 | Dale Service Corp | Apparatus for detecting water intrusion in boreholes |
US2682800A (en) * | 1951-08-25 | 1954-07-06 | Robert V Funk | Photoelectric water locating instrument |
FR1345055A (en) * | 1962-10-23 | 1963-12-06 | Schlumberger Prospection | Method and apparatus for the identification of fluids produced in wells and in particular in oil wells |
FR2135013A5 (en) * | 1971-04-23 | 1972-12-08 | Lucas Industries Ltd | |
FR2135014A5 (en) * | 1971-04-23 | 1972-12-08 | Lucas Industries Ltd | |
US4112745A (en) * | 1976-05-05 | 1978-09-12 | Magna Energy, Inc. | High temperature geothermal energy system |
GB2001752A (en) * | 1977-07-27 | 1979-02-07 | Rank Organisation Ltd | Optical detector device |
FR2434923A1 (en) * | 1978-08-30 | 1980-03-28 | Schlumberger Prospection | WELL TEST PROCESS |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2599424A1 (en) * | 1986-05-30 | 1987-12-04 | Rech Geolog Miniere | Method and installation for stimulating an Artesian geothermal well. |
Also Published As
Publication number | Publication date |
---|---|
FR2567956B1 (en) | 1987-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013222265B2 (en) | Systems and methods of determining fluid properties | |
EP1254359A1 (en) | Non-intrusive method and device for characterising flow perturbations of a fluid inside a pipe | |
EP0722095A1 (en) | Determination of the porosity and permeabilty of a geological formation based on the electrofiltration phenomenon | |
CA2056029A1 (en) | Multiphase flow rate monitoring means and method | |
CN111594135B (en) | Drilling fluid gas detection device and method in water-resisting pipe | |
US20160327683A1 (en) | Downhole fluid properties analysis device and tools comprising such a device | |
EP0701128B1 (en) | Apparatus for petrophysical measurements and method for carrying out the same | |
EP0171300A1 (en) | Device for determining the pour point of a gas oil | |
FR3058451A1 (en) | DEVICE AND METHOD FOR OPTICAL MONITORING OF CHEMICAL COMPOSITION IN WELL BOTTOM, WELL BOTTOM ASSEMBLY AND MEASURING TOOL COMPRISING SUCH A DEVICE | |
WO1993019354A1 (en) | Process for chemical logging of a liquid and plant for carrying out said process | |
CN116952938A (en) | System and method for intelligently identifying early overflow through drilling fluid bubble image | |
FR2567956A1 (en) | Method and installation for determining the bubble point pressure of a fluid produced from a drilling well or circulating in an industrial installation | |
FR2852396A1 (en) | METHOD AND DEVICE FOR ANALYZING THE CO2 CONTAINED IN A DRILLING FLUID | |
EP4180622B1 (en) | Application method of device for accurately evaluating vertical content distribution of undersea hydrate reservoir | |
FR2622248A1 (en) | METHOD AND DEVICE FOR MEASURING THE DISPLACEMENT OF A PUMP PUMP ROD | |
FR2758881A1 (en) | DEVICE FOR MEASURING THE ELECTRICAL RESISTIVITY OF A SOLID SAMPLE | |
Sepaniak et al. | Demonstration of an integrated capillary electrophoresis—laser-induced fluorescence fiber-optic sensor | |
FR2770021A1 (en) | MULTI-SHEATH SODIUM LEAK DETECTION APPARATUS | |
FR3116898A1 (en) | Method and system for the temporal determination of a phase interface level of a multiphase fluid present in a vertical pipe | |
FR3077389A1 (en) | EQUIPMENT FOR ANALYZING A POLYPHASIC FLUID | |
JPH06214045A (en) | Fluid/flow sensor, and underground water investigating method using same | |
CN114112990B (en) | Spectral gas invasion monitoring nipple while drilling | |
CN1560571A (en) | Ice water level sensor and its detecting method | |
EP1368631A2 (en) | Method and device for measuring the efficacy of a lubricating oil and uses thereof | |
CN115144023A (en) | Sampling device and method for monitoring seawater invasion by using existing well |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TP | Transmission of property | ||
ST | Notification of lapse |