FR2541531A1 - PROCESS FOR CREATING AN ALTERNATIVE CURRENT FROM A DIRECT CURRENT - Google Patents

PROCESS FOR CREATING AN ALTERNATIVE CURRENT FROM A DIRECT CURRENT Download PDF

Info

Publication number
FR2541531A1
FR2541531A1 FR8402504A FR8402504A FR2541531A1 FR 2541531 A1 FR2541531 A1 FR 2541531A1 FR 8402504 A FR8402504 A FR 8402504A FR 8402504 A FR8402504 A FR 8402504A FR 2541531 A1 FR2541531 A1 FR 2541531A1
Authority
FR
France
Prior art keywords
voltage
alternating current
phase
output
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8402504A
Other languages
French (fr)
Other versions
FR2541531B1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of FR2541531A1 publication Critical patent/FR2541531A1/en
Application granted granted Critical
Publication of FR2541531B1 publication Critical patent/FR2541531B1/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • H02M7/53806Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

In order to produce with a good output alternating current from direct current, the voltage curve of the alternating current to be produced is predetermined as a function of time, directly and with a phase shift of 180<o>, by means of an oscillator (1). Thereafter, a half wave of those two voltages is compared in a separate way by means of two voltage comparison units (4, 5) with the output voltage present at each instant, respectively with the output voltage out of phase by 180<o>. By using those two voltage comparison units (4, 5), one of the two switches (6, 7) which provide the user with the direct voltage by a current limiting impedance (8), of which the output is connected to an energy accumulator (9), is provided so as to enable the matching of the output voltage path with the predetermined voltage curve, while a positive, respectively negative voltage is applied to energy accumulator (9) by passing through the switches (6, 7) as soon as and as long as the voltage difference at one of the two voltage comparison units (4, 5) exceeds a predetermined positive threshold for the switching into circuit, respectively a predetermined threshold for the switching out of circuit.

Description

Procéde pour créer un courant alternatif à partir d'un
courant continu.
Procedure for creating an alternating current from a
direct current.

L'invention concerne un procédé pour créer un courant alternatif à partir d'un courant continu. The invention relates to a method for creating an alternating current from a direct current.

tes procédés commus à ce jour pour créer un courant alternatif à partir d'un courant continu présentent les inconvénients suivants:
La conversion s'effectue avec un mauvais rendement.
Your methods used to date for creating an alternating current from a direct current have the following drawbacks:
The conversion takes place with poor efficiency.

La tension de sortie depend autant de la tension continue utilisée que de la charge. The output voltage depends as much on the DC voltage used as on the load.

ta création d'une tension d'allure prédéterminée nécessite des mesures de filtrage importantes. your creation of a predetermined shape voltage requires significant filtering measures.

Le but de la présente invention est de proposer un procédé ne présentant pas les inconvénients sus-mentionnés des procédés connus à ce jour. The aim of the present invention is to provide a process which does not have the aforementioned drawbacks of the processes known to date.

Selon l'Invention, ce but est atteint du fait que l'on détermine l'allure de la tension du courant alternatif à obtenir en fonction du temps aussi bien directement qu'à partir d'un décalage de phase de 18qui que lton compare une demi-onde respective de ces deux tensions de façon séparée dans deux circuits comparateurs de tension avec la tension de sortie et avec la tension de sortie déphasee de 1800 à chaque instant, que l'on commute au moyen des deux circuits comparateurs de tension et respectivement l'un de deux commutateurs qui envoient au dispositif utilisateur la tension continue par l'intermédiaire d'une impédance limitatrice de courant et dont la sortie est reliée à un accumulateur d'énergie de manière que l'allure de la tension de sortie concorde à tout moment pratiquement avec l'allure de la tension de sortie prédéterminée, l'accumulateur d'énergie étant appliqué par l'intermédiaire des deux commutateurs à une tension positive ou négative des que et aussi longtemps que la différence de tension dans l'un des deux circuits comparateurs de tension dépasse une valeur de seuil positive prédéterminée pour la mise en circuit ou une valeur de seuil prédéterminée pour la coupure du circuit
Pour utiliser un courant alternatif, provenant d'une batterie par exemple, en tant que courant de secours, il est avantageux de prévoir une allure de la tension du courant alternatif à produire qui soit fonction du temps et synchronisée avec une source de courant alternatif, telle qutun réseau de courant alternatif à accoupler, aussi bien directement que sous forme d'un décalage de phase de 1800.
According to the invention, this object is achieved owing to the fact that the shape of the voltage of the alternating current to be obtained as a function of time is determined both directly and from a phase shift of 18 which compares a respective half-wave of these two voltages separately in two voltage comparator circuits with the output voltage and with the output voltage shifted by 1800 at each instant, which are switched by means of the two voltage comparator circuits and respectively one of two switches which send the direct voltage to the user device via a current limiting impedance and the output of which is connected to an energy accumulator so that the shape of the output voltage matches at any time practically with the shape of the predetermined output voltage, the energy accumulator being applied through the two switches at a positive or negative voltage as soon as and as long as the diff voltage erence in one of the two voltage comparator circuits exceeds a predetermined positive threshold value for switching on or a predetermined threshold value for breaking the circuit
To use an alternating current, coming from a battery for example, as back-up current, it is advantageous to provide a shape of the voltage of the alternating current to be produced which is a function of time and synchronized with an alternating current source, such as an alternating current network to be coupled, both directly and as a phase shift of 1800.

Lorsqu'on revient du fonctionnement sur batterie de secours au réseau de courant alternatif et pour éviter d'éventuels changements brusques de phase il est nécessaire de réaliser une synchronisation prealable avec le courant alternatif de réseau à accoupler sur plusieurs demi-ondes. When returning from operation on back-up battery to the alternating current network and to avoid possible abrupt phase changes, it is necessary to carry out a preliminary synchronization with the alternating current of the network to be coupled on several half-waves.

Il est avantageux d'utiliser comme accumulateur d'énergie une capacité ou une inductance. It is advantageous to use a capacitor or an inductor as an energy accumulator.

Quand il s'agit en particulier de petites installations, il est nécessaire d'utiliser comme commutateurs des éléments semi-conducteurs et en particulier des transistors. When it comes to small installations in particular, it is necessary to use semiconductor elements and in particular transistors as switches.

Pour éviter des réactions mutuelles, il est en outre avantageux d'appliquer aux circuits comparateurs de tension les demi-ondes décalées de phase de 18QO et séparées l'une de l'autre par un redresseur respectif. In order to avoid mutual reactions, it is also advantageous to apply to the voltage comparator circuits the half-waves phase-shifted by 18QO and separated from each other by a respective rectifier.

Pour obtenir un fonctionnement sans interruption quand on utilise une source de courant de secours, il est avantageux que la tension du courant alternatif a produire soit fonction du temps, ceci étant réalisé par un oscillateur local. In order to obtain uninterrupted operation when using an emergency power source, it is advantageous that the voltage of the alternating current to be produced is a function of time, this being carried out by a local oscillator.

Pour éviter la séparation par ailleurs nécessaire du transformateur, il est outre avantageux d'utiliser une source de courant continu à prise centrale. To avoid the otherwise necessary separation of the transformer, it is also advantageous to use a DC power source with a center tap.

Pour obtenir une tension de sortie ne comportant pas d'ondes supérieures, il est avantageux de monter le dispositif utilisateur parallelement à l'accumulateur d'énergie, éventuellement par l'intermédiaire d'un filtre passe-bas. In order to obtain an output voltage that does not include upper waves, it is advantageous to mount the user device parallel to the energy accumulator, optionally by means of a low-pass filter.

t'invention sera expliquée plus en détail en référence au dessin annexé dans lequel:
la Fig. 1 est une représentation schématique d'un circuit utilisé pour la mise en oeuvre du procédé selon l'invention,
la Fig. 2 montre l'allure de la tension en fonction du temps en divers endroits du circuit de la Fig. 1,
la fig. 3 représente schématiquement une antre forme de réalisation d'un circuit destiné à la mise en oeuvre de la présente invention et donné à titre d'exemple.
the invention will be explained in more detail with reference to the appended drawing in which:
Fig. 1 is a schematic representation of a circuit used for implementing the method according to the invention,
Fig. 2 shows the shape of the voltage as a function of time at various places in the circuit of FIG. 1,
fig. 3 schematically represents another embodiment of a circuit intended for the implementation of the present invention and given by way of example.

Comme le montrent les Fig. 1 et 2, on produit une tension Q (Fig. As shown in Figs. 1 and 2, a voltage Q is produced (Fig.

2) et une tension Q' déphasée de 1800 dans l'oscillateur 1. Les demi-ondes positives R et R' (Fig. 2) sont appliquées par l'intermédiaire des deux redresseurs 2 et 3, après avoir été filtrées et séparées, à la première entrée positive des deux circuits comparateurs 4 et 5. La tension de sortie V qui provient à chaque instant de l'accumulateur énergie 9 est appliquée directement par l'intermédiaire d'un inverseur de phase 11 à la seconde entrée négative de chacun des deux circuits comparateurs de tension 4 et 5.2) and a voltage Q 'phase-shifted by 1800 in oscillator 1. The positive half-waves R and R' (Fig. 2) are applied through the two rectifiers 2 and 3, after having been filtered and separated, to the first positive input of the two comparator circuits 4 and 5. The output voltage V which comes at each moment from the energy accumulator 9 is applied directly via a phase inverter 11 to the second negative input of each of the two voltage comparator circuits 4 and 5.

Les deux circuits comparateurs de tension 4 et 5 émettent une tension de commande respective S, S'. Ces deux tensions se présentent alors sous forme de tensions pulsées d'amplitude fixe mais de largeur variable et d'intervalle entre impulsions variable. Les impulsions commandent en synchronismes les deux commutateurs 6 et 7 à fonctionnement brusque. Il en résulte que les deux sources de courant continu +U et -U sont appliquées par impulsions à l'impédance limitatrice de courant 8. The two voltage comparator circuits 4 and 5 emit a respective control voltage S, S '. These two voltages are then in the form of pulsed voltages of fixed amplitude but of variable width and of variable interval between pulses. The pulses synchronously control the two suddenly operating switches 6 and 7. As a result, the two direct current sources + U and -U are applied in pulses to the current limiting impedance 8.

Un courant électrique T ou T' circule donc dans l'accumulateur d'énergie 9 aussi bien que dans le dispositif utilisateur 10 par impulsions en direction négative ou positive. An electric current T or T 'therefore circulates in the energy accumulator 9 as well as in the user device 10 by pulses in the negative or positive direction.

A la Fig. 3, les éléments analogues à ceux de la Fig. 1 sont designés par les mêmes références. In Fig. 3, elements similar to those of FIG. 1 are designated by the same references.

Un synchronisateur 12 relié au réseau synchronise, quand il n'y a pas défaillance du réseau, l'oscillateur 1 qui oscille de lui-même. Le signal de l'oscillateur est amplifié par l'amplificateur 13 et appliqué par l'intermédiaire du transformateur 14 ainsi que par les deux redresseurs 2 et 3 aux circuits comparateurs 4 et 5. A synchronizer 12 connected to the network synchronizes, when there is no failure of the network, the oscillator 1 which oscillates by itself. The oscillator signal is amplified by amplifier 13 and applied through transformer 14 as well as by two rectifiers 2 and 3 to comparator circuits 4 and 5.

Les tensions de commande de ces derniers sont amplifiées par les amplificateurs 15 et 16 et ensuite appliquées aux commutateurs électroniques 6 et 7. The control voltages of the latter are amplified by amplifiers 15 and 16 and then applied to electronic switches 6 and 7.

Un flux magnétique alternatif et oscillant est donc produit dans le transformateur 17 qui est relié aux commutateurs 6 et 7. L'auto
induction du transformateur 17 et llauto-induction des inductances 18 et 18' ainsi que la capacité du condensateur 19 emmagasinent l'énergie pulsée. La tension ainsi obtenue est appliquée d'une part à la résistance 10 du dispositif utilisateur par l'intermédiaire d'un filtre passe-bas 20 et d'un inverseur 21. Par ailleurs, la meme tension est également appliquée au transformateur 22 et par l'intermédiaire de ce dernier aux quatre redresseurs 23, 24, 25 et 26 ainsi qu' au potentiomètre 27.
An alternating and oscillating magnetic flux is therefore produced in the transformer 17 which is connected to the switches 6 and 7. The auto
induction of transformer 17 and self-induction of inductors 18 and 18 'as well as the capacitance of capacitor 19 store the pulsed energy. The voltage thus obtained is applied on the one hand to the resistor 10 of the user device via a low-pass filter 20 and an inverter 21. Furthermore, the same voltage is also applied to the transformer 22 and by through the latter to the four rectifiers 23, 24, 25 and 26 as well as to the potentiometer 27.

On peut modifier la tension de sortie V en réglant le potentiomètre 27. L'inverseur 21 commute quand il y a défaillance du réseau à l'intérieur de fractions d'une demi-période sur-le filtre 20. The output voltage V can be modified by adjusting the potentiometer 27. The inverter 21 switches when there is a failure of the network within fractions of a half-period on the filter 20.

On est ainsi assuré d'une alimentation en courant pratiquement ininterrompue et en phase du dispositif utilisateur.This ensures a practically uninterrupted current supply and in phase of the user device.

D'un autre côté, l'inverseur 21 ne commute du fonctionnement sur batterie au fonctionnement sur réseau qu'après un retard. Entre temps, le synchronisateur 12 a synchronisé l'oscillateur 1 sur la fréquence du réseau. On est donc assuré en pratique et dans ce cas également d'une alimentation en courant ininterrompue et. en phase. On the other hand, the inverter 21 only switches from battery operation to mains operation after a delay. In the meantime, synchronizer 12 has synchronized oscillator 1 on the network frequency. In practice, and in this case also, an uninterrupted current supply and. phase.

Claims (9)

REVENDICATIONS 1. Procédé pour créer un courant alternatif à partir d'un courant continu, caractérisé en ce que l'on détermine l'allure de la tension du courant alternatif à obtenir en fonction du temps aussi bien directement qu'à partir d'un décalage de phase de 180 , que l'on compare une demi-onde respective de ces deux tensions de façon séparée dans deux circuits comparateurs de tension (4, 5) avec la tension de sortie et avec la tension de sortie déphasée de 180" à chaque instant, que l'on commute au moyen des deux circuits comparateurs de tension (4, 5) et respectivement l'un de deux commutateurs -(65 7) qui envoient au dispositif utilisateur la tension continue par l'intermédiaire d'une impédance limitatrice de courant (8) et dont la sortie est reliée a un accumulateur d'énergie (9) de maniere que l'allure de la tension de sortie concorde à tout moment pratiquement avec l'allure de la tension de sortie prédéterminée, l'accumulateur d'énergie (9) étant appliqué par l'intermédiaire des deux commutateurs (6, 7) à une tension positive ou négative dès que et aussi longtemps que la différence de tension dans l'un des deux circuits comparateurs de tension (4, 5) dépasse une valeur de seuil positive prédéterminée pour la mise en circuit ou une valeur de seuil prédéterminée pour la coupure du circuit. 1. Method for creating an alternating current from a direct current, characterized in that one determines the shape of the voltage of the alternating current to be obtained as a function of time both directly and from an offset phase of 180, that a respective half-wave of these two voltages is compared separately in two voltage comparator circuits (4, 5) with the output voltage and with the output voltage phase-shifted by 180 "at each instant, which is switched by means of the two voltage comparator circuits (4, 5) and respectively one of two switches - (65 7) which send the DC voltage to the user device via a limiting impedance current (8) and the output of which is connected to an energy accumulator (9) in such a way that the shape of the output voltage corresponds at all times practically with the shape of the predetermined output voltage, the accumulator energy (9) being applied through the two commu tators (6, 7) to a positive or negative voltage as soon as and as long as the voltage difference in one of the two voltage comparator circuits (4, 5) exceeds a predetermined positive threshold value for switching on or a predetermined threshold value for breaking the circuit. 2. Procédé selon la revendication 1, caractérisé en ce l'on prévoit une allure de la tension du courant alternatif à produire en fonction du temps et synchronisée avec une source de courant alternatif, telle qu'un réseau de courant alternatif à accoupler, aussi bien directement que décalée en phase de 180 . 2. Method according to claim 1, characterized in that there is provided a course of the voltage of the alternating current to be produced as a function of time and synchronized with an alternating current source, such as an alternating current network to be coupled, also although directly than shifted in phase of 180. 3. Procédé selon la revendication 2, caractérisé en ce lorsqu'on relie le réseau à courant alternatif, on réalise une synchronisation préalable avec ce dernier sur plusieurs demi-ondes. 3. Method according to claim 2, characterized in that when the AC network is connected, a prior synchronization with the latter is carried out over several half-waves. 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on utilise comme accumulateur d'énergie une capacité ou une inductance 4. Method according to any one of claims 1 to 3, characterized in that one uses as energy accumulator a capacitor or an inductance 5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on utilise comme commutateurs des éléments semi-conducteurs et en particulier des transistors. 5. Method according to any one of claims 1 to 4, characterized in that semiconductor elements and in particular transistors are used as switches. 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on applique aux circuits comparateurs de tension les demi-ondes décalées de phase de 180 et separées l'une de l'autre par un redresseur respectif. 6. Method according to any one of claims 1 to 5, characterized in that the half-waves phase-shifted by 180 and separated from one another by a respective rectifier are applied to the voltage comparator circuits. 7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on obtient la tension du courant alternatif à produire en fonction du temps au moyen dXun oscillateur local. 7. Method according to any one of claims 1 to 6, characterized in that one obtains the voltage of the alternating current to be produced as a function of time by means of a local oscillator. 8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on utilise une source de courant continu à prise centrale. 8. Method according to any one of claims 1 to 7, characterized in that a direct current source with central tap is used. 9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on monte le dispositif utilisateur parallèlement à l'accumulateur d'énergie, éventuellement par l'intermédiaire d'un filtre passe-bas. 9. Method according to any one of claims 1 to 8, characterized in that the user device is mounted parallel to the energy accumulator, optionally via a low-pass filter.
FR8402504A 1983-02-21 1984-02-20 METHOD FOR CREATING AN ALTERNATING CURRENT FROM A DIRECT CURRENT Expired FR2541531B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH950/83A CH660543A5 (en) 1983-02-21 1983-02-21 METHOD FOR GENERATING AN AC DIRECT CURRENT.

Publications (2)

Publication Number Publication Date
FR2541531A1 true FR2541531A1 (en) 1984-08-24
FR2541531B1 FR2541531B1 (en) 1986-05-30

Family

ID=4198937

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8402504A Expired FR2541531B1 (en) 1983-02-21 1984-02-20 METHOD FOR CREATING AN ALTERNATING CURRENT FROM A DIRECT CURRENT

Country Status (6)

Country Link
CA (1) CA1213320A (en)
CH (1) CH660543A5 (en)
ES (1) ES529875A0 (en)
FR (1) FR2541531B1 (en)
IT (1) IT1173317B (en)
WO (1) WO1984003402A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542357A1 (en) * 1995-10-24 1997-04-30 Abb Patent Gmbh Circuit arrangement for an AC / DC converter with electrical isolation and inductive component for use in such a circuit arrangement
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US7626834B2 (en) 2006-06-29 2009-12-01 Enecsys Limited Double ended converter with output synchronous rectifier and auxiliary input regulator
GB0612859D0 (en) * 2006-06-29 2006-08-09 Enecsys Ltd A DC to AC power converter
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP2779251B1 (en) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2256578A1 (en) * 1973-12-28 1975-07-25 Herrmann DC to AC converter with transformer - has switching transistors and storage inductances and diodes
US3970916A (en) * 1974-05-16 1976-07-20 Licentia Patent-Verwaltungs-G.M.B.H. Circuit arrangement for producing an alternating voltage
DE2559333A1 (en) * 1975-12-31 1977-07-14 Amtenbrink Paul Static inverter with comparators to control output shape - holds output amplitude to required values using HF regulating circuit
DE3130310A1 (en) * 1981-07-31 1983-02-17 Ver Flugtechnische Werke Circuit arrangement for producing an AC voltage which can be regulated

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2256578A1 (en) * 1973-12-28 1975-07-25 Herrmann DC to AC converter with transformer - has switching transistors and storage inductances and diodes
US3970916A (en) * 1974-05-16 1976-07-20 Licentia Patent-Verwaltungs-G.M.B.H. Circuit arrangement for producing an alternating voltage
DE2559333A1 (en) * 1975-12-31 1977-07-14 Amtenbrink Paul Static inverter with comparators to control output shape - holds output amplitude to required values using HF regulating circuit
DE3130310A1 (en) * 1981-07-31 1983-02-17 Ver Flugtechnische Werke Circuit arrangement for producing an AC voltage which can be regulated

Also Published As

Publication number Publication date
ES8501582A1 (en) 1984-11-16
FR2541531B1 (en) 1986-05-30
CH660543A5 (en) 1987-04-30
WO1984003402A1 (en) 1984-08-30
IT1173317B (en) 1987-06-24
CA1213320A (en) 1986-10-28
ES529875A0 (en) 1984-11-16
IT8419712A0 (en) 1984-02-21

Similar Documents

Publication Publication Date Title
FR2541531A1 (en) PROCESS FOR CREATING AN ALTERNATIVE CURRENT FROM A DIRECT CURRENT
EP0926926B1 (en) Device for supplying a plurality of resonant circuits by means of an inverter type power generator
FR2527889A1 (en) METHOD AND APPARATUS FOR REDUCING HARMONICS IN BALLASTS OF DISCHARGE LAMP IN GAS
EP3627688B1 (en) Power converter
FR2467505A1 (en) CONVERTER CIRCUIT USING VARIABLE WIDTH PULSE MODULATION
CA1237472A (en) Static energy frequence converter
EP3627687A1 (en) Power converter
EP1564876B1 (en) Welding unit with soft switching quasi-resonant inverter
FR2631756A1 (en) POWER SUPPLY CONTROLLED BY WIDTH PULSE MODULATION, WHICH CAN REMOVE EARTH POTENTIALS FROM MODULATION FREQUENCY SIGNAL COMPONENTS
FR2509926A1 (en) FAST SWITCHING INVERTER CIRCUIT
EP0005391A1 (en) Stabilized-power supply device for a line deflection circuit in a television receiver
EP0329571B1 (en) Demagnetization control device for a switch-mode supply with primary and secondary regulation
EP0192553B1 (en) High voltage dc power supply, particularly for an x-ray-emitting tube
EP1361780B1 (en) Induction cooking module and control method of the module
FR2709891A1 (en) Self-oscillating converter of the adjustment type.
FR2519207A1 (en) INVERTER CIRCUIT COMPRISING A SYMMETRY CONTROL
EP0670624A1 (en) Switching power supply adapted for allowing reduced voltage commutations
EP0344067B1 (en) Linearisation process for a dc-dc converter, and method for carrying it out
FR2539563A1 (en) HIGH FREQUENCY ALTERNATIVE POWER SOURCE
CH651990A5 (en) MODULATION INSTALLATION FOR THE POWER SUPPLY OF POWER ORGANS.
CH617549A5 (en) Electrical power converter
FR2565046A1 (en) FREQUENCY CONTROL CIRCUIT FOR A POWER SUPPLY SYSTEM AND POWER SUPPLY SYSTEM PROVIDED WITH SUCH A CIRCUIT
FR2578697A2 (en) DC/AC convertor for supplying an end-use element together with an inductive component
CA1108693A (en) Self-contained pulse width modulation inverter
FR2664777A1 (en) Converter providing the reversible conversion, with isolation, of a DC voltage into a DC voltage and telephone calling invertor making use of it

Legal Events

Date Code Title Description
TP Transmission of property
ST Notification of lapse