FR2516944A1 - PROCESS FOR MANUFACTURING AN ABSORBER FOR SOLAR INSTALLATIONS - Google Patents

PROCESS FOR MANUFACTURING AN ABSORBER FOR SOLAR INSTALLATIONS Download PDF

Info

Publication number
FR2516944A1
FR2516944A1 FR8219304A FR8219304A FR2516944A1 FR 2516944 A1 FR2516944 A1 FR 2516944A1 FR 8219304 A FR8219304 A FR 8219304A FR 8219304 A FR8219304 A FR 8219304A FR 2516944 A1 FR2516944 A1 FR 2516944A1
Authority
FR
France
Prior art keywords
substrate
approximately
gas
absorber
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8219304A
Other languages
French (fr)
Other versions
FR2516944B1 (en
Inventor
Edwin Erben
Muhlratzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN AG
Original Assignee
MAN Maschinenfabrik Augsburg Nuernberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Maschinenfabrik Augsburg Nuernberg AG filed Critical MAN Maschinenfabrik Augsburg Nuernberg AG
Publication of FR2516944A1 publication Critical patent/FR2516944A1/en
Application granted granted Critical
Publication of FR2516944B1 publication Critical patent/FR2516944B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

In a method for producing an absorber for solar installations by coating a substrate consisting of a nickel- and titanium-containing alloy, the substrate surface to be coated is roughened in a pretreatment. An intermetallic Ni3Ti layer is then produced by gas phase deposition in a titanium-containing atmosphere at a temperature above 800 DEG C with the participation of the substrate material. The reaction gas is preferably titanium tetrachloride which is present in the gas atmosphere in a concentration of approximately 1% by volume.

Description

"ProcBdé pour fabriquer un absorbeur pour des installations
solaires.
"Process for manufacturing an absorber for installations
solar.

L'invention concerne un procédé pour labri quer un absorbeur pour des installations solaires, moyennant le recouvrement d'un substrat au moyen d' un procédé en phase gazeuse. The invention relates to a method for labeling an absorber for solar installations, by covering a substrate by means of a gas phase method.

Un procédé connu en phase gazeuse est le dé- pôt chimique en phase gazeuse (cep), a l'aide duquel on réalise des couches d'absorbeur constituées par des matériaux non métalliques par des métaux à haut point de fusion. Dans le cas de l'utilisation de ma tériaux déterminés de recouvrement, on a pu fabriquer, grâce a une forte structuration finement divisée du dépôt, des couches d'absorbeur realisant une absorption élevée de la lumière. Cependant il s'est avéré que ces couches ne présentent pas une adhérence suffisante et possèdent une mauvaise stabilité en température. A known process in the gas phase is the chemical deposit in the gas phase (cep), with the aid of which layers of absorber are made up of non-metallic materials by metals with a high melting point. In the case of the use of certain materials for covering, it was possible to manufacture, thanks to a strong finely divided structure of the deposit, layers of absorber achieving a high absorption of light. However, it has been found that these layers do not have sufficient adhesion and have poor temperature stability.

L'invention a pour but de trouver un procédé du type indiqué plus haut permettant de fabriquer un absorbeur avec des couches -qui, tout en conservant un pouvoir absorbant élevé, présentent également a des températures assez élevées, une bonne adhérence au substrat. The invention aims to find a method of the type indicated above for manufacturing an absorber with layers -which, while retaining a high absorbency, also have at fairly high temperatures, good adhesion to the substrate.

Ce problème est résolu conformément a l'invention grâce au fait qu'on utilise un substrat formé d'un alliage contenant du nickel et du titane et qu'on le soumet à un traitement préalable et que le processus de dépôt est réalisé dans une phase gazeuse con lait du titane, la formation des couches s'eErec- tuant avec la participation du matériau du substrat. This problem is solved in accordance with the invention thanks to the fact that a substrate formed of an alloy containing nickel and titanium is used and that it is subjected to a preliminary treatment and that the deposition process is carried out in a phase carbonated with titanium, the formation of the layers taking place with the participation of the substrate material.

Dans le cas du procédé conforme à l'invention, il se produit une diffusion entre des éléments du substrat et la couche, de sorte que la couche déposée s'allie au substrat en y étant fixée solidement. In the case of the method according to the invention, there is a diffusion between elements of the substrate and the layer, so that the deposited layer is combined with the substrate by being firmly fixed therein.

Grâce a la forte structuration simultanée du dépôt, on a pumesurerune absorption très intense pour la plage spectrale du rayonnement solaire.Thanks to the strong simultaneous structuring of the deposit, we have a very intense absorption for the spectral range of solar radiation.

A l'raide de ce procédé on forme la phase intermétallique Ni3Ti qui possède non seulement un pou voir absorbant élevé, mais en outre une résistance élevée à l'oxydation .I1 s'est également avéré que l'on peut former cette couche dans le cas d'alliages possédant une teneur en Ni aussi faible qu'environ 5 % en atomes, une teneur en Ti égale environ à 0,5 %. With the aid of this process, the intermetallic phase Ni3Ti is formed which not only has a high absorbent power, but also a high resistance to oxidation. It has also been found that this layer can be formed in the case of alloys having a Ni content as low as about 5 atomic%, a Ti content equal to about 0.5%.

Un autre avantage du procédé conforme à l'invention réside dans le fait qutil n'y a pas, comme dans le cas du dépôt chimique usuel en phase gazeuse, à introduire au moins deux partenaires réactionnels gazeux en les dosant selon des quantités et des rapports entre quantités, difficiles à optimi ser,niàveiller à obtenir dans l'enceinte réactionnelle un mélange intime uniforme, mais qu'ici seul un partenaire réactionnel unique est nécessaire. Another advantage of the process according to the invention lies in the fact that there is not, as in the case of the usual chemical deposition in the gas phase, the introduction of at least two gaseous reaction partners by dosing them according to quantities and ratios between quantities, difficult to optimize, or to ensure that a uniform intimate mixture is obtained in the reaction vessel, but that only a single reaction partner is necessary here.

On peut obtenir des couches d'absorbeur présentant un pouvoir absorbant particulièrement élevé en utilisant du tétrachlorure de titane (TiC14) comme gaz réactionnel
On obtient une optimisation des résultats en utilisant environ 1 t en volume de TiCi4 dans le courant de gaz total du processus de dépôt.
Absorber layers with particularly high absorbency can be obtained by using titanium tetrachloride (TiC14) as the reaction gas.
Optimization of the results is obtained by using approximately 1 t by volume of TiCi4 in the total gas stream of the deposition process.

Dans le cas d'une température de recouvrement d'environ 900 C, il se forme, au cours d'une durée de recouvrement déjà d'environ 1 heure, des couches stables présentant un pouvoir absorbant suffisant. La température de recouvrement est égale de préférence à 700-10000C, la durée de recouvrement diminuant entre 3 et 1 heure avec la tenpérature.  In the case of a covering temperature of approximately 900 ° C., stable layers with sufficient absorbency are formed during a covering time already of approximately 1 hour. The coating temperature is preferably 700-10000C, the coating time decreasing between 3 and 1 hour with the temperature.

Exemple
On a soumis un substrat d'acier spécial X5 CrNiTi 18q à un traitement de meulage et de polissage, avec lequel on a obtenu une rugosité maximale
Ra = 1 Vm.
Example
A special X5 CrNiTi 18q steel substrate was subjected to a grinding and polishing treatment, with which a maximum roughness was obtained.
Ra = 1 Vm.

Le substrat prétraité fut ensuite placé dans une enceinte réactionnelle, protégée, vis-avis de l'accès de l'atmosphère, dans un courant d' hydrogène a une température d'environ 9O00C.  The pretreated substrate was then placed in a reaction chamber, protected, vis-a-vis the access of the atmosphere, in a stream of hydrogen at a temperature of about 9O00C.

Après l'obtention de cette température, on a ajouté au courant d'hydrogène le composant réactif formé par du tétrachlorure de titane (TiC14),en faisant passer un courant partiel d'hydrogène ou un courant supplémentaire d'argon au-dessus d'une enceinte d'évaporateur thermostatée contenant du TiCl4 liquide. Le courant de gaz porteur et la température de l'évaporateur furent choisis de manière que la quantité TiC 14 gazeux entrainée atteigne 1 % en volume. La conduite de gaz entre l'évaporateur et l'enceinte réactionnelle fut chauffée afin d' éviter la condensation du TiC14. After this temperature was obtained, the reactive component formed by titanium tetrachloride (TiC14) was added to the hydrogen stream, passing a partial stream of hydrogen or an additional stream of argon over a thermostatically controlled evaporator enclosure containing liquid TiCl4. The stream of carrier gas and the temperature of the evaporator were chosen so that the amount of TiC 14 gas entrained reached 1% by volume. The gas line between the evaporator and the reaction vessel was heated to prevent condensation of the TiC14.

La phase gazeuse réactive agit pendant environ 1 heure à 9000C sur le substrat. Ensuite l'envoi de TiC14 fut interrompu et l'enceinte réactionnulle munie des corps échantillon recouvexts situés dans le courant d'hydrogène ou d'argon fut refroidie à la température ambiante. The reactive gas phase acts for approximately 1 hour at 9000C on the substrate. Then the sending of TiC14 was interrupted and the reaction vessel provided with the covered sample bodies located in the stream of hydrogen or argon was cooled to room temperature.

Avec ce procédé on a pu réaliser sur un substrat une couche adhérant fermement et possédant une épaisseur moyenne de l'ordre du dixieme de micron. With this process, it was possible to produce a firmly adhering layer on a substrate having an average thickness of the order of a tenth of a micron.

La taille maximale des particules- individuelles était égale à environ 1 ijm. Les couches présentaient des degrés d'absorption dans la plage du rayonnement visible allant jusqu'à 98 %. L'émission de rayonnement infrarouge est déterminée ici essentiellement par le support. The maximum size of the individual particles was approximately 1 µm. The layers exhibited absorption levels in the visible radiation range of up to 98%. The emission of infrared radiation is determined here essentially by the support.

Claims (6)

REVENDICATIONS 1. Procédé pour fabriquer un absorbeur pour des installations solaires par recouvrement d'un substrat au moyen d'un procédé en phase gazeuse, caractérisé par le-fait qu'on utilise un substrat constitue en un alliage contenant du nickel dt du titane et qu'on le soumet à un traitement préalable et que le procédé de dépit s'effectue dans une phase gazeuse contenant du titane, à une température supérieure à 8000C et moyennant la participation du matériau du substrat. 1. Method for manufacturing an absorber for solar installations by covering a substrate by means of a gas phase process, characterized in that a substrate is used which is made of an alloy containing nickel and titanium and qu 'it is subjected to a preliminary treatment and that the process of spite is carried out in a gaseous phase containing titanium, at a temperature higher than 8000C and with the participation of the material of the substrate. 2. Procédé selon la revendication 1, caractérisé en ce que, lors du traitement préalable, la surface du substrat est amenée à une rugosité égale à environ Ra =-1 pm. 2. Method according to claim 1, characterized in that, during the preliminary treatment, the surface of the substrate is brought to a roughness equal to approximately Ra = -1 μm. 3. Procédé-selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'on utilise comme gaz réactionnel du tétrachlorure de titane (TiC14) qui est présent approximativement en une concentration de 1 8 en volume dans l'atmosphè- re gazeuse. 3. Method-according to any one of claims 1 and 2, characterized in that one uses as reaction gas titanium tetrachloride (TiC14) which is present approximately in a concentration of 1 8 by volume in the atmosphere- gas. 4. Procédé selon la revendication 3, carac térisé n ce qui ltatmosphbre gazeuse est constituée par du TiC14 et de l'hydrogène. 4. Method according to claim 3, charac terized n which ltatmosphbre gas consists of TiC14 and hydrogen. 5. Procédé selon l'une quelconque des revendications 1 a 4, caractérisé en ce que la tem pérature de recouvrement est située entre 700 et 1000 C.  5. Method according to any one of claims 1 to 4, characterized in that the recovery temperature is between 700 and 1000 C. 6. Procéde selon la revendication 5, caracté- rise en ce que la durée de recouvrement est égale a: environ 1 heure dans le cas d'une température assez élevée et a environ 3 heures dans le cas d'une tempé- rature plus faible.  6. Method according to claim 5, characterized in that the recovery time is equal to: approximately 1 hour in the case of a fairly high temperature and approximately 3 hours in the case of a lower temperature. .
FR8219304A 1981-11-20 1982-11-18 PROCESS FOR MANUFACTURING AN ABSORBER FOR SOLAR INSTALLATIONS Expired FR2516944B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813146083 DE3146083A1 (en) 1981-11-20 1981-11-20 Method of producing an absorber for solar installations

Publications (2)

Publication Number Publication Date
FR2516944A1 true FR2516944A1 (en) 1983-05-27
FR2516944B1 FR2516944B1 (en) 1986-08-14

Family

ID=6146838

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8219304A Expired FR2516944B1 (en) 1981-11-20 1982-11-18 PROCESS FOR MANUFACTURING AN ABSORBER FOR SOLAR INSTALLATIONS

Country Status (4)

Country Link
DE (1) DE3146083A1 (en)
ES (1) ES8307920A1 (en)
FR (1) FR2516944B1 (en)
IT (1) IT1148484B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614217A1 (en) * 1993-03-01 1994-09-07 Motorola, Inc. A process for forming an intermetallic layer and a device formed by the process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1952173A1 (en) * 1968-10-12 1970-04-23 Battelle Memorial Institute Process for the production of a titanium coating on a solid body
GB1314528A (en) * 1969-06-06 1973-04-26 Chrome Alloying Co Pack diffusion coating with titanium
FR2203892A1 (en) * 1972-10-24 1974-05-17 Gen Electric
JPS5535804A (en) * 1978-09-04 1980-03-13 Toyo Kohan Co Ltd Heat collecting member for arresting and collecting solar heat
JPS5653346A (en) * 1980-09-08 1981-05-12 Yazaki Corp Selective absorption face of solar heat utilizing heat collector and preparation thereof
JPS56142347A (en) * 1979-11-30 1981-11-06 Matsushita Electric Works Ltd Production of solar heat absorbing body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1952173A1 (en) * 1968-10-12 1970-04-23 Battelle Memorial Institute Process for the production of a titanium coating on a solid body
GB1314528A (en) * 1969-06-06 1973-04-26 Chrome Alloying Co Pack diffusion coating with titanium
FR2203892A1 (en) * 1972-10-24 1974-05-17 Gen Electric
JPS5535804A (en) * 1978-09-04 1980-03-13 Toyo Kohan Co Ltd Heat collecting member for arresting and collecting solar heat
JPS56142347A (en) * 1979-11-30 1981-11-06 Matsushita Electric Works Ltd Production of solar heat absorbing body
JPS5653346A (en) * 1980-09-08 1981-05-12 Yazaki Corp Selective absorption face of solar heat utilizing heat collector and preparation thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 88, no. 18, 1 mai 1978, page 234, no. 124941u, Columbus, Ohio, US; S.OKAMOTO et al.: "Study on chemical vapor deposition. I. Properties of titanium, titanium nitride and titanium carbide layers on iron substrate plated by chemical vapor deposition" & KIKAI GIJUTSU KENKYUSHO SHOHO 1977, 31(5), 286-9 *
PATENTS ABSTRACTS OF JAPAN, vol. 4, no. 72 (M-13)[554], 27 mai 1980, pages 95 M 13; & JP - A - 55 35 804 (TOYO KOUHAN K.K.) 13-03-1980 *
PATENTS ABSTRACTS OF JAPAN, vol. 5, no. 112 (M-79)[784], 21 juillet 1981; & JP - A - 56 53 346 (YAZAKI SOUGIYOU K.K.) 12-05-1981 *
PATENTS ABSTRACTS OF JAPAN, vol. 6, no. 23 (M-111)[901], 10 février 1982; & JP - A - 56 142 347 (MATSUSHITA DENKO K.K.) 06-11-1981 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614217A1 (en) * 1993-03-01 1994-09-07 Motorola, Inc. A process for forming an intermetallic layer and a device formed by the process

Also Published As

Publication number Publication date
FR2516944B1 (en) 1986-08-14
IT8249538A0 (en) 1982-11-19
DE3146083A1 (en) 1983-05-26
ES517344A0 (en) 1983-08-16
ES8307920A1 (en) 1983-08-16
IT1148484B (en) 1986-12-03

Similar Documents

Publication Publication Date Title
US4396677A (en) Metal, carbon, carbide and other composites thereof
EP2082074A2 (en) Process for depositing a thin film of a metal alloy on a substrate, and a metal alloy in thin-film form
EP0347727B1 (en) Process for deposition of a black coating on a substrate and black coating obtained by the process
EP0370838B1 (en) Process for the surface protection of metallic articles against high-temperature corrosion, and article treated by this process
FR2660938A1 (en) COATING SYSTEMS FOR TITANIUM PROTECTION AGAINST OXIDATION.
FR2571386A1 (en) PROTECTIVE METAL COATINGS
WO1994029904A1 (en) METHOD FOR PREPARING A CuInSe2 COMPOUND
EP0602150A1 (en) Target element for cathode sputtering.
US4358506A (en) Metal and carbon composites thereof
FR2502043A1 (en) METHOD FOR MANUFACTURING DIFFUSER AND GAS TURBINE BLADES BY LOW PRESSURE ARC ARC PLASMA SPRAY
EP1440045B1 (en) Metallization and/or brazing method, using a silicon alloy, for oxide ceramic parts which are non-wettable by said alloy
EP1141442B1 (en) METHOD FOR PRODUCING A METAL ALLOY POWDER SUCH AS MCrAlY AND COATINGS OBTAINED WITH SAME
FR2516944A1 (en) PROCESS FOR MANUFACTURING AN ABSORBER FOR SOLAR INSTALLATIONS
FR2487713A1 (en) METHOD OF APPLYING A SHEET COATING ON A SUBSTRATE
EP0271414A1 (en) Glass moulds and their use
WO2010057894A1 (en) Method for coating a metal crucible member with a glass and ceramic mixture
EP0112206B1 (en) Method of coating metallic surfaces with carbides
BE1007242A3 (en) Method for producing a strongly adherent metallic layer on sintered aluminaand metal-coated product obtained in this way
FR2555613A1 (en) PROCESS FOR CATHODE SPRAYING ON A SUPPORT OF A LOW RESISTANCE INDIUM OXIDE FILM
CN110777329B (en) Method for improving wettability of steel in zinc liquid
JPH11104852A (en) Method for joining ti base material and cu base material, and bucking plate for sputtering target
EP1462539A1 (en) Processes for manufacture of coated metallic particles and composite material, and installation for carrying out these processes
WO1995019456A1 (en) Method for depositing a film consisting of a metal or semi-metal and an oxide thereof
BE582391A (en)
FR2553436A1 (en) Process for chemical coating, with titanium nickelide, of nickel-based metal objects.

Legal Events

Date Code Title Description
ST Notification of lapse