FI92529C - Method for measuring a cylindrical piece - Google Patents

Method for measuring a cylindrical piece Download PDF

Info

Publication number
FI92529C
FI92529C FI934604A FI934604A FI92529C FI 92529 C FI92529 C FI 92529C FI 934604 A FI934604 A FI 934604A FI 934604 A FI934604 A FI 934604A FI 92529 C FI92529 C FI 92529C
Authority
FI
Finland
Prior art keywords
sensors
measured
measuring
measurement
piece
Prior art date
Application number
FI934604A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI934604A0 (en
FI92529B (en
Inventor
Miikka Kotamaeki
Timo R Nyberg
Original Assignee
Sitra Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sitra Foundation filed Critical Sitra Foundation
Priority to FI934604A priority Critical patent/FI92529C/en
Publication of FI934604A0 publication Critical patent/FI934604A0/en
Application granted granted Critical
Publication of FI92529B publication Critical patent/FI92529B/en
Priority to AU78573/94A priority patent/AU7857394A/en
Priority to PCT/FI1994/000468 priority patent/WO1995011422A1/en
Publication of FI92529C publication Critical patent/FI92529C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

9252992529

Menetelmå sylinterimåisen kappaleen mittaamiseksi Forfarande for måtning av ett cylinderformigt stycke 5 Keksinnon kohteena on menetelmå sylinterimåisen kappaleen mittaamiseksi, jossa menetelmåssa mitattavaa kappaletta pyoritetåån ja mittarunkoon kiinnitettyjå antureita, joita on ainakin kolme, siirretåån vakiosyottonopeudella mitattavan kappaleen toisesta pååstå toiseen pååhån, jossa antureilla mitataan anturin etåisyyttå mitattavan kappaleen pinnasta spiraalimaisella radalla halutuissa mittauspisteissa.FIELD OF THE INVENTION from the surface of the body in a helical path at the desired measuring points.

1010

Keksinto liittyy sellaisten sylinterimåisten kappaleiden mittaamiseen, joiden pyorittami-nen keskeisesti on vaikeaa. Esimerkiksi painavien sylinterimåisten kappaleiden pyorittå-minen keskeisesti ei yleenså onnistu, koska mitattava kappale taipuu painovoiman ja taivutusjåykkyyden vaihtelujen johdosta vaihtelevasti, jolloin kappaleen keskiviiva 15 siirtyy vastaavasti vaihtelevasti. Myos kappaleet, joita pyoritetåån omilla laakereillaan tai erikseen jåijestetyillå laakereilla, pyorivåt niin, ettei niillå ole paikallaan pysyvåå pyorimiskeskiakselia johtuen laakerin virheistå.The invention relates to the measurement of cylindrical bodies which are difficult to rotate centrally. For example, the rotation of heavy cylindrical bodies in a central manner is generally not possible, because the body to be measured bends variably due to variations in gravity and bending stiffness, whereby the center line 15 of the body moves correspondingly variably. Also, parts that are rotated with their own bearings or with separately positioned bearings rotate so that they do not have a fixed center axis of rotation due to bearing defects.

Edelleen sylinterimåisen kappaleen halkaisijan mittaaminen on usein varsin ongelmallis-20 ta, koska mittaustapahtumaan vaikuttaa pyorimisen epåtåydellisyys, virheet mittalaitteen syottoliikkeesså, mitattavan kappaleen painovoimista johtuva taipuminen, våråhtelyt jne. Nåin olien mittaustuloksiin on saattanut tulla virhetta edellå mainituista ja muista mahdollisista tekijoistå, koska esim. mahdollista keskiakselin pisteen siirtymistå mittaustapahtuman aikana mittauksessa, syottoliikkeen virheitå, våråhtelyjå ei ole 25 pysty tty ottamaan huomioon.Furthermore, measuring the diameter of a cylindrical body is often quite problematic because the measuring event is affected by incompleteness of rotation, errors in the feed movement of the measuring device, deflection due to gravity of the measured body, oscillations, etc. it is not possible to take into account the displacement of the center axis point during the measurement event in the measurement, the errors of the feed movement, the oscillations.

Tekniikan tasosta tunnetaan yhdellå anturilla suoritettavia mittauksia, joissa anturi liikkuu esim. spiraalirataa pitkin sylinterimåisen kappaleen pinnalla. Yhdellå tai kahdella anturilla suoritettavissa mittauksissa ei mittaus kuitenkaan ota huomioon 30 mahdollista keskipisteen siirtymåå, jolloin mittaustuloksesta ei voida påatellå, onko mittaustuloksessa esiintyvå mahdollinen mitta-arvon muutos johtunut keskipisteen siirtymåstå tai mitattavan kappaleen muodosta.Measurements performed with a single sensor are known from the prior art, in which the sensor moves, for example, along a helical path on the surface of a cylindrical body. However, in measurements with one or two sensors, the measurement does not take into account 30 possible center offsets, in which case it cannot be deduced from the measurement result whether any change in the measured value is due to center offset or the shape of the object to be measured.

2 925292 92529

Eras enneståån tunnettu kahta etåisyysanturia kåyttåvå ratkaisu on esitetty FI-patentti-hakemuksessa 902497. Tåmån viitteen mukaisessa menetelmåssa sylinterimåisen kappaleen vaipan halkaisijan ja muodon mittaamiseksi kayttaen mitattavan sylinterikap-paleen tuntumaan sovitettuja kosketuksettomia etaisyysantureita on uutena pidetty sitå, 5 etta menetelmåssa kåytetåån sopivimmin kahta etaisyysanturia, joiden keskinåinen etaisyysvektori tunnetaan, etta mainituista etaisyysantureista otetaan ulos mittaussignaa-lit, jotka sisaltavåt tiedon mainittujen antureiden etåisyydesta tuntumassa olevaan mitattavan sylinterikappaleen vaipasta, ja etta mainittujen mittaussignaalien perusteella mååritetåån mitattavan sylinterin vaipan muoto mittauskohdassa ja halkaisijan mainitut 10 tiedot laskennallisesti ympyran yhtaloon sovittamalla.A previously known solution using two distance sensors is shown in FI patent application 902497. In the method according to this reference for measuring the diameter and shape of a cylindrical body shell using non-contact distance sensors adapted to feel the distance between the cylindrical body being measured, the mutual distance vector is characterized in that measurement signals are taken out of said distance sensors, containing information about the distance of said sensors to a nearby jacket of the cylinder to be measured, and that the shape of the jacket of the cylinder to be measured

Enneståån tunnetusti sylinterimaisten kappaleiden lieriomaisyytta on mitattu poikkileik-kauksittain kolmipistemittauksina, jossa kappaleen keskipisteen siirtyma saadaan otettua huomioon. Tålloin kuitenkin ongelmia aiheuttaa mittauksen hitaus sekå se, etta 15 mittauksen tarkkuus karsii niista pysåhdyksista, jotka aiheutuvat mittalaitteen siirtami-sesta seuraavan mitattavan poikkileikkauksen kohdalle. Tålloin pysåhdyksen aikana mittalaite laskeutuu oljykalvon pååltå, mikå aiheuttaa poikkeaman mittalaitteen liikeradassa. Edelleen mikali mittaustuloksia kåytetaån hyvåksi tyoston esim. hionnan ohjauksessa, on mittausrata erilainen kuin tyostorata pysåhdyksista joh tuen, jolloin 20 mittaustulosten perusteella suoritettava tyosto saattaa johtaa virheelliseen kappaleeseen.As is known, the cylindrical properties of cylindrical bodies have been measured in cross-sections as three-point measurements, in which the displacement of the center of the body can be taken into account. In this case, however, problems are caused by the slowness of the measurement and the fact that the accuracy of the 15 measurements is reduced by the stops caused by moving the measuring device to the next cross section to be measured. In this case, during the stop, the measuring device descends on top of the oil film, which causes a deviation in the trajectory of the measuring device. Furthermore, if the measurement results are used in the control of the work, e.g. grinding, the measurement path is different from the work path due to stops, in which case the work performed on the basis of the 20 measurement results may lead to an incorrect part.

Keksintodn liittyvån tekniikan tason osalta viitataan myos US-patenttyulkaisuun 4,084,324, jonka erååsså suoritusmuodossa on esitetty mittalaite, jossa on kolme anturia, joiden toimintalinjat kohtaavat yhteisesså pisteesså. Mittalaite on tuettuna siten, 25 etta kolmea anturia voidaan kåyttåa sylinterimåisen kappaleen kaarevan pinnan mittaamiseen. Mittalaitetta pidetåån paikallaan, kun mitattavaa kappaletta pyoritetåan siihen nåhden.With regard to the state of the art related to the invention, reference is also made to U.S. Patent 4,084,324, one embodiment of which discloses a measuring device having three sensors whose lines of action meet at a common point. The measuring device is supported so that three sensors can be used to measure the curved surface of the cylindrical body. The measuring device is held in place when the object to be measured is rotated in relation to it.

Keksintoå låhinnå olevan tekniikan tason osalta viitataan toisen keksijoistå Timo R. 30 Nybergin våitoskirjaan "Dynamic Macro Topography of Large Slowly Rotating Cylinders", Acta Polytechnics Scandinavica, Mechanical Series No. 108, HelsinkiReferring to the prior art of the invention, reference is made to one of the inventors, Timo R. 30 Nyberg's dissertation "Dynamic Macro Topography of Large Slowly Rotating Cylinders", Acta Polytechnics Scandinavica, Mechanical Series no. 108, Helsinki

IIII

3 92529 1993. Keksijå on tasså våitoskiijassa esittanyt menetelmån sylinterimåisen kappaleen mittaamiseksi kolmipistemenetelmållå, jossa kolmipistemenetelmåssa kåytettavåt anturit liikkuvat spiraalimaista rataa. Tassa viitteesså esitetty mittausmenetelmå on edellå kasiteltyihin enneståån tunnettuihin verrattuna nopea mittausmenetelmå, jossa 5 mittaus suoritetaan jatkuvana mittauksena spiraalimaista rataa pitkin, jolloin edellå kuvatut tekniikan tason mukaisten ratkaisujen ongelmat eliminoituvat.3,92529 1993. In the present invention, the inventor has presented a method for measuring a cylindrical body by a three-point method in which the sensors used in the three-point method move in a helical path. The measurement method presented in this reference is a fast measurement method compared to the previously known ones discussed above, in which the measurement is performed as a continuous measurement along a helical path, whereby the problems of the prior art solutions described above are eliminated.

Keksinnon pååmåårånå on tassa våitoskiijassa esitetyn mittausmenetelmån edelleen-kehittåminen ja erityisesti sen tarkkuuden lisååminen kuitenkin samalla såilyttåen jo 10 saavutetut edut.The object of the invention is to further develop the measurement method presented in this propeller and in particular to increase its accuracy, while maintaining the advantages already achieved.

Edellå esitettyjen ja myohemmin esille tulevien pååmåårien saavuttamiseksi on keksinnon mukaiselle menetelmålle pååasiallisesti tunnusomaista se, ettå ennen mittauksen aloittamista anturit sijoitetaan sellaiseen keskinåiseen kallistettuun asemaan, 15 ettå antureilla mitataan samalla spiraalimaisella radalla olevia mittauspisteitå.In order to achieve the objectives set out above and later, the method according to the invention is mainly characterized in that, before starting the measurement, the sensors are placed in such a mutual inclined position that the measuring points on the same helical path are measured with the sensors.

Keksinnosså saavutetaan huomattavan suuri tarkkuus kun kolmipistemittauksessa spiraalimaista rataa kulkevat anturit sijoitetaan sellaiseen keskinåiseen asemaan, ettå kukin anturi suorittaa mittauksen samalta spiraalimaisella radal ta. Keksinnon mukaisella 20 menetelmållå saadaan mitattua sylinterimåisen kappaleen pinnan todellinen muoto, joka on yhdistelmå halkaisijasta, pyoreydesta ja suoruudesta, sekå keskiakselin liike, samalla ottaen huomioon mahdollisia mittavirheitå aiheuttavat tekijåt.In the invention, a remarkably high accuracy is achieved when, in a three-point measurement, the sensors traveling in a helical path are placed in such a mutual position that each sensor performs the measurement on the same helical path. The method 20 according to the invention makes it possible to measure the actual shape of the surface of a cylindrical body, which is a combination of diameter, roundness and straightness, as well as the movement of the central axis, while taking into account possible factors causing dimensional errors.

Keksinnon mukaisessa monianturimenetelmåsså kåytetåån kolmea tai useampaa 25 anturia. Kåytettaesså useampia antureita voidaan mittaustuloksia vårten muodostaa useita kolmen anturin saijoja, jolloin mittaustulosten tarkkuus edelleen paranee. Keksinnon mukaisesti anturit on sijoitettu siten, ettå mittausrungon kulkiessa vakiosyot-tonopeudella ja mitattavan kappaleen pyoriesså vakiopy5rimisnopeudella, anturit kulkevat samaa spiraalimaista rataa eli anturit ovat kul massa sylinterimåisen kappaleen 30 pystysuuntaan nåhden.The multi-sensor method according to the invention uses three or more sensors. When using more than one sensor, several receivers of three sensors can be formed according to the measurement results, whereby the accuracy of the measurement results is further improved. According to the invention, the sensors are arranged so that when the measuring body travels at a constant feed rate and the object to be measured rotates at a constant rotational speed, the sensors follow the same helical path, i.e. the sensors are at an angle to the vertical direction of the cylindrical body 30.

4 925294,92529

Keksinto soveltuu hyvin isojen sylinterimåisten kappaleiden mittaamiseen, esim. paperikoneen telojen, valssien, filminvalmistussylintereiden, painokoneen sylintereiden, suurten akseleiden ja generaattorin ja roottoreiden akseleiden mittaamiseen. Erityisen hyvin keksinto soveltuu myos sellaisten sylinterimåisten kappaleiden mittaamiseen, jotka 5 pydrivåt omilla laakereillaan.The invention is well suited for measuring large cylindrical bodies, e.g. paper machine rolls, rollers, film making cylinders, printing press cylinders, large shafts and generator and rotor shafts. The invention is also particularly well suited for measuring cylindrical bodies which are pressed by their own bearings.

Seuraavassa keksintoå selostetaan yksityiskohtaisemmin oheisen piirustuksen kuvioihin viitaten, joissa 10 kuviossa 1 on esitetty kaaviollisesti keksinnon mukaista mittajåijestelyå katsottuna sylinterimåisen kappaleen pituussuunnassa ja kuviossa 2 on esitetty vastaava sylinterimåisen kappaleen poikkisuunnassa.The invention will now be described in more detail with reference to the figures of the accompanying drawing, in which Figure 1 schematically shows a measuring arrangement according to the invention in the longitudinal direction of a cylindrical body and Figure 2 shows a corresponding transverse direction of a cylindrical body.

15 Kuvioissa 1 ja 2 on esitetty kaaviollisena esityksenå sylinterimåisen kappaleen mittaami-nen keksinnon mukaisesti. Mitattavaa kappaletta on merkitty viitenumerolla 10 ja mitattava sylinterimåinen kappale 10 kiinnitetaån påadyiståån 11 laitteeseen, jossa sitå pyoritetåan nuolen S suuntaan. Mittarunkoon 20 on tukivarteen 21 kiinnitetty kolme anturia 22,23 ja 24. Kuviossa 2 on kaaviollisesti esitetty my5s neljås anturi katkoviiva-20 esityksenå. Mittauspisteitå on kuviossa merkitty viitemerkinnållå P ja anturit 22,23 ja 24 on sijoitettu siten, ettå niiden vålinen kulma a on mittauspisteiden P vålisen kulman β monikerta. Kun mittalaitetta 20 syotetåån vakiosyottonopeudella v mitattavan kappaleen 10 toisesta påådystå toiseen pååtyyn mitattavan kappaleen 10 pyoriesså vakionopeudella suuntaan S, muodostavat mittauspisteet P spiraalimaisen radan T. Jotta 25 kaikki mittauspisteet P asettuvat samalla spiraalimaiselle radalle T, on anturit 22,23 ja 24 sijoitettu keskinåiseen kallistettuun asemaan siten, ettå ne ovat kulmassa γ mitattavan kappaleen 10 pysty-poikkisuuntaan R nåhden.Figures 1 and 2 show diagrammatically the measurement of a cylindrical body according to the invention. Object to be measured is designated by reference numeral 10 and measured sylinterimåinen piece 10 for attaching the device påadyiståån 11, wherein it further rotated in the direction of arrow S. Three sensors 22, 23 and 24 are attached to the measuring frame 20 on the support arm 21. Fig. 2 schematically shows a fourth sensor in the form of a broken line-20. The measuring points are denoted in the figure by the reference numeral P and the sensors 22, 23 and 24 are arranged such that their angle α is a multiple of the angle β between the measuring points P. When the measuring device 20 is fed from one end of the body 10 to be measured at a constant feed rate v to the other end when the body 10 to be measured rotates at a constant speed in the direction S, the measuring points P form a helical path T. so that they are at an angle γ with respect to the vertical transverse direction R of the body 10 to be measured.

Jos anturi 22 sijoitetaan nollapisteen Px kohdalle poikkisuuntaviivalle R, on seuraava 30 anturi 23 vinossa tåhån suuntaan nåhden etaisyyden E23 verran ja anturi 24 vastaavasti 11 5 92529 etåisyyden E24 verran. Kulma γ mååråytyy mitattavan kappaleen 10 pyorimisno-peuden ja mittalaitteen 20 syottonopeuden ja etåisyyksien E23 ja E24 perusteella.If the sensor 22 is placed at the zero point Px on the transverse direction R, the next sensor 23 is inclined in this direction by a distance E23 and the sensor 24 by a distance E24 of 11 5 92529, respectively. The angle γ is determined by the rotational speed of the body 10 to be measured and the feed rate and distances E23 and E24 of the measuring device 20.

Viitaten kuvioissa 1 ja 2 esitettyyn suoritetaan mittaus seuraavalla tavalla. Menetelmån 5 ensimmåisesså vaiheessa valitaan mittauksen nollapiste Px, joka on sopivimmin vaa-kasuuntainen vastaten siten esimerkiksi viimeistelytyostosså kåytetyn hiomalaikan låhtoasemaa. Tåhån nollanpisteen Px kohtaan sijoitetaan yksi anturi 22. Tåmån jålkeen mitattavaa kappaletta 10 pyoritetåån suuntaan S ja mittakehikkoa 20 ajetaan tasaisella syottonopeudella v eteenpåin mitattavan sylinterimåisen kappaleen 10 pituussuunnassa, 10 jolloin antureilla 22,23,24 mitataan anturin 22,23,24 etåisyyttå kappaleen 10 pinnasta, useissa eri pisteisså P, joita pisteitå voi olla useita satoja, jopa tuhansia yhdellå kierroksella, jolloin mittauspisteet P asettuvat spiraalimaiselle radalle T. Jotta mittauspis-teet P osuvat samalle spiraalimaiselle radalle T, anturit 22,23,24 linjataan keskinåiseen kallistettuun asemaan ennen mittauksen aloittamista, jolloin esim. anturia 22, joka on 15 sijoitettu nollapisteeseen Px, pidetåån paikallaan ja muut anturit 23,24 siirretåån vinoon etåisyyksille £23,1^4, jolloin mitattavan kappaleen 10 pystypoikkisuunnan R ja anturei-den 22,23,24 ko. mittauspisteiden P kautta kulkevan viivan vålille muodostuu kulma γ. Antureiden 22,23,24 vålinen kulma a vastaa mittauspisteiden P vålisen kulman β monikertaa.Referring to Figures 1 and 2, the measurement is performed as follows. In the first step of the method 5, the zero point Px of the measurement is selected, which is preferably horizontal, thus corresponding to, for example, the starting position of the grinding wheel used in the finishing work. A single sensor 22 is then placed at the zero point Px. , at several different points P, which can be several hundred, even thousands in one revolution, whereby the measuring points P settle on the helical path T. , e.g. an angle γ is formed between the line passing through the measuring points P. The angle a between the sensors 22,23,24 corresponds to a multiple of the angle β between the measuring points P.

2020

Mittaustuloksista lasketaan sylinterimåisen kappaleen muoto, keskipisteen liike sekå sylinterimåisen kappaleen asema eli linjaus johteisiin nåhden, jolloin on saatu mitattua sylinterimåisen kappaleen mitat kolmiulotteisesti.From the measurement results, the shape of the cylindrical body, the movement of the center point and the position of the cylindrical body, i.e. the alignment with respect to the guides, are calculated, whereby the dimensions of the cylindrical body have been measured in three dimensions.

25 Ennen mittauksen aloittamista sinånså tunnetusti mååritetåån pyorimisnopeus, kåytetty teho, pyorimisaika ennen mittausta, mitattavan kappaleen pintalåmpotilat ja antureiden asemat. Mittauspisteistå saatavien mittaustulosten perusteella mååritetåån sylinterin muoto, joka muodostuu sylinterimåisyydestå, joka kåsittåå paksuuden vaihtelun, suoruuspoikkeamat ja epåpyoreyden sekå dynaamiset komponentit, jotka kåsittåvåt 30 såteisvirheliikkeen, epåsymmetrisen taipumisen ja våråhtelyjen vaikutuksen. Mittaustu- 6 92529 losten kåsittelyyn ja niistå sylinterimåisyyden måårittåmisen osalta viitataan edellå mainittuun Timo R. Nybergin våitoskiijaan.25 Before starting the measurement, the rotation speed, the power used, the rotation time before the measurement, the surface temperature of the object to be measured and the positions of the sensors are determined as is known per se. On the basis of the measurement results obtained from the measuring points, the shape of the cylinder is determined, which consists of a cylindricality comprising thickness variation, straightness deviations and non-porosity, as well as dynamic components comprising the radial misalignment of the deflection motion. With regard to the handling of measurement data and the determination of their cylindricality, reference is made to the aforementioned Timo R. Nyberg impeller.

Keksintoå on edellå selostettu vain eråisiin sen edullisiin sovellusesimerkkeihin viitaten, 5 joiden yksityiskohtiin keksintoå ei ole kuitenkaan mitenkåån ahtaasti rajoitettu, vaan monet muunnokset ja muunnelmat ovat mahdolliset seuraavien patenttivaatimuksien måårittelemån keksinnollisen ajatuksen puitteissa.The invention has been described above only with reference to some of its preferred application examples, the details of which, however, are in no way narrowly limited, but many modifications and variations are possible within the scope of the inventive idea defined by the following claims.

I!I!

Claims (4)

1. Forfarande for måtning av ett cylinderformigt stycke, vid vilket forfarande stycket (10), som skall måtas, roteras och vid en måtstomme (20) fastade givare (22,23,24), 5 av vilka det finns åtminstone tre, forskjuts med konstant matningshastighet från den ena ånden av stycket (10), som skall måtas, till den andra ånden, varvid med givama (22.23.24) mats avståndet till givaren från ytan av stycket (10), som skall måtas, på en spiralformig bana vid onskade måtpunkter (P), kånnetecknat dårav, att givama (22,23,24) innan måtningen inleds placeras i ett sådant inbordes lutande låge, 10 att med givama (22,23,24) måts måtpunkter (P) på samma spiralformiga bana (T).A method of measuring a cylindrical piece, in which the method (10) to be measured is rotated and the sensors (22, 23, 24) attached to a measuring frame (20), of which there are at least three, are displaced by constant feed rate from one spirit of the piece (10) to be measured to the other spirit, whereby with the sensors (22.23.24), the distance to the sensor from the surface of the piece (10) to be measured is fed on a helical path at desired measurement points (P), characterized in that the sensors (22,23,24) before the measurement are started are placed in the inclined position of such an inboard, so that the sensors (22,23,24) measure points (P) on the same helical path (P). T). 2. Måtforfarande enligt patentkravet 1, kånnetecknat dårav, att en (22) av givama (22,23,24) som an vånds vid forfarandet placeras i en nollpunkt (Px) och de ovriga givama (23,24) placeras i vertikalriktningen snett på avstånd (E23,E24) från 15 nollpunkten (Px), varvid mellan en vertikal tvårriktning (R) av stycket (10), som skall måtas, och en linje, som går genom resp. måtpunkter (Px >P23 ,P24) for givama (22.23.24) bildas en vinkel (γ).Measurement method according to claim 1, characterized in that one (22) of the sensors (22,23,24) used in the method is placed in a zero point (Px) and the other sensors (23,24) are placed vertically obliquely on a distance (E23, E24) from the zero point (Px), whereby a vertical transverse direction (R) of the piece (10) to be measured and a line passing through, respectively. measuring points (Px> P23, P24) of the givama (22.23.24) form an angle (γ). 3. Forfarande enligt patentkravet 1 eller 2, kånnetecknat dårav, att som 20 vinkel (a) mellan givama (22,23,24) våljs ett mångfald av vinklar (β) mellan måt- punktema (P).3. A method according to claim 1 or 2, characterized in that, as angle (a) between the sensors (22,23,24), a plurality of angles (β) is selected between the measurement points (P). 4. Forfarande enligt något av de foregående patentkraven, kånnetecknat dårav, att det inbordes lutande låget på givama (22,23,24) beståms på basis av 25 rotationshastigheten av stycket (10), som skall måtas, och matningshastigheten på måtanordningen (20). • · IIMethod according to any one of the preceding claims, characterized in that the inclining layer embedded on the sensors (22,23,24) is determined on the basis of the rotational speed of the piece (10) to be measured and the feeding speed of the measuring device (20). . • · II
FI934604A 1993-10-19 1993-10-19 Method for measuring a cylindrical piece FI92529C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI934604A FI92529C (en) 1993-10-19 1993-10-19 Method for measuring a cylindrical piece
AU78573/94A AU7857394A (en) 1993-10-19 1994-10-18 A method for measuring a cylindrical piece
PCT/FI1994/000468 WO1995011422A1 (en) 1993-10-19 1994-10-18 A method for measuring a cylindrical piece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI934604 1993-10-19
FI934604A FI92529C (en) 1993-10-19 1993-10-19 Method for measuring a cylindrical piece

Publications (3)

Publication Number Publication Date
FI934604A0 FI934604A0 (en) 1993-10-19
FI92529B FI92529B (en) 1994-08-15
FI92529C true FI92529C (en) 1994-11-25

Family

ID=8538798

Family Applications (1)

Application Number Title Priority Date Filing Date
FI934604A FI92529C (en) 1993-10-19 1993-10-19 Method for measuring a cylindrical piece

Country Status (3)

Country Link
AU (1) AU7857394A (en)
FI (1) FI92529C (en)
WO (1) WO1995011422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352833B2 (en) * 2015-02-26 2018-07-04 住友重機械工業株式会社 Shape measuring device, processing device, and shape measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2617707C2 (en) * 1975-04-23 1986-02-20 The Rank Organisation Ltd., London Device for measuring a surface

Also Published As

Publication number Publication date
FI934604A0 (en) 1993-10-19
WO1995011422A1 (en) 1995-04-27
FI92529B (en) 1994-08-15
AU7857394A (en) 1995-05-08

Similar Documents

Publication Publication Date Title
CN101258380B (en) Method for measuring circular shape and cylindrical shape as well as cylindrical sensing equipment
KR20210090596A (en) Measuring unit for measuring the forwarding of a workpiece in a bending machine
RU2008105980A (en) INDEPENDENT MEASURING DEVICE FOR GRINDING MACHINES
FI71013B (en) OVER ANCHORING FOER BESTAEMMANDE AV EN OENSKAD CENTRALLINJE FOER CYLINDERLIKA KROPPAR SAOSOM TRAESTOCKAR
US7472490B2 (en) Shape-measuring assembly for a grinding machine
FI92529C (en) Method for measuring a cylindrical piece
US7723930B2 (en) Method and system in connection with tension measurement of material web
WO2006025603A1 (en) Method for measuring circular shape, and method and device for measuring cylindrical shape
CA2596265C (en) Shape-measuring assembly for a grinding machine
FI96448B (en) Process for measuring a cylindrical piece
KR20120062632A (en) Conveyed amount detecting device for plate-shaped object, cutting device for plate-shaped object, conveyed amount detecting method for plate-shaped object, cutting line making device for plate-shaped object and cutting line making method for plate-shaped object
JP4055850B2 (en) Flow forming method and apparatus
US20240033806A1 (en) Method for determining the thickness of a material strip during the feed of the material strip to the machining zone of a machine tool
GB2259052A (en) Compensating for lack of roundness in printing cylinders.
RU158847U1 (en) DEVICE FOR DETERMINING THE AXIAL POSITION OF THE OBJECT OF CONTROL (PIPE, BAR, OTHER OBJECT), MOVING LINEAR ON THE ROLANGAN AND / OR SIMULTANEOUSLY ROTATING ON A SPIRAL
JP2004264191A (en) Method for measuring profile of cylinder
JPH07270436A (en) Length measuring apparatus for moving object
GB2293561A (en) Sheet forming machine
FI102414B (en) Method for measuring diameter differences in a large rotatable cylindrical piece
FI86623B (en) Process in a reeler for paper or cardboard web for adjusting the hardness of the roll
JPH04266423A (en) Method and device for measuring roll gap of rolling mill
JPH1038555A (en) Method and device for measuring outer diameter and shape of steel pipe
SU1687326A1 (en) Finishing method for cylindric items like shafts and installation
JP2549692Y2 (en) Rolling bearing for fixed feeder
SU1059502A1 (en) Two-coordinate flaw marker for lengthy cylinder-shaped articles

Legal Events

Date Code Title Description
BB Publication of examined application