FI92327C - A process for preparing an olefin polymerization catalyst having uniform particle sizes - Google Patents

A process for preparing an olefin polymerization catalyst having uniform particle sizes Download PDF

Info

Publication number
FI92327C
FI92327C FI915630A FI915630A FI92327C FI 92327 C FI92327 C FI 92327C FI 915630 A FI915630 A FI 915630A FI 915630 A FI915630 A FI 915630A FI 92327 C FI92327 C FI 92327C
Authority
FI
Finland
Prior art keywords
reaction
ticl4
release
hydrogen chloride
process according
Prior art date
Application number
FI915630A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI915630A0 (en
FI915630A (en
FI92327B (en
Inventor
Thomas Garoff
Jukka Koskinen
Original Assignee
Borealis Holding As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Holding As filed Critical Borealis Holding As
Priority to FI915630A priority Critical patent/FI92327C/en
Publication of FI915630A0 publication Critical patent/FI915630A0/en
Priority to EP92924733A priority patent/EP0614466A1/en
Priority to JP5509851A priority patent/JPH07501568A/en
Priority to PCT/FI1992/000322 priority patent/WO1993011164A1/en
Publication of FI915630A publication Critical patent/FI915630A/en
Priority to NO941970A priority patent/NO941970L/en
Publication of FI92327B publication Critical patent/FI92327B/en
Application granted granted Critical
Publication of FI92327C publication Critical patent/FI92327C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Description

9232792327

Menetelma tasakokoisia hiukkasia omaavan olefiinipolymeroin-tikatalyytin valmistamiseksi 5 Keksinte koskee menetelmaa olefiinipolymerointiin tarkoite-tun hiukkasmaisen prokatalyyttikomposition valmistamiseksi saattamalla MgCl2-C2H5OH -kompleksista muodostuvat kantaja-hiukkaset reagoimaan TiCl4:n kanssa.The invention relates to a process for preparing a particulate procatalyst composition for olefin polymerization by reacting support particles formed from a MgCl 2 -C 2 H 5 OH complex with TiCl 4.

10 Olefiinien polymerointiin kaytetaan yleisesti Ziegler-10 For the polymerization of olefins, Ziegler

Natta -katalyyttisysteemia, joka koostuu ns. prokatalyytista ja kokatalyytista. Prokatalyytti perustuu alkuaineiden jak-sollisen jarjestelman johonkin ryhmista IVA-VIII (Hubbard) kuuluvan siirtymametallin yhdisteeseen ja kokatalyytti pe-15 rustuu alkuaineiden jaksollisen jarjestelman johonkin ryhmista IA - III(A) (Hubbard) kuuluvan metallin organometal-liseen yhdisteeseen. Katalyyttisysteemiin voi kuulua mytts kantoaine, jolle siirtymametalliyhdiste on kerrostettuna, ja katalyyttisia ominaisuuksia parantavia ja modifioivia elekt-20 ronidonoriyhdisteita.The Natta catalyst system, which consists of the so-called procatalyst and cocatalyst. The procatalyst is based on a transition metal compound of Groups IVA-VIII (Hubbard) of the Periodic Table of the Elements and the cocatalyst is based on an organometallic compound of a metal of Groups IA to III (A) (Hubbard) of the Periodic Table of the Elements. The catalyst system may include a mytts support on which the transition metal compound is deposited and electron donor compounds that enhance and modify the catalytic properties.

Valmistettaessa olefiinien ja etenkin propeenin polymeroin-tiin tarkoitettuja Ziegler-Natta -prokatalyytteja saatetaan kiintean magnesiumkloridin ja etanolin muodostavat kantaja-25 hiukkaset reagoimaan titaanitetrakloridin kanssa. Tuloksena syntyy kiderakenteeltaan vahvasti muunneltu eli kåyténnbsså amorfinen magnesiumkloridi, joka kykenee koordinoitumaan titaanitetrakloridin kanssa. Amorfiseen magnesiumkloridiin yhdistetty titaanitetrakloridi muodostaa sitten katalyytin 30 aktiiviset keskukset. TamSn prosessin sivutuotteena syntyy kloorivetya ja etoksititaanitrikloridia (1, 2):In the preparation of Ziegler-Natta procatalysts for the polymerization of olefins, in particular propylene, the support particles forming solid magnesium chloride and ethanol are reacted with titanium tetrachloride. The result is an amorphous magnesium chloride with a strongly modified crystal structure, i.e. in use, which is able to coordinate with titanium tetrachloride. The titanium tetrachloride combined with the amorphous magnesium chloride then forms the active centers of the catalyst. Hydrogen chloride and ethoxytitanium trichloride (1, 2) are formed as a by-product of the TamSn process:

MgCl2* EtOH + TiCl4 = MgCl2* + TiCl3-OEt + HC1 (1) 35 lOMgClj· + TiCl4 = 10MgCl*TiCl4 (2)MgCl2 * EtOH + TiCl4 = MgCl2 * + TiCl3-OEt + HCl (1) 35 lOMgClj · + TiCl4 = 10MgCl * TiCl4 (2)

Laboratorio-olosuhteissa talla tavalla valmistetulla proka-talyytilia on saatu suurella aktiivisuudella polyolefiinia, 2 92327 jonka hiukkaskoko, hiukkaskoon jakautuma ja muutkin ominai-suudet ovat olleet tyydyttavia.The procatalyst prepared in this way under laboratory conditions has obtained a high activity polyolefin, 2 92327, the particle size, particle size distribution and other properties of which have been satisfactory.

Siirryttaessa laboratoriomittakaavasta suurmittakaavaisem-5 paan tuotantoon on kuitenkin havaittu, etta polymeerituot-teen hiukkaskokojakautuma on kaikkea muuta kuin tyydyttava. Tuote sisaitaa nimittain verrattuna laboratorioprokatalyy-tilia valmistettuun tuotteeseen hyvin suuret maarat hienoja-koista ainetta eli materiaalia, jonka halkaisija on alle 10 yhden millimetrin. Tama nakyy mm. kuvasta 1, jossa hienoja-koisen materiaalin osuus kasvaa moninkertaiseksi siirrytta-essa laboratoriossa valmistetusta prokatalyytista pilot-mit-takaavassa valmistettuun prokatalyyttiin. Koska polymeroin-tiprokatalyyteilia vallitsee ns. "replikaatio"-ilmiO eli 15 syntyvien polymeerihiukkasten morfologia vastaa polymeerin valmistukseen kaytetyn prokatalyytin morfologiaa, oli ilman muuta oletettavissa, etta hienojakoisen aineen syntyminen polymeerissa johtui polymerointiin tarkoitettujen prokata-lyyttihiukkasten hajoamisesta pilot-mittakaavan valmistuksen 20 yhteydessa.However, in the transition from laboratory-scale to larger-scale production, it has been found that the particle size distribution of the polymer product is anything but satisfactory. Namely, the product contains very large quantities of a fine-sized substance, i.e. a material with a diameter of less than 10 one millimeter, compared to a product made in a laboratory procatalyst. This can be seen e.g. Figure 1, in which the proportion of fine-grained material increases manyfold from a laboratory-prepared procatalyst to a pilot-sized procatalyst. Since the polymerization of tiprocatalysts is dominated by the so-called The "replication" phenomenon, i.e. the morphology of the polymer particles formed, corresponds to the morphology of the procatalyst used in the preparation of the polymer, it was obviously assumed that the formation of fines in the polymer was due to the decomposition of the procatalyst particles for polymerization in pilot scale preparation 20.

Prokatalyytteja valmistettaessa havaittiin yliattaen, etta reaktiossa (1) syntyvan kloorivedyn vapautumisnopeuden mak-simiarvon ja polymeerin hienojakoisen aineen osuuden vaiilia 25 vallitsi selva korrelaatio. Tama korrelaatio on esitetty kuvassa 2. Kuvasta nakyy, etta hienojakoisen polymeerin osuus kasvaa hetkittaisen kloorivetypurkauksen voimistuessa. Samassa yhteydessa havaittiin, etta kloorivetypurkaus voi-mistui magnesiumkloridi-etanolikompleksin etanoliosuuden 30 kasvaessa. Tasta syntyi ajatus, etta hienojakoisen polymee rin syntyyn liittyva katalyyttivalmistuksen scale-up -ongel-.* ma johtuisikin liian voimakkaasta kloorivedyn vapautumises- ta.In the preparation of procatalysts, it was found, in excess, that there was a clear correlation between the maximum value of the hydrogen chloride release rate formed in reaction (1) and the proportion of polymer fines. This correlation is shown in Figure 2. It can be seen from the figure that the proportion of finely divided polymer increases as the instantaneous hydrogen chloride discharge intensifies. In the same context, it was found that the hydrogen chloride discharge intensified with increasing ethanol content of the magnesium chloride-ethanol complex. This gave rise to the idea that the scale-up problem of catalyst production associated with the formation of a fine polymer would be due to the excessive release of hydrogen chloride.

35 Tasta syysta verrattiin keskenaan systeemia, jossa oli lasna magnesiumkloridietanolikompleksia, titaanitetrakloridia ja niiden vaiisesta reaktiosta syntynytta kloorivetya, systeemia, jossa oli lasna ainoastaan titaanitetrakloridia ja 3 92327 kloorivetya, sekå systeemia, jossa oli lasna magnesiumdiklo-ridia, titaanitetrakloridia ja kloorivetya.35 For this reason, a system with a drop of magnesium chloride-ethanol complex, titanium tetrachloride and hydrogen chloride from their silent reaction, a system with a drop of titanium tetrachloride alone and 3,932327 hydrochloric acid, and a system with a drop of magnesium dichloride and a system of magnesium dichloride were compared.

Lammitettaessa ensiksi mainittua systeemia lampOtilasta 5 -20eC lampOtilaan +110°C tapahtui +10 ja +20°C:n valilia voimakas kloorivedyn purkaus, jonka jaikeen kloorivedyn muo-dostus normalisoitui vastaten normaalia liuenneen kaasun kayttaytymista yli 40°C:n lampdtiloissa. Tama ilmiii on nah-tavissa kuvista 3 ja 4, joista kuva 3 esittaa systeemista 10 vapautuvan kloorivedyn maaran (ilmaistuna NaOH-kulutuksena) systeemin lamptttilan ja ajan funktiona ja kuva 4 esittaa systeemin kloorivedyn vapautumisnopeuden låmpdtilan funktiona.When the first system was heated from a temperature of 5 to 20 ° C to a temperature of + 110 ° C, a strong discharge of hydrogen chloride occurred at +10 and + 20 ° C, the formation of which was normalized to the normal consumption of dissolved gas in lamp spaces above 40 ° C. This is apparent from Figures 3 and 4, of which Figure 3 shows the amount of hydrogen chloride released from system 10 (expressed as NaOH consumption) as a function of system lamp state and time, and Figure 4 shows the rate of hydrogen chloride release from the system as a function of temperature.

15 Toiseksi ja kolmanneksi mainituissa systeemeissa, joista puuttui magnesiumkloridietanolikompleksi, ei ollut havaitta-vissa em. tyyppista voimakasta kloorivedyn purkausta.15 In the second and third mentioned systems, which lacked the magnesium chloride-ethanol complex, no strong hydrogen chloride discharge of the above-mentioned type was observed.

Alustavien kokeiden perusteella voitiin siis todeta, etta 20 haitallisen hienojakoisen polyolefiinin syntyminen kaytetta-essa pilot-mittakaavassa valmistettua prokatalyyttia, joka on saatu MgCl2-C2H5OH -kompleksihiukkasten ja TiCl4:n vaiises-ta reaktiosta, johtuu oleellisesti siita, etta mainittu ja reaktioyhtaidssa (1) esitetty reaktio tuottaa yhdelia kertaa 25 niin runsaasti kloorivetya, etta se heti kaasuuntuu ja ra- jayttaa kantajahiukkaset hienojakoiseksi materiaaliksi, joka sitten toistuu syntyvassa polyolefiinissa.Preliminary experiments have thus shown that the formation of 20 harmful fine-grained polyolefins using a pilot-scale procatalyst obtained from the silent reaction of MgCl2-C2H5OH complex particles and TiCl4 is essentially due to the fact that (1) the reaction shown produces at once 25 so much hydrogen chloride that it immediately gasifies and confines the carrier particles to a finely divided material which is then repeated in the resulting polyolefin.

Keksinndn tarkoituksena on aikaansaada sellainen menetelma 30 olefiinipolymerointiin tarkoitetun hiukkasmaisen prokata- lyyttikomposition valmistamiseksi, jonka tuloksena syntyvai-: la prokatalyyttikompositiolla on kayttOkelpoinen hiukkasko- kojakautuma, josta oleellisesti puuttuu hienojakoinen aines. Lisaksi hiukkasten on oltava muodoltaan, kemialliselta koos-35 tumukseltaan, aktiivisuudeltaan ja stereospesifisyydeltaan kayttOkelpoisia. KeksinnOssa pyritaan myds huolehtimaan siita, ettei prokatalyyttikompositiolla valmistettu polymeeri sisaiia sanottavasti hienojakoista ainetta. Samalla pyritaan 4 92327 tietenkin polyolefiiniin, jolla on kayttOkelpoinen hiukkas-muoto, isotaktisuus ja kiteisyys, sulavlskositeetti ja ir-totiheys.It is an object of the invention to provide a process for preparing a particulate procatalyst composition for olefin polymerization which results in a useful procatalyst composition having a usable particle size distribution substantially free of fines. In addition, the particles must be usable in shape, chemical composition, activity and stereospecificity. The invention also seeks to ensure that the polymer prepared with the procatalyst composition does not contain a substantially finely divided substance. At the same time, of course, 4,932,327 polyolefins having a useful particle form, isotacticity and crystallinity, melt viscosity and bulk density are sought.

5 T3hån asetettuun paamSåråan on nyt paasty uudella menetel-mélia olefiinipolymerointiin tarkoitetun hlukkasmalsen pro-katalyyttlkompositlon valmistamiseksi, jolle paaasiassa on tunnusomalsta se, mita sanotaan patenttivaatimuksen 1 tun-nusmerkkiosassa. On siis oivallettu, etta MgCl2-C2H5OH -kom-10 pleksia olevat kantajahiukkaset hajoavat nlmenomaan kloori-vetypurkauksen johdosta, kun ne aktivoidaan titaanitetraklo-ridilla. (Ennen on luultu, etta hajoaminen mm. johtuu sekoi-tuksen alheuttamasta mekaanisesta rasituksesta.) Tama ilmiO esiintyy etenkin silloin, kun prokatalyytin valmistus tapah-15 tuu suuremmassa, eslm. pllot-mlttakaavassa. Kantajahlukkas-ten hajoamisen johdosta kantaja ja siten koko prokatalyytti-kompositio sisaitaa suuren osan hienojakoista materiaalia. Prokatalyyttikomposition partikkelikokojakautuma toistuu sitten polymeroinnissa polymeerituotteen hiukkaskokojakautu-20 massa, jolloin polymeeriliakin on suuri osuus hienojakoista materiaalia.A new process for the preparation of a waste molar pro-catalyst composite for olefin polymerization is now fastened to this process, which is mainly characterized by what is stated in the characterizing part of claim 1. Thus, it has been realized that the carrier particles in the MgCl 2 -C 2 H 5 OH-10 complex are decomposed mainly due to the chlorine-hydrogen discharge when activated with titanium tetrachloride. (It has previously been thought that the decomposition is due, among other things, to the mechanical stress caused by the mixing.) This phenomenon occurs especially when the preparation of the procatalyst takes place in a larger, eslm. pllot-mlttakaavassa. Due to the disintegration of the carrier particles, the carrier and thus the entire procatalyst composition contains a large amount of finely divided material. The particle size distribution of the procatalyst composition is then repeated in the polymerization with a particle size distribution of the polymer product, with the polymer also having a high proportion of finely divided material.

EdellS esitetty oivallus, etta polymeerituotteessa olevan hienojakoisen materiaalin suuri osuus johtuu prokatalyyt-25 tisynteesissa voimakkaasti purkautuvasta kloorivetykaasusta, mahdollistaa sellaisen prokatalyyttikomposition valmistus-menetelman, joka johtaa hyvin vahan hienojakoista materiaalia sisaitavaan prokatalyyttikompositioon ja polyolefiiniin. MenetelmMssa kantajahiukkaset pidetaan reaktion aikana va-30 hingoittumattomina tasaamalla reaktiossa syntyvfln kloorive- dyn vapautuminen reaktiossa tai reaktioseoksesta molaariseen • nopeuteen, joka ei ylita vapautumisen molaarisen keskinopeu- den viisinkertaista arvoa. Tarkasteltaessa uudestaan kuvia 3 ja 4 havaitaan, etta ilman keksinndn mukaisia erityistoimen-35 piteita kloorivedyn purkauksen maksiminopeus nousee arvoon, joka vastaa noin 16 ml/°C:n NaOH-kulutusta, keskipurkausno-peuden ollessa suuruusluokkaa, joka vastaa noin 2 ml/°C:n NaOH-kulutusta. Kyseisessa kokeessa mitattiin sellaisen sys- li 5 92327 teemin kloorivetypurkausta, jonka kompleks! sisalsi 3 etano-limolekyylia yhta magnesiumkloridimolekyylia kohden, jolloin kloorivedyn purkausnopeuspiikki siis oli noin kahdeksan ker-taa niin korkea kuin keskimaarainen vapautumisnopeus. Mai-5 nittakoon, etta kompleksin sisåltåessa 4,5 moolia etanolia per magnesiumkloridimooli maksimi purkaus vastasi jopa 90 ml/°C:n NaOH-kulutusta kloorivedyn vapautumisen keskitila-vuusnopeuden ollessa suuruusluokkaa, joka vastaa 1-5 ml/eC:n NaOH-kulutusta eli purkauspiikki oli yli 20-kertainen vapau-10 tusnopeuden keskiarvoon verrattuna.The foregoing realization that a large proportion of the finely divided material in the polymer product is due to the strongly discharged hydrogen chloride gas in the procatalyst-25 synthesis allows a process for preparing a procatalyst composition that results in a very waxy finely divided procatalyst composite. In the process, the carrier particles are kept intact during the reaction by equalizing the release of hydrogen chloride from the reaction or the reaction mixture at a molar rate not exceeding five times the average molar rate of release. Looking again at Figures 3 and 4, it can be seen that without the specific measures of the invention, the maximum rate of hydrogen chloride discharge increases to a value corresponding to a NaOH consumption of about 16 ml / ° C, with an average discharge rate of the order of about 2 ml / ° C. NaOH consumption. In this experiment, the hydrogen chloride discharge of a sysli 5 92327 theme with a complex! contained 3 molecules of ethanol per molecule of magnesium chloride, so that the hydrogen chloride discharge rate peak was about eight times as high as the average release rate. It should be noted that with a complex content of 4.5 moles of ethanol per mole of magnesium chloride, the maximum discharge corresponded to a NaOH consumption of up to 90 ml / ° C with an average volumetric hydrogen release rate of the order of 1-5 ml / eC NaOH consumption. that is, the discharge peak was more than 20 times the mean release rate.

Kuvasta 4 ilmenee myOs, etta kloorivedyn vapauttamista pi-taisi rajoittaa siten, ettei minuutissa paase purkautumaan enempaa kuin noin 5 %, edullisesti korkeintaan noin 2 % 15 reaktiossa stOkiometrisesti vapautuvasta kokonaismaarasta kloorivetya. Tama on toinen tapa ilmaista kvantitatiivisesti voimakkaan kloorivedyn purkautumisen estaminen.It can be seen from Figure 4 that the release of hydrogen chloride should be limited so that no more than about 5%, preferably up to about 2% of the total amount of hydrogen chloride released in the reaction stoichiometrically is released per minute. This is another way to quantify the inhibition of strong hydrogen chloride release.

On maaratyissa rajoissa edullista minimoida kloorivedyn het-20 kittainen purkautuminen, jotta kantajahiukkasten rikkoutumi- nen estettaisiin mahdollisimman tehokkaasti. KeksinnOn eraan suoritusmuodon mukaan kantajahiukkasten ja titaanitetraklo-ridin vaiisessa reaktiossa syntyvan kloorivedyn vapautuminen reaktiossa tai reaktioseoksesta tasataan molaariseen no-25 peuteen, joka ei ylita vapautumisen molaarisen keskinopeuden kolminkertaista, edullisesti kaksinkertaista, arvoa.Within certain limits, it is preferable to minimize the instantaneous discharge of hydrogen chloride in order to prevent breakdown of the carrier particles as effectively as possible. According to one embodiment of the invention, the release of hydrogen chloride from the support particles and the titanium tetrachloride in the silent reaction in the reaction or reaction mixture is equalized to a molar rate not exceeding three, preferably twice, the average molar rate of release.

KeksintO perustuu ideaan, etta TiCl4:n kanssa reagoivat kanta jahiukkaset pidetaan ehjana estamaiia niiden aktivoitumi-30 sessa syntyvan kloorivedyn yhtakkinen purkautuminen. Yhtak- kisen purkauksen vaimennus eli kloorivedyn vapautumisen ta-saaminen voidaan suorittaa milla tahansa sopivalla kemialli-sella ja/tai fysikaalisella keinolla. Yhtakkisten kaasupur-kausten estaminen on teknillisessa kemiassa yleinen toimen-35 pide eika esilia oleva keksintO kohdistu vain maarattyihin taman yleisen toimenpiteen suoritusmuotoihin, vaan nimen-omaan toimenpiteen kayttamiseen estamaan hienojakoisen mate- 6 92327 riaalin muodostuminen prokatalyyttikompositioon ja ole-fiinipolymeereihin.The invention is based on the idea that the strain particles reacting with TiCl4 are kept intact to prevent the sudden discharge of hydrogen chloride formed during their activation. One-way damping, i.e., balancing the release of hydrogen chloride, can be accomplished by any suitable chemical and / or physical means. The prevention of sudden gas discharges is a general measure in technical chemistry and the present invention is not limited to specific embodiments of this general measure, but specifically to the use of a measure to prevent the formation of finely divided material in a procatalyst composition and olefin polymers.

Reaktiossa syrvtyv&n kloorivedyn vapautuminen voidaan tasata 5 valitsemalla reagenssien oikea liséysjarjestys ja lisSysno-peus. LisSysjarjestys on edullisesti sellainen, etta TiCl4 lisataan kantajahiukkaslin, eika painvastoin. Lisaksi kan-tajahiukkaset on edullisesti suspendoitu inerttiin reak-tiovaiiaineeseen. Keksinndn eraan suoritusmuodon mukaan TiCl4 10 lisataan MgCl2-C2H5OH -kompleksia olevien kantajahiukkasten nestesuspensioon kontrolloidusti 0,5-3,0 tunnin, edullisesti noin 1,0 tunnin aikana. Nestesuspension vaiiaineena kdyte-taan yleensa reagenssien suhteen inertteja hiilivetyja, joi-den maaraa voidaan saataa kloorivedyn purkaustendenssin va-15 hentamiseksi.The release of hydrogen chloride displaced in the reaction can be equalized by selecting the correct order of addition of the reagents and the rate of addition. The order of addition is preferably such that TiCl 4 is added by the carrier particles, and not vice versa. In addition, the carrier particles are preferably suspended in an inert reaction medium. According to one embodiment of the invention, TiCl 4 is added to the liquid suspension of MgCl 2 -C 2 H 5 OH complex carrier particles in a controlled manner over a period of 0.5 to 3.0 hours, preferably about 1.0 hour. Hydrocarbons inert to the reagents are generally used as the liquid suspension starting material, the amount of which can be obtained to reduce the tendency to discharge hydrogen chloride.

TiCl4:n kontrolloitu, hidas lisaaminen vahentaa kloorivedyn purkautumisriskia tuottamalla hitaammin kloorivetya (ks. reaktioyhtaid (1)), joka siten ehtii diffundoitua ulos kan-20 tajahiukkasista ennen kuin niiden huokosissa tapahtuu kaa-sunmuodostukseen johtavaa kyliastymista kloorivedylia. Lisaksi ainakin jotkin MgCl2-C2H5OH -kompleksin ja TiCl4:n vdli-sen reaktion vaiheista ovat ilmeisesti eksotermisia, jolloin TiCl4:n hidas lisaaminen mahdollistaa lanundn siirtymista pois 25 kantajahiukkasista ja siten estaa kantajahiukkasia lampia- masta paikallisesti yli kloorivedyn purkautumisiampdtilan.Controlled, slow addition of TiCl 4 reduces the risk of hydrogen chloride evolution by slower production of hydrogen chloride (see Reaction Compounds (1)), which thus has time to diffuse out of the carrier particles before hydrogenation leading to gas evolution occurs in their pores. In addition, at least some of the intermediate reaction steps between the MgCl 2 -C 2 H 5 OH complex and TiCl 4 are apparently exothermic, with the slow addition of TiCl 4 allowing lanund to move away from the carrier particles and thus preventing the carrier particles from warming locally over the hydrogen chloride discharge amp.

Edellisesta ilmenee myds, etta TiCl4:a on mieleliaan lisdtta-va niin alhaisessa lampdtilassa, ettei synny voimakasta 30 reaktiota ja kloorivedyn purkautumista. Eraan suoritusmuodon mukaan TiCl4 lisataan lampdtilassa -30...-10°C ja edullisesti : lampdtilassa -25...-15°C.It is clear from the foregoing that TiCl4 should preferably be added in such a low lamp state that no strong reaction and discharge of hydrogen chloride occurs. According to an embodiment, TiCl 4 is added in the lamp room -30 to -10 ° C and preferably in the lamp room -25 to -15 ° C.

Kantajahiukkasten huokosissa ja TiCl4-liuoksessa olevien ter-35 modynaamisten ja/tai fysikaalisten tasapainosysteemien joh- dosta kloorivetya vapautuu pitkan ajan kuluessa TiCl4:n li-saamisen jaikeen. Taildin on edullista nostaa lampdtila TiCl4:n lisaamisen aikana ja/tai sen jaikeen kontrolloidun ll 7 92327 hitaalla nopeudella noin 5-20°C/h, viela edullisemmin no-peudella noin 5-15°C/h. N3in hidasta lampOtilan nostamista kannattaa jatkaa aina lampdtilaan +40°C asti ja etenkin my6s sen jaikeen, kun mahdollisesti tarvittavaa sisaista donoria 5 on lisatty kantajahiukkasten ja TiCl4:n reaktioseokseen.Due to the thermodynamic and / or physical equilibrium systems in the pores of the carrier particles and in the TiCl4 solution, hydrogen chloride is released over a long period of time into the addition of TiCl4. It is preferred to raise the lamp space during the addition of TiCl 4 and / or its fraction at a controlled slow rate of about 11-2032 C / h, more preferably at a rate of about 5-15 ° C / h. It is advisable to continue the slow raising of the lamp state up to the lamp state of + 40 ° C, and especially of its fraction when any necessary internal donor 5 has been added to the reaction mixture of the carrier particles and TiCl 4.

Reaktiossa syntyvan kloorivedyn vapautuminen voidaan myOs tasata kayttamaiia kantajahiukkasten ja TiCl4:n vaiisen reaktion aikana voimakasta sekoitusta. Vaikka sekoituksen voi-10 makkuus riippuu monesta tekijasta kuten kloorivedyn vapautu-misen muista tasauskeinoista, voidaan sanoa, etta sekoituksen maara tassa keksinnttssa ylittaa konventionaaliset sekoi-tusarvot ja aiheuttaa oleellista tasausta kloorivedyn vapau-tumiseen. Koska prokatalyyttikompositioiden valmistuksessa 15 sekoitusta on usein syytetty kantajahiukkasten hajottamises-ta, on hyvin yliattavaa, etta sekoituksen lisaaminen auttaa pitamaan kantajahiukkaset vahingoittumattomina. Tata taustaa vasten on ndhtava oivallus lisata sekoitusta keksinndn paa-maarien saavuttamiseksi. Mainittakoon, etta taman keksinnftn 20 yhteydessa kaytetysså reaktorissa sekoittimen alkukierrosno-peus nostettiin keksinndn mukaiseen menetelmaan siirryttaes-sa arvosta 15 rpm arvoon 30 rpm.The release of the hydrogen chloride formed in the reaction can also be offset by vigorous mixing of the carrier particles during the silent reaction of the carrier particles and TiCl4. Although the strength of the mixture depends on many factors, such as other means of compensating for the release of hydrogen chloride, it can be said that the amount of mixture in the present invention exceeds conventional mixing values and causes substantial equalization to the release of hydrogen chloride. Since in the preparation of procatalyst compositions, 15 mixtures have often been accused of disintegrating the carrier particles, it is very surprising that the addition of the mixture helps to keep the carrier particles intact. Against this background, it will be apparent to add a mixture to achieve the objectives of the invention. It should be noted that in the reactor used in connection with the present invention 20, the initial speed of the stirrer was increased from 15 rpm to 30 rpm in the process according to the invention.

Toinen tapa lisata kloorivedyn vapautumista tasaavaa aineen-25 ja lammttnsiirtoa on muuttaa nestemaisen reaktioseoksen vis-*. kositeettia. Tama voi tapahtua kuten edelia mainittiin va- litsemalla sopiva dispersion vaiiaine kuten C5-C8-hiilivety, mutta se voi myiis tapahtua lisaamaiia reaktioseokseen yli-maaraista viskositeettia alentavaa nestetta.Another way to increase the hydrogen chloride release compensating agent-25 and heat transfer is to change the viscosity of the liquid reaction mixture. viscosity. This can be done as mentioned above by selecting a suitable dispersion medium such as a C5-C8 hydrocarbon, but it can also be done by adding an excess viscosity reducing liquid to the reaction mixture.

3030

Viela eras keino tasata reaktiossa syntyvan kloorivedyn va-; pautumista on kayttaa reaktion aikana ylipainetta. Ylipai-neella on seka termodynaaminen etta fysikaalinen vaikutus kloorivedyn vapautumiseen. Termodynaaminen vaikutus perustuu 35 kloorivedyn haihtumisen estamiseen, joka heijastuu takaisin kloorivetya mahdollisesti synnyttavaan tasapainoreaktioon ja hidastaa sita. Fysikaalinen vaikutus perustuu siihen, etta korkeampi paine nostaa kloorivedyn kaasuuntumisiampOtilaa ja 8 92327 estaa kaasuuntumisen tietysså lampOtilassa. Reaktion aikana kaytetaan eraan suoritusmuodon mukaan ylipainetta, joka on suuruusluokkaa 1-100 baaria, edullisemmin noin 1-50 baaria ja edullisimmin noin 1-5 baaria.Yet another means of equalizing the hydrogen chloride formed in the reaction; shrinkage is the use of overpressure during the reaction. Overpressure has both thermodynamic and physical effects on the release of hydrogen chloride. The thermodynamic effect is based on the inhibition of the evaporation of hydrogen chloride, which is reflected back to and slows down the equilibrium reaction that may generate hydrogen chloride. The physical effect is based on the fact that the higher pressure raises the hydrogenation temperature of hydrogen chloride and 8 92327 prevents gasification in a certain temperature. According to one embodiment, an overpressure of the order of 1 to 100 bar, more preferably about 1 to 50 bar and most preferably about 1 to 5 bar is used during the reaction.

55

Reaktiossa syntyvan kloorivedyn vapauttamista voidaan tasata mydis johtamalla reaktioseokseen tai sen ylle typpikaasua. Inerttikaasuvirran kSytttt vaikuttaa etupååsså fysikaalisesti siten, etta kaasun alentama ymparistOn kloorivetypitoisuus 10 nopeuttaa reaktiossa syntyvan kloorivedyn poistumista huoko-sista, jolloin huokosten kaasuuntumista vastaavaa kloorivedyn kyliastymispistetta ei koskaan saavuteta. Typpi- tai muuta inerttikaasua kannattaa kuitenkin kayttaa varovasti, silia termodynaamisesti sen vaikutus on painvastainen eli 15 poistamalla nopeasti kloorivetya kantajahiukkasten huokosis-ta kloorivetya muodostava mahdollinen tasapainoreaktio no-peutuu ja tuottaa runsaasti kloorivedyn purkautumista aihe-uttavaa lampOa.The release of hydrogen chloride formed in the reaction can be offset by introducing nitrogen gas into or over the reaction mixture. The use of the inert gas stream mainly acts physically in such a way that the reduced hydrogen chloride content in the environment accelerates the removal of the hydrogen chloride generated in the reaction from the pores, whereby the saturation point of hydrogen chloride corresponding to the pore gasification is never reached. However, nitrogen or other inert gas should be used with caution. Silia has a thermodynamic effect, i.e. by rapidly removing hydrogen chloride from the porous hydrogen chloride of the carrier particles, the possible equilibrium reaction is accelerated and produces a large amount of hydrogen chloride-inducing lamp.

20 Reaktioseokseen voidaan myOs lisata kompleksihiukkasen jaThe complex particle and can may be added to the reaction mixture

TiCl4:n vaiisen reaktion ei-kaasuuntuvaa tuotetta liuottavaa nestetta. Kuten edelia esitettiin reaktioyht&l£Jss& (1), MgCl2-C2H5OH -kompleksin ja TiCl4:n vaiisen reaktion tuloksena syntyy aktivoidun magnesiumkloridin ja kloorivedyn lisaksi 25 etoksititaanitrikloridia, jonka lasnaolo samassa liuoksessa ? kloorivedyn kanssa alentaa liuoksen kloorivetykapasiteettia ja siten myOs kloorivedyn kaasuuntumisiampbtilaa. Lisaamaiia etoksititaanitrikloridia liuottavaa ainetta kloorivedyn va-pautumisiampOtilaa voidaan nostaa ja sen vapautumista tasata 30 keksinndn paamaaran mukaisesti. Kompleksin ja TiCl4:n vaiisen reaktion tuotteita, kuten etoksititaanitrikloridia ja kloo-rivetya, voidaan myOs poistaa vaihtamalla reaktion aikana TiCl4-ylimaara.A liquid that dissolves the non-gasifiable product of the silent reaction of TiCl4. As described above in the reaction compound (1), the silent reaction of the MgCl2-C2H5OH complex and TiCl4 results in the addition of activated magnesium chloride and hydrogen chloride to give ethoxytitanium trichloride having the same presence in the same solution? with hydrogen chloride reduces the hydrogen chloride capacity of the solution and thus the gassing capacity of myOs hydrogen chloride. The addition of ethoxytitanium trichloride solubilizing agent can increase the hydrogen chloride release state and equalize its release according to the amount of the invention. The products of the silent reaction of the complex with TiCl4, such as ethoxytitanium trichloride and hydrogen chloride, can also be removed by exchanging excess TiCl4 during the reaction.

35 Kuten alustavista kokeista ilmeni, MgCl2-C2H50H -kompleksin koostumus vaikuttaa ratkaisevasti siihen, miten voimakkaasti kompleksin ja TiCl4:n vaiisessa reaktiossa syntyva kloorivety35 As shown in the preliminary experiments, the composition of the MgCl2-C2H50H complex has a decisive influence on the strength of the hydrogen chloride formed in the silent reaction of the complex and TiCl4.

IIII

9 92327 vapautuu. Alustavista tuloksista ja reaktioyhtaiOsta (1) ilmenee, etta purkautumisnopeus kasvaa kompleksin C2H5OH -pitoisuuden kasvaessa. Samalla kuitenkin MgCl2:n kyky akti-voitua TiCl4:lla alenee, joten kompleksin etanolipitoisuudel-5 le, joka teoreettisesti voi vaihdella 1 ja 6 vaiilia, on lOydettavissa optimi, joka riippuu siita, miten tehokkaasti muilla keinoin pystytaan tasaamaan reaktiossa syntyvan kloo-rivedyn vapautumista. KeksinnOn eraan suoritusmuodon mukaan kantajahiukkasten materiaalina kaytetyn MgCl2-C2H5OH -kom-10 pleksin moolisuhde MgCl2:n ja C2H5OH:n vaiilia on 2,5-3,5 ja edullisesti vaiilia noin 2,7-3,3. Koska liian suuret eta-nolipitoisuudet melkein aina aiheuttavat kantajahiukkasia rikkovia kloorivetypurkauksia, voidaan yleisesti sanoa, etta kompleksin C2H5OH-pitoisuuden on oltava alle noin 60 % proka-15 talyytin painosta.9 92327 is released. Preliminary results and reaction equation (1) show that the discharge rate increases with increasing concentration of C2H5OH in the complex. At the same time, however, the ability of MgCl2 to be Akti-activated with TiCl4 decreases, so that the ethanol content of the complex, which can theoretically vary between 1 and 6 steps, is optimum, depending on how effectively the release of hydrogen chloride in the reaction can be compensated by other means. . According to one embodiment of the invention, the molar ratio of MgCl 2 -C 2 H 5 OH-10 complex used as the carrier particle material is 2.5-3.5 and preferably about 2.7-3.3 of MgCl 2 and C 2 H 5 OH. Since excessive ethanol concentrations almost always cause hydrogen chloride discharges that disrupt the carrier particles, it can be generally said that the C2H5OH content of the complex must be less than about 60% by weight of the proca-15 catalyst.

Koska liian suuret kantajahiukkaset helpommin rikkoutuvat ja syvien huokosrakenteidensa johdosta korostavat kloorivedyn nopeaan purkautumlseen vaikuttavia tekijOita, on edullista 20 kayttaa kantajahiukkasia, joiden koko on alle noin 150 pm.Since too large carrier particles break more easily and, due to their deep pore structures, emphasize the factors contributing to the rapid discharge of hydrogen chloride, it is preferable to use carrier particles smaller than about 150.

KeksinnOn onnistumiseen vaikuttavat myOs kantajahiukkasten vesipitoisuus, mekaaninen vahvuus, hiukkasmorfologia ja hiukkaskokojakautuma. Siksi onkin havaittu, etta keksinnOn 25 mukaiseen menetelmaan sopivat erityisen hyvin sellaiset • MgCl2-C2H5OH -kompleksista muodostuvat kantajahiukkaset, jot- ka on valmistettu suihkukiteytysmenetelmaiia. Eraan edulli-sen suoritusmuodon mukaan kompleksisula, jonka koostumus on MgCl2· 3,5C2H5OH ja lampOtila noin 120-130eC, suihkutetaan ha-30 jottavan suutinrakenteen kautta kammioon, jossa lampOtila on noin 30-50°C, minka jaikeen jaykkajuoksuiset pisarat johde- » ·The success of the invention is also influenced by the water content, mechanical strength, particle morphology and particle size distribution of the carrier particles. Therefore, it has been found that carrier particles consisting of the MgCl2-C2H5OH complex prepared by the spray crystallization process are particularly suitable for the process according to the invention. According to a preferred embodiment, a complex melt having a composition of MgCl 2 · 3.5C 2 H 5 OH and a temperature of about 120-130 ° C is sprayed through a diffusing nozzle structure into a chamber having a temperature of about 30-50 ° C, in which case the solid droplets

: taan toisen vyOhykkeen lapi, jonka lampOtila on noin 10°Ca second zone with a temperature of about 10 ° C

alempi ja jossa hiukkaset jahmettyvat lopullisesti. Tailai-sella menetelmaiia valmistetut hiukkaset ovat mekaanisesti 35 paljon vahvempia kuin esim. suihkuhaihdutuksella valmistetut hiukkaset ja sopivat siten erityisen hyvin keksinnOn mukai-. . seen menetelmaan, jossa kloorivedyn purkautumistendenssi asettaa hiukkasille korkeat mekaaniset vaatimukset. Samalla 10 92327 syntyy hiukkasia, joiden huokostilavuus on sopiva keksinnOn mukaiseen menetelmaan.lower and where the particles are stunned permanently. Particles prepared by such a process are mechanically much stronger than, for example, particles prepared by spray evaporation and are thus particularly well suited to the invention. . method in which the tendency to discharge hydrogen chloride imposes high mechanical requirements on the particles. At the same time, 10 92327 particles are generated, the pore volume of which is suitable for the method according to the invention.

Kloorivedyn vapautumista voi kiihdyttaa myOs sisalsen dono-5 rin lasnaolo kantajahiukkasten ja TiCl4:n reaktioseoksessa.The release of hydrogen chloride can be accelerated by the presence of myOs sisal Dono-5 in the reaction mixture of carrier particles and TiCl4.

Se johtuu siita, etta lisayksen yhteydessa tapahtuvat dono-rin reaktiot yleensa ovat eksotermisia. Mikali donori lisa-taan sellaisessa vaiheessa tal sellaisella lampOtila-alueel-la, jossa kloorivedyn purkaus on mahdollinen, se saattaa 10 hyvinkin johtaa kloorivedyn kontrolloimattomaan vapautumi- seen. Nain voi mm. tapahtua silloin, kun reaktioseos TiCl4:n lisaamisen jaikeen lammitetaan lampdtilaan n. +20eC ja lisa-taan donori reaktioseokseen. Eraan suoritusmuodon mukaan on edullista tasata reaktiossa syntyvan kloorivedyn vapautumi-15 nen sisaisen elektronidonorin lisayksen yhteydessa lisaamai-ia donori reaktioseokseen vasta noin 0,5-6 h, edullisesti noin 2-5 h, TiCl4:n lisaamisen jaikeen. On myds tahdellista lisata sisaista donoria reaktioseokseen kontrolloidusti noin 0,5-1,5 tunnin aikana. Varmuuden vuoksi lammitysnopeutta on 20 edullisesti nostettava vasta noin 1-3 h donorin lisaamisen jaikeen, jolloin donorin lisays ei aiheuta voimakkaita kloo-rivetypurkauksia.This is because the Donor reactions that occur during the addition are usually exothermic. If the donor is added at a stage in a temperature range where hydrogen chloride discharge is possible, it may well lead to uncontrolled release of hydrogen chloride. This is how e.g. occur when the reaction mixture to the TiCl 4 addition fraction is heated to a lamp space of about + 20 ° C and the donor is added to the reaction mixture. According to one embodiment, it is preferred to equalize the release of hydrogen chloride in the reaction upon addition of the internal electron donor to the donor reaction mixture only for about 0.5-6 h, preferably about 2-5 h, with the addition of TiCl 4. It is myds intentional to add the internal donor to the reaction mixture in a controlled manner over about 0.5-1.5 hours. For safety reasons, the heating rate should preferably only be increased for about 1-3 hours with the addition of the donor, so that the addition of the donor does not cause strong hydrogen chloride discharges.

Edelia esitetyt toimenpiteet reaktiossa syntyvan kloorivedyn 25 vapauttamisen tasaamiseksi voidaan keksinnttn mukaisesti kayttaa yksin tai sitten yhdistaa milla tavalla tahansa. Keksinndjn eraan suoritusmuodon mukaan toimenpiteita kayte-taan kuvan 5 osoittamalla tavalla.The above measures for balancing the release of hydrogen chloride formed in the reaction according to the invention can be used alone or combined in any way. According to an embodiment of the invention, the measures are used as shown in Figure 5.

30 Kuvassa 5 on esitetty keksinnOn eraan suoritusmuodon mukai-nen lampdtilaprofiili valmistettaessa prokatalyyttikomposi-' tiota MgCl2-C2H5OH -kompleksin ja TiCl4:n vSliselia reaktiol- la. Kuvassa: A on hidas lamptttilan nostaminen ensimmaisen TiCl4-lisayksen 35 jaikeen, B on reaktion pitkittaminen donorin lisayksen jaikeen, C on lampdtilan nopeampi nostaminen kantajan ja TiCl4:n vaii-sen ensimmaisen reaktion loppuunsaattamiseksi,Figure 5 shows a lamp state profile according to an embodiment of the invention in the preparation of a procatalyst composition by an external reaction of a MgCl 2 -C 2 H 5 OH complex and TiCl 4. In the figure: A is the slow raising of the lamp state to the first fraction of the first TiCl4 addition, B is the prolongation of the reaction to the donor addition fraction, C is the faster raising of the lamp state to complete the silent first reaction of the carrier and TiCl4,

IIII

11 92327 D on kantajan ja TiCl4:n valisen enslmmdisen reaktion lop-puunsaattaminen, E on kantajan toinen kasittely TiCl4:lla, F on pesu ja 5 G on kuivaus.11 92327 D is the completion of the primary reaction between the support and TiCl4, E is the second treatment of the support with TiCl4, F is the washing and 5 G is the drying.

KeksinniJn mukaan on edullista suorittaa yksi tai useampia edellS mainituista toimenpiteista reaktiossa syntyvan kloo-rivedyn vapauttamisen tasaamiseksi kuvaan merkityissa koh-10 dissa I, II ja III. TailiSin on luonnollista suorittaa TiCl4:n lisaykseen ja sen yhteydessa tapahtuvaan lammitykseen liit-tyvat toimenpiteet kohdassa I ja vastaavat donorin lisaykseen liittyvat toimenpiteet kohdissa II ja III. Muutoin voi-daan toimenpiteet optimoida koko prosessia silmaiiapitaen 15 kutakin reaktoria ja haluttua tuotetta vårten.According to the invention, it is preferable to carry out one or more of the above-mentioned steps to compensate for the release of hydrogen chloride formed in the reaction at the points I, II and III indicated in the figure. It is natural for TailiS to perform the steps related to the addition of TiCl4 and the related heating in section I and the corresponding measures related to the addition of the donor in sections II and III. Otherwise, the operations can be optimized for the entire process, keeping an eye on each reactor and the desired product.

Koska pienetkin epapuhtaudet saattavat hairita reaktiota ja aiheuttaa yliattavia kloorivetypurkauksia, aineiden on olta-va mahdollisimman puhtaita ja etenkin kuivia. Erityista huo-20 miota on kiinnitettava vaiiaineeseen ja inerttikaasuun, jot-tei haitallisia sivureaktioita paase syntymaan. Reaktioympa-ristOn pitamiseksi mahdollisimman puhtaana on edullista kayttaa sihtipohjalla varustettua monitoimireaktoria, jolla voidaan suorittaa aktivointi-, pesu- ja kuivausvaiheet pois-25 tamatta prokatalyyttia tai sen vaiituotetta reaktorista.As even small impurities can interfere with the reaction and cause excessive hydrogen chloride discharges, the substances must be as pure as possible and especially dry. Special care must be taken with the silencer and inert gas to prevent adverse side reactions. In order to keep the reaction environment as clean as possible, it is preferable to use a multi-purpose reactor with a sieve bottom, which can carry out the activation, washing and drying steps without removing the procatalyst or its by-product from the reactor.

Tamantyyppinen reaktor! ja menetelma on esitetty suomalai- sessa patenttijulkaisussa 83329, joka taten liitetaan viit-teena hakemukseen.This type of Reaktor! and the method is disclosed in Finnish Patent Publication 83329, which is incorporated herein by reference.

30 Seuraavassa esitetaan muutama vertailuesimerkki ja suori-tusesimerkki keksinnOn valaisemiseksi.The following are a few comparative examples and embodiments to illustrate the invention.

Lahtdaineet 35 Synteesissa kaytetty TiCl4 oli nestemaista ja vedetOnta.Condensers 35 The TiCl4 used in the synthesis was liquid and aqueous.

MgCl2-C2H5OH -kompleksikantaja valmistettiin kompleksisulas-ta, jonka koostumukseksi saadettiin MgCl2*3,5C2H5OH. Sulaa 12 92327 suihkutettiin lampOtilassa noin 120-130eC sita hajottavan suutinrakenteen kautta kammioon, jonka vastaanottovytthykkeen lampdtila oli noin 30-50eC. Vastaanottovyiihykkeelta sula-pisarat johdettiin hieman kylmenunSn vyOhykkeen låpi hiukkas-5 ten lopulliseksi kovettamiseksi. Lopuksi hiukkaset seulot- tiin hiukkaskokoon, joka oli alle noin 150 pm. Lopullisten hiukkasten koostumus oli noin MgCl2* 3C2H5OH.The MgCl2-C2H5OH complex carrier was prepared from a complex melt to give MgCl2 * 3.5C2H5OH. Melt 12 92327 was sprayed at a temperature of about 120-130 ° C through a decomposing nozzle structure into a chamber having a lamp space of about 30-50 ° C in the receiving chamber. From the receiving zone, melt droplets were passed through a slightly cooling zone to finally cure the particles. Finally, the particles were screened to a particle size of less than about 150. The composition of the final particles was about MgCl 2 * 3C 2 H 5 OH.

Kantajahiukkasten morfologia oli erinomainen. Hiukkaskokoja-10 kautuma oli valilia 1,50-3,4 (span) eivåtkå hiukkaset sisal-tåneet hienojakoista materiaalia. Mikroskooppikuvat kantaja-hiukkasesta on esitetty prokatalyyttien ja polymeerien mik-roskooppikuvien yhteydessa tulosten kåsittelysså.The morphology of the carrier particles was excellent. The particle size-10 drop was valence 1.50-3.4 (span) and the particles did not contain finely divided material. Microscopic images of the support particle are shown in conjunction with microscopic images of procatalysts and polymers in the processing of the results.

15 Vertailuesimerkki 115 Comparative Example 1

Seulapohjalla varustettu monitoimireaktori, jonka tilavuus oli 1,5 m3, jåådytettiin låmpdtilaan -20®C. Sitten reaktoriin lisattiin inertti hiilivetyliuotin (Nesteen tuote LIAV), 20 TiCl4 ja kantaja, MgCl2 · 2,7C2H5OH, mainitussa jårjestyksesså. Kantajan mSårå oli 44 kg ja suhde TiCl4 (mooli)/kantajan C2H5OH (mooli) oli 10. Suhde LIAV (kg)/kantaja (kg) oli 4,5 ja suhde TiCl4 (mooli)/Mg (mooli) oli 30. Sekoitusnopeus oli 15 rpm.A multi-purpose reactor with a sieve bottom and a volume of 1.5 m3 was cooled to -20®C. An inert hydrocarbon solvent (Liquid product LIAV), TiCl 4 and a support, MgCl 2 · 2.7C 2 H 5 OH, were then added to the reactor in that order. The mSårå of the carrier was 44 kg and the ratio of TiCl4 (mole) / carrier C2H5OH (mole) was 10. The ratio of LIAV (kg) / carrier (kg) was 4.5 and the ratio of TiCl4 (mole) / Mg (mole) was 30. The mixing speed was 15 rpm.

2525

Reagenssin lisåyksen jålkeen låmpdtila nostettiin hitaasti nopeudella 0,22°C/min låmpOtilaan +20eC. Sekoitusnopeus oli edelleen 15 rpm.After the addition of the reagent, the temperature was slowly raised at a rate of 0.22 ° C / min to + 20 ° C. The stirring speed was still 15 rpm.

30 Viisi tuntia reagenssin lisåyksen jålkeen lisåttiin låmpOti-lassa +20°C di-isobutyliftalaatti(DIBP)-donoria siten, ettå • * • suhde donori (mooli)/Mg (mooli) oli 0,15. Sitten låmpdtilaa nostettiin keskinopeudella noin 0,l°C/min arvoon 110°C. Sekoitusnopeus oli edelleen 15 rpm. LåmpOtilaa ja sekoitusta 35 yllåpidettiin noin 1 tunti, minka jalkeen aktivointijaanndk-set TiCl4-ylimaarineen poistettiin reaktorin seulapohjan lapi huuhtomalla.Five hours after the addition of the reagent, a diisobutyl phthalate (DIBP) donor was added at a temperature of + 20 ° C so that the donor (mol) / Mg (mol) ratio was 0.15. The temperature was then raised to 110 ° C at an average rate of about 0.1 ° C / min. The stirring speed was still 15 rpm. The temperature and stirring were maintained for about 1 hour, after which the activation solution with excess TiCl 4 was removed by rinsing the bottom of the reactor screen.

13 9232713 92327

Toinen kåsittely TiCl4:lla suoritettiin lisååmållå reagenssi puhdistettuun kiinteåån vålituotteeseen. Låmpotila oli edel-leen 110°C, sekoitusnopeus 15 rpm ja reaktioaika 2 tuntia. Suhde TiCl4 (mooli)/Mg (mooli) oli nytkin 30.A second treatment with TiCl 4 was performed by adding the reagent to the purified solid intermediate. The temperature was still 110 ° C, the stirring speed 15 rpm and the reaction time 2 hours. The ratio of TiCl4 (mole) / Mg (mole) was still 30.

55

Lopuksi tuote pestiin neljå kertaa hiilivetyliuottimella (LIAV) siten, ettå suhde LIAV (kg)/kantaja (kg) oli 9. Pesun aikana sekoitusnopeus oli suunnilleen sama kuin edellå. Tå-mån jålkeen tuote kuivattiin N2-kaasuvirralla låmpotilassa 10 70°C ilman sekoitusta.Finally, the product was washed four times with a hydrocarbon solvent (LIAV) so that the ratio of LIAV (kg) / carrier (kg) was 9. During the washing, the stirring speed was approximately the same as before. The product was then dried under a stream of N2 gas at a temperature of 10 to 70 ° C without stirring.

Tåmån vertailukokeen yhteydesså huomattiin, ettå lisåttåesså kantajaa TiCl4:n påålle seos alkoi kiehua jo låmpdtilassa -20°C. Katalyyttituotteen hiukkaskokojakautuma oli sellainen, 15 ettå 64,7 paino-%:lla siitå oli halkaisija alle 20 μτη. d50 oli 17 μπι ja hiukkaskokojakautuman leveys eli span-luku oli 3,1. Hienojakoisen aineen osuus katalyytilla tuotetussa polymee-risså oli 70 paino-% (d<l mm) ja irtotiheys oli 0,43 g/ml.In the context of this comparative experiment, it was found that when the support was added over TiCl4, the mixture started to boil already at a temperature of -20 ° C. The particle size distribution of the catalyst product was such that 64.7% by weight of it had a diameter of less than 20 μτη. The d50 was 17 μπι and the width, or span, of the particle size distribution was 3.1. The proportion of fines in the catalyst-produced polymer was 70% by weight (d <1 mm) and the bulk density was 0.43 g / ml.

20 Vertailuesimerkit 2-520 Comparative Examples 2-5

Seulapohjalla varustettu monitoimireaktori, jonka tilavuus oli 1,5 m3, jååhdytettiin låmpotilaan -20°C. Sitten reakto-riin lisåttiin inertti hiilivetyliuotin (Nesteen tuote LIAV), 25 24 kg kantajaa, MgCl2· 3,0C2H5OH ja TiCl4, mainitussa jårjestyk- sesså. Suhde TiCl4 (mooli)/kantajan C2H5OH (mooli) oli 10, suhde LIAV (kg)/kantaja (kg) oli vålillå 4,5-9 ja suhde TiCl4 (mooli)/Mg (mooli) oli 30. Sekoitusnopeus oli 15 rpm.A multi-purpose reactor with a sieve bottom and a volume of 1.5 m3 was cooled to -20 ° C. An inert hydrocarbon solvent (Liquid product LIAV), 25 kg of support, MgCl 2 · 3.0C 2 H 5 OH and TiCl 4, was then added to the reactor, respectively. The ratio of TiCl 4 (mole) / carrier C 2 H 5 OH (mole) was 10, the ratio LIAV (kg) / carrier (kg) was between 4.5-9 and the ratio TiCl 4 (mole) / Mg (mole) was 30. The stirring speed was 15 rpm.

30 Reagenssien lisåyksen jålkeen låmpdtila nostettiin hitaasti nopeudella noin 0,22°C/min låmpotilaan +20°C. Sekoitusnopeus oli edelleen 15 rpm. 3-5 tuntia reagenssien lisåyksen jålkeen lisåttiin låmpotilassa +20°C di-isobutyyliftalaatti(DIBP)-donoria siten, ettå suhde donori (mooli)/Mg (mooli) oli 0,15. 35After the addition of the reagents, the temperature was slowly raised at a rate of about 0.22 ° C / min to + 20 ° C. The stirring speed was still 15 rpm. 3-5 hours after the addition of the reagents, diisobutyl phthalate (DIBP) donor was added at a temperature of + 20 ° C so that the ratio of donor (mole) / Mg (mole) was 0.15. 35

Sitten låmpdtila nostettiin keskinopeudella noin l°C/min ar-voon 110°C. Sekoitusnopeus oli edelleen 15 rpm. Låmpåtilaa ja sekoitusta yllåpidettiin noin yksi tunti, minkå jålkeen ' T — 14 92327 aktivointijaannOkset TiCl4-ylimaarineen poistettiin reaktorin seulapohjan lapi huuhtomalla.The temperature was then raised to 110 ° C at an average rate of about 1 ° C / min. The stirring speed was still 15 rpm. The temperature and stirring were maintained for about one hour, after which the activation portions of T-14 92327 with excess TiCl4 were removed by rinsing the bottom of the reactor screen.

Toinen kasittely TiCl4:lla suoritettiin lisaamaiia reagenssi 5 puhdistettuun kiinteaan vaiituotteeseen. LampOtila oli edel-leen 110°C, sekoitusnopeus 15 rpm ja reaktioaika noin kaksi tuntia. Suhde TiCl4 (mooli)/Mg (mooli) oli nytkin 30.A second treatment with TiCl 4 was performed to add reagent 5 to the purified solid product. The lamp state was still 110 ° C, the stirring speed 15 rpm and the reaction time about two hours. The ratio of TiCl4 (mole) / Mg (mole) was still 30.

Lopuksi tuote pestiin nelja kertaa hiilivetyliuottimella 10 (LIAV) siten, etta suhde LIAV (kg)/kantaja (kg) oli 9. Pesun aikana sekoitusnopeus oli suunnilleen sama kuin edelia. Taman jaikeen tuote kuivattiin N2-kaasuvirralla lampOtilassa 70°C ilman sekoitusta.Finally, the product was washed four times with hydrocarbon solvent 10 (LIAV) so that the ratio of LIAV (kg) / carrier (kg) was 9. During the washing, the stirring rate was approximately the same as before. The product of this fraction was dried under a stream of N 2 gas at 70 ° C without stirring.

15 Naiden vertailukokeiden yhteydessa huomattiin, etta lammi- tettaessa kehittyi kaasua. Katalyyttituotteen hiukkaskokoja-kautuma oli sellainen, etta 11-28 paino-%:lla siita oli hal-kaisija alle 20 pm. d50 oli vaiilia 30-62 pm ja hiukkaskoko-jakautuman leveys eli span-luku oli vaiilia 1,46-2,96. Muut 20 ominaisuudet on esitetty tulosten yhteydessa.15 In the case of the women's comparative experiments, it was found that gas was evolved during heating. The particle size distribution of the catalyst product was such that 11-28% by weight of it had a diameter of less than 20. The d50 was a range of 30-62 μm and the width or span of the particle size distribution was a range of 1.46-2.96. The other 20 features are presented in the context of the results.

Suoritusesimerkit 1-4Execution Examples 1-4

Seulapohjalla varustettu monitoimireaktori, jonka tilavuus 25 oli 1,5 m3, jaadytettiin lampiitilaan -20eC. Sitten reaktoriin lisattiin hiilivetyliuotinta (Nesteen tuote LIAV), kantajaa, MgCl2‘3,0C2H50H ja TiCl4, mainitussa jarjestyksessa. Kantajan måara vaihteli vaiilia 24-29 kg ja suhde TiCl4 (mooli)/kantajan C2H5OH (mooli) oli 10. Suhde LIAV (kg)/kantaja (kg) oli 30 9,0 ja suhde TiCl4 (mooli)/Mg (mooli) oli 30.A multi-purpose reactor with a sieve bottom and a volume of 25 was 1.5 m3 and was cooled to -20 ° C. A hydrocarbon solvent (Liquid product LIAV), a carrier, MgCl 2, 3.0C 2 H 5 OH and TiCl 4, were then added to the reactor, respectively. The amount of carrier ranged from 24 to 29 kg and the ratio of TiCl 4 (mole) / carrier C 2 H 5 OH (mole) was 10. The ratio LIAV (kg) / carrier (kg) was 30.0 and the ratio TiCl 4 (mole) / Mg (mole) was 30.

Vertailuesimerkista poiketen sekoituksen alkunopeus oli 30 rpm, reaktorin alkuvaiheen ylipaine oli 2,5 baaria ja reaktorin lapi johdettiin kuivaa N2-kaasua virtausnopeudella 5 35 kg/h, aina maksimilampOtilan saavuttamiseen asti.In contrast to the comparative example, the initial stirring speed was 30 rpm, the initial overpressure of the reactor was 2.5 bar and dry N 2 gas was passed through the reactor at a flow rate of 5 to 35 kg / h, until the maximum lamp state was reached.

Reagenssien lisayksen jaikeen lamptttilaa nostettiin hitaasti nopeudella noin 0,22eC/min lampOtilaan +20°C. Tassa vaihees- 15 92327 sa sekoituksen maara oli a lennet tu alkuperdisesta arvosta 30 rpm tavanomaiseen arvoon 15 rpm sekoituksen aiheuttaman me-kaanlsen rasltuksen vahentamiseksi.The lamp space of the reagent addition was slowly raised at a rate of about 0.22 ° C / min to + 20 ° C. At this stage, the amount of agitation was reduced from the original value of 30 rpm to the normal value of 15 rpm to reduce the mechanical stress caused by the agitation.

5 Kolrae tuntla reagenssien lisdyksen jdlkeen reaktoriln lisdt-tiin ldmpOtilassa +20*C di-isobutyliftalaatti(DIBP)-donoria siten, etta suhde donor! (mooli)/Mg (mooli) oli 0,15.5 After the addition of the reagents, the diisobutyl phthalate (DIBP) donor was added to the reactor at room temperature + 20 ° C so that the donor ratio! (moles) / Mg (moles) was 0.15.

Sitten ldmpOtila nostettiin keskinopeudella noin l°C/min 10 maksimiarvoon 110eC, jolloin ylipaine ja N2-virtaus poistet-tiin. Sekoitusnopeus oli edelleen 15 rpm. LdmpOtilaa ja se-koitusta yliapidettiin noin yksi tunti, minka jaikeen akti-vointijaannOkset TiCl4-ylimaarineen poistettiin reaktorin sihtipohjan lapi huuhtomalla.The ldmpOt state was then raised at an average rate of about 1 ° C / min 10 to a maximum value of 110 ° C, whereby the overpressure and the N 2 flow were removed. The stirring speed was still 15 rpm. The LdmpO state and agitation were maintained for about one hour, after which the Akti lubrication portions with excess TiCl4 were removed by rinsing the reactor screen bottom.

1515

Toinen kasittely TiCl4:lla suoritettiin lisaarndlia reagenssi puhdistettuun klinteaan vdlituotteeseen. LOmpOtila oli edelleen 110eC, sekoitusnopeus 15 rpm ja reaktioaika kaksi tun-tia. Suhde TiCl4 (mooli)/Mg (mooli) oli nytkin 30.Second Treatment with TiCl 4 was performed with additional reagent in purified clintin intermediate. The temperature was still 110 ° C, the stirring speed 15 rpm and the reaction time two hours. The ratio of TiCl4 (mole) / Mg (mole) was still 30.

2020

Lopuksi tuote pestiin kolme kertaa hiilivetyliuottimella (LIAV) siten, etta suhde LIAV (kg)/kantaja (kg) oli 9. Pesun aikana sekoitusnopeus oli suunnilleen sama kuin edelia. Taman jdlkeen tuote kuivattiin N2-kaasuvirralla lampOtilassa 25 70°C ilman sekoitusta.Finally, the product was washed three times with a hydrocarbon solvent (LIAV) so that the LIAV (kg) / carrier (kg) ratio was 9. During the washing, the stirring rate was approximately the same as before. The product was then dried under a stream of N2 gas at room temperature to 70 ° C without stirring.

Ndiden suorituskokeiden yhteydessa ei huomattu reaktioseok-sen kiehumista lammityksen aikana. Katalyyttien hiukkaskoko-jakautuma oli sellainen, etta 21-22 paino-%:lla hiukkasista 30 oli halkaisija alle 20 pm. d50 oli 44-62 pm ja jakautuman leveys eli span-luku oli 2,25-2,59 (paitsi neljdnnessa pi-• lot-kokeessa). Muut ominaisuudet on esitetty tulosten kdsit- telyn yhteydessa.In connection with these performance experiments, no boiling of the reaction mixture during heating was observed. The particle size distribution of the catalysts was such that 21-22% by weight of the particles 30 had a diameter of less than 20. The d50 was 44-62 μm and the width of the distribution, i.e. the span number, was 2.25-2.59 (except in the fourth pilot experiment). Other features are presented in connection with the analysis of the results.

35 Koepolymerointi35 Test polymerization

Kaikki laboratorio- ja pilot-mittakaavassa valmistetut ver-tailuesimerkkien ja suoritusesimerkkien prokatalyytit tes- ---- τ::: 92327 16 tattiin standardipolymerointiolosuhteissa. KBytettiin kahden litran penkkireaktoria. 20-30 mg prokatalyyttiS k&ytettiin jokaisessa koepolymerointiajossa. Tahan maaraan sekoitettiin 620 pml trietyylialumiinikokatalyyttia ja 200 pml sisåisen 5 sykloheksyylimetyylimetoksisilaanidonorin 25-%:ista hep- taaniliuosta. vaiiaineena oli 30 ml heptaania. Polymeroinnit suoritettiin l&mptttilassa +70°C ja propeenimonomeerin pai-neessa 10 baaria. Vedyn osittaispaine polymeroinnin aikana oli 0,2 baaria. Polymerointia jatkettiin kolmen tunnin ajan. 10 Sen jaikeen prokatalyytin aktiivisuus mitattiin polymeroin-tisaannon perusteella. Polymeerin liukoinen osa mitattiin liuottamalla maaratty polymeerimaara liuottimeen ja mittaa-malla puhtaan liuoksen haihdutusjaånnOs.All laboratory and pilot scale procatalysts of the Comparative and Performance Examples were tested under standard polymerization conditions. A two-liter bench reactor was used. 20-30 mg of procatalyst was used in each experimental polymerization run. 620 pml of triethylaluminum cocatalyst and 200 pml of a 25% heptane solution of an internal cyclohexylmethylmethoxysilane donor were mixed into the soil. the active ingredient was 30 ml of heptane. The polymerizations were carried out at a temperature of + 70 ° C and a propylene monomer pressure of 10 bar. The partial pressure of hydrogen during the polymerization was 0.2 bar. The polymerization was continued for three hours. The activity of the procatalyst of that fraction was measured on the basis of the polymerization yield. The soluble fraction of the polymer was measured by dissolving the determined amount of polymer in the solvent and measuring the evaporation rate of the pure solution.

15 Kaikista polymeerinaytteista maaritettiin irtotiheys ja hiukkaskokojakautuma. Hiukkaskokojakautumamittausten yh-teydessa arvioitiin hienojakoisen materiaalin kokonaismaara. TailOin hienojakoiseksi materiaaliksi maariteltiin kaikki polymeerihiukkaset, joiden halkaisija oli pienempi kuin 1 20 mm. Isotaktisuus mitattiin heptaanieluution avulla ja iso-taktisuusindeksi mitattiin kayttaen haihdutusjaannbsmit-tausten tuloksia. Sulaindeksi mitattiin låmptttilassa 230°C kayttaen 2,16 kg:n painoa.Bulk density and particle size distribution were determined from all polymer samples. In connection with the particle size distribution measurements, the total amount of finely divided material was estimated. All polymer particles with a diameter of less than 1 20 mm were defined as TailOin fine material. Isotacticity was measured by heptane elution and the isotacticity index was measured using the results of evaporation measurements. The melt index was measured at 230 ° C using a weight of 2.16 kg.

25 Tulokset25 Results

Edelia selostetut koeajot on suoritettu pilot-mittakaavassa. Alkuperaiset kokeet suoritettiin laboratoriossa. TSllOin havaittiin, etta pilot-mittakaavassa esiintyi ongelmia, jot-30 ka eivat esiintyneet laboratoriomittakaavassa. Laboratorio- kokeissa kloorivetykaasun vapautuminen oli tasaista kaikissa kokeissa kun taas pilot-mittakaavassa vertailuesimerkeissa tapahtui voimakas kloorivetykaasun purkautuminen erotuksena suorituskokeisiin, joissa keksinnOn mukaisin toimenpitein 35 kloorivedyn vapautuminen kyettiin tasaamaan.The test runs described above have been performed on a pilot scale. The initial experiments were performed in the laboratory. TS11Oin was found to have problems on a pilot scale that did not occur on a laboratory scale. In the laboratory experiments, the release of hydrogen chloride gas was uniform in all experiments, while in the pilot scale in the comparative examples there was a strong discharge of hydrogen chloride gas as opposed to performance experiments in which the release of hydrogen chloride was able to be equalized by the measures of the invention.

Kloorivedyn vapautumista seurattiin suoritusesimerkeissa * rekisterOimaiia, miten paljon reaktorin pakokaasu kykeni 17 92327 aukaisemaan reaktoriin kytkettya, reaktorin painetta saata-vaa pakoventtiilia. Kuvassa 6 on esitetty tailaisen venttii-lin aukeamlnen lampOtilan ja ajan funktiona. Kuvassa ylempa-na esitetaan reaktion lampiitilan gradientti eli profiili ja 5 alempana venttiilin aukeaminen eli kloorivetykaasun pakene-misnopeus ajan funktiona. Kloorivedyn pakenemisnopeus on suhteellisen tasainen eika osoita minkaanlaisia kuvassa 3 esitetyn kaltaisia huippuja lammitettaessa.The release of hydrogen chloride was monitored in Examples 1 to record the extent to which the reactor exhaust gas was able to open the reactor-pressure exhaust valve connected to the reactor. Figure 6 shows the opening of a valve as a function of temperature and time. The figure above shows the gradient of the reaction state of the reaction, i.e. the profile, and the lower one shows the opening of the valve, i.e. the escape rate of hydrogen chloride gas as a function of time. The escape rate of hydrogen chloride is relatively constant and does not show any peaks when heated as shown in Figure 3.

10 Suoritusesimerkkien laboratoriossa ja pilot-mittakaavassa valmistetuilla prokatalyyteilia olivat titaanipitoisuus, donoripitoisuus, hiukkaskokojakautuma, katalyyttisaanto, katalyyttiaktiivisuus, polymeeri-isotaktisuus, polymeeri-sulaindeksi ja polymeeri-irtotiheys normaaleja vastaavan 15 tyyppisille katalyyteille.The laboratory and pilot scale procatalysts of the Examples had titanium content, donor content, particle size distribution, catalyst yield, catalyst activity, polymer isotacticity, polymer melt index, and polymer bulk density for normal types of catalysts.

Titaanipitoisuus vaihteli valilia 2,9-3,6 paino-% laborato-rioprokatalyyteilla ja valilia 2,4-4,5 paino-% pilot-proka-talyyteilla. Donoripitoisuus vaihteli valilia 15,9-19,2 pai- 20 no-% laboratorioprokatalyyteilla ja valilia 9,7-15,4 paino-% pilot-prokatalyyteilla (suoritusesimerkissa 1 pilot-mitta-kaavan donorisybttb epaonnistui).The titanium content ranged from 2.9 to 3.6% by weight of valine on laboratory procatalysts and from 2.4 to 4.5% by weight of valine on pilot procatalysts. The donor concentration ranged from 15.9 to 19.2% by weight of valil for laboratory procatalysts and from 9.7 to 15.4% by weight of valil for pilot procatalysts (in Example 1, the donor sample of pilot scale failed).

Prokatalyyttien hiukkaskokojakautuma ilmenee taulukosta 1.The particle size distribution of procatalysts is shown in Table 1.

25 Ainoastaan viimeisessa eli neljannessa pilot-mittakaavan valmistuksessa oli havaittavissa pieni prokatalyyttihajoami-nen, mika ilmenee leveMna jakautumana, jonka span-luku oli 3,41.Only in the last, i.e. the fourth, pilot-scale preparation was a small procatalyst decomposition observed, which is manifested as a wider distribution with a span number of 3.41.

30 Prokatalyyttisaanto oli tyydyttava vaihdellen valilia 74- 99 % pilot-ajoissa ja valilia 82-92 % laboratoriossa. Tama osoittaa, ettei hienojakoista materiaalia ole esim. huuhdel-tu pois suuremassa maarin pilot-ajossa kuin laboratorioajossa.Procatalyst yield was satisfactory, ranging from 74 to 99% valence at pilot times and 82 to 92% valence in the laboratory. This shows, for example, that the finely divided material has not been rinsed off in a larger pilot run than in a laboratory run.

3535

Pilot-prokatalyyttien aktiivisuus oli parhaimmillaan 15,8 kgPP/g kat, joka arvo on hyva ja samaa suuruusluokkaa kuin laboratoriossa valmistetuilla prokatalyyteilia.The activity of the pilot procatalysts was at best 15.8 kgPP / g cat, which is a good value and of the same order of magnitude as the procatalysts prepared in the laboratory.

18 9232718 92327

Polymeeri-isotaktisuus vaihteli laboratorioprokatalyyteilla vålillå 98,9-99,3 % (indeksi vålillå 98,3-98,9) ja pilot-prokatalyyteilla vålillå 96,8-97,5 % (indeksi vålillå 93,3-98,1) olien tyydyttåvållå tasolla.Polymer isotacticity ranged from 98.9 to 99.3% for laboratory procatalysts (index between 98.3 to 98.9%) and from 96.8 to 97.5% (index between 93.3 to 98.1) for pilot procatalysts. at a satisfactory level.

55

Polymeerisulaindeksit vaihtelivat laboratorioprokatalyyteilla vålillå 4,3-9,6 ja pilot-prokatalyyteilla vålillå 5,0-7,4 (neljånnen ajon MI oli poikkeuksellisesti 19,4) vastaten normaalin polypropeenin sulaindeksiå.The polymer melt indexes ranged from 4.3 to 9.6 for laboratory procatalysts and from 5.0 to 7.4 (10.4) for pilot procatalysts (the fourth run MI was exceptionally 19.4), corresponding to the melt index of normal polypropylene.

1010

Polymeeri-irtotiheydet vaihtelivat laboratorioprokatalyyteilla vålillå 0,41-0,47 g/ml ja pilot-prokatalyyteilla vålillå 0,40-0,44 g/ml.Polymer bulk densities ranged from 0.41 to 0.47 g / ml for laboratory procatalysts and from 0.40 to 0.44 g / ml for pilot procatalysts.

15 Erityistå huomiota kiinnitettiin keksinnon mukaisella mene-telmållå valmistettujen prokatalyyttien antaman polymeerima-teriaalin hiukkaskokojakautumaan. Tulokset on esitetty tau-lukossa 2. Graafinen esitys loytyy kuvasta 7.Particular attention was paid to the particle size distribution of the polymeric material provided by the procatalysts prepared by the process of the invention. The results are shown in Table 2. A graphical representation can be found in Figure 7.

20 Taulukossa 2 (ks. sivu 20) on ainoastaan esitetty suoritus-esimerkkien 1-4 mukaisilla laboratorio- ja pilot-prokatalyy-teilla saatujen polymeerien hiukkaskokojakautuma, kun taas kuvassa 7 on verrattu vertailuesimerkkien mukaan valmiste-tuilla laboratorio- ja pilot-prokatalyyteilla tehtyjå poly- 25 meerejå ja suoritusesimerkkien mukaisilla laboratorio- ja pilot-katalyyteilla tehtyjå polymeerejå. Kuvasta nåkyy sel-våsti, ettå vertailuesimerkit ja suoritusesimerkit antavat saman tyyppisiå tuloksia, kun kysymyksesså on laboratorio-mittakaavassa suoritettu prokatalyyttisynteesi.Table 2 (see page 20) only shows the particle size distribution of the polymers obtained with the laboratory and pilot procatalysts according to Embodiment 1-4, while Figure 7 compares the particle size distribution obtained with the laboratory and pilot procatalysts prepared according to the comparative examples. - 25 mers and polymers made with laboratory and pilot catalysts according to the working examples. It is clear from the figure that the comparative examples and the working examples give the same type of results in the case of laboratory-scale procatalyst synthesis.

3030

Siirryttåesså pilot-mittakaavaan keksinnon mukaisilla toi-menpiteillå saadaan aikaan huomattava parannus verrattuna vertailuesimerkkien mukaisiin prokatalyytteihin. Pilot-mit-takaavassa polymeerin hienojakoisen materiaalin osuus saa- 35 daan våhenemåån våhintåån noin neljåsosaan ja enimmillåån jopa alle kymmenesosaan vertailukokeiden tuloksiin nåhden. Pilot-vertailuesimerkisså 1, jossa oli eri reagenssien li-*’ såysjårjestys (ks. ohjeet edellå), saatiin hienojakoisen 19 92327 aineen osuudeksi jopa 70 paino-%, joka arvo on paljon suu-rempi kuin pilot-suoritusesimerkkien arvot.By moving to a pilot scale, the measures according to the invention provide a considerable improvement over the procatalysts according to the comparative examples. In the pilot-mit guarantee, the proportion of finely divided polymer material is reduced to at least about a quarter and at most to less than a tenth compared to the results of the comparative tests. In Pilot Comparative Example 1, which contained the order of addition of the various reagents (see instructions above), the proportion of finely divided substance 19 92327 was obtained up to 70% by weight, which value is much higher than the values of the pilot examples.

Kuvissa 8-13 on esitetty elektronimikroskooppikuvat suori-5 tusesimerkin 1 kantajasta (kuva 8), laboratorioprokatalyy-tista (kuva 9), pilot-prokatalyytista (kuva 10), laborato-rioprokatalyytilla saadusta polymeeristå (kuva 11) ja pilot-prokatalyytilla saadusta polymeeristå (kuva 12). Nåmå suori-tusesimerkkiå 1 koskevat kuvat edustavat visuaalisesti hyvin 10 tuotteen morfologiaa, kun låhdetåån suihkukiteytetystå kantajasta valmiiseen polypropeenituotteeseen. Verrattaessa ku-via 8, 10 ja 12 nåhdåån, ettei hienojakoisen aineen osuus ole polymeerisså tai prokatalyytissa paljoakaan suurempi kuin kantajassa. Kuvia 10 ja 12 verrattaessa kuviin 9 ja 11 15 nåhdåån, ettå sekå prokatalyytti ettå polymeeri ovat hieman enemmån agglomeroituneita pilot-mittakaavan synteesisså kuin laboratoriomittakaavan synteesisså. Tåmå tendenssi ei kui-tenkaan ollut yhtå voimakas suorituskokeissa 2-4.Figures 8-13 show electron micrographs of the support of Example 5 (Figure 8), the laboratory procatalyst (Figure 9), the pilot procatalyst (Figure 10), the polymer obtained with the laboratory procatalyst (Figure 11) and the polymer obtained with the pilot procatalyst (Figure 11). Figure 12). The images of this Embodiment 1 visually represent well the morphology of the product 10 from the spray-crystallized support to the finished polypropylene product. Comparing Figures 8, 10 and 12, it can be seen that the proportion of fines in the polymer or procatalyst is not much higher than in the support. Comparing Figures 10 and 12 to Figures 9 and 11, it can be seen that both the procatalyst and the polymer are slightly more agglomerated in the pilot scale synthesis than in the laboratory scale synthesis. However, this trend was not as strong in performance trials 2-4.

20 9232720 92327

Taulukko 1 Pilot- ja laboratoriomittakaavassa valmistet-tujen prokatalyyttien hiukkaskokojakautuma.Table 1 Particle size distribution of procatalysts prepared on a pilot and laboratory scale.

5 Suoritus- D(0,1) D(0,5) D(0,9) Span esimerkki pm pm pm5 Execution D (0.1) D (0.5) D (0.9) Span example pm pm pm

Pilot 1 8,4 44,3 108,1 2,25 2 6,7 52,4 142,3 2,59 10 3 11,8 80,4 108,6 2,17 4 7,5 38,7 139,5 3,41Pilot 1 8.4 44.3 108.1 2.25 2 6.7 52.4 142.3 2.59 10 3 11.8 80.4 108.6 2.17 4 7.5 38.7 139 5 3.41

Laboratorio 1 6,1 36,8 106,9 2,75 2 10,7 63,8 203,6 3,02 15 3 7,4 44,0 107,2 2,27 4 6,3 51,1 119,8 2,22 20Laboratory 1 6.1 36.8 106.9 2.75 2 10.7 63.8 203.6 3.02 15 3 7.4 44.0 107.2 2.27 4 6.3 51.1 119, 8 2.22 20

Taulukko 2 Pilot- ja laboratoriomittakaavassa katalyyttien antamat polymeerihiukkaskokojakautumat.Table 2 Polymer particle size distributions of catalysts on a pilot and laboratory scale.

25 - * Suoritus- Prokata- 2,0 1,0 0,5 0,18 0,1 esimerkki lyytti mm mm mm mm mm 1 Pilot 45,0 45,6 8,9 0,5 0,0 30 Lab 67,9 30,1 1,5 0,3 0,1 2 Pilot 47,1 46,8 4,5 0,9 0,425 - * Performance- Prokata- 2.0 1.0 0.5 0.18 0.1 example lyt mm mm mm mm mm 1 Pilot 45.0 45.6 8.9 0.5 0.0 30 Lab 67, 9 30.1 1.5 0.3 0.1 2 Pilot 47.1 46.8 4.5 0.9 0.4

Lab 65,0 31,5 3,4 0,3 0,0 3 Pilot 61,2 29,7 7,2 1,6 0,3Lab 65.0 31.5 3.4 0.3 0.0 3 Pilot 61.2 29.7 7.2 1.6 0.3

Lab 64,4 31,1 3,6 0,7 0,2 35 4 Pilot 50,6 41,3 7,1 0,9 0,1Lab 64.4 31.1 3.6 0.7 0.2 35 4 Pilot 50.6 41.3 7.1 0.9 0.1

Lab 38,6 48,7 10,6 1,5 0,5Lab 38.6 48.7 10.6 1.5 0.5

Claims (19)

1. Fdrfarande f6r framstållning av en for polymerisation av olefiner avsedd prokatalysatorkomposition genom att om-10 såtta bårarpartiklar av ett MgCl2-C2H5OH-komplex med TiCl4/ varvid klorvåte alstras, kånnetecknat av att ett eller flera åtgårder anvåndes, dår: a) TiCl4 tillsåtts kontrollerat under 0,5-3,0 timmar till en våtskesuspension av bårarpartiklarna, 15 b) TiCl4 tillsåtts vid en temperatur av -30...-10°C, c) temperaturen hojes under tillsatsen av TiCl4 eller dår-efter med hastigheten cirka 5-20°C/h mellan cirka -20... +40°C, d) under reaktionen åstadkommes en stark omrorning, 20 e) en viskositetsminskande våtska anvåndes i reaktions-blandningen, f) under reaktionen anvåndes ett overtryck av storleksord-ningen 1-100 bar, g) kvåvgas leds i reaktionsblandningen eller dårover, och 25 h) i reaktionsblandningen anvåndes en våtska, som Idser produkten mellan bårarpartiklarna och TiCl4, på ett sådant sått, att frigorelsen av klorvåte per minut begrånsas till hogst 5 % av den vid reaktionen alstrade totala klorvåte-mångden, for bibehållande av bårarpartiklarna i ett helt 30 tillstånd. 1A process for the preparation of a procatalyst composition for polymerization of olefins by reacting carrier particles of a MgCl2-C2H5OH complex with TiCl4 / wherein hydrogen chloride is formed, characterized by the use of one or more for 0.5-3.0 hours to a liquid suspension of the carrier particles; b) TiCl4 was added at a temperature of -30 ...- 10 ° C; c) the temperature was raised during the addition of TiCl4 or thereafter at a rate of about 5 -20 ° C / h between -20 ... + 40 ° C, d) during the reaction, a strong stirring is achieved, e) a viscosity-reducing liquid is used in the reaction mixture, f) during the reaction an overpressure of the order of magnitude is used. 1-100 bar, g) Nitrogen gas is passed into the reaction mixture or thereafter, and h) In the reaction mixture, a liquid Idser product is used between the carrier particles and TiCl4 in such a way that the release of hydrogen chloride per minute is started. is boiled to a maximum of 5% of the total amount of hydrogen chloride produced in the reaction, for maintaining the carrier particles in a complete state. 1 2. Forfarande enligt patentkrav l, kånnetecknat av att frigorelsen av det vid reaktionen alstrade klorvåtet utjåm-nas i reaktionen eller reaktionsblandningen till en molår 35 hastighet, som inte overstiger det femfaldiga vårdet av den genomsnittliga molåra frigorelsehastigheten. 26 923272. A process according to claim 1, characterized in that the release of the chlorine wet generated in the reaction is smoothed in the reaction or reaction mixture to a molar rate which does not exceed the five-fold maintenance of the average molar release rate. 26 92327 3. Fårfarande enligt patentkrav 1 eller 2, kånnetecknat av att frigårelsen av det vid reaktionen alstrade klorvåtet utjåmnas till en volymhastighet, som inte overstiger det trefaldiga, fåretrådesvis det tvåfaldiga vårdet av frigårel- 5 sens genomsnittliga volymhastighet.3. A method according to claim 1 or 2, characterized in that the release of the chlorine wet generated in the reaction is smoothed to a volume rate which does not exceed the triple, sheep wire, twice the care of the average volume speed of the release. 4. Fårfarande enligt patentkrav l, 2 eller 3, kånnetecknat av att frigørelsen av klorvåte ur bårarkomplexet eller reak-tionsblandningen begrånsas så, att frigårelsen per minut år 10 mindre ån cirka 2 % av den totala mångden vid reaktionen alstrat klorvåte.4. A process according to claim 1, 2 or 3, characterized in that the release of hydrogen chloride from the carrier complex or reaction mixture is limited so that the release per minute is less than about 2% of the total amount of hydrogen produced in the reaction. 5. F5rfarande enligt patentkrav 1, 2, 3 eller 4, kånnetecknat av att frigårelsen av det vid reaktionen alstrade 15 klorvåtet utjåmnas genom en kontrollerad tillsats av TiCl4 under 1,0 timme i våtskesuspensionen av bårarpartiklar.Process according to claim 1, 2, 3 or 4, characterized in that the release of the chloride wet generated in the reaction is smoothed by a controlled addition of TiCl4 for 1.0 hour in the liquid suspension of carrier particles. 6. Forfarande enligt något av de foregående patentkraven, kånnetecknat av att TiCl4 tillsåttes vid temperaturen 20 - 25...-15 °C.Process according to one of the preceding claims, characterized in that TiCl 4 was added at the temperature 20 - 25 ... - 15 ° C. 7. Fårfarande enligt något av de fåregående patentkraven, kånnetecknat av att temperaturen håjes under tillsatsen av TiCl4 eller dårefter med en hastighet av cirka 5-15°C/h mel- 25 lan cirka -20...+40°C.Process according to one of the preceding claims, characterized in that the temperature is raised during the addition of TiCl4 or thereafter at a rate of about 5-15 ° C / h between about -20 ... + 40 ° C. 8. Fårfarande enligt något av de fåregående patentkraven, kånnetecknat av att frigårelsen av det vid reaktionen alstrade klorvåtet utjåmnas genom att under reaktionen anvånda 30 åvertryck, som fåretrådesvis år av storleksordningen 1-50 bar, helst ca 1-5 bar.8. A process according to any one of the preceding claims, characterized in that the release of the hydrochloride produced during the reaction is smoothed by applying overpressure during the reaction, which sheep threads are of the order of 1-50 bar, preferably about 1-5 bar. 9. Fårfarande enligt patentkrav 8, kånnetecknat av att ett TiCl4-åverskott anvåndes som låsande våtska får reaktionspro- 35 dukten av MgCl2-C2H5OH-komplexet och TiCl4 och att TiCl4 under reaktionen utbytes till nytt TiCl4 får avlågsning av dåri låst HC1. 27 923279. A process according to claim 8, characterized in that a TiCl4 excess is used as a locking liquid, the reaction product of the MgCl2-C2H5OH complex and TiCl4 is obtained and that during the reaction TiCl4 is replaced with a new TiCl4 which is then locked down. 27 92327 10. Forfarande enligt något av de foregående patentkraven, kånnetecknat av att ett MgCl2-C2H5OH-komplex anvåndes, i vil-ket molforhållandet mellan MgCl2 och C2H5OH år mellan 2,5 och 3,5, foretrådesvis mellan 2,7 och 3,3. 5Process according to any one of the preceding claims, characterized in that an MgCl2-C2H5OH complex is used, in which the molar ratio of MgCl2 to C2H5OH is between 2.5 and 3.5, preferably between 2.7 and 3.3. 5 11. Forfarande enligt något av de foregående patentkraven, kånnetecknat av att ett MgCl2-C2H5OH-komplex anvåndes, vårs C2H5OH-halt år under 60 vikt-%.A process according to any one of the preceding claims, characterized in that an MgCl2-C2H5OH complex is used, our C2H5OH content is less than 60% by weight. 12. Forfarande enligt något av de foregående patentkraven, kånnetecknat av att bårarpartiklar anvåndes, vårs storlek år under ca 150 μιη.12. A method according to any of the preceding claims, characterized by the use of carrier particles, the size of the spring is about 150 μιη. 13. Forfarande enligt något av de foregående patentkraven, 15 kånnetecknat av att bårarpartiklarna av MgCl2-C2H5OH-komplexet har framstållts genom spraykristallisering.A process according to any one of the preceding claims, characterized in that the carrier particles of the MgCl2-C2H5OH complex have been prepared by spray crystallization. 14. Fdrfarande enligt något av de foregående patentkraven, kånnetecknat av att frigorelsen av det vid reaktionen alst- 20 rade klorvåtet utjåmnas i samband med tillsatsen av elektrondonorn så, att donorn tillsåtts reaktionsblandningen forst ca 0,5-6 h, foretrådesvis ca 2-5 h, efter tillsatsen av TiCl4.Process according to any one of the preceding claims, characterized in that the release of the chlorine wet generated in the reaction is smoothed in conjunction with the addition of the electron donor so that the donor is added to the reaction mixture for about 0.5-6 hours, preferably about 2-5 hours. h, after the addition of TiCl4. 15. Forfarande enligt patentkrav 12, kånnetecknat av att den inre donorn tillsåtts reaktionsblandningen kontrollerat under 0,5-1,5 timmars tid.15. A method according to claim 12, characterized in that the internal donor was added to the reaction mixture controlled for 0.5 to 1.5 hours. 16. Forfarande enligt patentkrav 12 eller 13, kånnetecknat 30 av att uppvårmningshastigheten hojes forst cirka 1-3 h efter tillsatsen av donorn och hojningen av temperaturen avslutas vid cirka 110-120°C.16. A process according to claim 12 or 13, characterized in that the heating rate is first increased about 1-3 hours after the addition of the donor and the raising of the temperature is terminated at about 110-120 ° C. 17. Forfarande enligt något av de foregående patentkraven, 35 kånnetecknat av att våsentligen foljande temperaturprofil anvånds: ^ 28 92327 P E 21,-/ F ' / } nrrvi 5 Τ’ /c' S. _ / s Y i B /> Γ y G 10 K 'n ___' 15 dår A betecknar en hojning av temperaturen efter den forstå tillsatsen av TiCl4, B betecknar en foriångning av reaktionen efter tillsatsen av donorn, C betecknar en snabbare hojning av temperaturen for 20 slutforande av reaktionen mellan båraren och TiCl4, D betecknar ett avslutande av den forstå reaktionen mellan båraren och TiCl4, E betecknar bårarens andra behandling med TiCl4, F betecknar tvått och 25. betecknar torkning, ·· varvid de i foregående patentkrav nåmnda åtgårderna for ut- jåmning av det vid reaktionen alstrade klorvåtets frigorelse genomfors vid punkterna I, II och III.17. A method according to any one of the preceding claims, characterized in that substantially the following temperature profile is used: 28 92 32 c c c c c Y Y G 10 K 'A' A denotes a rise in temperature after understanding the addition of TiCl4, B denotes a vaporization of the reaction after the addition of the donor, C denotes a faster rise in temperature to complete the reaction between the carrier and TiCl4, D denotes a termination of the understood reaction between the support and TiCl 4, E denotes the second treatment of the support with TiCl 4, F denotes two and 25. denotes drying. carried out at points I, II and III. 18. Forfarande enligt patentkrav 17, kånnetecknat av att i punkt I utfores åtgårderna enligt patentkrav la), lb), lc), 5, 6 och/eller 7 och i punkterna II och III utfores åtgårderna enligt patentkrav 14, 15 och/eller 16.18. A method according to claim 17, characterized in that in point I, the yards according to claims 1a), 1b), 1c), 5, 6 and / or 7 and in points II and III are carried out the yards according to claims 14, 15 and / or 16 . 19. Forfarande enligt något av de foregående patentkraven, kånnetecknat av att en med siktbotten forsedd multifunktionen reaktor anvåndes, med vilken aktiverings-, tvått- och torkningsstegen kan utforas utan avlågsning av prokatalysa-torn eller den dårtill ledande mellanprodukten ur reaktorn. 92327 % hienoj akoista (<1 rrm) 80-i- ---- 67.8 ^ I 38.2 36.4 AB CD Kantoaine Kuva 1 Hienojakoisen aineen muodostuminen PP-polymeeriin verrattaessa pilot-katalyyttiå laboratoriokatalyyttiin. 60-j- HCl:n maksimi- 50 - Q- vapautumisnope- • us mcoli/min 40 - O·'' lampotilassa ^ 10-20eC 30- yr 20- β' '°ψ 0 4---1-i-|->-|->-1-.- 0 10 20 30 40 50 polymeerin hienojakoisen aineen osuus (%) Kuva 2 Korrelaatio polymeerin hieno jakoisen fraktion maaran ja katalyyttisynteesissa syntyvån HCl-maksimivapau-tumisnopeuden (ml/min) valilla. 92327 NaOIl-kuluLus, ml 300j--- 200 L...................................... \ i ' ‘-&Γ 1—1 ϋ ' ' ' ' b‘0 ‘ ' u)o' ' itio' ' l.amfKiki] a, C Kuva 3 I IC] .-vapauLuminen lHjnnitieLtaessa MyCI.2_^2l,5^I1~ koinpleksia, UCl:a ja TiCl^ta sisaltavaa systieemia aika, min. dV/dT, ml NaOIl/ °C 0 50 100 20j ......| Ί· t—T"T" I '1 1 I I ) 15- 10 5 -io S 1 $5 1 & 1 Si Sr~ lampotila,°C Kuva 4 IlCl-vapaulumisnopeus laiiipOLilan funkLiuna, kun systeemi sisSltSa M9Cl2-C2II50n-koiiiL)leksia, TlCl^:a ja IK31:a. 92327 i D E π../ v i f Feaktio- f j \ I—y—ψ-y— lampo- \ ^ tila /c II___ / jLl/ |_g prosessialka Kuva 5 Keksinnon mukaisten toimenpiteiden edullinen kaytto prokatalyyttiprosessissa; (A) hidas lampotilan lisåa-minen TiCl^-lisayksen jalkeen, (B) reaktion pitkittåmi-nen donorin lisaåmisen aikana ja jalkeen, (C) lampotilan lisays reaktion loppuun saattamiseksi, (D) ensimmainen titanointi, (E) toinen titanointi, (F) pesu, (G) kuivaus 92327 /Π 25.09.1991 04; 13.= 21 85.41 c II - 149.9 t-----: --"Ί T/ °C - I I - -20.9 I-1--1-1-1 -3H -6H -4H t/h -2H ØH lø PIC-6523 REAKTORIN DC-6502 HAKSIMIPA1NE/Q 25.03.1991 04:13=27 52.58 * || : løø.ø Λ A " — \ : dT —T Ί N i-1-M-LH—1 “* _-8H_-6H_-4H t/h -2H ØH ^B················ 25.09.1931 Kuva 6 Kloorivedyn vapautumisnopeus (alenpi kayra) lånpotilagradientin (ylenpi kayra) ja ajan funktiona. 92327 lab. kat lab. kat pilot kat. pilot kat. Hipnn-ia vanha uusi vanha uusi jcoista ~ 2SSSS mmm »a bssss ainetta % 80 i- 11'7 60 5,6 W 52,9 pp 40 ^ ^ ^ 1 2 3 4 : Kuva 7 Hieno j ako isen aineen (d<1 rrrn) kokonaisnvaara vertailuesi- merkkien (vanha) ja suoritusesimerkkien laboratorio- ja pilot-katalyyteilla valmistetuissa polyiteereissa.19. A method according to any one of the preceding claims, characterized in that a multifunction reactor equipped with a screen bottom is used, with which the activation, washing and drying steps can be carried out without removing the procatalyst or the intermediate product from the reactor. 92327% hannoj akoista (<1 rrm) 80-i ---- 67.8 ^ I 38.2 36.4 AB CD Kantoaine Kuva 1 Hienojakoisen aineen muodostuminen PP-polymer verrattaessa pilot-catalytic laboratory laboratory catalytic acid. 60-j-HCl: n maximum 50 - Q- vapautumisnope- • us mcoli / min 40 - O · “lampotilassa ^ 10-20eC 30-yr 20- β” ° ψ 0 4 --- 1-i- | -> - | -> - 1 -.- 0 10 20 30 40 50 Polymerine hannojakoisen aineen osuus (%) Kuva 2 Correlation of polymerine hanno jakoisen fraction but yes catalytic synthesis synthesis of HCl maximum vapoma tumisnopeuden (ml / min) valilla. 92327 NaOIl KuluLus, ml 300j --- 200 L ...................................... \ i '' - & Γ 1—1 ϋ '' '' b'0 '' u) o '' itio '' l.amfKiki] a, C Kuva 3 I IC]. ^ I1 ~ coinplexia, UCl: a ja TiCl ^ ta sisaltavaa systieemia aika, min. dV / dT, ml NaOIl / ° C 0 50 100 20j ...... | Ί · t — T "T" I '1 1 II) 15- 10 5 -io S 1 $ 5 1 & 1 Si Sr ~ lampotila, ° C Kuva 4 IlCl-vapaulumisnopeus laiiipOLilan funkLiuna, systemi sisSltSa M9Cl2-C2II50n-koiiiL only) lesson, TlCl ^: a yes IK31: a. 92327 i D E π ../ v i f Factio- f j \ I — y — ψ-y— lampo- \ ^ tila / c II___ / jLl / | _g processialka Kuva 5 Keksinnon mukaisten toimenpiteiden edullinen kaytto procatalyyttiprocessissa; (A) hidas lampotilan lisåa mine TiCl 2 -lisayksen jalkeen, (B) reaction pitkittåmien donorin lisaåmisen aikana ja jalkeen, (C) lampotilan lisays reaction loppuun saattamiseksi, (D) ensimmainen titanointi, (E) toinen titan ) pesu, (G) kuivaus 92327 / Π 25/09/1991 04; 13. = 21 85.41 c II - 149.9 t -----: - "Ί T / ° C - II - -20.9 I-1--1-1-1 -3H -6H -4H t / h -2H EH Sat PIC-6523 REACTOR DC-6502 HAKSIMIPA1NE / Q 25.03.1991 04: 13 = 27 52.58 * ||: loop.ø Λ A "- \: dT —T Ί N i-1-M-LH — 1“ * _-8H_-6H_-4H t / h -2H ØH ^ B ····································································lated 25.09.1931 Kuva 6 Chloro-dyne vapautumisnopeus (alenpi kayra) loanpotilagradientin (ylenpi kayra) ja ajan functa . 92327 lab. cat lab. cat pilot cat. pilot cat. Hipnn-ia vanha uusi vanha uusi jcoista ~ 2SSSS mmm »a bssss ainetta% 80 i- 11'7 60 5.6 W 52.9 pp 40 ^ ^ ^ 1 2 3 4: Kuva 7 Hieno j ako isen aineen (d < 1 rrrn) coconaisnvaara vertailuesimer mark (vanha) yes suoritusesimerkkien laboratory- yes pilot-catalytic catalytic valmistetuissa polyiteereissa.
FI915630A 1991-11-29 1991-11-29 A process for preparing an olefin polymerization catalyst having uniform particle sizes FI92327C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FI915630A FI92327C (en) 1991-11-29 1991-11-29 A process for preparing an olefin polymerization catalyst having uniform particle sizes
EP92924733A EP0614466A1 (en) 1991-11-29 1992-11-27 Method for the preparation of an olefin polymerization catalyst consisting of particles of equal size
JP5509851A JPH07501568A (en) 1991-11-29 1992-11-27 Method for producing an olefin polymerization catalyst consisting of uniformly sized particles
PCT/FI1992/000322 WO1993011164A1 (en) 1991-11-29 1992-11-27 Method for the preparation of an olefin polymerization catalyst consisting of particles of equal size
NO941970A NO941970L (en) 1991-11-29 1994-05-26 Process for preparing an olefin polymerization catalyst consisting of particles of equal size

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI915630A FI92327C (en) 1991-11-29 1991-11-29 A process for preparing an olefin polymerization catalyst having uniform particle sizes
FI915630 1991-11-29

Publications (4)

Publication Number Publication Date
FI915630A0 FI915630A0 (en) 1991-11-29
FI915630A FI915630A (en) 1993-05-30
FI92327B FI92327B (en) 1994-07-15
FI92327C true FI92327C (en) 1994-10-25

Family

ID=8533576

Family Applications (1)

Application Number Title Priority Date Filing Date
FI915630A FI92327C (en) 1991-11-29 1991-11-29 A process for preparing an olefin polymerization catalyst having uniform particle sizes

Country Status (5)

Country Link
EP (1) EP0614466A1 (en)
JP (1) JPH07501568A (en)
FI (1) FI92327C (en)
NO (1) NO941970L (en)
WO (1) WO1993011164A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407028B1 (en) 1997-03-29 2002-06-18 Basell Technology Company Bv Magnesium dichloride-alcohol adducts, process for their preparation and catalyst components obtained therefrom
US6323152B1 (en) 1998-03-30 2001-11-27 Basell Technology Company Bv Magnesium dichloride-alcohol adducts process for their preparation and catalyst components obtained therefrom
JP4531137B2 (en) * 1997-03-29 2010-08-25 バセル テクノロジー カンパニー ビー.ブイ. Magnesium chloride-alcohol adduct, its production process and catalyst components obtained therefrom
US7135531B2 (en) 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization
US6962889B2 (en) 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization
US8003559B2 (en) 2008-05-13 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts
US7638585B2 (en) 2008-05-13 2009-12-29 Basf Catalysts, Llc Catalyst flow
US8003558B2 (en) 2008-07-29 2011-08-23 Basf Corporation Internal donor for olefin polymerization catalysts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI80055C (en) * 1986-06-09 1990-04-10 Neste Oy Process for preparing catalytic components for polymerization of olefins
FI84357C (en) * 1989-10-20 1991-11-25 Neste Oy Process and apparatus for preparing polymerization catalyst supports

Also Published As

Publication number Publication date
NO941970D0 (en) 1994-05-26
WO1993011164A1 (en) 1993-06-10
NO941970L (en) 1994-05-26
FI915630A0 (en) 1991-11-29
EP0614466A1 (en) 1994-09-14
FI915630A (en) 1993-05-30
FI92327B (en) 1994-07-15
JPH07501568A (en) 1995-02-16

Similar Documents

Publication Publication Date Title
EP1572760B1 (en) Method for the preparation of olefin polymerisation catalyst support and an olefin polymerisation catalyst
ES2624923T3 (en) Catalyst components for the polymerization of olefins
JP2754498B2 (en) Polyolefin with special structure
KR101711811B1 (en) Multistage process for the polymerization of ethylene
CA2124572A1 (en) Method for the preparation of an olefin polymerization catalyst consisting of particles of equal size
IL107958A (en) Spherical catalyst components for the polymerization of olefins their preparation and catalysts comprising them
JPH0641217A (en) Component and catalyst for polymerization of olefin
JP3051439B2 (en) Multimetal catalyst, production method and polymer produced thereby
JPH10501016A (en) Stereospecific catalyst system for olefin polymerization.
Przybyla et al. Two different, on the same silica supported metallocene catalysts, activated by various trialkylaluminums–a kinetic and morphological study as well as an experimental investigation for building stereoblock polymers
EP2816062A1 (en) Pre-polymerized catalyst components for the polymerization of olefins
FI92327C (en) A process for preparing an olefin polymerization catalyst having uniform particle sizes
JP5873930B2 (en) Alumina-supported catalyst for use in olefin polymerization and process for its preparation
BR112018002018B1 (en) Prepolymerized catalyst component, catalyst system and gas-phase process for olefin polymerization
RU2051155C1 (en) Solid catalyst, method for its production and method for production of polypropylene
Lu et al. Highly isospecific SiO2/MgCl2 bisupported catalyst for propene polymerization
EP2718335B1 (en) Pre-polymerized catalyst components for the polymerization of olefins
RU2176649C1 (en) Method of preparing superhigh molecular polyethylene
CN107880170A (en) Catalytic component and its preparation and application for olefinic polymerization
RU2257264C1 (en) Catalyst preparation process and ethylene polymerization and ethylene-alpha-olefin copolymerization processes utilizing this catalyst
CN107880194B (en) Catalyst component for olefin polymerization, preparation method thereof and catalyst
CN107880179B (en) Catalyst component for olefin polymerization, preparation method thereof and catalyst
CN107880195B (en) Catalyst component for olefin polymerization, preparation method thereof and catalyst
RU2257263C1 (en) Catalyst preparation process and ethylene polymerization and ethylene-alpha-olefin copolymerization processes utilizing this catalyst
WO2022214328A1 (en) Pre-polymerized catalyst components for the polymerization of olefins

Legal Events

Date Code Title Description
BB Publication of examined application
GB Transfer or assigment of application

Owner name: BOREALIS HOLDING A/S

MM Patent lapsed