FI91770C - Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment - Google Patents

Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment Download PDF

Info

Publication number
FI91770C
FI91770C FI912967A FI912967A FI91770C FI 91770 C FI91770 C FI 91770C FI 912967 A FI912967 A FI 912967A FI 912967 A FI912967 A FI 912967A FI 91770 C FI91770 C FI 91770C
Authority
FI
Finland
Prior art keywords
cationic
tannin
flocculant
extract
bark
Prior art date
Application number
FI912967A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI91770B (en
FI912967A (en
FI912967A0 (en
Inventor
Erkki Pulkkinen
Hannu Mikkonen
Rauni Seppaenen
Original Assignee
Kaukas Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaukas Oy filed Critical Kaukas Oy
Priority to FI912967A priority Critical patent/FI91770C/en
Publication of FI912967A0 publication Critical patent/FI912967A0/en
Priority to DE4219343A priority patent/DE4219343C2/en
Priority to SE9201850A priority patent/SE506142C2/en
Publication of FI912967A publication Critical patent/FI912967A/en
Application granted granted Critical
Publication of FI91770B publication Critical patent/FI91770B/en
Publication of FI91770C publication Critical patent/FI91770C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

9177091770

Flokkulointiaineena kayttokelpoinen kationinen tanniini ja jåtevesien puhdistamisessa flokkulanttina kMyttokelpoinen koostumus 5 Tamå keksinto koskee havupuiden kuoriuutteista val- mistettuja flokkulointiaineena kayttokelpoisia kationisia tanniineja seka jåtevesien puhdistamisessa flokkulanttina kayttokelpoisia koostumuksia.This invention relates to cationic tannins useful as a flocculant in coniferous bark extracts and to a composition useful as a flocculant in wastewater treatment.

Suomessa kasvavien havupuiden, kuusen (Picea abies) 10 ja mannyn (Pinus sylvestris), kuorta voidaan uuttaa eri-laisilla vesipohjaisilla ja orgaanisilla liuottimilla ja ohjata saatu uute hyotykåyttoon. Suotuisissa olosuhteissa kuusen kuoresta uuttuu kuumalla vedella 14 - 16 % ja mannyn kuoresta noin 6 % laskettuna kuivan kuoren painosta.The bark of conifers growing in Finland, spruce (Picea abies) 10 and manny (Pinus sylvestris), can be extracted with various aqueous and organic solvents and the obtained extract used for recovery. Under favorable conditions, 14 to 16% of spruce bark is extracted with hot water and about 6% of manny bark, based on the weight of the dry bark.

15 Kuusen kuoren kuumavesiuute on hyvin heterogeeninen ja usein vesiliukoisen tanniinin osuus siina on vain noin 50 % (Stiasny-luku 50). Jos kuusen kuorta uutettaessa ve-dellå mukana on alkalia ja sulfiittia, saadaan huomatta-vasti korkeampia uutesaantoja kuin jos olisi uutettu vain 20 kuumalla vedella (kuusi noin 25 %, manty noin 8 %) . Etano-li-vesi (60:10 tilavuus-%) ja asetoni-vesi (50:50 tila-vuus-%) liuottavat 140 °C:ssa kuusen kuoresta noin 28 % ja vastaavasti 30 %. Mannyn kuoresta vastaavat uutesaannot ovat alhaisempia (18 - 20 %) . Kuusen ja mannyn kuoriuut-25 teiden tanniineilla onkin potentiaalista kåyttoå puulii-moissa varsinkin, jos uutteita fraktioidaan esimerkiksi ultrasuodattamalla. Talloin tosin saadaan ei-tanniineja sisåltavia jakeita, joille tulisi loytyå muuta kuin liima-ainekayttda.15 The hot water extract of spruce bark is very heterogeneous and often accounts for only about 50% of the water-soluble tannin (Stiasny number 50). If alkali and sulphite are present in the extraction of spruce bark with water, considerably higher extraction yields are obtained than if only 20 with hot water had been extracted (spruce about 25%, manty about 8%). Ethano-li-water (60:10% by volume) and acetone-water (50:50 by volume) dissolve about 28% and 30% of the spruce bark at 140 ° C, respectively. The extraction yields corresponding to manny bark are lower (18 - 20%). The tannins of spruce and manny bark extracts have a potential use in wood glues, especially if the extracts are fractionated by ultrafiltration, for example. In this case, however, fractions containing non-tannins are obtained, for which something other than the use of adhesives should be found.

30 Aikaisemmin on osoitettu, etta kuusen ja mannyn ·· kuoren uutteista, riippumatta niiden tanniinipitoisuudes- ta, voidaan valmistaa kationisia tuotteita, jotka flokkaa-vat hyvin kolloidista silikaa ja ruoppauslietettå (julkai-su Pulkkinen E. ja Seppanen R., "Preparation and testing 35 of cationic flocculants from agueous extracts of conifer tree barks", Forest Products Research Society, 40th Annual Meeting, 22. - 26.6.1986, Washinton, USA, tiivistelma 8; 2 91770 seka julkaisu Seppanen R., Makela A. ja Pulkkinen E., "Use of cationic derivatives of tree bark extracts and lignins as flocculant for wastewater treatment", Kemian PSivMt 5. - 6.11.1986, Helsinki, tiivistelmå 6.26, Kemia-Kemi 11, 5 1986) . Aikaisemmin kationisia tanniineja ei ole kuitenkaan kaytetty jatevesien sisaltamien kolloidisten aineiden flokkaamiseen ja valkaisujatevesien orgaanista klooria sisaltavien jakeiden saostamiseen.30 It has been previously shown that extracts of spruce and mannyn bark, regardless of their tannin content, can be used to produce cationic products which flocculate colloidal silica and dredging sludge well (published by Pulkkinen E. and Seppanen R., "Preparation and testing 35 of cationic flocculants from agueous extracts of conifer tree barks ", Forest Products Research Society, 40th Annual Meeting, June 22-26, 1986, Washinton, USA, Abstract 8; 2 91770 and Seppanen R., Makela A. and Pulkkinen E ., "Use of cationic derivatives of tree bark extracts and lignins as a flocculant for wastewater treatment", Chemistry PSivMt 5-6.11.1986, Helsinki, Abstract 6.26, Kemia-Kemi 11, 5 1986). However, in the past, cationic tannins have not been used to flocculate colloidal substances in wastewater and to precipitate organic chlorine fractions in bleaching wastewater.

. Tåsså keksinnosså osoitetaan, etta kuoriuutteiden 10 kationisoimistapaa ja flokkaustehoa voidaan viela oleelli-sesti parantaa. Myos paljon ei-tanniineja sisaltavista fraktioista on yllåttåvåsti voitu valmistaa tehokkaita flokkulanttej a.. The present invention demonstrates that the cationization mode and flocculation efficiency of the shell extracts 10 can be further substantially improved. Surprisingly, it has surprisingly been possible to prepare effective flocculants from fractions containing a lot of non-tannins.

Keksinto koskee siten flokkulointiaineena kaytto-15 kelpoista kationista tanniinia, jolle on tunnusomaista, ettå tanniinipitoinen havupuun kuoriuute on poikkisidos-tettu ennen sen kationisoimista glysidyylitrimetyyliammo-niumkloridi- tai N-(3-kloori-2-hydroksipropyyli)trimetyy-liammoniumkloridireagenssilla. Poikkisidostuksen ansiosta 20 kationisten tanniininen flokkauskyky selvasti paranee.The invention thus relates to a cationic tannin usable as a flocculant, characterized in that the tannin-containing softwood bark extract is cross-linked before it is cationized with glycidyltrimethylammonium chloride or N- (3-chloro-2-hydroxypropylammonium trimethyl) trimethyl. Thanks to cross-linking, the tannin flocculation capacity of the 20 cations is clearly improved.

Keksinnon mukaisten kationisten tanniinien avulla saadaan kuusen ja mannyn kuoriuutteita modifioimalla hal-poja polykationeja, jotka neutraloivat saastehiukkasten negatiivisia varauksia ja flokkaavat epaorgaanisia ja or-• 25 gaanisia yhdisteita, kuten valkaisujatevesien orgaanisia klooriyhdisteita, seka edelleen typpea ja fosforia sisål-tavia ravinneyhdisteitS jatevesista.The cationic tannins of the invention provide spruce and mannose bark extracts by modifying inexpensive polycations that neutralize the negative charges of particulate matter and flocculate inorganic and organic compounds such as organic chlorine compounds from bleaching effluents and further nitrogen and phosphorus.

Pienetkin erot flokkaustehossa tulevat selvasti nakyviin laboratoriotesteisså (astiatesti tai fotometri-30 sella dispersioanalysaattorilla (PDA) suoritettava testi, kun kolloidisena referenssina on esim. mikrokiteinen sili-ka tai selluloosa). Suuressa mittakaavassa tapahtuvissa jatevesien puhdistusprosesseissa kationisten kuoriuutteiden tehokkuus kolloidisen kiintoaineen ja valkaisujateve-35 sien orgaanisten klooria sisåltåvien yhdisteiden poista- li 3 91770 misessa nåkyy mm. laskeuttamisessa, flotaatiossa ja liet-teiden vSkevdimisessa (veden poistuminen).Even small differences in flocculation power become clear in laboratory tests (dish test or test with a photometer-30 dispersion analyzer (PDA) when the colloidal reference is e.g. microcrystalline silica or cellulose). In large-scale wastewater treatment processes, the efficiency of cationic shell extracts in the removal of colloidal solids and bleach effluents from organic chlorine-containing compounds 3,91770 can be seen e.g. in settling, flotation and sludge reduction (dewatering).

TSssM keksinnOsså kuusen ja mannyn kuoriuutteita on kationisoitu seuraavilla epoksiammonium- ja kloorihydrii-5 niammoniumsuolareagensseilla:In the invention, spruce and manna bark extracts have been cationized with the following epoxyammonium and chlorohydrin-5 ammonium salt reagents:

NaOHNaOH

teaniini- OH i CH^CHCH^CH^CI0 -Vtheanine-OH and CH 2 CHCH 2 CH 2 ClO -V

10 glysidyylltrimetyylianunonlumkloridi GTAK-reagenssl tanniinl- OCf^CHCH^tCHy^CI010 glycidyltrimethylanunonum chloride GTAK reagent sannin-OCf ^ CHCH ^ tCHy ^ Cl0

OHOH

15 +15 +

N«OMN «OM

rNaCI 1 h2°rNaCl 1 h 2 °

CH2CHCH2N*\CH3)3CI®+ NaOHCH2CHCH2N (CH3) 3Cl® + NaOH

Cl OH N(3-kloorl-2-hydroksipropyyli) trlmeCyyllaiiunoDiuinklorldl 20 GTAK-HC1-reagenssi (kloorihydriinireagenssl)Cl OH N (3-Chloro-2-hydroxypropyl) tert-methylyl sulfonyl chloride GTAK-HCl reagent (chlorohydrin reagent)

Tanniinien aminometylointi formaldehydilia ja dime-25 tyyliamiinilla tulee my5s kysymykseen (Tappi-julkaisu Vol.Aminomethylation of tannins with formaldehyde and dime-25 ethylamine also comes into question (Tappi Vol.

61, nro 5, toukokuu 1978). KeksinniJsta edelleen ilmenee, etta GTAK-reagenssi ja GTAK-HCl-reagenssi kiinnittyvat suurella saannolla (noin 90 %) kuoriuutteeseen. Tama va-hentaa reagensseista syntyvien sivutuotteiden maaraa ja 30 oleellisesti parantaa raaka-ainekustannuksia aktiivituo-tetta kohti.61, No. 5, May 1978). It is further apparent from the invention that GTAK reagent and GTAK-HCl reagent adhere to the shell extract in high yield (about 90%). This reduces the amount of by-products generated from the reagents and substantially improves the raw material cost per active product.

Jos kuoriuutteen tanniinipitoisuus on korkea, sita voidaan poikkisidostaa ennen eetterdintia (kationisointia) pienelia maaraiia formaldehydia ja saada erittain tehok-35 kaasti flokkaava kationinen tanniini. Jos taas kuoriuutet- 4 91770 ta poikkisidostetaan epikloorihydriinilla ennen kationi-sointia, myos paljon ei-tanniineja sisaltåvastå kuoriuut-teesta tai sen fraktiosta (Stiasny-luku esim. 40) voidaan valmistaa tehokas flokkulantti.If the tannin content of the shell extract is high, it can be cross-linked before etherification (cationization) with a small amount of formaldehyde and a highly efficient cationic tannin can be obtained. If, on the other hand, the shell extract is crosslinked with epichlorohydrin before cationization, an effective flocculant can also be prepared from the shell extract or its fraction (Stiasny number e.g. 40) containing a lot of non-tannins.

5 Valmistetut kationiset tanniinit kuuluvat kationis- ten polymeerien ryhmåån, joiden vaikutuksesta tiedetåån, etta ne yksinaan tai epaorgaanisten koagulanttien kanssa tarttuvat jateveden sisåltamien, negatiivisesti varautu-neiden hiukkasten pintaan, neutraloivat pinnan negatiivi-10 sen varauksen ja nain saostavat jateveden kolloidisen kiintoaineen. Jos kationisella tanniinilla neutraloitujen hiukkasten flokkikokoa halutaan kasvattaa, hienojakoiseen flokkiin lisataan suurimolekyylipainoista kationista, anionista tai neutraalista lineaarista polymeeriå, jolloin 15 sen pitkat taipuista molekyyliketjut kytkevat saastehiuk-kasia hyvin laskeutuviksi kimpuiksi.The cationic tannins produced belong to the group of cationic polymers which are known to adhere, alone or with inorganic coagulants, to the surface of negatively charged particles contained in effluent, to neutralize the negative charge of the surface and thus to precipitating the effluent. If it is desired to increase the floc size of the particles neutralized with cationic tannin, a high molecular weight cationic, anionic or neutral linear polymer is added to the fine floc, whereby its long flexible molecular chains bind the contaminant particles into highly descending bundles.

Eraana keksinnon tarkoituksena on loytaa tietyssa kåyttotilanteessa yhdistelmaannos, jossa neutraloijana on kationinen tanniini ja silloittajana suurimolekyylipainoi-20 nen lineaarinen polymeeri, sekå tutkia tallaisen kaksikom-ponenttiannoksen suhteellista maåraa ja syottaxaistapaa parhaan flokkulointituloksen aikaansaamiseksi.It is an object of the invention to find a combination dose in a particular use situation in which the neutralizing agent is a cationic tannin and the crosslinking agent is a high molecular weight linear polymer, and to study the relative size and method of such a two-component dose to obtain the best flocculation result.

Kationisten polyelektrolyyttien ja kationisten tan-niinien flokkaustehokkuutta voidaan verrata toisiinsa esi-25 testeilla. Astiatestissa saostetaan kolloidista dispersio-ta (silika, selluloosa) eri suurin flokkulanttiannostuk-sin, jolloin sakan laskeutumisen jalkeen sarjan kirkasteen alhaisin jaannossameus ilmoittaa optimiflokkausannoksen kaytetyn dispersion suhteen. Sovellettaessa astiatestia 30 jåteveteen sameutta on usein mahdoton mitata. Sen sijaan sarjan kirkasteiden kemiallinen hapen kulutus (COD), fos-fori tai orgaanisen kloorin maara vastaavalla tavalla ar-vioituna antaa optimiannoksen. PDA:11a suoritetut kokeet ilmoittavat flokin suhteellisen koon ja myos keståvyyden, 35 jos testi suoritetaan erilaisilla kierrosnopeuksilla. PDA- i.The flocculation efficiencies of cationic polyelectrolytes and cationic tannins can be compared by pre-25 tests. In the vessel test, the colloidal dispersion (silica, cellulose) is precipitated at different maximum flocculant dosages, whereby, after settling of the precipitate, the lowest fractional turbidity of the series clarifier indicates the optimum flocculation dose for the dispersion used. When applying the vessel test 30 to wastewater, it is often impossible to measure turbidity. Instead, the chemical oxygen demand (COD), phosphorus, or amount of organic chlorine in the series of brighteners, respectively, gives the optimum dose. Tests performed on the PDA indicate the relative size of the flock and also the endurance, 35 if the test is performed at different speeds. PDAs.

5 91770 testi tulee erikoisen arvokkaaksi kun sita sovelletaan jateveteen. jatevetta titrataan laitteen astiassa tietyn vakevyiselia flokkulantti- tai koagulanttiliuoksella, to-detaan millå annoksella flokin muodostuminen alkaa, mika 5 on optimiannos ja kuinka flokin lujuuteen voidaan vaikut-taa silloittavalla polymeerilia.The 5,91770 test becomes especially valuable when applied to effluent. the effluent is titrated in a vessel of the apparatus with a solution of a certain stability of flocculant or coagulant, it is determined at what dose the formation of the floc begins, what is the optimum dose and how the strength of the floc can be affected by the crosslinking polymer.

Paitsi jateveden kolloidista jaetta, my6s sen si-saitamia orgaanisten happojen suoloja voidaan saostaa riittavan suurilla kationisen tanniinin annoksilla. Tål- 10 liiin flokkulantin tai koagulantin kulutus usein on liian suuri ollakseen taloudellinen, joten saostimen talteenotto lietteesta tulee harkittavaksi.Not only the colloidal fraction of the effluent, but also the organic acid salts it contains can be precipitated with sufficiently high doses of cationic tannin. The consumption of flocculant or coagulant is often too high to be economical, so recovery of the precipitant from the sludge will be considered.

Keksintdå kuvaavat seuraavat esimerkit.The following examples illustrate the invention.

Esimerkki 1 15 Tassa esimerkisså esitetåån yksityiskohtaisesti, kuinka kuusen kuoren kuumavesiuutteen tanniinista (Stias-ny-luku 84) GTAK-reagenssilla saadaan kationinen eetteri, jonka valmistaminen ja flokkausteho optimoidaan.Example 1 15 This example details how the tannin of the hot water extract of spruce bark (Stias-ny Chapter 84) with GTAK reagent gives a cationic ether, the preparation and flocculation efficiency of which is optimized.

Taulukosta 1 ilmenee kationisoinnin låhtdtilanne.Table 1 shows the initial state of cationization.

2020

Taulukko 1table 1

Kationisen tanniinin valmistus GTAK-reagenssilla _Grammaa_ 25 _Markana Kuivana Moolia MoolisuhdePreparation of cationic tannin with GTAK reagent _Grams_ 25 _Mark Dry Mole Molar ratio

Kuusen kuoren kuumaves iuute Stiasny-luku 84, ka. 47,5 % 653 310 30 GTAK-reagenssi, M 151,64Spruce bark hot water extract Stiasny Chapter 84, ka. 47.5% 653 310 30 GTAK reagent, M 151.64

Aktiivisuus 70 %Activity 70%

Kuiva-aine 79 % 454 317,8 2,10 1 100 % epoksidi 35 40,9 (ei-epoksidi)Dry matter 79% 454 317.8 2.10 1 100% epoxy 35 40.9 (non-epoxy)

NaOH, M 40,01 15 0,37 0,18 6 91770NaOH, M 40.01 15 0.37 0.18 6 91770

Merkittavaa låhtotilanteessa on korkea kuiva-aine-pitoisuus (61,8 %) ja NaOH:n moolinen ylimaåra GTAK-rea-genssln suhteen. Reagenssi oli saatu Raisio Oy:ltå.Significant in the starting situation is the high dry matter content (61.8%) and the molar excess of NaOH relative to the GTAK reagent. The reagent had been obtained from Raisio Oy.

Eetterdintiå vårten vesipitoinen tanniini (ka.Aqueous tannin for etherification (ka.

5 47,5 %) homogenisoitiin Baker-Perkins-tyyppisesså ruuvise- koittajassa (tilavuus noin litra), jonka jalkeen reakto-riin lisattiin kiinteå NaOH ja sekoitettiin huoneenlåmpo-tilassa 2 tuntia. Taman jMlkeen lisattiin reagenssi ja sekoitusta jatkettiin huoneenlåmpdtilassa. Reaktioseok-10 sesta otettujen naytteiden flokkauskyky astiatestissa si-likadispersiossa (270 mg/600 ml) testattiin 14, 17, 40 ja 52 tunnin kuluttua. Reaktio pysaytettiin neutraloimalla reaktioseos 2 M suolahapolla. Tulokset on esitetty kuvios-sa 1. Tulokset ilmoitetaan prosentuaalisina formatsiinin 15 sameusyksikkdina (% FTU) ja flokkulantin annos ilmaistaan prosentteina silikan painosta.47.5%) was homogenized in a Baker-Perkins type screw mixer (volume about 1 liter), after which solid NaOH was added to the reactor and stirred at room temperature for 2 hours. The reagent was then added and stirring was continued at room temperature. Samples taken from the reaction mixture were flocculated in a vessel test in a silica dispersion (270 mg / 600 ml) after 14, 17, 40 and 52 hours. The reaction was quenched by neutralizing the reaction mixture with 2 M hydrochloric acid. The results are shown in Figure 1. The results are expressed as a percentage of forintin turbidity unit (% FTU) and the flocculant dose is expressed as a percentage by weight of silica.

Kuviosta 1 on nahtåvisså, etta kationisointi on tapahtunut tåydellisesti huoneenlampotilassa 40 tunnissa.It can be seen from Figure 1 that the cationization has taken place completely at room temperature in 40 hours.

Nayte nain saatua raakatuotetta laimennettiin ja 20 ultrasuodatettiin Diaflo YM2 -kalvon lapi (Amicon Corp., eksluusioraja 1000). Puhdistettu ja kuivattu tuote sisalsi typpeå 4,4 % (maaritetty Kjeldahl-menetelmalla).The crude product thus obtained was diluted and ultrafiltered through a Diaflo YM2 membrane (Amicon Corp., exclusion limit 1000). The purified and dried product contained 4.4% nitrogen (determined by the Kjeldahl method).

Reagenssisaannon laskeminen 100 g:sta ultrasuodatettua kationista kuoriuutetta 25 loytyi: = 0,3143 x 151,64 = 47,66 g GTAK-reagenssia ja 14 52,34 g tanniinia.Calculation of reagent yield From 100 g of ultrafiltered cationic shell extract, 25 were found: = 0.3143 x 151.64 = 47.66 g of GTAK reagent and 14 52.34 g of tannin.

GTAK-reagenssia on sitoutunut tanniiniin siten: 30 0.3143 X 310,0 = 88 6 % 52,34GTAK reagent is bound to tannin as follows: 30 0.3143 X 310.0 = 88 6% 52.34

FlokkauskokeetFlokkauskokeet

Astiatestit suoritettiin (6-paikkaisessa) laitteis-tossa (Phipps & Bird) ja kolloidisena dispersiona oli mik-35 rokiteinen silika (Min-U-Sil 5, Pennsylvania Glass and i 7 91770Vessel tests were performed on a (6-well) apparatus (Phipps & Bird) and the colloidal dispersion was microcrystalline silica (Min-U-Sil 5, Pennsylvania Glass and i 7 91770

Sand Corp.)/ jota lietettiin 1,800 g 4 litraan vetta pH-arvossa 4,0 - 4,1 tunnin ajan. Saostimet lisåttiin nopean sekoituksen aikana 600 ml silikadispersiota (270 mg sili-kaa) sisaltaviin 800 ml:n dekantterilaseihin ja sekoitet-5 tiin peråkkain seuraavasti: 20 min nopeudessa 65 rpm, 20 min nopeudessa 30 rpm, rninka jalkeen selkeytettiin 30 min. Jåånnossameudet mitattiin Hach'in turbidometrillå 25 ml:n nåytteista, jotka oli otettu 2 cm nestepinnan alapuolelta. Tulokset on esitetty kuviossa 2.Sand Corp.) / which was slurried in 1,800 g of 4 liters of water at pH 4.0 to 4.1 hours. During rapid stirring, the precipitates were added to 800 ml beakers containing 600 ml of silica dispersion (270 mg of silica) and mixed successively as follows: 20 min at 65 rpm, 20 min at 30 rpm, clarification after 30 min. Residual turbidity was measured with a Hach turbidometer from 25 ml samples taken 2 cm below the liquid surface. The results are shown in Figure 2.

10 Kuviosta 2 nahdaan, etta ultrasuodatuksella puhdis- tettu kationinen tanniini saostaa kolloidista silikaa huo-mattavasti tehokkaammin kuin kaupallinen kationinen poly-meeri Fennopol 194 K, Kemira Oy (voimakkaasti kationinen polyakryyliamidi; M on noin 4 miljoonaa). Testeissa foto-15 metrisella dispersioanalysaattorilla (PDA 2000, Rank Brothers Ltd) kyvetti oli yhdistetty 3 mm:n letkulla 1,5 lit-ran reaktioastiaan, jossa oli kierrosnopeusmittarilla (stroposkooppi) varustettu moottorisekoittaja (lapasekoi-tin). Naytteenotto kyvettiin tapahtui reaktioastian poh-20 jasta, johon oli etaisyytta 15 cm. Virtausnopeus saadet- tiin LKB 12000 Variopres peristalttisella pumpulla. Tulos-tus tapahtui piirturille. Herkkyys saadettiin PDA-2000-analysaattorilla (Gatin RMS, DC) , joten etuvastusta ei tarvittu. Virtausnopeus kaikissa olosuhteissa oli 1,22 25 ml/min.It can be seen from Figure 2 that the cationic tannin purified by ultrafiltration precipitates colloidal silica considerably more efficiently than the commercial cationic polymer Fennopol 194 K, Kemira Oy (highly cationic polyacrylamide; M is about 4 million). In the tests with a photo-15 meter dispersion analyzer (PDA 2000, Rank Brothers Ltd), the cuvette was connected by a 3 mm hose to a 1.5 liter reaction vessel equipped with a motor stirrer equipped with a tachometer (stroposcope). Sampling into the cuvette took place from the bottom of the reaction vessel at a distance of 15 cm. The flow rate was obtained with an LKB 12000 Variopres peristaltic pump. The printout took place on a plotter. Sensitivity was obtained with a PDA-2000 analyzer (Gatin RMS, DC), so no front resistor was required. The flow rate under all conditions was 1.22 25 ml / min.

Koeolosuhteet:Test conditions:

Silika: 450 mg/1 000 mlSilica: 450 mg / 1,000 ml

Mikrokiteinen selluloosa: 450 mg/1 000 ml pH: 4,0 - 4,1 30 Sekoitus alussa: 65 rpmMicrocrystalline cellulose: 450 mg / 1000 ml pH: 4.0 - 4.1 30 Initial mixing: 65 rpm

Sekoitus testin aikana: 65 rpm Virtaus: 1,22 ml/minStir during test: 65 rpm Flow: 1.22 ml / min

Analysaattorin herkkyys: RMS 1,07 Filter on DS 5,4 Limit on 8 91770Analyzer Sensitivity: RMS 1.07 Filter on DS 5.4 Limit on 8,91770

Optimiannoksen måårååminen dispersioanalysaattoril- la (PDA) PDA tulostaa piirturin vaakasuoralle akselille ajan, joka on kulunut flokkulanttiannoksen injektoinnista.Determining the Optimal Dose with a Dispersion Analyzer (PDA) The PDA prints on the horizontal axis of the plotter the time that has elapsed since the flocculant dose was injected.

5 Pystysuoralta akselilta nflkyy suhteellinen flokkikoko (voltteina). Optimiannoksella suhteellisessa flokkikoossa ja nopeudessa, jolla se saavutetaan on maksimi. Taulukon 2 perusteella kationisen tanniinin optimiannos, eli 0,058 % silikasta, saavutetaan, kun suhteellinen flokkikoko on 10 3,95 V ja flokin kasvunopeus 9,22 volttia/min.5 The vertical axis shows the relative floc size (in volts). The optimum dose at the relative flock size and the rate at which it is reached is the maximum. Based on Table 2, the optimum dose of cationic tannin, i.e. 0.058% silica, is achieved when the relative floc size is 10 3.95 V and the floc growth rate is 9.22 volts / min.

Taulukko 2Table 2

Kationisen tanniinin optimiannoksen PDA-mååritys kolloidisen silikan suhteen 15 _PDA determination of the optimal dose of cationic tannin for colloidal silica 15 _

Annostus Suhteellinen Flokin kasvunopeus % silikasta flokkikoko (volttia) voltti/min_ 0,023 1,35 0,75 0,029 2,65 3,55 20 0,035 3,10 6,15 0,046 3,55 8,55 0,058 3,95 9,22 0,070 3,95 5,56 0,081 2,95 3,70 25 _Dosage Relative Floc growth rate% of silica flock size (volts) volts / min_ 0.023 1.35 0.75 0.029 2.65 3.55 20 0.035 3.10 6.15 0.046 3.55 8.55 0.058 3.95 9.22 0.070 3.95 5.56 0.081 2.95 3.70 25 _

Todetaan, ettå PDA:11a saatu optimiannos (0,058 % silikasta) on suurempi kuin astiatestisså saatu vastaava annos (0,035 % silikasta).It is noted that the optimum dose obtained with PDA (0.058% silica) is higher than the corresponding dose obtained in the vessel test (0.035% silica).

30 Esimerkki 2 Tåsså esimerkisså kuvataan kokeita, joissa kuusen kuoresta kuumavesiuutolla saatua tanniinia on poikkisi-dostettu formaldehydillå ennen kationisointia. Tulokset osoittavat, ettå poikkisidostuksen ansiosta vastaavan ka- li 9 91770 tionisen tanniinin optimiflokkausannos kolloidisen sili-kan suhteen alenee ja flokin keståvyys kasvaa.Example 2 This example describes experiments in which tannin obtained from spruce bark by hot water extraction has been cross-linked with formaldehyde before cationization. The results show that due to cross-linking, the optimum blocking dose of the corresponding potassium 9 91770 thionic tannin with respect to colloidal silica is reduced and the resistance of the flock is increased.

Esimerkisså låhdetåån kuoriuutteesta, jonka liu-koisten tanniinien pitoisuus oli alhaisempi kuin esimer-5 kisså 1 kåytetyllå kuoriuutteella (Stiasny-luku 70 vs. 84). Kuoriuute ensin poikkisidostetaan formåldehydillå ja sen jålkeen kationisoidaan GTAK-reagenssilla.The example starts with a bark extract with a lower concentration of Liu-sized tannins than the bark extract used in Example 5 (Stiasny number 70 vs. 84). The shell extract is first crosslinked with formaldehyde and then cationized with GTAK reagent.

a) Kuoriuutteen geeliintymisherkkyyden måårååmisek-si suoritettiin ensin geeliintymisaikamååritys.a) In order to determine the gelation sensitivity of the shell extract, a gelation time determination was first performed.

10 Geeliintymisaikakoe 30 g kuusen kuoren kuumavesiuutetta (Stiasny-luku 70 ) liuotettiin 100 ml:aan vettå, joka sisålsi 3,36 g NaOH:a. 45,1 g tåtå liuosta (sisåltåå 10,4 g uutetta) poikkisidostettiin 1,5 ml:11a 37-prosenttista formaldehy- 15 diå 50 °C:ssa Tecan-geeliintymisaikamittarissa (GT 3 kie-kon halkaisija 14 mm). Geeliintymisaika oli 138 min. Ennen geeliintymistå liuos sisålsi 22,3 % kuivaa uutetta. NaOH:n måårå laskettuna kuivasta uutteesta oli 11,5 % ja CH20-pi-toisuus kuivaa uutetta kohti oli 0,178 moolia/100 g.Gel time experiment 30 g of hot water extract of spruce bark (Stiasny number 70) was dissolved in 100 ml of water containing 3.36 g of NaOH. 45.1 g of this solution (containing 10.4 g of extract) were cross-linked with 1.5 ml of 37% formaldehyde at 50 ° C in a Tecan gel time meter (GT 3 disc diameter 14 mm). The gel time was 138 min. Prior to gelation, the solution contained 22.3% dry extract. The amount of NaOH based on the dry extract was 11.5% and the CH 2 O content per dry extract was 0.178 mol / 100 g.

2020

Taulukko 3Table 3

Kuusen kuoren kuumavesiuutteen poikkisidostaminen ja kationisointi 25 _Grammaa_ __Mårkånå Kuivana MooliaCross-linking and cationization of spruce bark hot water extract 25 _Grammaa_ __Mårkånå Dry Mole

Poikkisidostaminen 50 °C/30 h Kuusen kuoren kuumavesiuutteen (Stiasny-luku 70) 30 alkaliliuos 50 16,7Crosslinking 50 ° C / 30 h Alkaline solution of spruce bark hot water extract (Stiasny number 70) 30 16.7

Orgaaninen osa 15,0Organic part 15.0

NaOH 1,67 0,042 CH20 37 % 1,24 0,46 10 91770NaOH 1.67 0.042 CH 2 O 37% 1.24 0.46 10 91770

Liuos sisSlsi 11,1 % NaOH:a kuivasta uutteesta ja 0,103 moolia CH20:ta/100 g kuoriuutetta.The solution contained 11.1% NaOH from the dry extract and 0.103 moles of CH 2 O / 100 g of bark extract.

_Grammaa_ 5 MMrkana Kuivana_Moolia_Grams_ 5 MMpark Dry_Moles

EetterOinti 50 °C/20 hEtherification 50 ° C / 20 h

Reagenssi GTAK (M 151,64)Reagent GTAK (M 151.64)

Reagenssin kuiva-aine 10 oli 79 % ja se sisai- si epoksidia 66,2 % 19,1 15,1 12,6 0,083 (100 % epoksidia) 15 _ NSyte raakatuotteesta suodatettiin Diaflo YM2 (Ami-con Corp., eksluusioraja M 1000) lapi, jolloin puhdiste-tusta tuotteesta lOytyi typpea 3,9 %.Reagent dry matter 10 was 79% and would contain epoxide 66.2% 19.1 15.1 12.6 0.083 (100% epoxide) 15 NSyte of the crude product was filtered through Diaflo YM2 (Ami-con Corp., exclusion limit M 1000 ), with 3.9% nitrogen in the purified product.

20 Reagenssisaannon laskeminen 100 g:sta ultrasuodatettua kationista kuoriuutetta loytyi = 0,2786 x 151,64 = 42,25 g GTAK-reagenssia ja 14 57,75 g kuoriuutetta.Calculation of reagent yield 100 g of ultrafiltered cationic shell extract was found = 0.2786 x 151.64 = 42.25 g of GTAK reagent and 14 57.75 g of shell extract.

25 GTAK-reagenssia on sitoutunut tanniiniin siten: 0,279 moolia N_ 15 g kuoriuutetta_ 57,75 g kuoriuutetta 0,083 moolia reagenssia °>279_x 15- % = 87 3 % 30 57,75 x 0,083 b) Toisessa kokeessa kuoriuute poikkisidostettiin 0,154 moolilla formaldehydia 100 g kohti tanniinia ja saa-tettiin sitten reagoimaan GTAK-reagenssin kanssa 50 °C:ssa 3 tuntia Berghoff-autoklaavissa, jolloin puhdistetun tuot-35 teen typpipitoisuus oli 3,5 %. Vertailukokeessa ilman I; 11 91770 poikkisidostamista kationisoitiin samoissa olosuhteissa, jolloin puhdistetun tuotteen typpipitoisuus oli 3,6 %.25 GTAK reagents are bound to tannin as follows: 0.279 moles N_15 g bark extract_ 57.75 g bark extract 0.083 moles reagent °> 279_x 15-% = 87 3% 30 57.75 x 0.083 b) In the second experiment, the bark extract was cross-linked with 0.154 moles of formaldehyde per 100 g per tannin and then reacted with GTAK reagent at 50 ° C for 3 hours in a Berghoff autoclave to give a purified product nitrogen content of 3.5%. In a comparative experiment without I; 11,91770 crosslinks were cationized under the same conditions, giving a purified product nitrogen content of 3.6%.

Taulukko 4Table 4

Poikkisidostuksen vaikutus kationisten tanniinien 5 molekyylipainojakautumaan geelisuodatuskromato- grammeissaEffect of crosslinking on the molecular weight distribution of cationic tannins in gel filtration chromatograms

Kationisoitu _Molekvvlimassa_ tanniini_10 000 5 000 3 000 1 500 1 000 10 Poikkisidostamaton 36 56 68 82 89Cationized _Molecular mass_tannin_10,000 5,000 3,000 1,500 1,000 10 Non-crosslinked 36 56 68 82 89

Poikkisidostettu 50 66 74 84 89 (0,103 moolia CH20/100 g) 15Cross-linked 50 66 74 84 89 (0.103 moles of CH 2 O / 100 g) 15

Geelisuodatusmenetelma on kuvattu julkaisussa Forss K., Kokkonen R. ja Sågfors P-E., "Determination of molar mass distribution of lignins by gel permeation chromatography", 1989, American Chemical Society, Symposium Series 20 397, luku 9, 125 - 133. Geelina oli Sephadex G-50 ja eluenttina 0,5 M NaOH.The gel filtration method is described in Forss K., Kokkonen R. and Sågfors PE., "Determination of molar mass distribution of lignins by gel permeation chromatography", 1989, American Chemical Society, Symposium Series 20 397, Chapter 9, 125-133. Sephadex G-50 and 0.5 M NaOH as eluent.

Flokkaustehon paraneminen poikkisidostamisen an-siosta nakyy taulukosta 5.The improvement in flocculation efficiency due to crosslinking is shown in Table 5.

25 Taulukko 525 Table 5

Tanniinin poikkisidostamisen (CH20) vaikutus siita valmistetun kationisen eetterin silikasaostuskykyyn astiatestissa 30 Poikkisidostusaste Annostus Suhteellinen moolia CH20/100 g silikasta, flokkikoko _%_J[_%_100 rpm_ 0 3,6 0,17 - 0,20 1,2 0,154 3,5 0,07 - 0,11 2,8 35 _ 12 91770Effect of tannin crosslinking (CH 2 O) on the silica precipitation capacity of the cationic ether prepared from it in a vessel test 30 Degree of crosslinking Dosage Relative moles of CH 2 O / 100 g silica, flock size _% _ J [_% _ 100 rpm_ 0 3.6 0.17 - 0.20 1.2 0.154 3.5 0.07 - 0.11 2.8 35 _ 12 91770

Esimerkki 3Example 3

TflssS esimerkissS kuvataan edelleen tanniinin CH20-poikkisidostamisen vaikutusta siita valmistetun kationisen eetterin flokkaustehoon.This example further describes the effect of CH 2 O crosslinking of tannin on the flocculation efficiency of the cationic ether prepared therefrom.

5 L&htOtanniini on sama kuin esimerkissa 1 (Stiasny- luku 84). Poikkisidostusvaiheeseen tannlinia punnittiin mårkåna 278,7 g (ka. 43,3 %), jolloin kulvaa kuoriuutetta oli 120,7 g, jonka suhteen laskettuna formaldehydiå kåy-tettiin 0,46 % (0,0153 moolia CH20:ta/100 g kuoriuutetta).5 L & htOtannin is the same as in Example 1 (Stiasny Chapter 84). In the crosslinking step, 278.7 g (ca. 43.3%) of wet tannin was weighed to give 120.7 g of a crude shell extract, of which 0.46% (0.0153 moles of CH 2 O / 100 g of shell extract) was used, based on formaldehyde. .

10 CH20 lisattiin 37 % vesiliuoksena ja NaOH 5 M liuoksena, kunnes reaktioseoksen pH oli 12. Poikkisidostaminen tapah-tui 1,5 litran tasohioskolvissa antaen reaktioseoksen te-hosekoituksen jålkeen seisoa huoneenlåmpOtilassa 2 tuntia ja sen jSlkeen 45 eC:ssa 4 tuntia.CH 2 O was added as a 37% aqueous solution and NaOH as a 5 M solution until the pH of the reaction mixture was 12. Cross-linking took place in a 1.5 liter flat glass flask, allowing the reaction mixture to stand at room temperature for 2 hours and then at 45 ° C for 4 hours.

15 Poikkisidostettuun seokseen lisattiin kationisoin- tireagenssia (GTAK, ka. 70 %, aktiiviainetta 60 %) 80,19 g (0,529 moolia aktiiviaineeksi laskettuna) ja reaktioseos homogenisoitiin tehosekoittajalla (Braun). Seos seisoi 2 tuntia 20 °C:ssa ja 22 tuntia 40 °C:ssa.To the cross-linked mixture was added cationization reagent (GTAK, ca. 70%, active ingredient 60%) 80.19 g (0.529 moles calculated as active ingredient) and the reaction mixture was homogenized with a blender (Braun). The mixture was allowed to stand for 2 hours at 20 ° C and 22 hours at 40 ° C.

20 Formaldehydin jåykiståvå vaikutus reaktioseokseen nåkyi jo huoneenlSmpdtilassa, mutta lShes kiinteå massa notkistui eetterOinnin aikana viskoosiseksi nesteeksi. Neutraloidusta raakatuotteesta ultrasuodatuksen jålkeen lOytyi typpeå 3,6 %.The stiffening effect of formaldehyde on the reaction mixture was already visible at room temperature, but the solid mass in the slurry softened to a viscous liquid during the etherification. After ultrafiltration, 3.6% of the neutralized crude product contained nitrogen.

25 Seuraavanlaisesti laskettu reagenssisaanto oli huo- mattavan korkea: ^ = 0,257 x 151,64 = 39,0 g GTAK-reagenssia ja 14 100 g - 39,0 g * 61,0 g tanniinia.The reagent yield calculated as follows was remarkably high: ^ = 0.257 x 151.64 = 39.0 g of GTAK reagent and 14,100 g to 39.0 g * 61.0 g of tannin.

30 GTAK-reagenssia on sitoutunut tanniiniin: 0,257 x 120f7_ = g61 61,0 x 0,529 13 9177030 GTAK reagents are bound to tannin: 0.257 x 120f7_ = g61 61.0 x 0.529 13 91770

Poikkisidostamisen vaikutus flokkaustehokkuuteenEffect of crosslinking on flocculation efficiency

Vaikka poikkisidostamattomassa kationisessa tan-niinissa typpeå oli 4,4 % (esimerkki 1) ja poikkisidoste-tussa tanniinissa 3,6 %, molemmat kationisoinnit oli suo-5 ritettu samaan kuoriuutteeseen, joten flokkaustuloksia voidaan verrata toisiinsa, jos annokset lasketaan kationi-sen tanniinin typpeå kohti. Kuviossa 3 esitetyistå tulok-sista kåy selvåsti ilmi, etta formaldehydilia poikkisidos-taminen pienentaa optimiannosta astiatestissa ja nostaa 10 suhteellista flokkikokoa PDA:ssa suoritetussa testisså.Although the crosslinked cationic tannin contained 4.4% nitrogen (Example 1) and the crosslinked tannin 3.6%, both cationizations were performed on the same bark extract, so flocculation results can be compared if the doses are calculated for cationic tannin nitrogen. towards. It is clear from the results shown in Figure 3 that crosslinking of formaldehyde reduces the optimum dose in the vessel test and increases the 10 relative floc sizes in the test performed on the PDA.

Esimerkki 4 Tåsså esimerkisså osoitetaan, etta epikloorihydrii-ni poikkisidostaa paljon ei-tanniineja sisaitavaa kuusen kuoren kuumavesiuutetta (Stiasny-luku 40), jolloin katio-15 nisoidun tuotteen flokkausteho on huomattavasti parantunut poikkisidostamisen ansiosta.Example 4 This example demonstrates that my epichlorohydrin cross-links a high non-tannin-containing hot water extract of spruce bark (Stiasny Chapter 40), thereby significantly improving the flocculation efficiency of the cationic-15 product due to cross-linking.

2 g kuusen kuoren kuumavesiuutetta (Stiasny-luku 40) liuotettuna vakevaan NaOH-liuokseen (0,3 g NaOH ja 2 ml H20) sekoitettiin 50 °C:ssa lasiastiassa noin tunnin 20 ajan. Poikkisidostus suoritettiin lisååmållå reaktioas-tiaan 0,1 g epikloorihydriinia (ECH)ja sekoitusta jatket-tiin samassa låmpOtilassa 10 min.2 g of spruce bark hot water extract (Stiasny number 40) dissolved in a solid NaOH solution (0.3 g of NaOH and 2 ml of H 2 O) was stirred at 50 ° C in a glass vessel for about 1 hour. Crosslinking was performed by adding 0.1 g of epichlorohydrin (ECH) to the reaction vessel and stirring was continued at the same temperature for 10 min.

Kationisointia vårten poikkisidostettuun reak-tioseokseen lisåttiin 1 g GTAK-reagenssia (laskettuna 25 100 %:ksi epoksisisålldn suhteen, 6,7 moolia) ja kuumen- nusta jatkettiin 50 °C:ssa 2,5 tuntia. Reaktio pysåytet-tiin neutraloimalla seos 2 N HCl:llå. Raakatuote kuivat-tiin vakiopainoon 50 eC:ssa. Osa kuivasta tuotteesta (1 g) lietettiin huoneenlåmpOtilassa 160 ml:aan 94-prosenttista 30 etanolia, suodatettiin ja sakka pestiin dietyylieetterillå ja kuivattiin vakiopainoon vakuumieksikaattorissa. Puhdis-tettua epikloorihydriinillå poikkisidostettua kationista kuusen kuoriuutetta saatiin etanolipesulla 61 % kuivasta raakatuotteesta ja sen typpiprosentti oli 2,6.To cationize, 1 g of GTAK reagent (calculated as 100% epoxy content, 6.7 moles) was added to the crosslinked reaction mixture and heating was continued at 50 ° C for 2.5 hours. The reaction was quenched by neutralizing the mixture with 2 N HCl. The crude product was dried to constant weight at 50 ° C. A portion of the dry product (1 g) was slurried at room temperature in 160 ml of 94% ethanol, filtered and the precipitate was washed with diethyl ether and dried to constant weight in a vacuum desiccator. The purified epichlorohydrin cross-linked cationic spruce bark extract was obtained by ethanol washing to 61% of the dry crude product and had a nitrogen content of 2.6%.

14 9177014 91770

UhtfitllanneUhtfitllanne

Grammaa Grammaa mmoolla Mooli- ___suhdeGrams Grams in mmoles Molar ___ ratio

Kuoriuute 5 Stiasny-luku 40 2 2Bark extract 5 Stiasny chapter 40 2 2

NaOH (40) 0,3 0,3 7,5 1,12 7 ECH (92,53) 0,1 0,1 1 GTAK (151,64) 1 1,0 6,6 1 H20 _2_ _ 10 5,4 3,4 kuiva- aine 63 % LShtOtilanne laskettuna 100 g kohti kuoriuutetta: 15NaOH (40) 0.3 0.3 7.5 1.12 7 ECH (92.53) 0.1 0.1 1 GTAK (151.64) 1 1.0 6.6 1 H2O _2_ _ 10 5, 4 3.4 dry matter 63% LShtO situation calculated per 100 g of shell extract: 15

Grammaa Grammaa moolia Mooli- _suhde_Grams Grams Moles Mole _Ratio_

Kuoriuutebark Extract

Stiasny-luku 40 100 100 20 NaOH (40) 15 15 0,375 1,14 7 1 ECH (92,53) 5 5 0,054 1 0,14 GTAK (151,64) 50 50 0,330 1Stiasny number 40 100 100 20 NaOH (40) 15 15 0.375 1.14 7 1 ECH (92.53) 5 5 0.054 1 0.14 GTAK (151.64) 50 50 0.330 1

HjO 100 _ 270 170 kuiva- 25 aine 63 %HjO 100 _ 270 170 dry matter 63%

Kuviosta 4 ilmenee kuoriuutteen poikkisidostamisen vaikutus vastaavan kationisen eetterin silikasaostuskykyyn 30 (Min-U-Sil-5, silikaa 150 mg/1) astiatestisså. Poikkisi-dostetusta kuoriuutteesta valmistettu kationinen tanniini (typpea 2,6 %) antoi huomattavasti alhaisemman optimian-noksen kuin poikkisidostamaton kationinen tanniini (typpe£ 2,7 %).Figure 4 shows the effect of crosslinking the shell extract on the silica precipitation capacity of the corresponding cationic ether 30 (Min-U-Sil-5, silica 150 mg / l) in a vessel test. The cationic tannin (2.6% nitrogen) prepared from the cross-linked bark extract gave a significantly lower optimum dose than the non-cross-linked cationic tannin (nitrogen 2.7%).

I: » 9Ί770 15I: »9Ί770 15

Esimerkki 5 Tåsså esimerkisså on astiatestein kolloidisen sili-kan ollessa vertailuaineena osoitettu, ettå kun kationisen tanniinin liuokseen lisåtåån pieni måårå Al3+- tai Fe3+-suo-5 laa, kationisen tanniinin flokkauskyky paranee. Tåmå kay ilmi kuviosta 5.Example 5 In this example, vessel tests with colloidal silica as a reference material have shown that when a small amount of Al 3+ or Fe 3+ salt is added to a solution of cationic tannin, the flocculation capacity of cationic tannin is improved. This is shown in Figure 5.

Esimerkki 6 Tåssa esimerkisså kuvataan kationisen tanniinin ja lineaarisen kationisen polymeerin yhteisvaikutusta mikro-10 kiteisen selluloosan flokkulointiin astiatestissa. Tulok-set on esitetty kuviossa 6.Example 6 This example describes the interaction of a cationic tannin and a linear cationic polymer on the flocculation of microcrystalline cellulose in a vessel test. The results are shown in Figure 6.

Tåsså kokeessa valittu annos kationista tanniinia (0,25 ppm) ei yksiståån kirkasta selluloosadispersiota, mutta lisåttåesså tåhån mååråån lineaarista kationista 15 polymeeriå Fennopol K211, Kemira Oy (lievåsti kationinen polyakryyliamidi; M on noin 8 miljoonaa) jåånndssameus saavuttaa minimiarvonsa yhteisannoksen mååråsså noin 0,13 ppm. Tåsså kokeessa optimiyhteisannos oli 0,38 ppm (kationisen tanniinin (typpeå 3,9 %) ja Fennopol K2li:n 20 prosentuaalinen suhde 66:34).The dose of cationic tannin (0.25 ppm) selected in this experiment is not a clear cellulose dispersion alone, but when adding a number of linear cationic polymers 15 Fennopol K211, Kemira Oy (a slightly cationic polyacrylamide) is about 8 million; ppm. In this experiment, the optimum total dose was 0.38 ppm (20% ratio of cationic tannin (3.9% nitrogen) to Fennopol K2li 66:34).

Esimerkki 7 Tåsså kokeessa kationista tanniinia sekå kationisen tanniinin ja epåorgaanisen koagulantin (Al-sulfaatti, Feklor idi) muodostamaa yhdistelmåå lisåttiin sellutehtaan 25 jåteveteen, joka oli kåsitelty biologisesti ja joka nåin oli tarkoitettu pååstettåvåksi purkuvesistoon. Astiatesti suoritettiin 600 ml:11a jåtevettå, johon lisåttiin em. flokkulantteja, seosta sekoitettiin ja tietyn ajan kulut-tua annettiin laskeutua. Supernatantista otetuista nåyt-30 teistå mååritettiin kiintoainepitoisuus, COD, AOX (orgaa- ninen kloori), våri, kokonaisfosfori ja kokonaistyppi. Tu-lokset on esitetty taulukossa 6. Tuloksista on nåhtåvisså mm., ettå fosfaatin måaråå voidaan våhentåå huomattavasti lisåttåesså kationista tanniinia joko yksinåån tai yhdesså 35 koagulanttien kanssa. Tulokset osoittavat edelleen, ettå kationinen tanniini våhentåå liukoisen alumiinin mååråå • kåytettåesså sitå saostimena yhdesså Al-sulfaatin kanssa.Example 7 In this experiment, a combination of cationic tannin and a combination of cationic tannin and inorganic coagulant (Al sulphate, Feklor idi) was added to wastewater from a pulp mill 25 which had been biologically treated and thus intended for discharge into discharge water. The vessel test was performed with 600 ml of wastewater to which the above flocculants were added, the mixture was stirred and, after a certain time, allowed to settle. Samples from the supernatant were assayed for solids, COD, AOX (organic chlorine), color, total phosphorus, and total nitrogen. The results are shown in Table 6. It can be seen from the results, among other things, that the amount of phosphate can be significantly reduced by adding cationic tannin either alone or in combination with 35 coagulants. The results further show that cationic tannin reduces the amount of soluble aluminum when used as a precipitant in combination with Al sulfate.

i 16 91770 •η in 4J :0 oo lo σ lo lo in Cd) «.«.*· «... o o in d) 3 EP ΙΌ IN ^ n fM(N ·« ·« « ii 16 91770 • η in 4J: 0 oo lo σ lo lo in Cd) «.«. * · «... o o in d) 3 EP ΙΌ IN ^ n fM (N ·« · «« i

in :3 ^ g cn >-h ro <-η oo cn rHin: 3 ^ g cn> -h ro <-η oo cn rH

•Η ί3 rH \ tn O < tn• Η ί3 rH \ tn O <tn

OO

rHrH

oo

HB

XI n i—i ih vo νοΓ' m oo r~ ro v1 « « « « « «. «. « « « « 3 O m in o ld in ro cm t-ioroi—i 3 λ; ro ro r- lo r-~ ro lo r- oo 3 2 + + 4-> .c d)XI n i — i ih vo νοΓ 'm oo r ~ ro v1 «« «« ««. «. «« «« 3 O m in o ld in ro cm t-ioroi — i 3 λ; ro ro r- lo r- ~ ro lo r- oo 3 2 + + 4-> .c d)

4-> X O LO rH O O LO LO LO rO CN4-> X O LO rH O O LO LO LO rO CN

3 o « « « « « «. « « « « «3 o «« «« ««. «« «« «

ι-H x N* in N" rH ro lo O (Λ O N1 VBι-H x N * in N "rH ro lo O (Λ O N1 VB

i—t ¢1( ro ro m oo oo ιο σ ro οι σι m d) in C 0) ind) -H lo inooro lo σ m in σ »a· 3 cn p - « « « «.* « « « «i — t ¢ 1 (ro ro m oo oo ιο σ ro οι σι m d) in C 0) ind) -H lo inooro lo σ m in σ »a · 3 cn p -« «« «. *« «« «

4-> -P :3 IN IN O ΓΟ CN ΓΟ CN LO in IN LO4-> -P: 3 IN IN O ΓΟ CN ΓΟ CN LO in IN LO

3 g > r- oo oo σ σ n> σ in oo σι on X 3 •P 4-> os in > -P c#> χ σι ro lo oo oo o ro ro σ O O « «. «. « . « «3 g> r- oo oo σ σ n> σ in oo σι on X 3 • P 4-> os in> -P c #> χ σι ro lo oo oo o ro ro σ O O ««. «. «. ««

Cdi o c o lo m oo σ cn lo ooCdi o c o lo m oo σ cn lo oo

LO d) Ή Ν' Ν' ro m in N< r- ^ LOLO d) Ή Ν 'Ν' ro m in N <r- ^ LO

p 3 -Pp 3 -P

0 -P d) X0 -P d) X

X -P Ό 3 X 3 -P T3Q ocmooooo loin -sr σ ro in 3 3 d) d)0 « « « «. «. «.«. « « « « η i—IC PiU n· ·*τ o σ σ in ·*τ r-~ in ro lo 3 3 -H n* n· n* lo lo lo oo rHLor~oo rO Oo 3X -P Ό 3 X 3 -P T3Q ocmooooo loin -sr σ ro in 3 3 d) d) 0 «« ««. «. «.«. «« «« Η i — IC PiU n · · * τ o σ σ in · * τ r- ~ in ro lo 3 3 -H n * n · n * lo lo lo oo rHLor ~ oo rO Oo 3

Eh 3 IEh 3 I

O 3 IO 3 I

X -P OX -P O

+J +J+ J + J

3 -P 30) lo i ^ cn σ d) 3 -P C I II *· ·. ^ v 4-> x: -h-η lo il in σ r- r- in X 3 r- σοοοοσ •H 3 3 d) 3 3 3 ·ρ . Cn g3 -P 30) lo i ^ cn σ d) 3 -P C I II * · ·. ^ v 4-> x: -h-η lo il in σ r- r- in X 3 r- σοοοοσ • H 3 3 d) 3 3 3 · ρ. Cn g

p :3 ίο O o Op: 3 ίο O o O

:3 -P 05 IN to oo ^: 3 -P 05 IN to oo ^

Eli rH Oro .—I IN Ν' σ O) :3 Cg o o o oo lo o o \ \ \ \ tn 3^ o lo o oo o o o Loinroio 3 -p <01 cn cn m lo σ σΐΝ in η ^ «Eli rH Oro. — I IN Ν 'σ O): 3 Cg o o o oo lo o o \ \ \ \ tn 3 ^ o lo o oo o o o Loinroio 3 -p <01 cn cn m lo σ σΐΝ in η ^ «

*( 1 CO rH «—Η rH CN* (1 CO rH «—Η rH CN

rH γΗrH γΗ

C CC C

•Η (D -Η 3 3 -Ρ Η II) 4-> ·Ρ Ρ > 3 T3 3 0) 3 ·Η 3 4-1 4Η Ρ 3 :3 ·Η γ—ι Ο Η-> -1—1 3 ·Η 3 Ή •Η 4J .—. ιη Αί• Η (D -Η 3 3 -Ρ Η II) 4-> · Ρ Ρ> 3 T3 3 0) 3 · Η 3 4-1 4Η Ρ 3: 3 · Η γ — ι Ο Η-> -1—1 3 · Η 3 Ή • Η 4J .—. ιη Αί

3 3 -Η -« 4-1 ·Ρ d) :3 I I3 3 -Η - «4-1 · Ρ d): 3 I I

0) >1 3 æ 3 Τ3 IP g Ή 0) in rH 3 3-HiH<Cfc( •Η rH 3 LO M-H p c#> d) ^ \0)> 1 3 æ 3 Τ3 IP g Ή 0) in rH 3 3-HiH <Cfc (• Η rH 3 LO M-H p c #> d) ^ \

Bd) 4-> * rH O -P LO LOBd) 4-> * rH O -P LO LO

04-> ^3 rH U0 tn «> -P -P . in X « -P N> 4-) CO 4-> · I I CN Ό 3 :3 3 2 Ή d) Ή ,3 ·· ·· . XX X ~ c En ~ tn 2 2 I,04-> ^ 3 rH U0 tn «> -P -P. in X «-P N> 4-) CO 4-> · I I CN Ό 3: 3 3 2 Ή d) Ή, 3 ·· ··. XX X ~ c En ~ tn 2 2 I,

Claims (6)

1. Katjoniskt tannin som år anvåndbart som flocku-leringsmedel, kånnetecknat dårav, att det 5 tanninhaltiga barkextrakt från barrtråd tvårbundits fore katjoneriseringen av detsamma medelst en glycidyltrimetyl-ammoniumklorid- eller N-(3-klor-2-hydroxipropyl)trimetyl-ammoniumkloridreaktant.1. Cationic tannin which is useful as a flocculant, characterized in that the tannin-containing bark extract from coniferous wire has been crosslinked for the cationisation thereof by a glycidyltrimethyl-ammonium chloride or N- (3-chloro-2-hydroxypropyl) trimethyl chloro trimethyl chloro 2. Katjoniskt tannin enligt patentkrav 1, k å n -10 netecknat dårav, att vid tvårbindningen anvånds formaldehyd.2. Cationic tannin according to claim 1, characterized in that formaldehyde is used in the cross-linking. 3. Katjoniskt tannin enligt patentkrav 1, kånnetecknat dårav, att vid tvårbindningen anvånds epiklorhydrin.3. Cationic tannin according to claim 1, characterized in that epichlorohydrin is used in the cross-linking. 4. Komposition som år anvåndbar som flockulerings- medel vid rening av avloppsvatten, kånneteck-n a d dårav, att den innehåller ett katjoniskt tannin enligt något av patentkraven 1-3.4. A composition which is useful as a flocculant in wastewater purification, characterized in that it contains a cationic tannin according to any one of claims 1-3. 5. Komposition enligt patentkrav 4, k å η n e -20 tecknad dårav, att den dessutom innehåller ett oor- ganiskt koaguleringsmedel.5. A composition according to claim 4, characterized in that it additionally contains an inorganic coagulant. 6. Komposition enligt patentkrav 4 eller 5, kånnetecknad dårav, att den dessutom innehåller en katjonisk, anjonisk eller neutral lineår polymer 25 med hog molekylvikt. * li 96. A composition according to claim 4 or 5, characterized in that it additionally contains a high molecular weight cationic, anionic or neutral linear polymer. * li 9
FI912967A 1991-06-18 1991-06-18 Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment FI91770C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI912967A FI91770C (en) 1991-06-18 1991-06-18 Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment
DE4219343A DE4219343C2 (en) 1991-06-18 1992-06-12 Cationic tannin and its use for wastewater treatment
SE9201850A SE506142C2 (en) 1991-06-18 1992-06-16 Cationic tannin and its use in wastewater purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI912967 1991-06-18
FI912967A FI91770C (en) 1991-06-18 1991-06-18 Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment

Publications (4)

Publication Number Publication Date
FI912967A0 FI912967A0 (en) 1991-06-18
FI912967A FI912967A (en) 1992-12-19
FI91770B FI91770B (en) 1994-04-29
FI91770C true FI91770C (en) 1994-08-10

Family

ID=8532737

Family Applications (1)

Application Number Title Priority Date Filing Date
FI912967A FI91770C (en) 1991-06-18 1991-06-18 Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment

Country Status (3)

Country Link
DE (1) DE4219343C2 (en)
FI (1) FI91770C (en)
SE (1) SE506142C2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU669985B2 (en) * 1993-06-22 1996-06-27 Betz International, Inc. Compositions and methods for water clarification and wastewater treatment
BR9904020A (en) * 1999-08-27 2001-04-24 Tanac S A Use of an organic coagulating / flocculating agent and vegetable origin for the removal of colloidal matter from waters.
EP2239370B1 (en) 2009-04-09 2012-06-20 Kompetenzzentrum Holz GmbH Dry and wet strength improvement of paper products with cationic tannin
DE202019103213U1 (en) 2018-01-16 2019-07-15 helcotec Chemie u. Technik GmbH Wastewater treatment formulations
CN110655161A (en) * 2019-11-20 2020-01-07 上海贤晋质安环保科技有限公司 Preparation method of water treatment modified pine bark flocculant
BR102020005579A2 (en) * 2020-03-20 2020-05-19 Tanac S A process to prepare a coagulant of natural origin for the treatment of water and aqueous effluents, and a coagulant of natural origin.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558080A (en) * 1984-01-24 1985-12-10 Dearborn Chemical Company Stable tannin based polymer compound

Also Published As

Publication number Publication date
DE4219343A1 (en) 1992-12-24
FI91770B (en) 1994-04-29
FI912967A (en) 1992-12-19
SE506142C2 (en) 1997-11-17
SE9201850L (en) 1992-12-19
SE9201850D0 (en) 1992-06-16
FI912967A0 (en) 1991-06-18
DE4219343C2 (en) 1996-09-26

Similar Documents

Publication Publication Date Title
US5178770A (en) Method of treating bctmp/ctmp wastewater
JP2603298B2 (en) Agglomeration of suspended solids from aqueous solution
US4250269A (en) Water-soluble mixtures of quaternary ammonium polymers, nonionic and/or cationic vinyl-addition polymers, and nonionic and/or cationic surfactants
US4425238A (en) Removal of anionic compounds from water
US5622647A (en) Dadmac/vinyl trialkoxysilane copolymers for dewatering in the mining industry
US5013456A (en) Diallyldimethyl ammonium chloride polymers with anionic monomers for coagulating deinking process waters
KR100468554B1 (en) Hydrophilic Dispersion Polymers for the Clarification of Deinking Process Waters
FI91770C (en) Cationic tannin useful as a flocculant and composition useful as a flocculant in wastewater treatment
US5624569A (en) Clarification of deinking process water
US4093605A (en) Auxiliary agent for improving retention, drainage and treatment
US5597490A (en) DADMAC/vinyl trialkoxysilane copolymers for treatment of food processing wastes
US3498912A (en) Process for the clarification of waste effluents
US3894948A (en) Process for treating sewage sludge
US4988790A (en) Substances for the manufacture of paper
EP0924167B1 (en) Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water
US20220234923A1 (en) Method for removing dissolved organic compounds from wastewater
FI91642C (en) Cationic lignin useful as a flocculant and wastewater purification process
Gohlke et al. Reaction products of polyacrylonitrile with dicyandiamide—new flocculation agents—
Oelmeyer et al. Combined flocculant systems with cationic starches in the solid/liquid separation of harbor sediments
US3707465A (en) Clarification of aqueous suspensions with oxyaminated polyacrylamide flocculating agents
JPH10500A (en) Sludge treatment method
US3755160A (en) Process for flocculating using a poly(quaternary ammonium)polyether polyelectrolyte
WO1989002417A1 (en) Improvements in or relating to effluent treatment
JP2500354B2 (en) Flocculant
RU2081856C1 (en) Method of active slime treatment

Legal Events

Date Code Title Description
BB Publication of examined application