FI91642C - Cationic lignin useful as a flocculant and wastewater purification process - Google Patents

Cationic lignin useful as a flocculant and wastewater purification process Download PDF

Info

Publication number
FI91642C
FI91642C FI912863A FI912863A FI91642C FI 91642 C FI91642 C FI 91642C FI 912863 A FI912863 A FI 912863A FI 912863 A FI912863 A FI 912863A FI 91642 C FI91642 C FI 91642C
Authority
FI
Finland
Prior art keywords
cationic
lignin
reagent
ultrafiltered
black liquor
Prior art date
Application number
FI912863A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI912863A0 (en
FI912863A (en
FI91642B (en
Inventor
Erkki Pulkkinen
Hannu Mikkonen
Original Assignee
Metsae Serla Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metsae Serla Oy filed Critical Metsae Serla Oy
Priority to FI912863A priority Critical patent/FI91642C/en
Publication of FI912863A0 publication Critical patent/FI912863A0/en
Publication of FI912863A publication Critical patent/FI912863A/en
Application granted granted Critical
Publication of FI91642B publication Critical patent/FI91642B/en
Publication of FI91642C publication Critical patent/FI91642C/en

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

9164291642

Flokkulointiaineena kayttokelpoinen kationinen ligniini ja menetelma jatevesien puhdistamiseksi Tåmå keksinto koskee flokkulointiaineena kayttokel-5 poista kationista ligniiniå sekå menetelmaå jatevesien puhdistamiseksi.The present invention relates to the use of cationic lignin as a flocculant as a flocculant and to a process for the purification of wastewater.

Ligniini on luonnonpolymeeri, jota syntyy suuria mååria puujalostusteollisuuden sivutuotteena. Selluloosaa eristettaesså ligniini joutuu jateliemiin, joista vakevoi-10 misen jålkeen mårkapoltettaessa saatu låmp5 on energiaetu (sulfaattiprosessi). Ligniini voidaan saostaa jateliemesta hapottamalla kuin myos mustalipea voidaan puhdistaa ja fraktioida ultrasuodattamalla, jolloin ultrasuodatusfrak-tioiden kemiallinen modifiointi tulee mahdolliseksi.Lignin is a natural polymer that is produced in large quantities as a by-product of the wood processing industry. When isolating cellulose, lignin enters the broths, from which, after stabilization, the heat obtained by wet combustion is an energy advantage (sulphate process). Lignin can be precipitated from the broth by acidification, as can black liquor, which can also be purified and fractionated by ultrafiltration, thus enabling chemical modification of the ultrafiltration fractions.

15 Sulfaattijateliemesta eristetyn ligniinin keskimåa- rainen molekyylipaino on noin 1500 - 5000, mutta sita voidaan fraktioida esim. mustalipeaa ultrasuodattamalla tai liuotinkasittelylla, niin etta molekyylipainojakautuma on 50 %:n osalta suurempi kuin 5000.The lignin isolated from the sulphate broth has an average molecular weight of about 1500 to 5000, but can be fractionated, for example, by ultrafiltration or solvent treatment of black liquor, so that the molecular weight distribution is greater than 5000 for 50%.

20 Aikaisemmin kationisia ligniinejå on valmistettu ainoastaan happosaostetuista ligniineista ja niiden tes-taus jatevesien kasittelyssa on ollut puutteellista (ks. esim. US-patenttijulkaisut 4775744 ja 3718639) .In the past, cationic lignins have only been prepared from acid-precipitated lignins and have been incompletely tested in wastewater treatment (see, e.g., U.S. Patent Nos. 4,775,744 and 3,718,639).

Kationisen ligniinin valmistamisen tapahtuessa kek-25 sinnon mukaisesti jåteliemen ultrasuodatetusta fraktiosta saavutetaan se etu, etta aikaisempiin menetelmiin kuulunut ligniinin happosaostusvaihe jaa pois. Taten menetelma, jossa kationinen ligniini valmistetaan edella mainitusta aineksesta, tarjoaa myos taloudellisemman vaihtoehdon ai-30 kaisemmin tunnettuihin menetelmiin nåhden. Nåin saadaan siis halpa kationinen flokkulantti, joka tekee suurten jatevesimaarien kSsittelyn mielekkaaksi.In the preparation of the cationic lignin according to the invention, the ultrafiltered fraction of the waste liquor has the advantage that the acid precipitation step of the lignin from the previous methods is separated. The Tate method, in which cationic lignin is prepared from the above-mentioned material, also offers a more economical alternative to the previously known methods. Thus, a cheap cationic flocculant is obtained, which makes the treatment of large volumes of wastewater meaningful.

Mustalipeån ultrasuodatuksella saavutetaan myos se etu, etta ultrasuodatuksessa valtetaan mustalipean pieni-35 molekyylinen fraktio ja saadaan jåteveden kolloidisten ai-neiden flokkauksen kannalta edullinen jae, jonka molekyy- 2 91 642 lipaino on > 20 000. Ultrasuodatettu fraktio tarjoaa nåin paremman lahtoaineen jateveden puhdistamiseen. Ultrasuoda-tuksen etuihin voidaan lukea myos talloin luonnostaan ta-pahtuva mustalipean vakevdityminen, jolloin kationisoinnin 5 kannalta vaadittava vakevyys saavutetaan jo talla menette-lylla.Ultrafiltration of black liquor also has the advantage that ultrafiltration avoids the small-molecular fraction of black liquor and obtains a fraction advantageous for flocculation of effluent colloidal substances with a molecular weight of> 2,000,642. The advantages of ultrafiltration include the naturally occurring hardening of the black liquor, whereby the stability required for cationization 5 is already achieved by this process.

Tassa keksinnosså ligniinin hydroksyyliryhmiå modi-fioidaan epoksiammonium- tai kloorihydriiniammoniumsuo-loilla julkaisussa "Preparation and Testing of Cationic 10 Flocculants from Kraft Lignin", ACS Symposium Series 397, 195th National Meeting of the American Chemical Society, Toronto, Ontario, Kanada, 5-11.6.1988, esitetylla tavalla seuraavan kaavion mukaisesti: 15In this invention, the hydroxyl groups of lignin are modified with epoxyammonium or chlorohydrin ammonium salts in "Preparation and Testing of Cationic Flocculants from Kraft Lignin", ACS Symposium Series 397, 195th National Meeting of the American Chemical Society, Toronto, Ontario, Canada, 5-11. .1988, as shown in the following diagram:

NaOHNaOH

lignin-OH + CH^CHC^N^C^Cl9 ‘ hidas 0 glysidyylitrimetyyliammon i umkloridi lignin-OCHjCHCHgN^fCHaJaCI0lignin-OH + CH 2 CHCl 3 N 2 C 2 Cl 9 'slow O glycidyltrimethylammonium chloride lignin-OCH 2 CHCH 3 N 2 FCH 3 JClO

GTAK-reagenssi IGTAK Reagent I

λ. OHλ. OH

NaOHNaOH

^ NaCI + O- nopea ^ CH2CHCH2N®(CH3)3Ci€,+ NaOH (kloorihydriinireagenssi)^ NaCl + O- fast ^ CH2CHCH2N® (CH3) 3Cl2, + NaOH (chlorohydrin reagent)

:. 25 I I:. 25 I I

QJ OH N|3-kloori-2-hydroks ipropyyli ) trimetyyl iammoniumk lohidi US-patenttijulkaisussa 3718639 ligniiniamiineja 30 valmistetaan saattamalla ligniini reagoimaan samoin epi- kloorihydriinin ja tertiaarisen amiinin reaktiotuotteen kanssa. Tassa patenttijulkaisussa ei ole maåritetty, milla saannolla epoksireagenssi liittyy hydroksyyliryhmiin. EdellM mainitussa julkaisussa "Preparation and Testing of 35 Cationic Flocculants from Kraft Lignin" on esitetty, etta 91642 3 glysidyylitrimetyyliammoniumkloridilla tamå saanto voi olla puhdistetulle tyypilliselle havupuukeiton mustali-peasta eristetylle ligniinille (Indulin AT, valmistaja Westwaco Corp.) yli 50 %. Sen sijaan N-(3-kloori-2-hydrok-5 sipropyyli)trimetyyliammoniumkloridilla (GTAK-HCl-rea- genssilla) ei pååsty yli 50 % reagenssisaantoon.QJOH N (3-chloro-2-hydroxypropyl) trimethylammonium chloride In U.S. Patent No. 3,718,639, lignin amines 30 are prepared by reacting lignin in the same manner with the reaction product of epichlorohydrin and a tertiary amine. This patent does not specify the yield in which the epoxy reagent is attached to the hydroxyl groups. The aforementioned "Preparation and Testing of 35 Cationic Flocculants from Kraft Lignin" discloses that with 91642 3 glycidyltrimethylammonium chloride, this yield can be greater than 50% for purified typical softwood soup isolated from blackheads (Indulin AT, manufactured by Westwaco Corp.). In contrast, N- (3-chloro-2-hydroxy-5-cipropyl) trimethylammonium chloride (GTAK-HCl reagent) does not give more than 50% reagent yield.

Nyt on yllåttåen havaittu, etta låhtemålla mustali-peån ultrasuodatetusta fraktiosta GTAK-HCl-reagenssilla paåstaån yli 50 % reagenssisaantoon. Saattamalla mustali-10 pean alkaliligniini reagoimaan GTAK-HCl-reagenssin kanssa aikaansaadaan myos se etu, etta reagenssi neutraloi musta-lipean sisaltaman alkalin. Oleellista korkean reagenssi-saannon saavuttamiselle on, etta reaktion kulkua seurataan maaraamalla ajoittain reaktioseoksesta otetun nåytteen 15 flokkaustehokkuus kolloidisen silikastandardin suhteen.It has now surprisingly been found that starting from the ultrafiltered fraction of black and white with GTAK-HCl reagent yields more than 50% reagent yield. Reacting the black-10 alkaline lignin with the GTAK-HCl reagent also provides the advantage that the reagent neutralizes the alkali contained in the black-lip. It is essential to achieve a high reagent yield that the progress of the reaction is monitored by periodically determining the flocculation efficiency of a sample of the reaction mixture with respect to a colloidal silica standard.

Samalla NaOH:n ylimaara epoksireagenssiksi muuttuneen kloorihydriinireagenssin suhteen pidetaån alhaisena (noin 10 % reagenssin maarasta) neutraloimalla jatkuvasti osa NaOH:sta.At the same time, the excess NaOH relative to the chlorohydrin reagent converted to the epoxy reagent is kept low (about 10% of the reagent weight) by continuously neutralizing some of the NaOH.

20 Keksinnon kohteena on flokkulointiaineena kaytto- kelpoinen kationen ligniini, jolle on tunnusomaista, etta se on valmistettu mustalipean ultrasuodatetusta fraktiosta siten, etta ensin mustalipea ultrasuodatetaan, minka jal-keen saatu ultrasuodatettu fraktio kationisoidaan glysi-. . 25 dyylitriairnnoniumkloridilla tai N-(3-kloori-2-hydroksipro- pyyli)trimetyyliammoniumkloridilla.The invention relates to a cationic lignin usable as a flocculant, characterized in that it is prepared from an ultrafiltered fraction of black liquor by first ultrafiltrating the black liquor, after which the ultrafiltered fraction obtained is cationized with glycine. . 25 with tritriaminonium chloride or N- (3-chloro-2-hydroxypropyl) trimethylammonium chloride.

Edullisessa suoritusmuodossa ligniini voidaan myos poikkisidostaa formaldehydilla, jolloin ligniinimolekyylin verkko laajenee aina geeliytymiseen asti. On havaittu, 30 etta poikkisidostamisen kasvaessa vastaavien kationisten ligniinien optimiflokkausannostus kolloidisten ainesten suhteen pienenee. Samalla kationisointireagenssin kulutus-ta voidaan vahentaå ilman, etta kationisoitujen ligniinien typpipitoisuuksissa tapahtuu pienenemista.In a preferred embodiment, the lignin can also be crosslinked with formaldehyde, whereby the network of the lignin molecule expands all the way to gelation. It has been found that as crosslinking increases, the optimum blocking dose of the corresponding cationic lignins with respect to colloidal materials decreases. At the same time, the consumption of the cationization reagent can be reduced without a decrease in the nitrogen contents of the cationized lignins.

91642 491642 4

Kationisten polymeerien vaikutuksesta jatevesiin tiedetaån, etta ne yksinaan tai epåorgaanisten koagulant-tien kanssa tarttuvat jateveden sisåltamien negatiivisen varauksen omaavien kolloidisten hiukkasten pintaan ja 5 neutraloivat pinnan varauksen seka poistavat hiukkasten valisen poistovoiman. Talloin kolloidiset aineosat saostu-vat.The effect of cationic polymers on effluents is known to adhere, alone or with inorganic coagulants, to the surface of negatively charged colloidal particles contained in effluents and to neutralize the surface charge and to remove the interparticle removal force. In this case, the colloidal components precipitate.

Jos flokkausannoksessa on mukana suurimolekyylipai-noista (MP useita miljoonia) lineaarista, kationista, ani-10 onista tai neutraalia vesiliukoista polymeeriå, pitkåt taipuisat polymeeriketjut kytkevat saastehiukkasia kim-puiksi, jotka laskeutuvat suurina flokkeina.If a high molecular weight (MP several million) linear, cationic, anionic or neutral water-soluble polymer is present in the flocculation dose, the long flexible polymer chains bind the contaminant particles into bundles that settle as large flocs.

Myos rauta- ja alumiinisuolat sisåltavåt jatevesien tyypillisella pH-alueella (pH 6-8) kationisia molekyylila-15 jeja, jotka neutraloivat kolloidisten hiukkasten negatii-visia pintavarauksia ja nopeasti polymeroituvat hydroksi-geeleiksi, samalla sulkien sisaånsa haitallisen jakeen. Usein kuitenkin koagulanttiannokset ovat suuria eivatka niista syntyneet lietteet laskeudu hyvin.Iron and aluminum salts also contain, in the typical pH range (pH 6-8) of effluents, cationic molecular species that neutralize the negative surface charges of colloidal particles and rapidly polymerize into hydroxyl gels, while enclosing the harmful fraction. Often, however, coagulant doses are high and the resulting sludges do not settle well.

20 Tåmån keksinnon eraana tarkoituksena on vahentåå epaorgaanisten lietteiden maaraa ja parantaa niiden las-keutumis- ja vakevoimisominaisuuksia. Tama saadaan ylei-sesti aikaan yhdistelmaflokkulanteilla, joissa osana on kationien polyelektrolyytti, epaorgaaninen koagulantti ja φ 25 mahdollisesti neutraalinen tai anioninen suurimolekyyli-painoinen polymeeri. Nyt on havaittu, ettå useissa yhdis-telmaannoksissa kationinen polyelektrolyytti voidaan kor-vata halvemmalla kationisella ligniinilla flokkuloimiste-hokkuutta kuitenkaan heikentamStta.It is an object of the present invention to reduce the amount of inorganic sludges and to improve their settling and stability properties. This is generally accomplished with composite flocculants that include a cationic polyelectrolyte, an inorganic coagulant, and possibly a neutral or anionic high molecular weight polymer. It has now been found that in several combination doses, the cationic polyelectrolyte can be replaced by cheaper cationic lignin without compromising the flocculation efficiency.

30 Useat kokeet fosforipitoisilla jåtevesilla osoitta- : vat, etta kationinen polyelektrolyytti yhdessa Al- ja Fe- suolojen kanssa paitsi poistavat kolloidista kiintoainetta myos våhentavMt huomattavasti fosforin maaraa. Naissa ta-pauksissa kationisen polyelektrolyytin korkea hinta usein 35 estaa yhdistelmaannoksen kayton. Nyt on havaittu, etta 91642 5 hyviå tuloksia voidaan aikaansaada, kun kationinen poly-elektrolyytti korvataan kationisella ligniinilla. Korvat-taessa kaliis kationinen polymeeri komponenttiannoksessa halvemmalla kationisella ligniinilla fosforia sisaltavan 5 kolloidifraktion poistaminen tulee myos taloudelliseksi.Several experiments with phosphorus-containing effluents show that the cationic polyelectrolyte together with the Al and Fe salts not only removes colloidal solids but also significantly reduces the amount of phosphorus. In these cases, the high cost of the cationic polyelectrolyte often precludes the use of a combination dose. It has now been found that 91642 5 good results can be obtained when the cationic polyelectrolyte is replaced by cationic lignin. When replacing the potassium cationic polymer in a component dose with a cheaper cationic lignin, the removal of the phosphorus-containing colloidal fraction also becomes economical.

Kationisten polyelektrolyyttien ja kationisten lig-niinien flokkuloimistehokkuutta voidaan verrata toisiinsa esitesteilla. Astiatestissa saostetaan kolloidista disper-siota eri suurin flokkulanttiannostuksin, jolloin sakan 10 laskeutumisen jalkeen sarjan alhaisin jåånnossamennus il-xnoittaa optimiflokkuloimisannoksen. Dispersioanalysaatto-rilla suoritetuissa testeissa ilmenee suhteellinen flokki-koko. Suorittamalla tåma testi erilaisilla sekoitusnopeuk-silla voidaan verrata toisiinsa flokkien kestavyyksia. 15 Kolloidisina standardidispersioina astiatestissa ja analy-saattorilla suoritettavissa testeissa on kåytetty mikroki-teista silikaa ja mikrokiteista selluloosaa. Flokkien suo-tautuvuuden esitestina on kåytetty tiettyå aikaa, misså kolloidinen dispersio tai jatevesinayte suotautuu samaan 20 tilavuuteen painesuodattimessa, jossa on 0,45 μιη:η ase-taattikalvo ja kahden baarin paine. Kalvon huokoset tuk-keutuvat nopeasti, jos lietteesså on kolloidisia aineosia. Flokin laskeutumista testataan mittasylinterisså, jolloin verrataan laskeutumisaikaa ja tilavuutta, johon flokki 25 laskeutuu.The flocculation efficiency of cationic polyelectrolytes and cationic lignins can be compared by preliminary tests. In the vessel test, the colloidal dispersion is precipitated at different maximum flocculant doses, whereby, after settling of the precipitate 10, the lowest residual suppression in the series indicates the optimum flocculation dose. Tests performed with a dispersion analyzer show relative floc size. By performing this test at different stirring speeds, the durations of the flocs can be compared. Microcrystalline silica and microcrystalline cellulose have been used as colloidal standard dispersions in the vessel test and analyzer tests. A pre-test for flock permeability has been used for a period of time in which the colloidal dispersion or effluent sample leaches into the same volume in a pressure filter with a 0.45 μιη: η acetate membrane and a pressure of two bar. The pores of the membrane clog quickly if there are colloidal constituents in the slurry. The settling of the flock is tested in a measuring cylinder, whereby the settling time and the volume to which the flock 25 lands are compared.

Seuraavat esimerkit kuvaavat kationisten ligniinien valmistamista ultrasuodatetusta mustalipeåstå.The following examples illustrate the preparation of cationic lignins from ultrafiltered black liquor.

Esimerkki 1 Tåsså esimerkisså låhdetåån mustalipeån ultrasuoda-30 tetusta fraktiosta (Metså-Serla Oy), jolloin ligniini en- sin poikkisidostetaan formaldehydin kanssa kolmella eri tavalla ja sen jalkeen tuotteet kationisoidaan. Alkutilan-ne ilmenee taulukosta 1.Example 1 In this example, the ultrafiltered fraction of black liquor (Metså-Serla Oy) is started, whereby lignin is first crosslinked with formaldehyde in three different ways and then the products are cationized. The initial state is shown in Table 1.

91 642 691 642 6

Taulukko 1table 1

Alkutilanne ultrasuodatetun mustalipeån poikkisi-dostamiselle ja kationisoimiselle 5 _ _Grammaa Mooli-Initial situation for cross-precipitation and cationisation of ultrafiltered black liquor 5 _ _Grams of Molar

Markana Kuivana Kuivana Moolia suhdeMarkana Dry Dry Mole ratio

Liqniini 10 Ultrasuodatetussa mustalipeassa kuiva-aine (ka) 18,6 % 100 18,6 Orgaaninen osa 15 88,6 % ka:sta 16,5Lignin 10 In ultrafiltered black liquor dry matter (ka) 18.6% 100 18.6 Organic fraction 15 88.6% of ka 16.5

Reagenssi GTAK-HC1 53,3 %, MP 188,1 48,58 21,63 0,115 1Reagent GTAK-HCl 53.3%, MP 188.1 48.58 21.63 0.115 l

NaOHNaOH

20 Mustalipeassa (11,4 %) 2,1220 In black liquor (11.4%) 2.12

Kuiva-aine: 42.8 X 100 = 27,9 % 25 153,58Dry matter: 42.8 X 100 = 27.9% 25 153.58

Lisåtty (5 M liuoksena) 1- era 3 ml 0,60 2- erå 10 ml 2,00 30 Yhteensa 13 4,72 0,118 1,03Added (as 5 M solution) 1-batch 3 ml 0.60 2-batch 10 ml 2.00 30 Total 13 4.72 0.118 1.03

Summa 153,58 42,85The amount is 153.58 42.85

Ensimmainen era NaOH:a lisåttiin ennen poikkisidos-35 tamista, toinen era poikkisidostamisen jalkeen.The first batch of NaOH was added before cross-linking, the second batch after cross-linking.

91 642 791 642 7

Poikkisidostus suoritettiin vesihauteessa kolmessa tehokkaalla sekoituksella varustetussa 200 ml:n sentrifuu-giputkessa. Putkiin lisattiin 100 g ultrasuodatettua mus-talipeaa (ka 18,6 %) ja 3 ml 5 N NaOH:a sekå 0,6, 1,0 ja 5 1,5 ml 37-prosenttista HCHO-liuosta ja reaktioseosta se- koitettiin 95 - 100 °C:ssa 1,5 tuntia. Laskettuna 100 g kohti ligniinia formaldehydipitoisuudet mooleina olivat vastaavasti 0,049, 0,081 ja 0,121.Cross-linking was performed in a water bath in three 200 ml centrifuge tubes with efficient mixing. To the tubes were added 100 g of ultrafiltered blackhead (ca. 18.6%) and 3 ml of 5 N NaOH as well as 0.6, 1.0 and 1.5 ml of 37% HCHO solution and the reaction mixture was stirred at 95- At 100 ° C for 1.5 hours. Calculated per 100 g of lignin, the formaldehyde concentrations in moles were 0.049, 0.081 and 0.121, respectively.

Kationisointia vårten jaahdytettyihin poikkisidos-10 tettua ligniinia sisaltaviin reaktioseoksiin lisattiin 10 ml 5 N NaOH:a (2 g, 0,05 moolia) ja 21,63 g GTAK-HCl-rea-genssia 53,3-prosenttisena vesiliuoksena. Reaktioaika 55 °C:ssa oli 6 tuntia. Reaktio pysaytettiin neutraloimal-la seos laimealla suolahapolla. Ultrasuodatetuista ja kui-15 vatuista tuotteista maaritettiin typpiprosentit, joiden perusteella saanto reagenssikulutuksen suhteen kaikissa poikkisidostus/kationisointikokeissa oli 32 %. Alhaisen saannon voidaan katsoa johtuvan hydrolyysisivureaktiosta seka reagenssin valmistuksen etta kationisoinnin aikana. 20 Taulukosta 2 nahdaMn, etta alkaliligniinin poikki sidostus formaldehydilia ennen kationisointia todella ai-heuttaa optimiannostuksen pienenemisen astiatestissa. Dis-persioanalysaattorilla suoritetuissa kokeissa ilmenee poikkisidostuksen parantavan flokin keståvyytta (vertaa 25 suhteellisia flokkikokoja eri sekoitusnopeuksilla). Ko-keessa kåytetty kaupallinen Fennopol 194 K on voimakkaasti kationinen polyakryyliamidi, jonka moolimassa on noin 4 miljoonaa.To the cationization-cooled reaction mixtures containing cross-linked lignin, 10 ml of 5 N NaOH (2 g, 0.05 mol) and 21.63 g of GTAK-HCl reagent as a 53.3% aqueous solution were added. The reaction time at 55 ° C was 6 hours. The reaction was quenched by neutralizing the mixture with dilute hydrochloric acid. Nitrogen percentages were determined from the ultrafiltered and dried-15 products, giving a yield of 32% for reagent consumption in all crosslinking / cationization experiments. The low yield can be attributed to the hydrolysis side reaction during both reagent preparation and cationization. It can be seen from Table 2 that cross-linking of formaldehyde across the alkali lignin prior to cationization actually causes a decrease in the optimal dosage in the vessel test. Experiments with a dispersion analyzer show cross-linking to improve flock resistance (compare 25 relative floc sizes at different agitation rates). The commercial Fennopol 194 K used in the experiment is a strongly cationic polyacrylamide with a molecular weight of about 4 million.

91642 891642 8

Taulukko 2Table 2

Alkaliligniinin CH20-poikkisidostuksen vaikutus vas-taavan kationisen ligniinin silikan saostustehoon ast iatest isså<a 5 _Effect of CH2 crosslinking of alkali lignin on silica precipitation efficiency of the corresponding cationic lignin in ast iatest isså <a 5 _

Poikkisidostus- Annostus<b Suhteellinen flokkikoko(c aste, moolia % N(a % silikasta 64 rpm 200 rpm 300 rpm ch2o/ioo g 10 0 2,3 0,041 0,65 0,37 0,10 0,049 2,3 0,041 0,82 0,38 0,10 0,081 2,3 0,039 0,99 0,45 0,10 0,121 2,3 0,030 1,6-2,0 0,87 0,20Crosslinking Dosage <b Relative flocculent size (c degree, moles% N (a% silica 64 rpm 200 rpm 300 rpm ch2o / ioo g 10 0 2.3 0.041 0.65 0.37 0.10 0.049 2.3 0.041 0, 82 0.38 0.10 0.081 2.3 0.039 0.99 0.45 0.10 0.121 2.3 0.030 1.6-2.0 0.87 0.20

Fennopol 194 KFennopol 194 K

15 0,033 1,8-2,2 1,20 0,38 e) Raakatuote puhdistettiin ultrasuodattamalla Diaflo YM2 -kalvon lapi (Amicon Corp., eksluusioraja 1 000). b> Astiatesteisså kolloidisena standardidispersiona oli 20 mikrokiteinen silika (Min-U-Sil 5; Pennsylvania Class and Sand Corp.) vakevyydella 250 mg/600 ml.0.033 1.8-2.2 1.20 0.38 e) The crude product was purified by ultrafiltration through a Diaflo YM2 membrane (Amicon Corp., exclusion limit 1,000). In vessel tests, the colloidal standard dispersion was 20 microcrystalline silica (Min-U-Sil 5; Pennsylvania Class and Sand Corp.) at a stability of 250 mg / 600 ml.

c) Suhteellinen flokkikoko maarattiin fotometrisella dis-persioanalysaattorilla PDA 2 000/Rank Brothers Ltd).c) Relative floc size was determined with a photometric dispersion analyzer (PDA 2000 / Rank Brothers Ltd).

25 Esimerkki 225 Example 2

Tamå esimerkki osoittaa, etta ultrasuodatetusta mustalipeåsta GTAK-reagenssilla voidaan valmistaa kationi-nen ligniini, jonka typpipitoisuus (puhdistettuna) on 3,0 % ja reagenssisaanto 52 %. Nain valmistettu kationinen 30 ligniini saosti astiatestissa kolloidista silikaa tehok-·* kaammin kuin kaupallinen Fennopol K 1912 (lievasti katio ninen polyakryyliamidityyppinen polyelektrolyytti, jonka moolimassa on noin 4 miljoonaa). Kokeessa kaytettiin Met-sa-Serla Oy:lta saatua ultrasuodatettua mustalipeaa (re-35 tentiaatti), jonka kuiva-ainepitoisuus oli 16,6 %. Musta- 91642 9 lipea haihdutettiin 90 °C:ssa låmpokaapissa kunnes kuiva-ainepitoisuus oli 29,9 %.This example demonstrates that cationic lignin with a nitrogen content (purified) of 3.0% and a reagent yield of 52% can be prepared from ultrafiltered black liquor with GTAK reagent. The cationic lignin thus prepared precipitated colloidal silica more efficiently in a vessel test than the commercial Fennopol K 1912 (a slightly cationic polyacrylamide-type polyelectrolyte having a molecular weight of about 4 million). The experiment used ultrafiltered black liquor (re-35 tentate) from Met-sa-Serla Oy with a dry matter content of 16.6%. The black lipstick was evaporated at 90 ° C in an oven until the dry matter content was 29.9%.

Taulukko 3 5 Kationisen ligniinin valmistus ultrasuodatetusta mustalipeåstå glysidyylitrimetyyliammoniumkloridi (GTAK) -reagenssi11a 10 Graromaa Mooli- Mårkåna Kuivana Moolia suhdeTable 3 5 Preparation of cationic lignin from ultrafiltered black liquor glycidyltrimethylammonium chloride (GTAK) reagent11a 10 Graroma Mole-Mårkåna Dry Mole ratio

Lahtotilanne LahtoseoksenThe situation in the bay

Ultrasuod. musta- kuiva-aine- 15 lipeå, ka 29,9 % 604,1 180,1 pitoisuus oli 43,3%Ultrasuod. black dry matter lye, also 29.9% 604.1 180.1 content was 43.3%

Ligniinia 163,08Lignin 163.08

Reagenssi 228,8 151,47 0,999 1 GTAK, ka 79 % 100 % epoksidia epoksidia 66,2 % 20 raakatuotteesta 83,8 % ka:staReagent 228.8 151.47 0.999 1 GTAK, ka 79% 100% epoxide epoxide 66.2% of 20 crude products 83.8% ka

NaOH 17,87 0,447 0,447NaOH 17.87 0.447 0.447

Reagoitiin 4 h 35 - 40 °C:ssa ja sen jålkeen 45 h 55 °C:ssa 25 Puhdistetussa tuotteessa oli typpeå 3,0 %, minkå perus-teella reagenssisaanto oli 52 %Reacted for 4 h at 35-40 ° C and then for 45 h at 55 ° C The purified product contained 3.0% nitrogen, based on which the reagent yield was 52%.

Esimerkki 3Example 3

Tassa esimerkisså kuvataan kokeita, joissa Metsa-30 sellu Oy:n Åånekosken tehtaiden biologisen puhdistamon jalkiselkeyttamoltS lahtevasta vedesta poistettiin kiinto-ainetta ja fosforia. Kokeet suoritettiin astiatestilait-teistossa (Phipps & Bird), jossa 800 ml:n dekantterilasei-hin oli lisatty 600 ml poistovetta. Saostimet lisattiin 35 nopean sekoituksen (64 rpm) aikana, minkå jalkeen sekoi-tusta jatkettiin 5 min. Ennen flokin laskeuttamista sekoi- 91642 10 tettiin 5 minuuttia hitaasti (30 rpm), minkå jålkeen sakan annettiin laskeutua sekoittamatta 30 minuuttia. Selkeyte-tystå liuoksesta pipetoitiin 30 minuutin kuluttua 100 ml:n nåyte. Kaikki kemikaaliannokset on laskettu litraa kohti 5 jatevetta (ppm, mg/1, g/m3) .This example describes experiments in which solids and phosphorus were removed from the water leaving the foot treatment plant of Metsa-30 pulp Oy's Åånekoski mills. The experiments were performed in a vessel test apparatus (Phipps & Bird) in which 600 ml of effluent was added to 800 ml beakers. Precipitators were added during rapid stirring (64 rpm), after which stirring was continued for 5 min. Prior to settling the flock, 91642 10 was stirred slowly for 5 minutes (30 rpm), after which the precipitate was allowed to settle without stirring for 30 minutes. After 30 minutes, a 100 ml sample of the clarified solution was pipetted. All chemical doses are calculated per liter of 5 effluents (ppm, mg / l, g / m3).

Kokeista 1 ja 3 vastaavasti ilmenee, etta Ansu 2:n (kaupallinen alumiinisulfaatti, valmistaja Kemira Oy) an-noksella 37,5 ppm ja kationisen ligniinin annoksella 1,25 ppm fosforimaaran vaheneminen on samaa suuruusluokkaa 10 (49 % vs. 59 %) ja kiintoainemaaran vaheneminen on suurem- pi (81 % vs. 68 %) kuin Ansu 2:n annoksella 35 ppm ja kationisen Fennopolin annoksella 2,2 ppm.Experiments 1 and 3, respectively, show that at a dose of 37.5 ppm for Ansu 2 (commercial aluminum sulphate, manufactured by Kemira Oy) and 1.25 ppm for cationic lignin, the reduction in phosphorus content is of the same order of magnitude 10 (49% vs. 59%) the reduction in solids content is greater (81% vs. 68%) than with Ansu 2 at 35 ppm and cationic Fennopol at 2.2 ppm.

Kokeissa 5, 6 ja 7, joissa Fe3*-sulfaattia kåytet-tiin yhdessa kationisen ligniinin kanssa, voitiin fosforin 15 maaraå våhentaa yhta suuressa maarin kuin vastaavasti ko-keessa, jossa kaytettiin Ansu 2:a ja kationista ligniinia (koe 1). Vaikka flokin laskeutumista edistettiin neutraa-lin Fennopol N-300:n (hyvin lievasti anioninen polyakryy-liamidi, jonka moolimassa on noin 10 miljoonaa) avulla, 20 kiintoainemaaraa voitiin vahentaS huomattavasti ainoastaan kokeessa 4 (85 %), muissa Fe3+-sulfaattia sisaltavissa kokeissa (5, 6 ja 7) alle 50 %.In Experiments 5, 6 and 7, in which Fe 3 O-sulfate was used in combination with cationic lignin, the amount of phosphorus could be reduced by the same amount as in Experiment using Ansu 2 and cationic lignin, respectively (Experiment 1). Although floc deposition was promoted by neutral Fennopol N-300 (a very slightly anionic polyacrylamide with a molecular weight of about 10 million), 20 solids could only be significantly reduced in Experiment 4 (85%), in other experiments containing Fe 3+ sulphate ( 5, 6 and 7) less than 50%.

1X 916421X 91642

Taulukko 4Table 4

Fosforin ja kolloidisen kiintoaineen poistaminen sellutehtaan jålkiselkeyttåmoltå låhtevåstå vedestå pH:ssa 7,5 kayttamallå epåorgaanisen koagulantin ja 5 kationisen ligniinin tai kationisen poly(akryyli- amidin) tai neutraalin poly(akryyliamidin) yhteis-annostustaRemoval of phosphorus and colloidal solids from pulp mill effluent at pH 7.5 using a co-dosage of inorganic coagulant and cationic lignin or cationic poly (acrylamide) or neutral poly (acrylamide)

Koe Epåorgaaninen Kationinen Reduktio % 10 nro koagulantti polyelektro- kiinto- fosfori (ppm) lyytti (ppm) aineExperiment Inorganic Cationic Reduction% 10 No. coagulant polyelectro-phosphorus (ppm) lithium (ppm) substance

Ansu 2 kat. ligniini 1 37,5 1,25 81 49 15 2 37,5 3,75 80 52 kat. Fennopol 3 35 2,2 68 59Ansu 2 cat. lignin 1 37.5 1.25 81 49 15 2 37.5 3.75 80 52 cat. Fennopol 3 35 2.2 68 59

Fe3+-sulfaatti kat. Fennopol ligniini N-300 20 4 31,3 1,56 - 85 54 5 31 1,25 1,25 40 58 6 31 1,90 1,90 40 58 7 31,3 1,56 1,90 48 58 25 Sellutehtaan poistovedesså oli 0,95 mg/1 fosforia ja 97 mg/1 kiintoainetta. Liuos koetta l vårten sisalsi 3 g Ansu 2:a ja 100 mg kationista ligniinia litrassa vetta. Kokees-sa 2 saostusliuos sisålsi litraa kohti 3 g Ansu 2:a ja 300 mg kationista ligniinia. Kokeessa 3 kåytettiin liuosta, 30 joka kåyttovåkevyydesså sisålsi millilitrassa 5 mg ferri-. sulfaattia ja 0,25 mg kationista ligniiniå. Ferrisulfaatti oli kaupallista (70 %) , joka kuivattiin låmpokaapissa 120 °C:ssa vakiopainoon.Fe3 + sulfate cat. Fennopol lignin N-300 20 4 31.3 1.56 - 85 54 5 31 1.25 1.25 40 58 6 31 1.90 1.90 40 58 7 31.3 1.56 1.90 48 58 25 Pulp mill the effluent contained 0.95 mg / l phosphorus and 97 mg / l solids. The solution for experiment 1 contained 3 g of Ansu 2 and 100 mg of cationic lignin per liter of water. In Experiment 2, the precipitation solution contained 3 g of Ansu 2 and 300 mg of cationic lignin per liter. In Experiment 3, a solution 30 containing 5 mg of ferric acid per milliliter was used. sulfate and 0.25 mg of cationic lignin. Ferrisulfate was commercial (70%) and dried in an oven at 120 ° C to constant weight.

Esimerkki 4 35 Tåsså esimerkisså kuvataan, kuinka ultrasuodatetus- ta mustalipeåstå poikkisidostamisen jålkeen GTAK-HCl-rea- 12 91642 genssilla saadaan kationinen ligniini 73,6 %:n reagenssi-saannolla.Example 4 This example describes how, after crosslinking from ultrafiltered black liquor with GTAK-HCl reagent, cationic lignin is obtained in a reagent yield of 73.6%.

Taulukko 5 5 Olosuhteet ultrasuodatetun mustalipeån poikkisidos- tamiselle ja kationisoimiselle GTAK-HCl-reagenssil-la _Grammaa_ Mooli- 10 Mårkana Kuivana Moolia suhdeTable 5 5 Conditions for cross-linking and cationization of ultrafiltered black liquor with GTAK-HCl reagent-_Grammaa_ Moles- 10 Mars Dry Moles ratio

LianiiniLianiini

Ultrasuodatetussa mustalipeåsså, 15 ka 27,5 % 986 271,2In ultrafiltered black liquor, 15 ka 27.5% 986 271.2

Orgaaninen osa 241,4Organic part 241.4

NaOH (M 40,01) mustalipeassa 29,8NaOH (M 40.01) in black liquor 29.8

Lisaykset 20 1-erå (ennen poikki- sidostamista) 13,8 2-era (poikkisidostamisen jalkeen) 23,0 1,665 1,68Additions 20 1-batch (before cross-linking) 13.8 2-batch (after cross-linking) 23.0 1.665 1.68

Poikkisidostus 80 °C/6 h 25 formaldehyd! (M 30,02) 37-% liuos 50 18,5 0,616Crosslinking 80 ° C / 6 h 25 formaldehyde! (M 30.02) 37% solution 50 18.5 0.616

Eetterointi 65 °C/6,5 h GTAK-HCl (M 188,11) 62,3-% liuos aktiivi- 30 aineen suhteen 300 186,9 0,994 1Etherification 65 ° C / 6.5 h GTAK-HCl (M 188.11) 62.3% solution of active substance 300 186.9 0.994 l

Kuiva-ainetta poikkisidostettaessa oli 28,9 % ja eetteroi-taessa 38,4 %. Reagenssia reaktioseoksessa oli 0,994/241,4 x 100 = 0,412 moolia/100 g ligniinia. Formal-35 dehydia kaytettiin 0,26 moolia 100 g kohti ligniinia.The dry matter was 28.9% when crosslinked and 38.4% when etherified. The reagent in the reaction mixture was 0.994 / 241.4 x 100 = 0.412 mol / 100 g of lignin. Formal-35 dehyde was used in 0.26 moles per 100 g of lignin.

li 91642 13li 91642 13

Poikkisidostamista vårten formaldehydi sekoitettiin alkaliligniiniin 50 °C:ssa, minka jalkeen lampotila nos-tettiin 80 °C:seen ja seosta sekoitettiin tåsså lampoti-lassa 6 tunnin ajan.For crosslinking, the formaldehyde was stirred in alkali lignin at 50 ° C, after which the temperature was raised to 80 ° C and the mixture was stirred at this temperature for 6 hours.

5 Jåahdytettyyn seokseen lisåttiin 65 °C:ssa toinen erå NaOH:a seka kationisoimisreagenssi sekoittaen 0,5 tunnin aikana. Sekoittamista jatkettiin saroassa lampotilassa 2,5 tuntia, jolloin reaktioseos oli taysin vesiliukoinen. Reaktion annettiin edistya 65 °C:ssa 3,5 tuntia, jonka 10 jalkeen seos neutraloitiin laimealla suolahapolla. Ultra-suodatetussa (Amicon PM 10 kalvo, M > 10 000) ja kuivatus-sa nåytteesså oli typpeå 2,9 %.To the cooled mixture at 65 ° C was added a second portion of NaOH and the cationization reagent with stirring over 0.5 h. Stirring was continued at room temperature for 2.5 hours, at which time the reaction mixture was completely water soluble. The reaction was allowed to proceed at 65 ° C for 3.5 hours, after which the mixture was neutralized with dilute hydrochloric acid. The ultra-filtered (Amicon PM 10 membrane, M> 10,000) and dried sample contained 2.9% nitrogen.

Reagenssisaannon laskeminen: 100 g kohti puhdasta kationista ligniinia oli . 0,20714 x 152,64 = 31,62 g 15 14 GTAK-reagenssia ja 100,00 - 31,62 = 68,38 g ligniinia. Reagenssisaanto: 0.207 241.4 = 73 5 % 68,38 0,994Calculation of reagent yield: per 100 g of pure cationic lignin was. 0.20714 x 152.64 = 31.62 g of GTAK reagent and 100.00-31.62 = 68.38 g of lignin. Reagent yield: 0.207 241.4 = 73 5% 68.38 0.994

Claims (3)

91642 Patentt ivaatimukset91642 Patent Claims 1. Flokkulointiaineena kåyttokelpoinen kationinen ligniini, tunnettu siita, ettå se on valmistettu 5 mustalipean ultrasuodatetusta fraktiosta siten, ettå ensin mustalipeå ultrasuodatetaan, minkå jalkeen saatu ultrasuo-datettu fraktio kationisoidaan glysidyylitriammoniumklori-dilla tai N-(3-kloori-2-hydroksipropyyli)trimetyyliammo-niumkloridilla.Cationic lignin useful as a flocculant, characterized in that it is prepared from ultrafiltered fractions of 5 black liquors by first ultrafiltrating the black liquor, after which the resulting ultrafiltered fraction is cationized with glycidyltriammonium chloride-N- (3-chloro-2-chloro) chloride. 2. Patenttivaatirouksen 1 mukainen kationinen lig niini, tunnettu siita, etta ennen kationisointia mustalipean ultrasuodatettu fraktio poikkisidostetaan formaldehydillå.Cationic ligene according to Claim 1, characterized in that the ultrafiltered fraction of the black liquor is crosslinked with formaldehyde before cationization. 3. Menetelmå jatevesien puhdistamiseksi, t u n -15 n e t t u siita, ettå jåtevettå kåsitellåån patenttivaa-timuksen 1 tai 2 mukaisella kationisella ligniinillå. il 910423. A process for the purification of wastewater, characterized in that the wastewater is treated with a cationic lignin according to claim 1 or 2. il 91042
FI912863A 1991-06-13 1991-06-13 Cationic lignin useful as a flocculant and wastewater purification process FI91642C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FI912863A FI91642C (en) 1991-06-13 1991-06-13 Cationic lignin useful as a flocculant and wastewater purification process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI912863A FI91642C (en) 1991-06-13 1991-06-13 Cationic lignin useful as a flocculant and wastewater purification process
FI912863 1991-06-13

Publications (4)

Publication Number Publication Date
FI912863A0 FI912863A0 (en) 1991-06-13
FI912863A FI912863A (en) 1992-12-14
FI91642B FI91642B (en) 1994-04-15
FI91642C true FI91642C (en) 1994-07-25

Family

ID=8532699

Family Applications (1)

Application Number Title Priority Date Filing Date
FI912863A FI91642C (en) 1991-06-13 1991-06-13 Cationic lignin useful as a flocculant and wastewater purification process

Country Status (1)

Country Link
FI (1) FI91642C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI128252B (en) * 2015-11-04 2020-01-31 Kemira Oyj Method for optimising material recovery in a chemical pulping process
CN113651963B (en) * 2021-07-16 2022-05-24 华南理工大学 Hyperbranched lignin-based cationic starch multifunctional composite flocculant and preparation and application thereof

Also Published As

Publication number Publication date
FI912863A0 (en) 1991-06-13
FI912863A (en) 1992-12-14
FI91642B (en) 1994-04-15

Similar Documents

Publication Publication Date Title
FI74033B (en) BLADENINGLIG BLADENING AV AVATERNAERA AMMONIUM POLYMER, ICKE-JONISKA OCH / ELLER KATJONISKA VINYLADDITIONSPOLYMERER OCH ICKE-JONISKA OCH / ELLER KATJONISKA YTAKTIVA MEDEL.
KR100189045B1 (en) Method of treating bctmp/ctmp waste water
DK1274652T3 (en) A process for the purification of water by the use of cationic dispersion polymers of low molecular weight
EP3305732A1 (en) Wastewater treatment method
EP0630858B1 (en) Composition and method for water clarification and wastewater treatment
CN101254970B (en) Decolorizing coagulant
US5643462A (en) Composition and method for water clarification
FI91642C (en) Cationic lignin useful as a flocculant and wastewater purification process
US5597490A (en) DADMAC/vinyl trialkoxysilane copolymers for treatment of food processing wastes
US5589075A (en) Use of silicon containing polyelectrolytes in wastewater treatment
CA2873981A1 (en) Consolidation and dewatering of particulate matter with protein
CN114751499B (en) Composite flocculant for treating dye wastewater and preparation method and application thereof
FI91770B (en) Cationic tannin useful as flocculant and composition useful as flocculant in wastewater purification
US5846436A (en) Composition and method for water clarification
WO1994002424A1 (en) Process for purifying sludge containing mainly water
CN115321657A (en) Hydrophobic chitosan-polyaluminum chloride Hmcs-PAC composite flocculant and preparation and application thereof
US4058458A (en) Removal of color from paper mill waste waters
JP3339801B2 (en) Septic sludge treatment method
Oelmeyer et al. Combined flocculant systems with cationic starches in the solid/liquid separation of harbor sediments
FI67870B (en) PULVERFORMED STARKA CATIONIC POLYELEKTROLYTET PAO BASEN AV ACRYLAMID OCH DIMETHYLAMINOETHYLACRYLATE I FORM AV ETT KVATERNAERT AMMONIUMSALT ELLER ETT SYRAADDITIONSSALT SAMT POLYELEKTROLYTERNAS SENS
JP2018153811A (en) Processing method of organic waste water and composition for processing organic waste water
WO2002056095A2 (en) Modification of soy flour proteins for producing coagulants in papermaking and waste water treatment applications
RU2222502C2 (en) Method of conditioning hydroxide sediments in natural and industrial waste waters
JP2001162285A (en) Method for treating food processing colored waste fluid
JPS63240998A (en) Dehydration of organic sludge

Legal Events

Date Code Title Description
FG Patent granted

Owner name: METSÄ-SERLA OY

BB Publication of examined application
MA Patent expired