FI90913C - Combustion to eliminate NOx gases - Google Patents

Combustion to eliminate NOx gases Download PDF

Info

Publication number
FI90913C
FI90913C FI920103A FI920103A FI90913C FI 90913 C FI90913 C FI 90913C FI 920103 A FI920103 A FI 920103A FI 920103 A FI920103 A FI 920103A FI 90913 C FI90913 C FI 90913C
Authority
FI
Finland
Prior art keywords
flue gases
cooled
combustion
gases
flow
Prior art date
Application number
FI920103A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI920103A (en
FI920103A0 (en
FI90913B (en
Inventor
Viljo Jaervenpaeae
Original Assignee
Wiser Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wiser Oy filed Critical Wiser Oy
Priority to FI920103A priority Critical patent/FI90913C/en
Publication of FI920103A0 publication Critical patent/FI920103A0/en
Priority to AU33531/93A priority patent/AU3353193A/en
Priority to PCT/FI1993/000005 priority patent/WO1993014348A1/en
Publication of FI920103A publication Critical patent/FI920103A/en
Application granted granted Critical
Publication of FI90913B publication Critical patent/FI90913B/en
Publication of FI90913C publication Critical patent/FI90913C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

90913 NOx-kaasuja eliminoiva poltto Nox-gaser eliminerande brånning 590913 NOx gas eliminating combustion Nox gaser eliminerande brånning 5

Keksinndn kohteena on menetelmå poltossa syntyvien savukaasujen sisål-tåmien NOx-kaasupååstojen eståmiseksi pååsemåstå jååhtyneiden savukaasujen poistovirtaukseen.The invention relates to a method for preventing NOx gas emissions contained in combustion flue gases from entering the flue gas exhaust stream.

10 Kuten yleisesti tiedetåån typpihapon valmistus tapahtuu ammoniakkia polttaen. Tållbin typpioksidien saanti edellyttåå erittåin nopeata palamiskaasujen NOx-kaasujen jååhdyttåmistå, jotta saanti olisi mahdollisimman hyvå. Siksi kåytetåån platina-verkkoa vålittdmåsti polton jål-keisen kaasun jååhdytykseen.10 As is generally known, nitric acid is produced by burning ammonia. Thus, the intake of nitrogen oxides requires a very rapid cooling of the NOx gases in the combustion gases in order to obtain the best possible intake. Therefore, a platinum network is used immediately to cool the post-combustion gas.

1515

Fysikaalis-kemiallisessa tasapainotilassa NO hajoaa 100 %:sti, kun låm-p6tila on alle 700°C. Låmpotilassa alle 500°C NO on metastabiilissa tilassa. Låmpotilassa noin 1700°C on vapaassa ilmatilassa 0,3-0,4 til.-% NO eli n. 3000 mg NO/m3. Nåin olien normaalissa poltossa (1200-1500°C:-20 ssa) syntyy aina 1200-2000 mg NO/m3 savukaasuja. Kåytånndsså mahdolli-simman pienellå yli-ilmalla pååståån jonkun verran matalampiin NOx-pååstoihin.At physico-chemical equilibrium, NO decomposes 100% when the temperature is below 700 ° C. At temperatures below 500 ° C NO is metastable. At a temperature of about 1700 ° C, the free air contains 0.3-0.4% by volume of NO, i.e. about 3000 mg NO / m3. Thus, in normal combustion (1200-1500 ° C: -20), 1200-2000 mg NO / m3 of flue gases are always generated. In practice, with somewhat as little over-air as possible, we get somewhat lower NOx emissions.

Normaali poltto palvelee yleisimmin låmmåntuottoa ts. polttokaasuista 25 pyritåån saamaan mahdollisimman tåydellisesti ja tehokkaasti låmpoener-gia siirtymåån kattilan tulipintoihin ja siitå seinån toisella puolella olevaan veteen tai vastaavaan våliaineeseen. Savukaasut pyritåån jååh-dyttåmåån mahdollisimman tåydellisesti ja mieluimmin låhelle låmpotilaa 130-150°C, koska mitå alemmaksi savukaasujen låmpdtilassa pååståån, sitå 30 tehokkaammin saadaan låmpéenergia talteen. Suuremmissa kattiloissa ei kuitenkaan yritetåkåån pååstå juuri oleellisesti alle låmpotilaa 160°C, koska savukaasuista alkaa kondensoitua mm. S03-kaasu, jota yleenså aina on hiukan savukaasuissa S02:n ohella, kattilan kylmiin osiin. Kondensaa-tion seurauksena syntyy korroosiota. S02 alkaa kondensoitua myds polt-35 toilman kosteuden lisååntyesså ja låmpdtilan pudotessa liikaa savukaasuissa (alle 170°C) . Yleenså kattiloissa savukaasut jååhtyvåt nopeas-ti låmpdtilaan alle 500°C, misså tilassa NO stabiloituu ts. se ei hajoa olotiladiagrammin mukaisesti alkuaineiksiin, vaikka olotiladiagrammin 2 mukaan NO pitåisi hajota låhtoaineiks i in. Tåmå johtuu siitå, ettå ha-jautumisreaktio on hyvin hidas ja låhes olematon ts. mitå alemmaksi låmpdtilassa tullaan, sitå våhåisempåå on hajoaminen.Normal combustion most commonly serves heat production, i.e. the aim is to obtain the most complete and efficient heat energy from the combustion gases 25 to the boiler hot surfaces and from there to the water on the other side of the wall or a similar medium. The aim is to cool the flue gases as completely as possible and preferably to a temperature close to 130-150 ° C, because the lower the temperature of the flue gases, the more efficiently the thermal energy is recovered. In larger boilers, however, no attempt is made to allow the temperature to be just below 160 ° C, because flue gases begin to condense e.g. SO3 gas, which is usually always slightly present in the flue gases in addition to SO2, to the cold parts of the boiler. Condensation results in corrosion. SO2 begins to condense as the humidity of the myds burn-35 increases and the temperature drops too much in the flue gases (below 170 ° C). In general, in boilers, the flue gases cool rapidly to a temperature below 500 ° C, in which state NO stabilizes, i.e. it does not decompose into elements according to the state diagram, although according to state diagram 2 NO should decompose into starting materials. This is due to the fact that the decomposition reaction is very slow and almost non-existent, i.e. the lower the temperature, the lower the decomposition.

5 Nykyisillå tekniikoilla savukaasujen NOx-pååstojå on pyritty eliminoi-maan ns. vaiheistetulla poltolla, jolloin polton låmpotila pyritåån pitåmåån alle 1000°C, koska tåsså låmpotilasa olotiladiagraimnin mukaan on NOx-kaasujen osuus savukaasuissa olellisesti våhåisempi kuin normaa-lissa suorassa poltossa (yli 1200°C) . Tåmå on osoittautunut kuitenkin 10 erittåin vaativaksi tehtåvåksi. Vain harvoilla polttimilla on saavu-tettu riittåvån hyviå tuloksia ts. pudotettua NOx-kaasujen osuus esim. 50 % normaalipolttoon verrattuna.5 Current technologies have sought to eliminate the so-called NOx emissions from flue gases. in phased combustion, in which case the temperature of the combustion is kept below 1000 ° C, because here, according to the state diagonal, the share of NOx gases in the flue gases is substantially lower than in normal direct combustion (above 1200 ° C). However, this has proven to be 10 very demanding tasks. Only a few burners have achieved sufficiently good results, ie a reduced share of NOx gases, e.g. 50% compared to normal combustion.

Tekniikan tasosta tunnetaan myos ratkaisu, jossa kierråtetåån savu-15 kaasuja takaisin polttoon, jotta saavutetaan alhainen polton låmpdtila. Ratkaisulla on omat haittansa, varsinkin jos polttoaine sisåltåå mm. klooria, dioksiineja synnyttåviå komponentteja, joiden poltto edellyt-tåå polttolåmpotilaa huomattavasti yli 1000°C, jopa yli 1200°C. Tålloin jo tasapainodiagrammin mukaan syntyy merkittåviå mååriå NOx-kaasuja 20 puhumattakaan siitå, ettå polttoaineen sisåltåmå typpisisåltd palaa kokonaisuudessaan NOx-kaasuiksi.A solution is also known from the prior art in which flue-15 gases are recycled back to combustion in order to achieve a low combustion temperature. The solution has its own disadvantages, especially if the fuel contains e.g. chlorine, dioxin-generating components, the combustion of which requires a combustion temperature well above 1000 ° C, even above 1200 ° C. In this case, according to the equilibrium diagram, a significant amount of NOx gases 20 is generated, not to mention the fact that the nitrogen content in the fuel burns in its entirety to NOx gases.

Nykyisin tunnetuilla tekniikoilla siis yritetåån saada syntymåån poltossa mahdollisimman våhån NOx-kaasuja alentamalla polttolåmpotilaa, 25 mutta tålloin aiheutuu muitakin kuin edellå todettuja harmeja. Tunnetuilla menetelmillå, paitsi ettå ne ovat kalliita ja paljon automatiik-kaa sisåltåviå, aiheutetaan epåtåydellistå polttoa, ja niillå saavutetaan yleenså korkeintaan 50-60 %:n NOx-reduktio tavalliseen polttoon verrattuna.Thus, the currently known techniques try to obtain as little NOx gases as possible in the combustion process by lowering the combustion temperature, 25 but this also causes annoyances other than those found above. Known methods, except that they are expensive and involve a lot of automation, cause incomplete combustion and generally achieve a NOx reduction of up to 50-60% compared to conventional combustion.

3030

Keksinndn pååmåårånå on aikaansaada parannus nykyisin tunnettuihin menetelmiin poltossa syntyvien savukaasujen sisåltåmien NOx-kaasupåås-tdjen eståmiseksi pååsemåstå jååhtyneiden savukaasujen poistovirtauk-seen.It is an object of the invention to provide an improvement on the currently known methods for preventing NOx gas emissions from combustion flue gases in the flue gas exhaust stream.

35 3 9091335 3 90913

Keksinndn yksityiskohtaisempana pååmaårånå on aikaansaada menetelmå, joka mahdollistaa NOx-kaasujen hajautumisen alkuaineiksiin mahdolli-simman tåydellisesti, jolloin jååhtyneiden savukaasujen poistovirtaus on olennalsesti vapaa NOx-savukaasupååstoista.It is a more detailed object of the invention to provide a method which enables NOx gases to be dispersed into the elements as completely as possible, whereby the exhaust stream of the cooled flue gases is substantially free of NOx flue gas emissions.

55

Keksinnon pååmåarat saavutaan menetelmallå, joka on tunnettu siita, ettå polton jalkeiset savukaasut jaahdytetaan lampotilaan 400-750°C ja viivytetåån tasså låmpotilassa ainakin 0,1 sekunttia, jolloin NOx-kaa-sut hajautuvat alkuaineiksiin.The objectives of the invention are achieved by a method characterized in that the flue gases after combustion are cooled to a temperature of 400-750 ° C and delayed at this temperature for at least 0.1 second, whereby the NOx gases decompose into the elements.

1010

Keksinndn mukaisessa menetelmåssa poltto on mahdollista korkeissakin låmpotiloissa, mutta sen jalkeen savukaasujen lampdtila pudotetaan hel· lavaraisesti keksinndn mukaiseen låmpdtila-alueeseen ja viivytetåån siina, jolloin N0x>kaasut hajautuvat mahdollisinunan taydellisesti.In the method according to the invention, combustion is possible even at high temperatures, but after that the lamp space of the flue gases is gently dropped into the temperature range according to the invention and delayed there, whereby the N0x> gases are completely dispersed as possible.

1515

Keksintd perustuu oivallukseen saada savukaasun lampdtila putoamaan mahdollisimman jouhevasti valille 400-750°C. Talldin olotiladiagrammin mukaan NOx-paastot hajoavat alkuaineiksiin, hapeksi ja typeksi, koska NOx-kaasujen lampdtila on riittavan korkea, jotta ko. hajautumisreaktio 20 on riittavan nopea ja termisesti mahdollinen.The invention is based on the realization that the flue gas lamp space falls as smoothly as possible between 400-750 ° C. According to Talld's state diagram, NOx fasts decompose into elements, oxygen and nitrogen, because the lamp state of NOx gases is high enough to the dispersion reaction 20 is sufficiently rapid and thermally possible.

Keksintda selitetaan yksityiskohtaisesti viittaamalla oheisien piirus-tuksien kuvioissa esitettyihin keksinndn eraisiin edullisiin suoritus-muotoihin, joihin keksintda ei kuitenkaan ole tarkoitus yksinomaan 25 rajoittaa.The invention will be explained in detail with reference to some preferred embodiments of the invention shown in the figures of the accompanying drawings, to which, however, the invention is not intended to be exclusively limited.

Kuvio 1 esittaa keksinndn mukaisen menetelman erastå edullista suori-tusmuotoa kaaviomaisena sivukuvana.Figure 1 shows a schematic side view of a preferred embodiment of the method according to the invention.

30 Kuvio 2 esittaa keksinndn mukaisen menetelman erasta toista edullista suoritusmuotoa kaaviomaisena sivukuvana.Figure 2 shows a schematic side view of another preferred embodiment of the method according to the invention.

Kuvio 3 esittaa keksinndn mukaisen menetelman erasta kolmatta edullista suoritusmuotoa kaaviomaisena sivukuvana.Figure 3 shows a schematic side view of a third preferred embodiment of the method according to the invention.

35 435 4

Kuvion 1 mukaisessa suoritusmuodossa keksirmon mukaista menetelmåå on sovellettu polttokattilaan, jota on merkitty yleisesti viitenumerolla 10. Kattilan 10 runkoa on merkitty viitenumerolla 11, poltinta viitenumerolla 12 ja tulipesåa viitenumerolla 13. Kattilan 10 tulipesåån 13 5 tulee liekki polttimesta 12. Polttimeen 12 johdetaan polttoainesyotto A ja puhaltimen 21 avulla polttoilmavirta B. Kattilan 10 tulipesåsså 13 polton oletetaan olevan mahdollisimman taydellisen ts. polttoilmaa on sopivan riittåvåsti.In the embodiment according to Figure 1, the method according to the invention is applied to a combustion boiler, generally indicated by reference numeral 10. The body of boiler 10 is denoted by reference numeral 11, burner by reference numeral 12 and furnace by reference numeral 13. by means of the fan 21, the combustion air flow B. In the furnace 13 of the boiler 10, the combustion is assumed to be as complete as possible, i.e. there is sufficient combustion air.

10 Tulipesåssd 13 savukaasujen låmpotila voi vaihdella esim. alueella 1000-1700°C. Tålloin poltossa syntyy myos NOx-kaasuja. Keksinnon perus-oivalluksen mukaisesti polton jalkeiset savukaasut jååhdytetåån låmpd-tilaan 400-750°C ja viivytetåån tassa låmpotilassa ainakin 0,1 sekunt-tia, mieluiten ainakin 0,5-5 sekunttia, jolloin NOx-kaasut hajaantuvat 15 alkuaineiksiin.10 The temperature of the flue gases in the firebox 13 can vary, for example, in the range from 1000 to 1700 ° C. In this case, NOx gases are also generated during combustion. According to the basic understanding of the invention, the flue gases after combustion are cooled to a temperature of 400-750 ° C and delayed at this temperature for at least 0.1 second, preferably for at least 0.5-5 seconds, whereby the NOx gases decompose into 15 elements.

Kuvion 1 mukaisessa suoritusmuodossa kuumien polttokaasujen jaahdytys on toteutettu ns. etujaahdyttimella, joka voi olla esim. kaasujådhdyt-teinen putkilåmmdnvaihdin tai nestejaahdytteinen putkilåmmonvaihdin.In the embodiment according to Figure 1, the cooling of the hot combustion gases is carried out in a so-called with a pre-cooler, which can be, for example, a gas-cooled tube heat exchanger or a liquid-cooled tube heat exchanger.

20 Tassa suoritusmuodossa låmmdnvaihdin 14 on esitetty kaasujååhdytteisek-si putkilammonvaihtimeksi. Jos lammdnvaihtimen 14 seinamat ovat sopi-vimmin lampotilassa yli 400°C, kontaktoiva savukaasu jååhtyy korkeintaan låmpdtilaan 500°C. Tassa suoritusmuodossa kattilassa 10 on lammdnvaihti-men 14 jålkeen ns. såteilyosa 15, jossa kuuma esim. lampdtilassa yli 25 700°C oleva savukaasu sateilemalla siirtåå låmpoå såteilyseinåmåån 16.In this embodiment, the heat exchanger 14 is shown as a gas-cooled tube heat exchanger. If the walls of the heat exchanger 14 are preferably at a temperature above 400 ° C, the contacting flue gas cools to a maximum temperature of 500 ° C. In this embodiment, the boiler 10 has, after the heat exchanger 14, a so-called a radiating section 15, in which hot flue gas, e.g. in a lamp room, exceeds 25,700 ° C by transmitting heat to the radiating wall 16 by rain.

Såteilyseinåman 16 ja rungon 11 valisessa valitilassa 17 virtaa joko ulkoilma tai jååhtynyt savukaasuvirta. Kuvion 1 mukaisessa suoritusmuodossa vålitilassa 17 virtaa ulkoilmavirtaus D. On huomattava, etta sateilytilassa 15 savukaasujen virtaus ja jaahdyttava ulkoilmavirtaus D 30 ovat toisiinsa nahden vastakkaiset. Såteilyseinåmån 16 alapååssa jaahdyttava ulkoilmavirtaus D yhtyy savukaasuvirtaukseen.In the selected space 17 between the radiation wall 16 and the body 11, either outdoor air or a cooled flue gas stream flows. In the embodiment according to Figure 1, the outdoor air flow D flows in the space 17. It should be noted that in the rain space 15 the flue gas flow and the cooling outdoor air flow D 30 are opposite to each other. At the lower end of the radiation wall 16, the cooled outdoor air flow D coincides with the flue gas flow.

Keksinndn mukaisessa menetelmasså savukaasujen lampdtila saadaan joka tapauksessa putoamaan låmpdtilaan alle 750°C, mieluimmin låmpotilaan 35 alle 700°C. Naisså lampdtiloissa N0:n hajoaminen on energeettisesti i 90913 5 riittåvån nopeaa, jonka johdosta lopputuloksena saadaan savukaasuja, joiden NOx-sisåltd on kaytanndssa olematon.In the method according to the invention, the lamp space of the flue gases is in any case caused to fall to a temperature below 750 ° C, preferably to a temperature below 700 ° C. In female lamp rooms, the decomposition of NO is energetically sufficiently rapid, as a result of which flue gases are obtained, the NOx content of which is non-existent.

Kun savukaasut ovat jåahtyneet lampdtilaan alle 700°C, ne kulkeutuvat 5 kanavaan 18, jossa jaahtyneet savukaasut viipyvåt ainakln 0,1 sekunt-tia, mieluiten 0,5-5 sekunttia. Tållainen viipyma lampåtilassa 500-700°C johtaa NOx-kaasujen haajautumiseen alkualneiksiin olotiladiagrammia vastaavaan koostumukseen (2 NO -> N2 + 02) . Kanavan 18 jålkeen savukaasut ohjataan kattilan 10 kontaktoriosaan 19, jossa savukaasut luo-10 vuttavat låmpéenergiansa kattilan 10 valiaineeseen. Savukaasut poistu-vat kattilan 10 poistokanavasta 20 savukaasuvirtauksena C sinånså tun-netulla tavalla.Once the flue gases have cooled to the lamp space below 700 ° C, they pass through a duct 18 where the cooled flue gases remain for at least 0.1 seconds, preferably 0.5-5 seconds. Such a residence time at a temperature of 500-700 ° C leads to the diffusion of NOx gases to the initial elements in the composition corresponding to the state diagram (2 NO -> N2 + 02). After the duct 18, the flue gases are directed to the contactor part 19 of the boiler 10, where the flue gases generate their thermal energy to the boiler 10 selector. The flue gases exit the boiler 10 outlet duct 20 as a flue gas flow C in a manner known per se.

Kuvlossa 2 esltetty suoritumuoto on muutoin sama kuln kuviossa 1 esi-15 tetty suoritusmuoto, mutta kuvion 2 mukaisessa suoritusmuodossa kuumia savukaasuja jaahdytetaan låmmonvaihtimen 14 lisaksi sdteilyosassa 15 myds jaahtyneiden savukaasujen virtauksen D avulla. Osa poistokanavassa 20 virtaavista savukaasuista johdetaan puhaltimen 22 avulla virtauksena D valitilaan 17 kuumien savukaasujen jaahdyttamiseksi.The embodiment shown in Fig. 2 is otherwise the same embodiment shown in Fig. 15, but in the embodiment according to Fig. 2 the hot flue gases are cooled in addition to the heat exchanger 14 in the heating section 15 by means of a flow D of cooled flue gases. Some of the flue gases flowing in the exhaust duct 20 are led by means of a fan 22 as a flow D to a select space 17 for cooling the hot flue gases.

2020

Kuvion 3 mukaisessa suoritusmuodossa lamm6nvaihtimen 14 jaahdytysvaiku-tus on korvattu kokonaan jaahdyttamålla kuumat savukaasut sateilyosassa 15 jaahtyneiden savukaasujen virtauksella D. Kuvion 3 mukaisessa suoritusmuodossa puhallin 22 ohjaa jaahtyneen savukaasuvirtauksen D rei'ite-25 tystå poikkitasosta 23 lapimenevien putkien 24 muodostamaan valitilaan 17. Savukaasuvirtaus D virtaa alaspain ja sekoittuu putkien 24 alapåds-så kuumien savukaasujen vastavirtaan tapahtuvaan virtaukseen. Sekoittu-neet kaasut virtaavat putkia 24 myoten ylospåin kanavaan 18, jossa viipymaaika on vastaava kuin kuvioiden 1 ja 2 mukaisissa suoritusmuo-30 doissa. Kuvion 3 mukaisella ratkaisulla saavutetaan kuumien savukaasujen ja kylmien, mutta jo putkissa 24 lammenneiden kiertosavukaasujen sekoittuminen samalla kun sateilylampda voidaan siirtåå putkien 24 seiniin ja siten kontaktiin kiertosavukaasuvirtauksen D kanssa. Putkien 24 pituutta ja valitilan 17 suuruutta voidaan muunnella tarpeen mukaan, 35 jotta kiertosavukaasuvirtaus D voi jakautua mahdollisimman tasaiseksi kohtaamaan tulipesåstå 13 virtaavat kuumat savukaasut.In the embodiment of Fig. 3, the cooling effect of the lamp exchanger 14 is completely replaced by cooling the hot flue gases in the rain section 15 with the flow of cooled flue gases D. In the embodiment of Fig. 3, the fan 22 controls the flow downstream and mixes with the countercurrent flow of hot flue gases in the lower parts of the pipes 24. The mixed gases flow up the pipes 24 into the duct 18, where the residence time is similar to that in the embodiments of Figures 1 and 2. The solution according to Figure 3 achieves the mixing of hot flue gases and cold but already circulating flue gases in the pipes 24, while the rain lamp can be moved to the walls of the pipes 24 and thus to contact with the circulating flue gas flow D. The length of the pipes 24 and the size of the selection space 17 can be varied as necessary so that the circulating flue gas flow D can be distributed as evenly as possible to meet the hot flue gases flowing from the furnace 13.

66

Keksinndn mukaisella menetelmållå, erityisesti kuvioiden 2 ja 3 mukai-silla suoritusmuodoilla, ei menetetå energiaa hukkaan, mutta siitå huo-limatta saavutetaan erittain hyvå NOx-kaasujen poisto. Keksinnon mukai-selle menetelmålle on siis ominaista se, etta kuumat savukaasut jååhdy-5 tetåån mahdollisimman jouhevasti joko jååhdyttåmållå kaasuvirtauksella tal jååhdytyspinnoilla, joiden låmpdtila on parhaiten yli 300°C, edulli-simmin yli 400°C. Tållå tavalla valtytåån siitå mahdollisuudelta, ettå NOx-kaasut stabiloituisivat, kuten tapahtuu nykyisisså nopeissa jåah-dyttåmisissa kattiloiden lammdnsiirtoseinamilla. Nåisså aikaisemmin 10 tunnetuissa ratkaisuissa ainut tapa vahentaa NOx-pååstojå on ollut polttolåmpotilan pudottaminen, joka keksinndn mukaisessa menetelmåsså ei ole lainkaan vålttåmåtontå.The method according to the invention, in particular the embodiments according to Figures 2 and 3, does not waste energy, but nevertheless achieves a very good removal of NOx gases. The method according to the invention is thus characterized in that the hot flue gases are cooled as smoothly as possible, either by cooling the gas flow on cooling surfaces whose temperature is preferably above 300 ° C, most preferably above 400 ° C. In this way, the possibility of NOx gases being stabilized is avoided, as is the case with the current rapid cooling on the boiler transfer walls of the boilers. In these previously known solutions, the only way to reduce NOx emissions has been to reduce the combustion temperature, which is not necessary in the method according to the invention.

Edella on esitetty kolmen eri suoritusmuodon valaisemana keksinnon 15 periaate, ts. menetelmå poltossa syntyneiden NOx-kaasujen hajottamisek-si. Alan ammattimiehelle on selvaa, ettå keksinndn mukainen menetelmå, ts. viivytetty savukaasuvirtaus keksinndn mukaisella lampdtila-alueella voidaan saavuttaa lukuisilla eri teknillisilla ratkaisuilla. Keksinndn mukainen lampdtila-alue voidaan saavuttaa tai sitå voidaan alentaa 20 tietyilla katalysaattoreilla. Viipymåajat eivåt mydskaån ole rajattu 5 sekunttiin, vaan viipymåaika voi olla suoritusmuodosta riippuen myos pidempi.The principle of the invention 15, i.e. a method for decomposing NOx gases generated during combustion, has been illustrated above in light of three different embodiments. It will be clear to a person skilled in the art that the method according to the invention, i.e. the delayed flue gas flow in the lamp space area according to the invention, can be achieved by numerous different technical solutions. The lamp space range according to the invention can be achieved or reduced by certain catalysts. The residence times are not limited to 5 seconds, but the residence time can also be longer, depending on the embodiment.

IlIl

Claims (8)

90913 Patenttivaatimuks et90913 Claim et 1. Menetelma poltossa syntyvien savukaasujen sisåltåmien NOx-kaasupåås-t6jen estdmiseksi pååsemåsta jaahtyneiden savukaasujen poistovirtauk- 5 seen, tunnettu siita, etta polton jalkeiset savukaasut jaahdy-tetaan lampotilaan 400-750°C ja viivytetåån tåsså låmpdtilassa ainakin 0,1 sekunttia, jolloin NOx-kaasut hajautuvat alkuaineiksiin.A method for preventing NOx gas emissions from combustion flue gases from escaping from the cooled flue gas outlet, characterized in that the flue gases after combustion are cooled to a temperature of at least 400-750 ° C and delayed at a temperature of 400-750 ° C and delayed. the gases disperse into the elements. 2. Patenttivaatimuksen 1 mukainen menetelma, tunnettu siita, 10 ettå savukaasuja viivytetåån mainitussa låmpotilassa ainakin 0,5-5 sekunttia ennen jatkojååhdyttamistå.A method according to claim 1, characterized in that the flue gases are delayed at said temperature for at least 0.5-5 seconds before further cooling. 3. Patenttivaatimuksen 1 tai 2 mukainen menetelma, tunnettu siita, etta polton jalkeiset savukaasut jaahdytetåån kaasujååhdyttei- 15 sella lammdnvaihtimella (14).Method according to Claim 1 or 2, characterized in that the flue gases after combustion are cooled by a gas-cooled heat exchanger (14). 4. Patenttivaatimuksen 1 tai 2 mukainen menetelma, tunnettu siita, etta polton jalkeiset savukaasut jaahdytetaan nestejaahdyttei-sella lammonvaihtimella (14). 20Method according to Claim 1 or 2, characterized in that the flue gases after combustion are cooled by a liquid-cooled lamp exchanger (14). 20 5. Patenttivaatimuksen 1 tai 2 mukainen menetelma, tunnettu siita, ettå polton jalkeiset savukaasut jaahdytetaan seka lammonvaihti-mella (14) etta jaahtyneilla savukaasuilla johtamalla ainakin osa jaah-tyneiden savukaasujen poistovirtauksesta (C) kiertovirtauksena (D) 25 kuumien savukaasujen sekaan.Method according to Claim 1 or 2, characterized in that the flue gases after combustion are cooled by both a lamp exchanger (14) and the cooled flue gases by passing at least part of the cooled flue gas outlet stream (C) as a circulating stream (D) to the hot flue gases. 6. Patenttivaatimuksen 5 mukainen menetelma, tunnettu siita, etta jaahtyneiden savukaasujen virtaus (D) johdetaan kattilan (10) rungon (11) ja såteilyseinån (16) valista vålitilaa (17) pitkin vasta- 30 virtaan kuumien savukaasujen virtaussuuntaan nahden.Method according to Claim 5, characterized in that the flow (D) of the cooled flue gases is conducted upstream of the space (17) between the boiler body (10) and the radiating wall (16) upstream of the flow direction of the hot flue gases. 7. Patenttivaatimuksen 1 tai 2 mukainen menetelma, tunnettu siita, etta kuumia savukaasuja jaahdytetaan pelkastaan johtamalla ainakin osa jaahtyneiden savukaasujen virtauksesta (C) kiertovirtauksena 35 (D) kattilan (10) sateilyosaan (15), jossa jaahtyneiden savukaasujen virtaus (D) sekoittuu kuumiin savukaasuihin.Method according to Claim 1 or 2, characterized in that the hot flue gases are cooled only by passing at least part of the cooled flue gas flow (C) in a circulating flow 35 (D) to the boiler section (15) of the boiler (10), where the cooled flue gas flow (D) is mixed . 8. Patenttivaatimuksen 7 mukainen menetelmå, tunnettu siita, etta jaahtyneiden savukaasujen virtaus (D) johdetaan såteilyosassa (15) olevien putkien (24) vallsia valitiloja (17) pitkin vastavirtaan kuumien savukaasujen putkia (24) pitkin tapahtuvaan virtaukseen nåhden, 5 jolloin putkien (24) alapaasså jaahtyneiden savukaasujen virtaus (D) sekoittuu mahdollisimman tehokkaasti kuumiin savukaasuihin. I: 90913Method according to Claim 7, characterized in that the flow (D) of the cooled flue gases is directed countercurrently to the flow along the pipes (24) of the hot flue gases (24) in the radiating section (15), the pipes (24) being ) at the bottom, the flow of cooled flue gases (D) mixes as efficiently as possible with the hot flue gases. I: 90913
FI920103A 1992-01-10 1992-01-10 Combustion to eliminate NOx gases FI90913C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI920103A FI90913C (en) 1992-01-10 1992-01-10 Combustion to eliminate NOx gases
AU33531/93A AU3353193A (en) 1992-01-10 1993-01-07 Calcination eliminating NOx gases
PCT/FI1993/000005 WO1993014348A1 (en) 1992-01-10 1993-01-07 CALCINATION ELIMINATING NOx GASES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI920103A FI90913C (en) 1992-01-10 1992-01-10 Combustion to eliminate NOx gases
FI920103 1992-01-10

Publications (4)

Publication Number Publication Date
FI920103A0 FI920103A0 (en) 1992-01-10
FI920103A FI920103A (en) 1993-07-11
FI90913B FI90913B (en) 1993-12-31
FI90913C true FI90913C (en) 1994-04-11

Family

ID=8533905

Family Applications (1)

Application Number Title Priority Date Filing Date
FI920103A FI90913C (en) 1992-01-10 1992-01-10 Combustion to eliminate NOx gases

Country Status (3)

Country Link
AU (1) AU3353193A (en)
FI (1) FI90913C (en)
WO (1) WO1993014348A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE462813B (en) * 1988-03-24 1990-09-03 Petrokraft Ing Ab FOERBRAENNINGSANORDNING
CH679692A5 (en) * 1989-04-24 1992-03-31 Asea Brown Boveri

Also Published As

Publication number Publication date
FI920103A (en) 1993-07-11
WO1993014348A1 (en) 1993-07-22
AU3353193A (en) 1993-08-03
FI920103A0 (en) 1992-01-10
FI90913B (en) 1993-12-31

Similar Documents

Publication Publication Date Title
US5350293A (en) Method for two-stage combustion utilizing forced internal recirculation
HU9503617D0 (en) Raw gas burner and process for burning oxygenic constituents in process gas
EP0114587A1 (en) Method of afterburning flue gases and a device for implementation of same
Hasegawa et al. High Temperature Air Combustion: Revolution in Combustion Technology: Part I: New Findings on High Temperature Air Combustion
FI90913C (en) Combustion to eliminate NOx gases
US4725222A (en) Process and apparatus for combustion of liquid and gaseous fuels with nitric oxide-free exhaust gas
ES2030204T3 (en) BURNER HEATED APPARATUS.
CA2004907A1 (en) Method of combustion for reducing the formation of nitrogen oxides during combustion and an apparatus for applying the method
EP0384277A3 (en) Method and combustion installation for the reduction of nitrogen oxide formation during the combustion of fossil fuels
EP0446436A3 (en) Process and device for burning impurities in a media flow
US6065961A (en) Low NOx burner
FI92102C (en) Method of removing NOx gases from flue gases
US6095096A (en) Integrated boiler burner with balanced heat flux
CN217103622U (en) Sleeve lime kiln device for NOx reduction process
JP2667607B2 (en) Structure of low NOx boiler
CN209744402U (en) NOx emission reduction structure based on water-exchange energy-saving system
JPS54158728A (en) Combustion heating method
KR100208403B1 (en) Cooling apparatus of exhaust gas
Kiga et al. Combustion characteristics of pulverized coal using high temperature air
JPS63118507A (en) Combustion apparatus
NL8102612A (en) PROCESS FOR CLEANING REACTION PRODUCTS.
KR100994378B1 (en) Expansion Gas tube type EGR Cooler
JPH06147420A (en) Apparatus for catalytic combustion
CA1062884A (en) Nitrogen oxide control using steam hydrocarbon injection
SU1116283A1 (en) Catalytic gas-air heat generator

Legal Events

Date Code Title Description
BB Publication of examined application
MM Patent lapsed