FI92102C - Method of removing NOx gases from flue gases - Google Patents

Method of removing NOx gases from flue gases Download PDF

Info

Publication number
FI92102C
FI92102C FI920724A FI920724A FI92102C FI 92102 C FI92102 C FI 92102C FI 920724 A FI920724 A FI 920724A FI 920724 A FI920724 A FI 920724A FI 92102 C FI92102 C FI 92102C
Authority
FI
Finland
Prior art keywords
gases
temperature
flue gases
flue
nox
Prior art date
Application number
FI920724A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI92102B (en
FI920724A (en
FI920724A0 (en
Inventor
Viljo Juhana Jaervenpaeae
Original Assignee
Wiser Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wiser Oy filed Critical Wiser Oy
Priority to FI920724A priority Critical patent/FI92102C/en
Publication of FI920724A0 publication Critical patent/FI920724A0/en
Priority to AU35015/93A priority patent/AU3501593A/en
Priority to PCT/FI1993/000059 priority patent/WO1993017281A1/en
Publication of FI920724A publication Critical patent/FI920724A/en
Publication of FI92102B publication Critical patent/FI92102B/en
Application granted granted Critical
Publication of FI92102C publication Critical patent/FI92102C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

92102 592102 5

Menetelmå NOx-kaasujen poistamiseksi savukaasuista Forfarande for att avlågsna NOx-gaser från rokgaserMethod for removing NOx gases from flue gases Forfarande for att avlågsna NOx gaser från rokgaser

Keksinnon kohteena on menetelmå NOx-kaasujen poistamiseksi låmposisål-tonså menettåneistå savukaasuista.The invention relates to a method for removing NOx gases from flue gases lost in the temperature.

Kuten yleisesti tiedetåån typpihapon valmistus tapahtuu ammoniakkia 10 polttaen. Tålloin typpioksidien saanti edellyttåå erittåin nopeata palamiskaasujen NOx-kaasujen jååhdyttåmistå, jotta saanti olisi mahdol-lisimman hyvå. Siksi kåytetåån platina-verkkoa vålittomåsti polton jål-keisen kaasun jååhdytykseen.As is generally known, nitric acid is produced by burning ammonia. In this case, the intake of nitrogen oxides requires a very rapid cooling of the NOx gases of the combustion gases in order to obtain the best possible intake. Therefore, a platinum network is used directly to cool the post-combustion gas.

15 Fysikaalis-kemiallisessa tasapainotilassa NO hajoaa 100 %:sti, kun låm-potila on alle 700°C. Låmpotilassa alle 500°C NO on metastabiilissa tilassa. Låmpotilassa noin 1700°C on vapaassa ilmatilassa 0,3-0,4 til.-% NO eli n. 3000 mg NO/m3. Nåin olien normaalissa poltossa (1200-1500°C: ssa) syntyy aina 1200-2000 mg NO/m3 savukaasuja. Kåytånnos-20 så mahdollisimman pienellå yli-ilmalla pååståån jonkun verran matalam-piin NOx-pååstoihin.15 At physicochemical equilibrium, NO decomposes 100% when the låm patient is below 700 ° C. At temperatures below 500 ° C NO is metastable. At a temperature of about 1700 ° C, the free air contains 0.3-0.4% by volume of NO, i.e. about 3000 mg NO / m3. Thus, in normal combustion of oils (1200-1500 ° C), 1200-2000 mg NO / m3 of flue gases are always generated. In practice-20 weather with as little overhead as possible, somewhat lower NOx emissions are released.

Normaali poltto palvelee yleisimmin låmmontuottoa ts. polttokaasuista pyritåån saamaan mahdollisimman tåydellisesti ja tehokkaasti låmpoener-25 gia siirtymåån kattilan tulipintoihin ja siitå seinån toisella puolella olevaan veteen tai vastaavaan våliaineeseen. Savukaasut pyritåån jååh-. dyttåmåån mahdollisimman tåydellisesti ja mieluimmin låhelle låmpotilaa 130-150°C, koska mitå alemmaksi savukaasujen låmpotilassa pååståån, sitå tehokkaammin saadaan låmpoenergia talteen. Suuremmissa kattiloissa ei 30 kuitenkaan yritetåkåån pååstå juuri oleellisesti alle låmpotilaa 160°C, koska savukaasuista alkaa kondensoitua mm. S03-kaasu, jota yleenså aina i: on hiukan savukaasuissa S02:n ohella, kattilan kylmiin osiin. Kondensaa- tion seurauksena syntyy korroosiota. S02 alkaa kondensoitua myos polt-toilman kosteuden lisååntyesså ja låmpotilan pudotessa liikaa savu-35 kaasuissa (alle 170°C) . Yleenså kattiloissa savukaasut jååhtyvåt nopeas-ti låmpotilaan alle 500°C, misså tilassa NO stabiloituu ts. se ei haj oa olotiladiagrammin mukaisesti alkuaineisiin, vaikka olotiladiagrammin mukaan NO pitåisi hajota låhtoaineisiin. Tåmå johtuu siitå, ettå ha- 2 92102 jautumisreaktio on hyvin hidas ja låhes olematon ts. mitå alemmaksi låmpotilassa tullaan, sitå våhåisempåå on hajoaminen.Normal combustion most commonly serves heat production, ie the aim is to obtain the most complete and efficient heat energy from the combustion gases to the boiler's fire surfaces and from there to the water or similar medium on the other side of the wall. Flue gases should be flushed. the temperature should be as full as possible and preferably close to 130-150 ° C, because the lower the temperature of the flue gases, the more efficiently the thermal energy is recovered. In larger boilers, however, no attempt is made to allow the temperature to be just below 160 ° C, because flue gases begin to condense e.g. SO3 gas, which is usually always i: slightly in the flue gases in addition to SO2, to the cold parts of the boiler. Condensation results in corrosion. SO2 also begins to condense as the humidity in the combustion air increases and the temperature drops too much in the smoke-35 gases (below 170 ° C). In general, in boilers, the flue gases cool down rapidly to a temperature below 500 ° C, in which state the NO stabilizes, i.e. it does not decompose to the elements according to the state diagram, although according to the state diagram NO should decompose to the starting materials. This is due to the fact that the acidification reaction is very slow and almost non-existent, i.e. the lower the temperature, the lower the decomposition.

Nykyisilla tekniikoilla savukaasujen NOx-pååstojå on pyritty eliminoi-5 maan ns. vaiheistetulla poltolla, jolloin polton låmpotila pyritåån pitåmåån alle 1000°C, koska tåsså låmpotilasa olotiladiagrammin mukaan on NOx-kaasujen osuus savukaasuissa oleellisesti våhåisempi kuin nor-maalissa suorassa poltossa (yli 1200°C). Tåmå on osoittautunut kuitenkin erittåin vaativaksi tehtavåksi. Vain harvoilla polttimilla on saavu-10 tettu riittåvån hyviå tuloksia ts. pudotettua NOx-kaasujen osuus esim.Current technologies have sought to eliminate NOx emissions from flue gases. in phased combustion, in which case the aim is to keep the combustion temperature below 1000 ° C, because here, according to the state diagram, the share of NOx gases in the flue gases is substantially lower than in normal direct combustion (above 1200 ° C). However, this has proved to be a very demanding task. Only a few burners have achieved sufficiently good results, ie the proportion of NOx gases has been reduced, e.g.

50 % normaalipolttoon verrattuna.50% compared to normal combustion.

Tekniikan tasosta tunnetaan myos ratkaisu, jossa kierråtetåån savu-kaasuja takaisin polttoon, jotta saavutetaan alhainen polton låmpotila.A solution in which flue gases are recycled back to combustion in order to achieve a low combustion temperature is also known from the prior art.

15 Ratkaisulla on omat haittansa, varsinkin jos polttoaine sisåltåå mm.15 The solution has its own disadvantages, especially if the fuel contains e.g.

klooria, dioksiineja synnyttåviå komponentteja, joiden poltto edellyt-tåå polttolåmpotilaa huomattavasti yli 1000°C, jopa yli 1200°C. Tålloin jo tasapainodiagrammin mukaan syntyy merkittåviå mååriå NOx-kaasuja puhumattakaan siitå, ettå polttoaineen sisåltåmå typpisisålto palaa 20 kokonaisuudessaan NOx-kaasuiksi.chlorine, dioxin-generating components, the combustion of which requires a combustion temperature well above 1000 ° C, even above 1200 ° C. At that time, according to the equilibrium diagram, a significant amount of NOx gases is generated, not to mention the fact that the nitrogen content in the fuel burns 20 to NOx gases.

Nykyisin tunnetuilla tekniikoilla siis yritetåån saada syntymåån poltossa mahdollisimman våhån NOx-kaasuja alentamalla polttolåmpotilaa, mutta tållbin aiheutuu muitakin kuin edellå todettuja harmeja. Tunne-.· 25 tuilla menetelmillå, paitsi ettå ne ovat kalliita ja paljon automatiik- kaa sisåltåviå, aiheutetaan epåtåydellistå polttoa, ja niillå saavutetaan yleenså korkeintaan 50-60 %:n NOx-reduktio tavalliseen polttoon verrattuna.Thus, currently known techniques try to get as little NOx gas as possible from the combustion process by lowering the combustion temperature, but this also causes annoyances other than those found above. Exceptional methods, except that they are expensive and involve a lot of automation, cause incomplete combustion and generally achieve a NOx reduction of up to 50-60% compared to conventional combustion.

30 NOx-kaasujen muodostuminen ja pitoisuus savukaasuissa riippuu paitsi ; polttoaineen typpipitoisuudesta my6s siitå, misså låmpotilassa poltto tapahtuu. Polttoaineen typpi palaa låhes 100-prosenttiseksi NOx-kaasuiksi. Tekniikan tason osalta viitataan artikkeliin: Holleman-Wiber, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin-New York 35 1976, sivu 395, jossa on esitetty, miten NOx-kaasut ovat tasapainossa vapaassa atmosfåårisså eri låmpotiloissa ja miten NO eri låmpotiloissa 3 92102 hajaantuu. Yleisesti tiedetåån, ettå NOx-kaasuja alkaa syntyå låmpoti-lan noin 730° ylåpuolella ja NOx-kaasujen måårå lisååntyy låhes exponen-tiaalisesti låmpotilan noustessa. Låmpotilan 500°C alapuolella NOx-kaa-sut puolestaan joutuvat ns. metastabiiliin tilaan, ts. NOx-kaasut pyr-5 kivåt hajautumaan, mutta reaktion kinetiikka on niin hidas, ettå låmpotilan 500°C alapuolella NO voidaan katsoa olevan låhes stabiilissa tilassa. Samoin on yleisesti tiedettyå, ettå låmpotilassa yli 650°C olevissa kaasuissa oleva N02 ei ole enåå mahdollinen, vaan låmpotilaan 650°C mennesså N02 on jo hajautunut NO:ksi ja hapeksi. Nåin olien tiede-10 tåån NOx-kaasujen (N02 ja NO) hajautuvan alkuaineiksi hapeksi ja typeksi låmpotila-alueella 500-730°C. Mitå låhempånå låmpotilan ylårajaa ollaan sitå nopeammin hajautuminen tapahtuu ja påinvastoin. Toisaalta jos låmpotilassa mennåån yli låmpotila-alueen ylårajan, sitå enemmån kaa-suihin alkaa myos sisåltyå NOx-kaasuja.30 The formation and concentration of NOx gases in flue gases depends not only; the nitrogen content of the fuel also depends on the temperature at which the combustion takes place. The nitrogen in the fuel burns to almost 100% NOx gases. With regard to the state of the art, reference is made to the article: Holleman-Wiber, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin-New York 35 1976, page 395, which shows how NOx gases are in equilibrium in the free atmosphere at different temperatures and how NO at different temperatures 3 92102 diverges. It is generally known that NOx gases begin to form above about 730 ° C and the amount of NOx gases increases almost exponentially as the temperature rises. Below the temperature of 500 ° C, NOx gases are in turn exposed to so-called to a metastable state, i.e., NOx gases tend to disperse, but the kinetics of the reaction are so slow that below a temperature of 500 ° C, NO can be considered to be in an almost stable state. It is also well known that NO2 in gases above 650 ° C is no longer possible, but by 650 ° C NO2 is already decomposed into NO and oxygen. Thus, science-10 today NOx gases (NO2 and NO) decompose into elements oxygen and nitrogen in the temperature range of 500-730 ° C. The lower the upper limit of the temperature, the faster the decomposition takes place and vice versa. On the other hand, if the temperature exceeds the upper limit of the temperature range, the more gases in the gases also start to contain NOx gases.

1515

Tavallisissa kattiloissa NOx-kaasut eivåt pååse hajoamaan laisinkaan savukaasujen såteilylåmmon siirtymisen johdosta kylmille kattilaseinil-le, jolloin NOx-kaasut joutuvat metastabiiliin tilaan. Aina låmpotilaan 500°C jååhtyvå kaasu luovuttaa tunnetusti låmponså huomattavasti enemmån 20 såteilemållå kuin konvektiolla. Nåin olien kattiloissa oleva kylmå seinå eståå NOx-kaasujen hajautumisen, vaikka NOx-kaasut olisivatkin låmpotila-alueella 500-730°C låmpomittarilla mitatun låmpotilan perus-teella, koska NO ko. låmpotila-alueella luovuttaa såteilylåmpoå kylmåån pintaan Stefan-Boltzmannin kaavan 25 W - C A [( Tl/100)* - (T2/100)*], jossa TI - kaasun låmpotila 30 T2 - kattilan seinåmån låmpotila.In ordinary boilers, NOx gases cannot be decomposed at all due to the transfer of the flue gas radiant heat to the cold boiler wall, whereby the NOx gases enter a metastable state. It is known that the gas, which always cools to a temperature of 500 ° C, releases considerably more radiation at temperature than convection. Thus, the cold wall in the boilers prevents the diffusion of NOx gases, even if the NOx gases are in the temperature range of 500-730 ° C on the basis of the temperature measured by a thermometer, because NO. in the temperature range, the radiant heat is transferred to a cold surface by Stefan-Boltzmann's formula 25 W - C A [(Tl / 100) * - (T2 / 100) *], where TI - gas temperature 30 T2 - boiler wall temperature.

Kaavasta nåhdåån, ettå mikali TI - 973°K (700°C) ja T2 - 523°K (250°C) , saadaan låmmonsiirtymåksi 8214-kertainen låmmonsiirtymå kuin jos TI - T2.It can be seen from the formula that when TI - 973 ° K (700 ° C) and T2 - 523 ° K (250 ° C), the heat transfer is 8214 times the heat transfer as if TI - T2.

35 4 9210235 4 92102

Tekniikan tason osalta viitataan SE-patenttijulkaisuun 466814, jossa on esitetty savukaasujen låmpotilan kohottaminen erillisellå polttimol-la låmpotilasta 850°C ylospåin låmpotilaan 900-1100°C tarkoituksena N02-kaasun hajottaminen.With regard to the state of the art, reference is made to SE patent publication 466814, which discloses raising the temperature of flue gases with a separate bulb from a temperature of 850 ° C upwards to a temperature of 900-1100 ° C for the purpose of decomposing NO 2 gas.

55

Keksinnon pååmåårånå on aikaansaada menetelmå, joka mahdolllstaa NOx-kaasujen poistamisen låmposisåltonså jo menettåneistå savukaasuis-ta.The object of the invention is to provide a method which makes it possible to remove NOx gases from flue gases which have already been lost in the heat content.

10 Keksinnon pååmåårå saavutetaan menetelmållå, joka on tunnettu siitå, ettå savukaasut kuumennetaan låmpotilaan 400-750°C ja viivytetåån tåsså låmpotilassa ainakin 0,1 sekunttia, jolloin NOx-kaasut hajautuvat alku-aineiksi.The object of the invention is achieved by a method characterized in that the flue gases are heated to a temperature of 400-750 ° C and delayed at this temperature for at least 0.1 second, whereby the NOx gases decompose into elements.

15 Keksinto mahdollistaa NOx-kaasujen poistamisen savukaasuista nostamalla kattilan jålkeiset savukaasut keksinnon mukaiselle låmpotila-alueelle 400-750°C, sopivimmin låmpdtila-alueelle 500-730°C, erillisellå kuumen-nuksella ja viivyttåmållå kuumennettuja savukaasuja tåsså låmpotila-alueessa ainakin 0,1 sekunttia, edullisesti ainakin 0,5-5 sekunttia, 20 ennen savukaasujen mahdollista jååhdyttåmistå. Lamposisåltonså menettå-neiden savukaasujen kuumentaminen suoritetaan edullisesti kuumennus-kaasuvirtauksen avulla.The invention makes it possible to remove NOx gases from the flue gases by raising the flue gases after the boiler to a temperature range according to the invention of 400-750 ° C, preferably to a temperature range of 500-730 ° C, with separate heating and delaying the heated flue gases in at least 0.1 , preferably for at least 0.5-5 seconds, 20 before any cooling of the flue gases. The heating of the flue gases which have lost their lamp contents is preferably carried out by means of a heating gas flow.

Keksintoå selitetåån yksityiskohtaisesti viittaamalla oheisen piirus-25 tuksen kuvioon, joka esittåå keksinnon mukaisen menetelmån eråstå edul-lista suoritusmuotoa kaaviomaisena periaateratkaisuna sivukuvana.The invention will be described in detail with reference to the figure of the accompanying drawing, which shows a preferred embodiment of the method according to the invention as a schematic schematic side view.

Piirustuksen kuviossa keksinnon mukaisessa menetelmåsså kåytettyå savukaasujen kåsittely-yksikkoå on merkitty yleisesti viitenumerolla 10.In the figure of the drawing, the flue gas treatment unit used in the method according to the invention is generally indicated by reference numeral 10.

30 Kåsittely-yksikon 10 runkoa on merkitty viitenumerolla 11. Låmposisål-tonså menettånyt savukaasuvirtaus B virtaa kattilasta joko ennen tai jålkeen suodattimen (ei esitetty) keksinnon mukaiseen NOx-kaasujen låmpoeristettyyn kåsittely-yksikkoon 10 sisåånvirtauskanavan 12 kautta. Kuumennuskaasuvirtaus A johdetaan kåsittely-yksikkoon 10 sisåånvirtaus-35 kanavan 13 kautta. Piirustuksen kuvion mukaisessa suoritusmuodossa kuumennuskaasuvirtaus A johdetaan sisåånvirtauskanavan 13 ylåpuolelle 5 92102 sijoitetun rei'itetyn tason 15 alapuolelle. Rei'itetyn tason 15 alapuo-lelle vålimatkan pååhån on sijoitettu toinen rei'itetty taso 17 ja rei'itetyt tasot 15 ja 17 on yhdistetty toisiinsa putkilla 16. Putkien 16 alapååt ulottuvat sisåånvirtauskanavan 13 alareunan alapuolelle.The body of the treatment unit 10 is denoted by reference numeral 11. The flue gas stream B lost in the heat contents flows from the boiler either before or after the filter (not shown) to the thermally insulated treatment unit 10 according to the invention through the inlet duct 12. The heating gas flow A is led to the treatment unit 10 via the inlet-35 duct 13. In the embodiment according to the figure of the drawing, the heating gas flow A is led below the perforated plane 15 located above the inlet duct 13. Below the perforated plane 15, at a distance, a second perforated plane 17 is placed and the perforated planes 15 and 17 are connected to each other by pipes 16. The lower ends of the pipes 16 extend below the lower edge of the inflow channel 13.

5 Putket 16 muodostavat tasojen 15 ja 17 vålillå vålitilan 14. Kuuma kaasuvirtaus A virtaa vålitilassa 14 virtauksena ax alaspåin ja purkau-tuu tasossa 17 olevien rengasreikien kautta halutun suuruisella no-peudella virtauksena a2 kohti kuumennettavaa savukaasuvirtausta B. Tålloin kuuma kaasuvirtaus A ja savukaasuvirtaus B sekoittuvat erittåin 10 hyvin ja tåmån jålkeen sekoittunut kaasuvirtaus virtaa putkien 16 låpi yldspåin viivytystilaan 18. Putket 16 on edullisesti sijoitettu mahdol-lisimman tasaisesti kåsittely-yksikdn 10 poikkipintaan nåhden. Putkien 16 poikkipinta voidaan valita sellaiseksi, ettå putkissa 16 virtaavien sekoittuneiden kaasujen A ja B virtausnopeus on haluttu ja niin nopea, 15 ettå se muodostaa riittåvån paine-eron ennen putkia 16 tasaamaan no- peudet jokaiseen putkeen 16 olennaisesti tasaiseksi. Kuumentavan kaasu-virtauksen A putkien 16 ulkopinnoille aiheuttama låmpd siirtyy putkien 16 seinåmien låpi putkien 16 sisållå virtaavaan sekoittuneiden kaasu-virtauksien A ja B muodostamaan virtaukseen. Låmmonsiirtoa kuuman kaa-20 suvirtauksen A avulla såådellåån viivytystilassa 18 olevalla låmpoti-lalla, joka keksinnon mukaisesti halutaan mieluimmin låhelle låmpdtilaa 700°C. Viivytystilassa 18 savukaasuja viivytetåån ainakin 0,1 sekunttia, edullisesti 0,5-5 sekunttia, jolloin NOx-kaasut hajautuvat alkuaineik-si.The pipes 16 form a space 14 between the planes 15 and 17. The hot gas flow A flows in the space 14 as a flow ax downwards and discharges through the annular holes in the plane 17 at a desired rate as a flow a2 towards the heated flue gas flow B. The flue gas flow A very well 10 and thereafter the mixed gas flow flows through the tubes 16 to the delay space 18. The tubes 16 are preferably arranged as evenly as possible with respect to the cross-sectional area of the treatment unit 10. The cross-sectional area of the tubes 16 may be selected such that the flow rate of the mixed gases A and B flowing in the tubes 16 is desired and so rapid that it creates a sufficient pressure difference before the tubes 16 to equalize the velocities in each tube 16 substantially uniformly. The heat caused by the heating gas flow A on the outer surfaces of the pipes 16 passes through the walls of the pipes 16 to the flow formed inside the pipes 16 by the mixed gas flows A and B. The heat transfer by means of the hot kaa-20 flow A is controlled at a temperature state in the delay state 18, which according to the invention is preferably desired close to a temperature state of 700 ° C. In the delay state 18, the flue gases are delayed for at least 0.1 second, preferably 0.5-5 seconds, whereby the NOx gases decompose into elements.

2525

Viivytystilasta 18 savukaasut johdetaan konvektio-osaan 19, jossa nii-den låmpoenergia otetaan talteen ja savukaasujen låmpotila alenee poistosavukaasuille ominaiseen låmpotilaan. Konvektio-osan 19 jålkeen jååhtyneet savukaasut virtaavat poistovirtauksena C ulosvirtauskanavaan 30 20.From the delay space 18, the flue gases are led to a convection section 19, where their thermal energy is recovered and the temperature of the flue gases decreases to the temperature characteristic of the exhaust flue gases. After the convection section 19, the cooled flue gases flow as an outlet flow C to the outflow channel 30 20.

Keksinnosså on olennaista, ettå savukaasut joutuvat viivytystilaan 18 keksinnén mukaisessa låmpotilassa ja viipyvåt viivytystilassa 18 niin kauan, ettå NOx-kaasut hajautuvat alkuaineiksiin. On huomattava, ettå 35 viivytystilan 18 seinåmåt ovat keksinnon mukaisessa låmpotilassa, ts. viivytystilan 18 seinåmåt eivåt ole kattilan seinåmiå, joiden låmpotila 6 92102 yleenså on alle 300°C. Keksinnollå on siis ratkaistu jo kertaalleen kattilassa låmposisåltonså menettåneiden ja NOx-kaasuja sisåltåvien kaasujen kåsittely erillisesså kåsittely-yksikosså 10 nostamalla savu-kaasun låmpotila uudestaan keksinnon mukaiselle låmpotila-alueeIle 5 erillisellå låmmityksellå, edullisesti kuumennuskaasuvirtauksella ja sen jålkeen viivyttåmållå kuumennettuja savukaasuja tietyn ajan, jonka jålkeen savukaasut voidaan jååhdyttåå ts. ottaa niistå låmpo talteen.In the invention, it is essential that the flue gases enter the delay state 18 in the temperature state according to the invention and stay in the delay state 18 until the NOx gases disperse into the elements. It should be noted that the walls of the delay space 18 are in the temperature state according to the invention, i.e. the walls of the delay space 18 are not boiler walls, the temperature of which 6 92102 is generally below 300 ° C. The invention thus solves the treatment of gases which have already lost their heat content in the boiler once and which contain NOx gases in a separate treatment unit 10 by raising the temperature of the flue gas again in can be cooled, ie heat can be recovered from them.

Keksinnon mukaisella låmpotila-aluee11a NOx-kaasut hajautuvat alkuai-10 neiksi ilman varsinaista kemiallista lisåainetta. Haluttaessa voidaan luonnollisesti lisåtå esim. hiiltå sisåltåvå lisåvirtaus joko virtauk-seen B tai A tai viivytystilaan 18.In the temperature zone 11a according to the invention, the NOx gases decompose into elements without the actual chemical additive. If desired, of course, an additional flow containing e.g. carbon can be added to either flow B or A or to the delay space 18.

Piirustuksen kuviossa esitetty putkisekoitusratkaisu on erås edullinen 15 suoritusmuoto. Luonnollisesti kuumentava virtaus A ja kuumennettava virtaus B voidaan sekoittaa keskenåån esim. ohjaamalla puhaltimen låpi tai muulla sinånså tunnetulla sekoitustavalla. Luonnollisesti virtauk-sien A ja B virtaussuunnat voivat olla påinvastaiset kuin piirustuksen kuvioissa on esitetty.The pipe mixing solution shown in the figure of the drawing is a preferred embodiment. Naturally, the heating flow A and the heating flow B can be mixed with one another, e.g. by controlling through a fan or by another mixing method known per se. Of course, the flow directions of flows A and B may be opposite to those shown in the figures of the drawing.

2020

Edellå on esitetty ainoastaan eråitå keksinnon edullisia suoritusmuoto-ja ja alan ammattimiehelle on selvåå, ettå niihin voidaan tehdå lukui-sia modifikaatioita oheisissa patenttivaatimuksissa esitetyn keksinnol-lisen ajatuksen puitteissa.Only some preferred embodiments of the invention have been described above, and it will be apparent to those skilled in the art that numerous modifications may be made to them within the scope of the inventive idea set out in the appended claims.

l ·

Claims (6)

92102 Pa tent t i vaa t intuks e t92102 Patent t i vaa t intuks e t 1. Menetelmå NOx-kaasujen poistamiseksi låmposisåltdnså menettåneistå savukaasuista, tunnettu siitå, ettå savukaasut kuumennetaan 5 låmpotilaan 400-750°C ja viivytetåån tåsså lampotilassa ainakin 0,1 sekunttia, jolloin NOx-kaasut hajautuvat alkuaineiksi.A method for removing NOx gases from flue gases lost in heat, characterized in that the flue gases are heated to a temperature of 400-750 ° C and delayed at this temperature for at least 0.1 second, whereby the NOx gases decompose into elements. 2. Patenttivaatimuksen 1 mukainen menetelmå, tunnettu siitå, ettå savukaasuja viivytetåån mainltussa lampotilassa ainakin 0,5-5 10 sekunttia ennen savukaasujen poisjohtamista.A method according to claim 1, characterized in that the flue gases are delayed in said temperature for at least 0.5-5 10 seconds before the flue gases are discharged. 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmå, tunnettu siitå, ettå savukaasut kuumennetaan kuumennuskaasuvirtauksella (A).Method according to Claim 1 or 2, characterized in that the flue gases are heated by a heating gas flow (A). 4. Jonkin patenttivaatimuksien 1-3 mukainen menetelmå, tunnettu siitå, ettå kuuma våliainevirtaus (A) johdetaan putkien (16) vålisiå vålitiloja (14) pitkin vastavirtaan savukaasujen putkia (16) pitkin tapahtuvaan virtaukseen nåhden, jolloin putkien (16) alapååsså kuuma våliainevirtaus (A) sekoittuu mahdollisimman tehokkaasti savukaasuvir-20 taukseen (B).Method according to one of Claims 1 to 3, characterized in that the hot medium flow (A) is led upstream of the intermediate spaces (14) between the pipes (16) to the flow along the flue gas pipes (16), the lower end of the pipes (16) being a hot medium flow. A) mixes as efficiently as possible with the flue gas flow (B). 5. Jonkin patenttivaatimuksien 1-4 mukainen menetelmå, tunnettu siitå, ettå savukaasujen kuumentaminen ja viivyttåminen suoritetaan erillisesså kåsittely-yksikosså (10), jonka viivytystilan (18) låmpoti- 25 la yllåpidetåån olennaisesti låmpdtila-alueella 400-750°.Method according to one of Claims 1 to 4, characterized in that the heating and delaying of the flue gases is carried out in a separate treatment unit (10), the temperature of the delay space (18) of which is maintained substantially in the temperature range of 400 to 750 °. 6. Jonkin patenttivaatimuksien 1-5 mukainen menetelmå, tunnettu siitå, ettå hiiltå sisåltåvå virtaus johdetaan joko kuumaan våliaine-virtaukseen (A) tai savukaasuvirtaukseen (B) tai kåsittely-yksikon (10) 30 viivytystilaan (18). • i 92102Method according to one of Claims 1 to 5, characterized in that the carbon-containing stream is introduced either into a hot medium flow (A) or into a flue gas flow (B) or into a delay space (18) of the treatment unit (10). • i 92102
FI920724A 1992-02-19 1992-02-19 Method of removing NOx gases from flue gases FI92102C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI920724A FI92102C (en) 1992-02-19 1992-02-19 Method of removing NOx gases from flue gases
AU35015/93A AU3501593A (en) 1992-02-19 1993-02-19 A method for removing NOx gases from flue gases
PCT/FI1993/000059 WO1993017281A1 (en) 1992-02-19 1993-02-19 A METHOD FOR REMOVING NOx GASES FROM FLUE GASES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI920724 1992-02-19
FI920724A FI92102C (en) 1992-02-19 1992-02-19 Method of removing NOx gases from flue gases

Publications (4)

Publication Number Publication Date
FI920724A0 FI920724A0 (en) 1992-02-19
FI920724A FI920724A (en) 1993-08-20
FI92102B FI92102B (en) 1994-06-15
FI92102C true FI92102C (en) 1994-09-26

Family

ID=8534738

Family Applications (1)

Application Number Title Priority Date Filing Date
FI920724A FI92102C (en) 1992-02-19 1992-02-19 Method of removing NOx gases from flue gases

Country Status (3)

Country Link
AU (1) AU3501593A (en)
FI (1) FI92102C (en)
WO (1) WO1993017281A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412499A1 (en) * 1984-04-03 1985-10-10 Balduin Dr. 8035 Gauting Pauli Smoke-tube formation, in particular for a fire-tube/smoke-tube boiler, and a process for separating nitrogen oxides out of its smoke gases
SE466814B (en) * 1989-06-01 1992-04-06 Kvaerner Generator Ab DEVICE FOR DEGRADATION OF GASES GENERATED FOR PRESENT BURNING AT UNGEFER 850 DEGREES C OF THE SOLID BROWN IN A LIQUID BED

Also Published As

Publication number Publication date
FI92102B (en) 1994-06-15
WO1993017281A1 (en) 1993-09-02
AU3501593A (en) 1993-09-13
FI920724A (en) 1993-08-20
FI920724A0 (en) 1992-02-19

Similar Documents

Publication Publication Date Title
SE7809131L (en) Aggregate for combustion of process exhaust gas and hot air production
JP5893606B2 (en) Ammonia abatement system
ES2208374T3 (en) PROCEDURE FOR A BURNER AND CORRESPONDING DEVICE.
IL102395A (en) Method and apparatus for controlled reaction in a reaction matrix
RU2005116273A (en) BOILER WITH FUEL BURNING WHEN USING AN OXIDATOR, ENRICHED WITH OXYGEN, TO INCREASE EFFICIENCY AND REDUCE HARMFUL EMISSIONS
US5575904A (en) Fluid processing device with filter in helical channel tube
RU2277202C2 (en) Furnace for burning at high temperatures
FI92102C (en) Method of removing NOx gases from flue gases
ATE71708T1 (en) BURNER HEATED APPLIANCE, ESPECIALLY WATER HEATER.
ES2205358T3 (en) PROCEDURE AND DEVICE FOR REDUCING NOX EMISSIONS.
RU2506495C1 (en) Device for combustion of fuels and heating of process media, and fuel combustion method
RU92016443A (en) METHOD FOR PRODUCING SULFUR FROM AT LEAST ONE ACID GAS CONTAINING HYDROGEN
EP0446436A3 (en) Process and device for burning impurities in a media flow
FI90913C (en) Combustion to eliminate NOx gases
WO2004109193A1 (en) Hydrogen burning type warm-air heater, hydrogen burning type warm-air generating method and burner used for the method
Sigal et al. Flue gases cleaning from nitrogen oxides by additional oxidation of NO to NO2 and absorption
RU2161528C2 (en) Method and apparatus for removing nitrogen and sulfur oxides
JP2005522660A (en) Apparatus for purifying exhaust gas containing fluorine-containing compounds in a combustion furnace with a low nitrogen oxide emission level
FI80615B (en) FOERFARANDE FOER REDUCERING AV NOX-HALTEN I ROEKGASERNA FRAON EN ROTERANDE UGN.
SU949295A1 (en) Method and apparatus for detoxication of gaseous toxic effluents
SU827928A1 (en) Furnace for thermoelectric treatment
JPH05272704A (en) Structure of low nox boiler
RU2256848C1 (en) Furnace for burning waste
SU1502906A1 (en) Arrangement for thermally neutralizing of waste gas
CA3193852A1 (en) Device for enhancing reaction kinetics for incineration process

Legal Events

Date Code Title Description
FG Patent granted

Owner name: WISER OY

GB Transfer or assigment of application

Owner name: WISER OY

BB Publication of examined application
MM Patent lapsed