FI20195211A1 - A fluid suspension tube - Google Patents

A fluid suspension tube Download PDF

Info

Publication number
FI20195211A1
FI20195211A1 FI20195211A FI20195211A FI20195211A1 FI 20195211 A1 FI20195211 A1 FI 20195211A1 FI 20195211 A FI20195211 A FI 20195211A FI 20195211 A FI20195211 A FI 20195211A FI 20195211 A1 FI20195211 A1 FI 20195211A1
Authority
FI
Finland
Prior art keywords
fluid
tube section
fluid suspension
intake tube
suspension
Prior art date
Application number
FI20195211A
Other languages
Finnish (fi)
Swedish (sv)
Inventor
Juhani Pylkkänen
Original Assignee
Hilla Consulting Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilla Consulting Oy filed Critical Hilla Consulting Oy
Priority to FI20195211A priority Critical patent/FI20195211A1/en
Priority to PCT/FI2020/050116 priority patent/WO2020193845A1/en
Publication of FI20195211A1 publication Critical patent/FI20195211A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/088Pipe-line systems for liquids or viscous products for solids or suspensions of solids in liquids, e.g. slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4332Mixers with a strong change of direction in the conduit for homogenizing the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/008Processes for carrying out reactions under cavitation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A fluid suspension tube comprises at least one intake tube section (101) comprising a throttle (102) for accelerating a fluid flow received at the intake tube section, a fluid suspension chamber (103) connected to the intake tube section, and an outtake tube section (104) connected to the fluid suspension chamber and for conducting the fluid flow out from the fluid suspension chamber. A transitional region (105) from the intake tube section to the fluid suspension chamber forms an enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow. Kinetic energy of the accelerated fluid flow is advantageous for achieving desired reactions between ingredients of the fluid flow as well as for reduction of retention time. In the fluid suspension chamber, the kinetic energy is at least partially converted to pressure without additional energy consumption.

Description

A fluid suspension tube Field of the disclosure The disclosure relates to a fluid suspension tube for fluid treatment applications such as for example but not necessarily: launch of immediate chemical reactions, reduction of retention time, chemistry control by hermetic treatment, energy conversion from kinetic to pressure based, mixing, dissolving, chemical and ionic bond breaking by cavitation, pretreatment for mechanical and/or chemical separation, and pretreatment for flotation and/or filtering.
Background Treatment forced by kinetic energy is a feasible and widely used method to achieve desired and demanded chemical reactions in fluids such as for example water, waste water, air, or their blend.
Particularly, the kinetic energy can be applied in mixing, dissolving, cavitation, pretreatment for mechanical and/or chemical separation, and pretreatment for flotation and/or filtering.
Kinetic energy for treatment of the kind mentioned above can be created by converting pressure of fluid to the kinetic energy.
In conjunction with many kinetic fluid treatments of the kind mentioned above, a retention time that is needed for desirable chemical reactions is relatively long, from minutes to hours.
After the treatment, the kinetic energy of the fluid is often demanded to be converted at least partially back to > pressure.
The kinetic energy could be easily and beneficially converted to N mechanical and/or electrical power, but typically this is not a desired operation in & case of fluid treatments.
The kinetic energy can be converted to pressure by a pump, N but this causes additional capital, maintenance, and energy costs.
Furthermore, this E 25 might be even impossible when the treated fluid contains a significant portion of gas.
N When designing a device or a system for kinetic fluid treatment of the kind = mentioned above, typical design targets are, among others, energy efficiency in N accelerating the fluid to increase the kinetic energy of the fluid, advantageous conditions for the desired reactions in the fluid, and energy efficiency in converting the kinetic energy of the accelerated fluid to pressure after the treatment.
Furthermore, a retention time that is needed for the desirable reactions is advantageously short to achieve an effective treatment process. In view of the above-mentioned design targets, there is still a need for new designs of devices and systems for kinetic fluid treatments of the kind mentioned above. Summary The following presents a simplified summary in order to provide a basic understanding of some embodiments of the invention. The summary is not an extensive overview of the invention. It is neither intended to identify key or critical elements of the invention nor to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a simplified form as a prelude to a more detailed description of exemplifying embodiments of the invention. In this document, the word “geometric” when used as a prefix means a geometric concept that is not necessarily a part of any physical object. The geometric concept can be for example a geometric point, a straight or curved geometric line, a geometric plane, a non-planar geometric surface, a geometric space, or any other geometric entity that is zero, one, two, or three dimensional. In accordance with the invention, there is provided a new fluid suspension tube for fluid treatment applications such as for example but not necessarily: launch of immediate chemical reactions, reduction of retention time, chemistry control by hermetic treatment, energy conversion from kinetic to pressure based, mixing, > dissolving, chemical and ionic bond breaking cavitation, pretreatment for N mechanical and/or chemical separation, and pretreatment for flotation and/or & filtering.
N E A fluid suspension tube according to the invention comprises: = 25 - at least one intake tube section comprising a throttle or a nozzle for 3 accelerating a fluid flow received at the intake tube section,
O
N - a fluid suspension chamber connected to the intake tube section, a transitional region from the intake tube section to the fluid suspension chamber forming an enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow, and - an outtake tube section connected to the fluid suspension chamber and for conducting the fluid flow out from the fluid suspension chamber.
In a process taking place in the above-described fluid suspension tube, accelerated fluid portions hit earlier arrived fluid portions slowed down in the fluid suspension chamber. Therefore, conditions suitable for kinetic fluid treatment are created and the kinetic energy of the accelerated fluid can be used for desired reactions and for reduction of a retention time. In the slowdown process, the kinetic energy of the accelerated fluid is at least partially converted back to pressure of the fluid in an energy efficient way. Therefore, energy consumption and losses can be small in the above-described fluid suspension tube. Furthermore, kinetic energy of liquid and gas mixtures can be converted to pressure without problems that are typically present when using a pump for increasing pressure.
Exemplifying and non-limiting embodiments are described in accompanied dependent claims.
Various exemplifying and non-limiting embodiments both as to constructions and to methods of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific exemplifying embodiments when read in connection with the accompanying drawings.
> The verbs “to comprise” and “to include” are used in this document as open N limitations that neither exclude nor reguire the existence of also un-recited features. & The features recited in the accompanied dependent claims are mutually freely N combinable unless otherwise explicitly stated. Furthermore, it is to be understood E 25 that the use of "a or “an”, i.e. a singular form, throughout this document does as = such not exclude a plurality.
3
N
Brief description of the figures Exemplifying and non-limiting embodiments and their advantages are explained in greater details below in the sense of examples and with reference to the accompanying drawings, in which: figure 1 illustrates a fluid suspension tube according to an exemplifying and non- limiting embodiment, figure 2 illustrates a fluid suspension tube according to an exemplifying and non- limiting embodiment, figures 3a and 3b illustrate a fluid suspension tube according to an exemplifying and non-limiting embodiment, figure 4 illustrates a fluid suspension tube according to an exemplifying and non- limiting embodiment, and figure 5 illustrates a fluid suspension tube according to an exemplifying and non- limiting embodiment. Description of exemplifying embodiments The specific examples provided in the description below should not be construed as limiting the scope and/or the applicability of the accompanied claims. Lists and groups of examples provided in the description are not exhaustive unless otherwise o explicitly stated. g 0 20 Figure 1 shows a section view of a fluid suspension tube according to an
O N exemplifying and non-limiting embodiment. The section plane is parallel with the yz-
N I plane of a coordinate system 199. The fluid suspension tube comprises an intake Ao * tube section 101 that comprises a throttle 102 for accelerating a fluid flow received a at the intake tube section. The fluid suspension tube comprises a fluid suspension
LO 2 25 chamber 103 connected to the intake tube section 101. The intake tube section 101 N and the fluid suspension chamber 103 are shaped so that a transitional region 105 from the intake tube section 101 to the fluid suspension chamber forms 103 an enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow. The fluid suspension tube comprises an outtake tube section 104 that is connected to the fluid suspension chamber 103 and conducts the fluid flow out from the fluid suspension chamber 103. In the above-mentioned transitional region 105, accelerated fluid portions hit earlier arrived fluid portions slowed down in the fluid 5 suspension chamber 103. Therefore, conditions suitable for kinetic fluid treatment are created and the kinetic energy of the accelerated fluid can be used for desired reactions and for reduction of a retention time. In the slowdown process, the kinetic energy of the accelerated fluid is at least partially converted back to pressure of the fluid in an energy efficient way. Therefore, energy consumption and losses can be — small. The fluid suspension tube can be made of e.g. metal or plastic. The metal can be e.g. stainless steel.
In the exemplifying fluid suspension tube illustrated in figure 1, the intake tube section 101 is configured to conduct the fluid flow into the fluid suspension chamber in a same direction in which the outtake tube section 104 is configured to conduct — the fluid out from the fluid suspension chamber. In figure 1, the direction in which the intake tube section 101 and the outtake tube section 104 are configured to conduct the fluid is the positive z-direction of the coordinate system 199. In this exemplifying fluid suspension tube, the cross-sectional flow area of the outtake tube section 104 is same as the cross-sectional flow area of the suspension chamber
103. lt is also possible that the cross-sectional flow area of the outtake tube section is smaller than the cross-sectional flow area of the suspension chamber.
Figure 2 shows a section view of a fluid suspension tube according to an = exemplifying and non-limiting embodiment. The section plane is parallel with the yz- N plane of a coordinate system 299. The fluid suspension tube comprises an intake = 25 — tube section 201 that comprises a throttle 202 for accelerating a fluid flow received - at the intake tube section. The fluid suspension tube comprises a fluid suspension E chamber 203 connected to the intake tube section 201. The intake tube section 201 = and the fluid suspension chamber 203 are shaped so that a transitional region from 3 the intake tube section 201 to the fluid suspension chamber 203 forms an N 30 enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow. The fluid suspension tube comprises an outtake tube section 204 that is connected to the fluid suspension chamber 203 and conducts the fluid flow out from the fluid suspension chamber 203. In the exemplifying fluid suspension tube illustrated in figure 2, the intake tube section 201 is configured direct the fluid flow towards a wall 206 of the fluid suspension chamber to slow down the fluid flow.
In this exemplifying fluid suspension tube, the intake tube section 201 is configured to conduct the fluid flow into the fluid suspension chamber 203 in a first direction that is substantially perpendicular to a second direction in which the outtake tube section 204 is configured to conduct the fluid out from the fluid suspension chamber 203. In figure 2, the first direction is the positive z-direction of the coordinate system 299 and the second direction is the negative y-direction of the coordinate system 299. Figure 3a shows a fluid suspension tube according to an exemplifying and non- limiting embodiment.
Figure 3b shows a section taken along a line A-A shown in figure 3a.
The section plane is parallel with the xz-plane of a coordinate system 399. The fluid suspension tube comprises an intake tube section 301a that comprises a throttle 302a for accelerating a fluid flow received at the intake tube section 301a.
The fluid suspension tube comprises another intake tube section 301b that comprises a throttle 302b for accelerating a fluid flow received at the intake tube section 301b.
The fluid suspension tube comprises a fluid suspension chamber 303 connected to the intake tube sections 301a and 301b.
The fluid suspension tube comprises an outtake tube section 304 that is connected to the fluid suspension chamber 303 and conducts the fluid out from the fluid suspension chamber 303. The = intake tube section 301a and the intake tube section 301b are connected to opposite N sides of the fluid suspension chamber 303 so that a flow direction in the intake tube = 25 section 301a is opposite to a flow direction in the intake tube section 301b.
As shown - in figures 3a and 3b, the intake tube sections 301a and 301b are positioned to point E to each other.
Thus, the accelerated fluid flows coming out from the intake tube = sections 301a and 301b hit each other in the fluid suspension chamber 303. This 3 creates suitable conditions for kinetic fluid treatment and for reduction of a retention N 30 time, and further, for the energy conversion from kinetic to pressure based.
Two different fluid compositions can be fed via the intake tube sections 301a and 301b for the fluid suspended hit and mixing at the same time.
In the exemplifying fluid suspension tube illustrated in figures 3a and 3b, the intake tube sections 301a and 301b and the outtake tube section 304 are connected to the fluid suspension chamber 303 so that a flow direction in the outtake tube section 304 is perpendicular to a flow direction in each of the intake tube sections 301a and 301b. In figures 3a and 3b, the flow direction in the intake tube section 301a is the positive z-direction of the coordinate system 399, the flow direction in the intake tube section 301b is the negative z-direction of the coordinate system 399, and the flow direction in the outtake tube section 304 is the positive y-direction of the coordinate system 399.
Figure 4 shows a fluid suspension tube according to an exemplifying and non- limiting embodiment. The fluid suspension tube comprises intake tube sections 401a, 401b, 401c, and 401d each of which comprises a throttle for accelerating a fluid flow received at the intake tube section under consideration. In figure 4, the throttles of the intake tube sections 401-401d are denoted with references 402a, 402b, 402c, and 402d. The fluid suspension tube comprises a fluid suspension chamber 403 connected to the intake tube sections 401a-401d. The fluid suspension tube comprises an outtake tube section 404 that is connected to the fluid suspension chamber 403 and conducts the fluid out from the fluid suspension chamber 403. In this exemplifying fluid suspension tube, the intake tube sections 401a and 401c are connected to one side of the fluid suspension chamber 403 and the intake tube sections 401b and 401d are connected to the opposite side of the fluid suspension chamber 403 so that the intake tube sections 401a and 401b are o positioned to point to each other and the intake tube sections 401c and 401d are S positioned to point to each other. It is however also possible to connect the intake g 25 — tube sections in different ways to the fluid suspension chamber 403. For example, N in a fluid suspension tube according to another exemplifying and non-limiting E embodiment, first intake tube sections are parallel with the z-axis of a coordinate — system 499 whereas second intake tube sections are parallel with the x-axis of the 3 coordinate system 499. Different fluid compositions can be fed via the intake tube > 30 sections 401a-401d for the fluid suspended hit and mixing at the same time. Figure 5 shows a section view of a fluid suspension tube according to an exemplifying and non-limiting embodiment. The section plane is parallel with the yz-
plane of a coordinate system 599. The fluid suspension tube comprises an intake tube section 501 that comprises a nozzle 520 for accelerating a fluid flow received at the intake tube section. The fluid suspension tube comprises a fluid suspension chamber 503 connected to the intake tube section 501. The intake tube section 501 and the fluid suspension chamber 503 are shaped so that a transitional region from the intake tube section 501 to the fluid suspension chamber 503 forms an enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow. The fluid suspension tube comprises an outtake tube section 504 that is connected to the fluid suspension chamber 503 and conducts the fluid flow out from the fluid suspension chamber 503. A fluid suspension tube according to an exemplifying and non-limiting embodiment comprises two or more intake tube sections connected to a fluid suspension chamber, wherein each intake tube section comprises a nozzle for accelerating a fluid flow received at the intake tube section under consideration.
The specific examples provided in the description given above should not be construed as limiting. Therefore, the invention is not limited merely to the exemplifying and non-limiting embodiments described above. Lists and groups of examples provided in the description are not exhaustive unless otherwise explicitly stated.
oO
O N
O <Q
N N
I Ao a
N
LO o
O N

Claims (10)

What is claimed is:
1. Afluid suspension tube comprising at least one intake tube section (101, 201, 301a, 301b, 401a-401d, 501) comprising a throttle (102, 202, 302a, 302b, 402a- 402d) or a nozzle (520) for accelerating a fluid flow received at the intake tube section, characterized in that the fluid suspension tube further comprises: - afluid suspension chamber (103, 203, 303, 403, 503) connected to the intake tube section, a transitional region (105) from the intake tube section to the fluid suspension chamber forming an enlargement of a cross-sectional flow area for slowing down the accelerated fluid flow, and - an outtake tube section (104, 204, 304, 404, 504) connected to the fluid suspension chamber and for conducting the fluid flow out from the fluid suspension chamber.
2. Afluid suspension tube according to claim 1, wherein the intake tube section (101) is configured to conduct the fluid flow into the fluid suspension chamber in a direction in which the outtake tube section (104) is configured to conduct the fluid flow out from the fluid suspension chamber.
3. Afluid suspension tube according to claim 1, wherein the intake tube section (201) is configured to direct the fluid flow towards a wall (206) of the fluid suspension chamber. o 20
4 Afluid suspension tube according to claim 3, wherein the intake tube section > (201) is configured to conduct the fluid flow into the fluid suspension chamber (203) se in a direction perpendicular to a direction in which the outtake tube section (204) is N configured to conduct the fluid flow out from the fluid suspension chamber.
I E
5. A fluid suspension tube according to any of claims 1-4, wherein a cross- = 25 sectional flow area of the outtake tube section (104) is same as a cross-sectional 3 flow area of the suspension chamber (103).
O
N
6. A fluid suspension tube according to any one of claims 1-4, wherein a cross- sectional flow area of the outtake tube section (204, 304, 404) is smaller than a cross-sectional flow area of the suspension chamber (203, 303, 403).
7. Afluid suspension tube according to claim 1, wherein the fluid suspension tube comprises at least one other intake tube section (301b, 401b-401d) connected to the fluid suspension chamber (303, 403) and comprising a throttle (302b, 402a- 402d) or a nozzle for accelerating a fluid flow received at the other intake tube section.
8. A fluid suspension tube according to claim 7, wherein the intake tube section (301a, 401a) and the other intake tube section (301b, 401b) are connected to opposite sides of the fluid suspension chamber (303, 403) so that a flow direction in the intake tube section (301a, 401a) is opposite to a flow direction in the other intake tube section (301b, 401b).
9. Afluid suspension tube according to claim 6, wherein the intake tube section —(301a, 401a) and the other intake tube section (301b, 401b) are positioned to point to each other.
10. Afluid suspension tube according to any of claims 7-9, wherein the intake tube sections (301a, 301b, 401a-401d) and the outtake tube section (304, 404) are connected to the fluid suspension chamber (303, 403) so that a flow direction in the outtake tube section (304, 404) is perpendicular to a flow direction in each of the o intake tube sections.
O
N
O <Q
N
N
I =
N
LO o
O
N
FI20195211A 2019-03-22 2019-03-22 A fluid suspension tube FI20195211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20195211A FI20195211A1 (en) 2019-03-22 2019-03-22 A fluid suspension tube
PCT/FI2020/050116 WO2020193845A1 (en) 2019-03-22 2020-02-21 A fluid suspension tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20195211A FI20195211A1 (en) 2019-03-22 2019-03-22 A fluid suspension tube

Publications (1)

Publication Number Publication Date
FI20195211A1 true FI20195211A1 (en) 2020-09-23

Family

ID=69845452

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20195211A FI20195211A1 (en) 2019-03-22 2019-03-22 A fluid suspension tube

Country Status (2)

Country Link
FI (1) FI20195211A1 (en)
WO (1) WO2020193845A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE298632T1 (en) * 2001-04-13 2005-07-15 Urea Casale Sa DEVICE FOR FLUID BED GRANULATION
US20080099410A1 (en) * 2006-10-27 2008-05-01 Fluid-Quip, Inc. Liquid treatment apparatus and methods
US8753505B2 (en) * 2008-06-27 2014-06-17 Fluid-Quip, Inc. Liquid treatment apparatus and method for using same
US9370757B2 (en) * 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
CN109046792B (en) * 2018-10-24 2020-09-08 中南大学 Mixed-flow type microbubble generator and bubble distributor

Also Published As

Publication number Publication date
WO2020193845A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
CN103317234A (en) Laser induced low pressure jet flow combined etching processing method and device
CN114029015B (en) Rotor-radial gap type hydrodynamic cavitation reactor
KR20130114566A (en) Exhaust pump
FI20195211A1 (en) A fluid suspension tube
EP2722527B1 (en) Vacuum pump and rotor therefor
CN112620261A (en) Oscillating jet type pipeline cleaning device
CN1296549A (en) Steam turbine
CN101092974B (en) Spiral case of centrifugal type fluids machinery
CN105779756A (en) Hole corner strengthening treatment method
CN103639602A (en) Sheet laser welding clamping system
CN210171474U (en) Sheath-flow-free microfluidic chip for particle separation based on surface acoustic waves
RU2621923C9 (en) Cyclone
CN101613075B (en) Method for constructing virtual channel for restricting liquid drop movement
CN212868828U (en) Annular clamping sleeve set and clamping sleeve joint comprising same
CN210484083U (en) Double-suction sewage pump
CN112717853A (en) Cavitation preparation device for emulsion liquid film
JP2011094487A (en) Fluid energy recovery device
US20150159659A1 (en) Fluid Pump
CN110242596A (en) A kind of high pressure magnetic drive pump
CN201125904Y (en) Three-rib type air-operated valve
RU2237511C2 (en) Static mixer
CN209229357U (en) Fluid flow direction online switching device
CN212615391U (en) Conveniently-disassembled three-dimensional flow permanent magnet pipeline type centrifugal pump
CN108390500B (en) Noise reduction combined mechanism based on brushless motor and special fan
CN214788592U (en) Dynamic pressure gas thrust bearing with spiral groove microstructure

Legal Events

Date Code Title Description
FD Application lapsed