JP2011094487A - Fluid energy recovery device - Google Patents

Fluid energy recovery device Download PDF

Info

Publication number
JP2011094487A
JP2011094487A JP2009246266A JP2009246266A JP2011094487A JP 2011094487 A JP2011094487 A JP 2011094487A JP 2009246266 A JP2009246266 A JP 2009246266A JP 2009246266 A JP2009246266 A JP 2009246266A JP 2011094487 A JP2011094487 A JP 2011094487A
Authority
JP
Japan
Prior art keywords
pair
fluid
rotor blades
blade
energy recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246266A
Other languages
Japanese (ja)
Other versions
JP4833328B2 (en
Inventor
Hiroyuki Tsuji
博行 辻
Koichi Sano
弘一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Plant Engineering Corp
Original Assignee
Mitsubishi Electric Plant Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Plant Engineering Corp filed Critical Mitsubishi Electric Plant Engineering Corp
Priority to JP2009246266A priority Critical patent/JP4833328B2/en
Publication of JP2011094487A publication Critical patent/JP2011094487A/en
Application granted granted Critical
Publication of JP4833328B2 publication Critical patent/JP4833328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid energy recovery device which efficiently recovers fluid energy by reducing reduction in a flow speed of fluid. <P>SOLUTION: This fluid energy recovery device includes a casing 12 having a flow passage 13 penetrating through an outlet side opening part 12b from an inlet side opening part 12a, a pair of rotary blades 10 and 11 having a plurality of blade parts 3 in the flow passage 13, and a recovery part 4 for recovering the rotational energy of the pair of rotary blades 10 and 11. The casing 12 is provided with a fluid guide part 14 in which the longitudinal-sectional area reaching a pair of rotary blade sides 14b from the inlet side opening part side 14a of the flow passage 13, reduces toward the pair of rotary blades 10 and 11 and a pair of fluid conducting plates 15 arranged so as to partition the inside of the fluid guide part 14 in the same direction as the flowing direction of the fluid of the flow passage 13. The interval between the pair of fluid conducting plates 15 is formed wider in an interval H2 up to the pair of rotary blades 10 and 11 from the inlet side opening part 12a than the interval H1 of the inlet side opening part side end 15a and the interval H3 of a pair of rotary blade side ends 15b. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、流体の流速の低減を軽減して流体エネルギを効率よく回収することができる流体エネルギ回収装置に関するものである。   The present invention relates to a fluid energy recovery apparatus capable of efficiently recovering fluid energy by reducing a decrease in fluid flow velocity.

従来の流体エネルギ回収装置は、入水側開口部から排水側開口部へ向かって貫通する水路を有し、流れの生じている水中に水没させて用いるケーシング部材と、各回転軸とそれぞれ一体的に固定されかつケーシング部材の水路内に配置された複数の羽根部を有する一対の回転翼と、回転軸の一端部側に設けられた発電機と、ケーシング部材の入水側開口部に設けられ、その開口端の面積を下流側に向かって徐々に減少させるように形成された水流増速部とを備えたものである(例えば、特許文献1参照)。   A conventional fluid energy recovery device has a water passage that penetrates from a water inlet side opening toward a water discharge side opening, and is integrally formed with a casing member that is submerged in water in which a flow is generated, and each rotary shaft. A pair of rotating blades having a plurality of blade portions fixed and disposed in the water channel of the casing member, a generator provided on one end side of the rotating shaft, and a water inlet side opening of the casing member, And a water flow speed increasing portion formed so as to gradually decrease the area of the opening end toward the downstream side (see, for example, Patent Document 1).

特開2007−177797号公報JP 2007-177797 A

従来の流体エネルギ回収装置は、開口端の面積を下流側に向かって徐々に減少される水流増速部を備えているが、開口端側から回転翼に向かうにつれて流体の流速が低下して流体エネルギの回収効率が低減するという問題点があった。   The conventional fluid energy recovery device includes a water flow speed increasing portion that gradually decreases the area of the opening end toward the downstream side. There was a problem that energy recovery efficiency was reduced.

この発明は上記のような課題を解決するためになされたものであり、流体の流速の低減を軽減して流体エネルギの回収効率を向上することができる流体エネルギ回収装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fluid energy recovery device capable of improving the recovery efficiency of fluid energy by reducing the decrease in fluid flow velocity. To do.

この発明は、入側開口部から出側開口部へ貫通する流路を有し、流体中に流路を浸漬させて用いるケーシングと、
ケーシングの流路内に配置された複数の羽根部を有する一対の回転翼と、
一対の回転翼の上部側に設けられ流体エネルギを羽根部で受けることにより得られた回転翼の回転エネルギを回収する回収部とを備え、
ケーシングには、流路の入側開口部側から一対の回転翼側までに至る縦断面面積が一対の回転翼に向かって小さくなる流体案内部と、
流体案内部内を流路の流体の流れる方向と同一方向で仕切るように配設された一対の導流体板とが形成され、
一対の導流体板の間隔は、入側開口部側端の間隔および一対の回転翼側端の間隔より入側開口部から一対の回転翼までの間の間隔が広く形成されている。
The present invention has a flow path that penetrates from the inlet opening to the outlet opening, and a casing that is used by immersing the flow path in a fluid;
A pair of rotor blades having a plurality of blade portions disposed in the flow path of the casing;
A recovery unit provided on the upper side of the pair of rotor blades and recovering the rotational energy of the rotor blades obtained by receiving fluid energy at the blade portion;
In the casing, a fluid guide portion whose longitudinal cross-sectional area from the inlet side opening portion side of the flow path to the pair of rotor blades becomes smaller toward the pair of rotor blades, and
A pair of fluid guide plates arranged to partition the inside of the fluid guide portion in the same direction as the flow direction of the fluid in the flow path,
The distance between the pair of fluid guide plates is formed such that the distance between the inlet opening and the pair of rotor blades is wider than the distance between the inlet side opening end and the pair of rotor blade end.

この発明の流体エネルギ回収装置は、入側開口部から出側開口部へ貫通する流路を有し、流体中に流路を浸漬させて用いるケーシングと、
ケーシングの流路内に配置された複数の羽根部を有する一対の回転翼と、
一対の回転翼の上部側に設けられ流体エネルギを羽根部で受けることにより得られた回転翼の回転エネルギを回収する回収部とを備え、
ケーシングには、流路の入側開口部側から一対の回転翼側までに至る縦断面面積が一対の回転翼に向かって小さくなる流体案内部と、
流体案内部内を流路の流体の流れる方向と同一方向で仕切るように配設された一対の導流体板とが形成され、
一対の導流体板の間隔は、入側開口部側端の間隔および一対の回転翼側端の間隔より入側開口部から一対の回転翼までの間の間隔が広く形成されているので、
一対の導流体板の間に流体が流れ、流体案内部内において一対の導流体板により流れが整流されるため、流体の流速の低減を軽減して流体エネルギを効率よく回収することができる。
The fluid energy recovery device of this invention has a flow path that penetrates from the inlet opening to the outlet opening, and a casing that is used by immersing the flow path in the fluid;
A pair of rotor blades having a plurality of blade portions disposed in the flow path of the casing;
A recovery unit provided on the upper side of the pair of rotor blades and recovering the rotational energy of the rotor blades obtained by receiving fluid energy at the blade portion;
In the casing, a fluid guide portion whose longitudinal cross-sectional area from the inlet side opening portion side of the flow path to the pair of rotor blades becomes smaller toward the pair of rotor blades, and
A pair of fluid guide plates arranged to partition the inside of the fluid guide portion in the same direction as the flow direction of the fluid in the flow path,
Since the gap between the pair of fluid guide plates is formed such that the gap between the inlet opening and the pair of rotor blades is wider than the gap between the inlet opening side edge and the pair of rotor blade side edges,
Since the fluid flows between the pair of fluid guide plates and the flow is rectified by the pair of fluid guide plates in the fluid guide portion, it is possible to reduce fluid flow velocity and efficiently recover the fluid energy.

この発明の実施の形態1の流体エネルギ回収装置の構成を示す上面図である。It is a top view which shows the structure of the fluid energy recovery apparatus of Embodiment 1 of this invention. 図1に示した流体エネルギ回収装置の構成を示す側面図および正面図である。It is the side view and front view which show the structure of the fluid energy recovery apparatus shown in FIG. 図1に示した流体エネルギ回収装置の回転翼の構成を示す背面図である。It is a rear view which shows the structure of the rotary blade of the fluid energy recovery apparatus shown in FIG. 図1に示した流体エネルギ回収装置と従来の流体エネルギ回収装置との流体の流れを説明するための図である。It is a figure for demonstrating the flow of the fluid of the fluid energy recovery apparatus shown in FIG. 1, and the conventional fluid energy recovery apparatus.

実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1における流体エネルギ回収装置の構成を示す上面図、図2は図1に示した流体エネルギ回収装置の構成を示す側面図および正面図、図3は図1に示した流体エネルギ回収装置の回転翼の構成を示す図、図4は図1に示した流体エネルギ回収装置と従来の流体エネルギ回収装置との流体の流れを説明するための図である。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. 1 is a top view showing the configuration of a fluid energy recovery apparatus according to Embodiment 1 of the present invention, FIG. 2 is a side view and a front view showing the configuration of the fluid energy recovery apparatus shown in FIG. 1, and FIG. FIG. 4 is a diagram for explaining the flow of fluid between the fluid energy recovery device shown in FIG. 1 and the conventional fluid energy recovery device.

図において、入側開口部12aから出側開口部12bへ貫通する流路13を有し、流体中に流路13を浸漬させて用いるケーシング12と、ケーシング12の流路13内に配置された複数の羽根部3を有する一対の回転翼10、11と、一対の回転翼10、11の上部側に設けられ流体エネルギを羽根部3で受けることにより得られた回転翼10、11の回転エネルギを回収する回収部4とを備えている。そして、ケーシング12には、流路13の入側開口部12a側から一対の回転翼10、11側までに至る縦断面面積が一対の回転翼10、11に向かって小さくなる流体案内部14と、流体案内部14内を流路13の流体の流れる方向と同一方向で仕切るように配設された一対の導流体板15とが形成されている。   In the figure, there is a flow path 13 penetrating from the entrance side opening 12a to the exit side opening 12b, and the casing 12 is used by immersing the flow path 13 in the fluid, and is disposed in the flow path 13 of the casing 12. A pair of rotor blades 10 and 11 having a plurality of blade portions 3 and the rotational energy of the rotor blades 10 and 11 obtained by receiving fluid energy at the blade portion 3 provided on the upper side of the pair of rotor blades 10 and 11. And a recovery unit 4 for recovering. The casing 12 includes a fluid guide portion 14 having a longitudinal cross-sectional area that decreases from the inlet opening 12a side of the flow path 13 to the pair of rotor blades 10 and 11 toward the pair of rotor blades 10 and 11. A pair of fluid guide plates 15 are formed so as to partition the inside of the fluid guide portion 14 in the same direction as the flow direction of the fluid in the flow path 13.

一対の導流体板15の間隔は、入側開口部側端15aの間隔H1および一対の回転翼側端15bの間隔H3より入側開口部12aから一対の回転翼10、11までの間の間隔H2が広く流線形にて形成されている。また、導流体板15は、一対の回転翼側端15bが一対の回転翼10、11間に至るように形成されている。そして、流体案内部14および導流体板15は、入側開口部側端14a、15aの高さh1が回転翼10、11の高さh3より高く形成され、一対の回転翼側端14b、15bの高さh2、h3が回転翼10、11の高さh4と同様の高さ位置にて形成されている。   The distance between the pair of fluid guide plates 15 is the distance H2 between the inlet opening 12a and the pair of rotor blades 10, 11 from the distance H1 of the inlet opening end 15a and the distance H3 of the pair of rotor blade ends 15b. Is widely streamlined. Further, the fluid guide plate 15 is formed so that the pair of rotor blade side ends 15 b reach between the pair of rotor blades 10 and 11. The fluid guide 14 and the fluid guide plate 15 are formed such that the height h1 of the inlet side openings 14a and 15a is higher than the height h3 of the rotor blades 10 and 11, and the pair of rotor blade ends 14b and 15b. Heights h2 and h3 are formed at the same height as the height h4 of the rotary blades 10 and 11.

そして、各回転翼10、11は図3に示すように、それぞれ以下のように構成されている。第1の中心点Xを中心として回動自在に形成され円板にて形成されている上部板体1と、上部板体1と平行にかつ第1の中心点Xと第2の中心点Yが対向位置となるように配設され第2の中心点Yを中心として回動自在に形成され、円板の中央部に開口部2aを有する下部板体2と、上部板体1に上端3aが下部板体2に下端3bがそれぞれ固着された羽根部3を上部板体1および下部板体2の周方向に等間隔にて複数個有している。羽根部3は流体を受けやすいように、横断面が半円形状にて形成されている。そして、各羽根部3はこの半円形状の凹部方向が周方向において同一方向となるように配設されている。   And each rotary blade 10 and 11 is each comprised as follows, as shown in FIG. An upper plate 1 that is formed to be rotatable around a first center point X and is formed of a disk, and a first center point X and a second center point Y that are parallel to the upper plate 1 and parallel to the upper plate body 1. Are arranged so as to be opposed to each other, and are formed so as to be rotatable about the second center point Y. The lower plate 2 has an opening 2a at the center of the disk, and the upper plate 3 has an upper end 3a. Has a plurality of blade portions 3 each having a lower end 3 b fixed to the lower plate 2 at equal intervals in the circumferential direction of the upper plate 1 and the lower plate 2. The blade 3 is formed in a semicircular cross section so that it can easily receive fluid. And each blade | wing part 3 is arrange | positioned so that this semicircular recessed direction may turn into the same direction in the circumferential direction.

そして、この一対の回転翼10、11間に流体が流れ込むように形成されている。このため、一対の回転翼10、11の羽根部3は、回転翼10は矢印Bの方向に、回転翼11は矢印Aの方向であり、各方向の流体を受けることができる向きに半円形状が配設されている。尚、この形状はこれに限られることはなく、他の形状でも流体を受けることが可能である形状であればよく、本流体エネルギ回主装置が使用される流体の流れに応じて強度などで適宜決定されるものである。   And it is formed so that fluid may flow between the pair of rotor blades 10 and 11. Therefore, the blade portions 3 of the pair of rotor blades 10 and 11 are semicircular in a direction in which the rotor blades 10 are in the direction of arrow B and the rotor blades 11 are in the direction of arrow A, and can receive fluid in each direction. The shape is arranged. However, this shape is not limited to this, and any other shape may be used as long as it can receive a fluid. The fluid energy recovery device can be used according to the strength of the fluid used. It is determined as appropriate.

上記のように構成された実施の形態1の流体エネルギ回収装置は、ケーシング12の流路13が河川などに浸漬される。そして、流体としての水が流路13を流れる。この際、ケーシング12の入側開口部12a側では、流体案内部14内に水が流れる。この水は、流体案内部14が入側開口部12a側から一対の回転翼10、11側までに至る縦断面面積が一対の回転翼10、11に向かって小さくなるテーパ状にて形成されているため、一対の回転翼10、11の間に集められて流れる。さらに、流体案内部14内では、一対の導流体板15の間においても水が流れ、一対の回転翼10、11の間に水が流れ込む。そして、一対の回転翼10、11の羽根部3がそれぞれ水の流れを受けて回転するこれに伴い、上部板体1および下部板体2は第1および第2の中心点X、Yを中心に回転する。そして、この上部板体1の回転エネルギを回収部4にて回収して、発電等を行う。そして、ケーシング12の出側開口部12bから水は排出される。   In the fluid energy recovery apparatus of the first embodiment configured as described above, the flow path 13 of the casing 12 is immersed in a river or the like. Then, water as a fluid flows through the flow path 13. At this time, water flows into the fluid guiding portion 14 on the inlet side opening 12 a side of the casing 12. The water is formed in a tapered shape in which the fluid guide portion 14 has a longitudinal cross-sectional area from the inlet opening 12a side to the pair of rotor blades 10 and 11 that decreases toward the pair of rotor blades 10 and 11. Therefore, they are collected between the pair of rotor blades 10 and 11 and flow. Further, in the fluid guide portion 14, water flows between the pair of fluid guide plates 15, and the water flows between the pair of rotor blades 10 and 11. As the blade portions 3 of the pair of rotor blades 10 and 11 are rotated by receiving the flow of water, the upper plate 1 and the lower plate 2 are centered on the first and second center points X and Y. Rotate to. The rotational energy of the upper plate 1 is recovered by the recovery unit 4 to generate power. And water is discharged | emitted from the exit side opening part 12b of the casing 12. FIG.

この際、本発明は導流体板15が存在するため、一対の回転翼10、11の間を通過する流体の速度の低減することを抑制することができる。このことについて図4を用いて説明する。図4(a)は従来の流体エネルギ回収装置の横断面図、図4(b)は本発明の流体エネルギ回収装置の横断面図である。図4(a)の従来の流体エネルギ回収装置は導流体板15が存在しないもので、他の構成は実施の形態1の流体エネルギ回収装置と同様であるため、同一符号を付して説明を省略する。   Under the present circumstances, since the fluid guide plate 15 exists in this invention, it can suppress that the speed | rate of the fluid which passes between a pair of rotary blades 10 and 11 reduces. This will be described with reference to FIG. 4A is a cross-sectional view of a conventional fluid energy recovery device, and FIG. 4B is a cross-sectional view of the fluid energy recovery device of the present invention. The conventional fluid energy recovery device of FIG. 4A does not include the fluid guide plate 15, and the other configuration is the same as that of the fluid energy recovery device of the first embodiment. Omitted.

図4(a)のような従来の流体エネルギ回収装置の構成の場合には、流体案内部14内の流れは白矢印で示すように、流体案内部14の中央部に流体の流れが集中して、一対の回転翼10、11間に至る。このように、流体の全ての流れが中央に集中するため、流体がぶつかり合い、流体の流速および流体圧を低減する。これにより、回転翼10、11の流体エネルギが減少し、流体エネルギの回収が低減する。   In the case of the configuration of the conventional fluid energy recovery apparatus as shown in FIG. 4A, the flow of fluid in the fluid guide 14 is concentrated at the center of the fluid guide 14 as indicated by white arrows. And reaches between the pair of rotor blades 10 and 11. In this way, all the fluid flows are concentrated in the center, so that the fluids collide and reduce the fluid flow velocity and pressure. Thereby, the fluid energy of the rotary blades 10 and 11 is reduced, and the recovery of fluid energy is reduced.

これに対し、図4(b)のような本発明の流体エネルギ回収装置の構成の場合には、流体案内部14内の流体の流れは白矢印で示すように、流体案内部14の側壁に沿って流れ、一対の回転翼10、11間に至る。また、一対の導流体板15内の流体の流れは、黒矢印で示すように、流体案内部14内の他の流体の流れに左右されることなく、ほぼ直線的に進み、一対の回転翼10、11間に至る。このように、一対の導流体板15の間隔が入側開口部側端15aの間隔H1および一対の回転翼側端15bの間隔H3より入側開口部12aから一対の回転翼10、11までの間の間隔H2が広く流線形にて形成されていることによって、流体案内部14の白矢印の流れはいったん流体案内部14の側壁側に移行されて整流され、最終的に一対の回転翼10、11間に流れ込む。このため、従来の場合より、流体の流速および流体圧が低減することを防止できる。また、一対の導流体板15間を流れる流体は、その流速および流体圧がほとんど低減されることなく、一対の回転翼10、11間に至る。これらにより、回転翼10、11の流体エネルギがほとんど減少することなく、流体エネルギの回収がほとんど低減することなく行うことができる。   On the other hand, in the case of the configuration of the fluid energy recovery apparatus of the present invention as shown in FIG. 4B, the flow of the fluid in the fluid guide 14 is on the side wall of the fluid guide 14 as indicated by white arrows. It flows along and reaches between a pair of rotary blades 10 and 11. In addition, the flow of fluid in the pair of fluid guide plates 15 proceeds substantially linearly without depending on the flow of other fluids in the fluid guide 14 as indicated by the black arrows, and the pair of rotor blades. Between 10 and 11. Thus, the distance between the pair of fluid guide plates 15 is from the distance H1 between the inlet opening side end 15a and the distance H3 between the pair of rotor blade end 15b from the inlet opening 12a to the pair of rotor blades 10 and 11. Is widely streamlined, the flow of the white arrow of the fluid guide portion 14 is once shifted to the side wall side of the fluid guide portion 14 and rectified, and finally the pair of rotor blades 10, It flows in between 11. For this reason, it can prevent that the flow velocity and fluid pressure of a fluid reduce compared with the conventional case. Further, the fluid flowing between the pair of fluid guide plates 15 reaches between the pair of rotor blades 10 and 11 with almost no reduction in flow velocity and fluid pressure. As a result, the fluid energy of the rotor blades 10 and 11 can be reduced almost without reduction, and the fluid energy can be recovered almost without reduction.

尚、一対の導流体板15の間隔が広く形成されている間隔H2の入側開口部12aからの形成位置は、図1に示した箇所以外であってもよく、例えば、流体が流れ込んだ後に、流体案内部14の側壁側に移行されて整流され、最終的に一対の回転翼10、11間に流れ込むような位置であれば、他の位置に形成されていたとしても、上記実施の形態1と同様な効果を得ることができる。一般的には、一対の導流体板15の間隔が広く形成されている間隔H2の入側開口部12aからの形成位置は、入側開口部12aの近辺位置に形成される場合の方が、流体を流体案内部14の側壁側に移行させやすく、整流を確実に効率よく行うことができる。   Note that the formation position of the gap H2 formed with a wide gap between the pair of fluid guide plates 15 from the entrance opening 12a may be other than the position shown in FIG. 1, for example, after the fluid flows in As long as the position is such that it is moved to the side wall side of the fluid guide portion 14 and rectified and finally flows between the pair of rotor blades 10 and 11, even if it is formed at another position, the above embodiment 1 can be obtained. In general, the formation position from the entrance side opening 12a of the interval H2 in which the interval between the pair of fluid guide plates 15 is wide is formed in the vicinity of the entrance side opening 12a. It is easy to transfer the fluid to the side wall side of the fluid guide part 14, and rectification can be performed reliably and efficiently.

また、一対の導流体板15の一対の回転翼側端15bは上記実施の形態1においては、一対の回転翼10、11間に至る位置に形成する例を示したが、これに限られることはなく、例えば、一対の導流体板15の一対の回転翼側端15bから流れ出した流体が、一対の回転翼10、11間に流れ込むような位置であれば、他の位置に形成されていたとしても、上記実施の形態1と同様な効果を得ることができる。   In the first embodiment, the pair of rotor blade side ends 15b of the pair of fluid guide plates 15 are formed at positions between the pair of rotor blades 10 and 11. However, the present invention is not limited to this. For example, if the fluid flowing out from the pair of rotor blade side ends 15b of the pair of fluid guide plates 15 flows between the pair of rotor blades 10 and 11, it may be formed at another position. The same effects as those of the first embodiment can be obtained.

上記のように構成された実施の形態1の流体エネルギ回収装置によれば、入側開口部から出側開口部へ貫通する流路を有し、流体中に流路を浸漬させて用いるケーシングと、ケーシングの流路内に配置された複数の羽根部を有する一対の回転翼と、一対の回転翼の上部側に設けられ流体エネルギを羽根部で受けることにより得られた回転翼の回転エネルギを回収する回収部とを備え、ケーシングには、流路の入側開口部側から一対の回転翼側までに至る縦断面面積が一対の回転翼に向かって小さくなる流体案内部と、流体案内部内を流路の流体の流れる方向と同一方向で仕切るように配設された一対の導流体板とが形成され、一対の導流体板の間隔は、入側開口部側端の間隔および一対の回転翼側端の間隔より入側開口部から一対の回転翼までの間の間隔が広く形成されているので、流体の速度を導流体板により、減速することを最小限にとどめることができるため、流体エネルギ伝達効率が向上する。   According to the fluid energy recovery device of the first embodiment configured as described above, the casing has a flow path that penetrates from the inlet opening to the outlet opening, and is used by immersing the flow path in the fluid. A pair of rotor blades having a plurality of blades disposed in the flow path of the casing, and rotational energy of the rotor blades provided on the upper side of the pair of rotor blades and obtained by receiving fluid energy at the blade portions A casing that includes a fluid guide that has a longitudinal cross-sectional area that decreases from the inlet opening side of the flow path to the pair of rotor blades toward the pair of rotor blades, and a fluid guide portion. A pair of fluid guide plates arranged so as to be partitioned in the same direction as the flow direction of the fluid in the flow path, and the distance between the pair of fluid guide plates is the distance between the inlet side opening side end and the pair of rotor blades From the gap between the edges to the pair of rotor blades The spacing between is formed wider by the velocity of the fluid guide fluid plate, it is possible to minimize the possible deceleration, thereby improving the fluid energy transmission efficiency.

また、導流体板は、一対の回転翼側端が一対の回転翼間に至るように形成されているので、流体の流れの速度を、一対の回転翼の近傍まで減速することなく衝突させることができるため、流体エネルギ伝達効率がさらに一層向上する。   Further, since the fluid guide plate is formed so that the side ends of the pair of rotor blades reach between the pair of rotor blades, the fluid flow velocity can collide without decelerating to the vicinity of the pair of rotor blades. Therefore, the fluid energy transmission efficiency is further improved.

また、流体案内部および導流体板は、入側開口部側端の高さが一対の回転翼側端の高さより高く形成され、一対の回転翼側端の高さが一対の回転翼の高さと同様の高さ位置にて形成されているので、流体の流量を回転翼に多く集めることができるため、流体エネルギ伝達効率がより一層向上する。   In addition, the fluid guide portion and the fluid guide plate are formed such that the height of the inlet opening side end is higher than the height of the pair of rotor blade side ends, and the height of the pair of rotor blade side ends is the same as the height of the pair of rotor blades. Since the flow rate of the fluid can be collected in the rotor blades, the fluid energy transmission efficiency is further improved.

また、回転翼は、第1の中心点を中心として回動自在に形成された上部板体と、上部板体と平行にかつ第1の中心点と第2の中心点が対向位置となるように配設され第2の中心点を中心として回動自在に形成された下部板体とを備え、羽根部は、上部板体に上端が下部板体に下端がそれぞれ固着され上部板体および下部板体の周方向に複数個形成されているので、上部板体と下部板体との間に主軸を有しないため、主軸による流体の流れの阻害がなく、流体エネルギ伝達効率が一層向上する。   Further, the rotor blade is configured so that the upper plate formed to be rotatable around the first center point is parallel to the upper plate, and the first center point and the second center point are opposed to each other. And a lower plate formed to be rotatable about a second center point. The blade portion has an upper plate fixed to the upper plate and an upper plate fixed to the lower plate and the lower plate fixed to the lower plate. Since a plurality of plates are formed in the circumferential direction of the plate body, since there is no main shaft between the upper plate body and the lower plate body, there is no obstruction of the fluid flow by the main shaft, and the fluid energy transmission efficiency is further improved.

尚、上記実施の形態1においては、主軸を有しない回転翼を用いる例を示したが、これに限られることはなく、主軸を有する回転翼を用いても、導流体板により、流速の速度の減速を低減することができる。よって、流体の流量などに応じて適宜回転翼の形状は選択することが可能である。   In the first embodiment, an example in which a rotor blade having no main shaft is used has been described. However, the present invention is not limited to this example. Can be reduced. Therefore, the shape of the rotor blade can be selected as appropriate according to the flow rate of the fluid.

1 上部板体、2 下部板体、2a 開口部、3 羽根部、3a 上端、3b 下端、4 回収部、10,11 回転翼、12 ケーシング、12a 入側開口部、
12b 出側開口部、13 流路、14 流体案内部、
14a,15a 入側開口部側端、14b,15b 出側開口部側端、15 導流体板、H1,H2,H3 間隔、h1,h2,h3,h4 高さ、X 第1の中心点、
Y 第2の中心点。
DESCRIPTION OF SYMBOLS 1 Upper plate body, 2 Lower plate body, 2a Opening part, 3 Blade | blade part, 3a upper end, 3b lower end, 4 Collection | recovery part, 10,11 Rotary blade, 12 Casing, 12a Inlet side opening part,
12b Outlet opening, 13 channel, 14 fluid guide,
14a, 15a Inlet side opening end, 14b, 15b Outlet side opening end, 15 Fluid guide plate, H1, H2, H3 spacing, h1, h2, h3, h4 height, X first center point,
Y Second center point.

Claims (4)

入側開口部から出側開口部へ貫通する流路を有し、流体中に上記流路を浸漬させて用いるケーシングと、
上記ケーシングの上記流路内に配置された複数の羽根部を有する一対の回転翼と、
上記一対の回転翼の上部側に設けられ流体エネルギを上記羽根部で受けることにより得られた上記回転翼の回転エネルギを回収する回収部とを備え、
上記ケーシングには、上記流路の上記入側開口部側から上記一対の回転翼側までに至る縦断面面積が上記一対の回転翼に向かって小さくなる流体案内部と、
上記流体案内部内を上記流路の流体の流れる方向と同一方向で仕切るように配設された一対の導流体板とが形成され、
上記一対の導流体板の間隔は、上記入側開口部側端の間隔および上記一対の回転翼側端の間隔より上記入側開口部から上記一対の回転翼までの間の間隔が広く形成されていることを特徴とする流体エネルギ回収装置。
A casing having a flow path penetrating from the entry-side opening to the exit-side opening, and used by immersing the flow path in a fluid;
A pair of rotor blades having a plurality of blade portions disposed in the flow path of the casing;
A recovery unit provided on the upper side of the pair of rotor blades and recovering the rotational energy of the rotor blades obtained by receiving fluid energy at the blade portion;
In the casing, a fluid guide portion having a longitudinal cross-sectional area from the upper entry side opening side of the flow path to the pair of rotor blades decreases toward the pair of rotor blades;
A pair of fluid guide plates arranged to partition the fluid guide portion in the same direction as the direction of fluid flow in the flow path;
The gap between the pair of fluid guide plates is formed such that the gap between the inlet opening and the pair of rotor blades is wider than the gap between the inlet opening side edge and the pair of rotor blade side edges. A fluid energy recovery device.
上記導流体板は、上記一対の回転翼側端が上記一対の回転翼間に至るように形成されていることを特徴とする請求項1に記載の流体エネルギ回収装置。 The fluid energy recovery apparatus according to claim 1, wherein the fluid guide plate is formed so that side ends of the pair of rotor blades reach between the pair of rotor blades. 上記流体案内部および上記導流体板は、上記入側開口部側端の高さが上記一対の回転翼側端の高さより高く形成され、上記一対の回転翼側端の高さが上記一対の回転翼の高さと同様の高さ位置にて形成されていること特徴とする請求項1または請求項2に記載の流体エネルギ回収装置。 The fluid guide portion and the fluid guide plate are formed such that the height of the inlet opening side end is higher than the height of the pair of rotor blade side ends, and the height of the pair of rotor blade side ends is the pair of rotor blades. The fluid energy recovery device according to claim 1, wherein the fluid energy recovery device is formed at a height position similar to the height of the fluid energy. 上記回転翼は、
第1の中心点を中心として回動自在に形成された上部板体と、
上記上部板体と平行にかつ上記第1の中心点と第2の中心点が対向位置となるように配設され上記第2の中心点を中心として回動自在に形成された下部板体とを備え、
上記羽根部は、上記上部板体に上端が上記下部板体に下端がそれぞれ固着され上記上部板体および上記下部板体の周方向に複数個形成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の流体エネルギ回収装置。
The rotor blade is
An upper plate formed to be rotatable around a first center point;
A lower plate that is arranged in parallel with the upper plate and is arranged so that the first center point and the second center point are opposed to each other, and is rotatable about the second center point; With
2. The blade portion according to claim 1, wherein a plurality of the blade portions are formed in a circumferential direction of the upper plate body and the lower plate body, each having an upper end fixed to the upper plate body and a lower end fixed to the lower plate body. The fluid energy recovery apparatus according to claim 3.
JP2009246266A 2009-10-27 2009-10-27 Fluid energy recovery device Active JP4833328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246266A JP4833328B2 (en) 2009-10-27 2009-10-27 Fluid energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246266A JP4833328B2 (en) 2009-10-27 2009-10-27 Fluid energy recovery device

Publications (2)

Publication Number Publication Date
JP2011094487A true JP2011094487A (en) 2011-05-12
JP4833328B2 JP4833328B2 (en) 2011-12-07

Family

ID=44111689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246266A Active JP4833328B2 (en) 2009-10-27 2009-10-27 Fluid energy recovery device

Country Status (1)

Country Link
JP (1) JP4833328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173527A (en) * 2013-03-11 2014-09-22 Nakayama Iron Works Ltd Hydraulic power generation device
CN112360756A (en) * 2020-10-26 2021-02-12 江苏大学 Double-motor type hydraulic turbine
CN114876696A (en) * 2022-04-14 2022-08-09 西安热工研究院有限公司 Optimization device and method for prolonging service life of top cover water taking pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173527A (en) * 2013-03-11 2014-09-22 Nakayama Iron Works Ltd Hydraulic power generation device
CN112360756A (en) * 2020-10-26 2021-02-12 江苏大学 Double-motor type hydraulic turbine
CN114876696A (en) * 2022-04-14 2022-08-09 西安热工研究院有限公司 Optimization device and method for prolonging service life of top cover water taking pipe
CN114876696B (en) * 2022-04-14 2024-03-19 西安热工研究院有限公司 Optimizing device and method for prolonging service life of top cover water intake pipe

Also Published As

Publication number Publication date
JP4833328B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US8475113B2 (en) Hydroelectric power device
JP4558055B2 (en) Hydroelectric generator
BR112016022914B1 (en) APPLIANCE AND SYSTEM TO GENERATE ELECTRICITY FROM WATER FLOW
EP2538070B1 (en) Turbine with radial inlet and outlet rotor for use in bidirectional flows
JP6026786B2 (en) Hydroelectric generator
TW201250111A (en) Water wheel impeller blade type electric power generating apparatus
JP4833328B2 (en) Fluid energy recovery device
CN104989668A (en) Hydraulic design method of back blade balance axial force vortex pump
JP5155990B2 (en) Fluid energy recovery device
KR101243970B1 (en) Cross flow water current turbine installed in water channel
CN109763928B (en) Guide vane and fluid machine
KR101325675B1 (en) Cross Flow Turbine Having Flow Stabilizing Device
JP2016079892A (en) Cross-flow type power generator
KR101243830B1 (en) Drag type water current turbine having energy concentrating device
KR101784493B1 (en) Small hydroelectric power apparatus
JP2006291865A (en) Hydraulic machine runner and hydraulic machine
JP6354051B2 (en) Wave power turbine
JP6054189B2 (en) Axial turbine generator
JP7506410B2 (en) Hydraulic Machinery
KR102643104B1 (en) Power generation apparatus with rotary blade speed increase structure
JP7506411B2 (en) Hydraulic Machinery
JP2007211626A (en) Waterwheel drive unit
JP2007154862A (en) Vane of spiral water turbine
WO2022239571A1 (en) Hydraulic machine
JP6132708B2 (en) Water wheel runner and water wheel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Ref document number: 4833328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250