FI128049B - Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi - Google Patents

Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi Download PDF

Info

Publication number
FI128049B
FI128049B FI20185582A FI20185582A FI128049B FI 128049 B FI128049 B FI 128049B FI 20185582 A FI20185582 A FI 20185582A FI 20185582 A FI20185582 A FI 20185582A FI 128049 B FI128049 B FI 128049B
Authority
FI
Finland
Prior art keywords
stereolithography apparatus
frame
build platform
locking mechanism
guide
Prior art date
Application number
FI20185582A
Other languages
English (en)
Swedish (sv)
Other versions
FI20185582A1 (fi
Inventor
Samppa Dravantti
Original Assignee
Planmeca Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planmeca Oy filed Critical Planmeca Oy
Priority to FI20185582A priority Critical patent/FI128049B/fi
Priority to CN201980056479.1A priority patent/CN112638624B/zh
Priority to CA3105162A priority patent/CA3105162A1/en
Priority to US17/256,276 priority patent/US11472106B2/en
Priority to EP19716461.9A priority patent/EP3814104B1/en
Priority to PCT/FI2019/050200 priority patent/WO2020002759A1/en
Application granted granted Critical
Publication of FI128049B publication Critical patent/FI128049B/fi
Publication of FI20185582A1 publication Critical patent/FI20185582A1/fi

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

Stereolitografialaitteisto käsittää valmistusalustan (8), joka on liitetty liikkuvaan runkoon (11) pallonivelellä (12). Pallonivel (12) sallii valmistusalustalle rajoitetun liikealueen kaikissa suunnissa. Pallonivelen (12) lukitsemiseksi paikalleen on sovitettu lukitusmekanismi (13) valmistusalustan (8) orientaatiokulman kalibroimiseksi valotusjärjestelyn (6) suhteen, niin että valmistusalustan alapinta (9) on yhdensuuntainen valotusjärjestelyn (6) toisen yläpinnan (7) kanssa. Pallonivel (12) käsittää palloelimen (14), joka on kiinnitetty valmistusalustaan (8), ja istukkaelimen (16; 16-1, 16-2), joka on liitetty runkoon (11). Runkoon (11) on järjestetty pystysuuntainen johde (18). Istukkaelin (16) on järjestetty liikkuvaksi pystysuunnassa johteen (18) sisäpuolella ja sen suuntaisesti, niin että se sallii istukkaelimen (16) rajoitetun pystysuuntaisen liikkumisen rungon (11) suhteen. Lukitusmekanismi (13) on sovitettu lukitsemaan myös istukkaelin (16; 16-1, 16-2) paikalleen valmistusalustan pystysuuntaisen asennon kalibroimista varten valmistusalustan (8) nollatason määrittämiseksi suhteessa valotusjärjestelyn (6) toiseen yläpintaan (7).

Description

STEREOLITHOGRAPHY APPARATUS AND METHOD FOR CALIBRATION OF THE STEREOLITHOGRAPHY APPARATUS
FIELD OF THE INVENTION
The invention concerns the technology of stereolithographic 3D printing, also known as stereolithographic additive manufacturing. In particular the invention concerns a stereolithography apparatus for "bottom-up" fabrication of three-dimensional objects. Further, the present invention relates to a method for calibration of the stereolithography apparatus.
BACKGROUND OF THE INVENTION
Stereolithography is a 3D printing or additive manufacturing technique in which optical radiation is used to photopolymerize suitable raw material to produce the desired object. The raw material comes to the process in the form of a resin. A vat is used to hold an amount of resin, and a build platform is moved in the vertical direction so that the object to be produced grows layer by layer onto a build surface of the build platform. The present description concerns in particular the so-called "bottom up" variant of stereolithography, in which the photopolymerizing optical radiation comes from below the vat and the build platform moves upwards away from the remaining resin as the manufacturing proceeds.
The stereolithography apparatus comprises a vat for holding photosensitive light-curable polymer for use in a stereolithographic 3D printing process. The vat has a transparent bottom made of flexible film material. The apparatus further comprises a table having a horizontal first upper surface on which the vat is placeable. The table has an opening. The apparatus further comprises an exposure arrangement arranged at the opening of the table for providing an electromagnetic radiation pattern of a print layer to be 3D printed from below the vat. The exposure arrangement comprises a second upper surface which is flush with the first upper surface of the table. The exposure arrangement comprises a build platform, having a lower surface on which the object to be 3D printed can be built up. The apparatus further comprises an elevator mechanism comprising a movable frame, the frame being movable in a vertical direction between extreme positions including a first position in which the lower surface of the build platform is at a distance from the bottom of the vat and a second position in which the lower surface of the build platform is pressed against the bottom of the vat.
In order to form the three-dimensional object with precise shape and dimensions, the lower surface of the build platform must be orientated precisely parallel to the second upper surface of the exposure arrangement. Further, the zero level of the vertical movement of the elevator mechanism must be exactly at the same level where the lower surface of the build platform is in full contact with the transparent bottom of the vat which, in turn, is pressed against the second upper surface of the exposure arrangement. This is because the printing process must be initiated exactly from the zero level and not above it. On the other hand, the zero level of the elevator mechanism must not be at a lower level than the level of the second upper surface, so that the build platform does not collide with the exposure arrangement.
OBJECTIVE OF THE INVENTION
The objective of the invention is to meet and solve the challenges mentioned above.
SUMMARY OF THE INVENTION
According to a first aspect, the present invention provides a stereolithography apparatus, comprising - a vat for holding photosensitive polymer resin for use in a stereolithographic 3D printing process, the vat having a transparent bottom made of flexible film material, - a table having a horizontal first upper surface on which the vat is placeable, the table having an opening, - an exposure arrangement arranged at the opening of the table for providing an electromagnetic radiation pattern of a print layer to be 3D printed from below the vat, the exposure arrangement comprising a second upper surface which is flush with the first upper surface of the table, - a build platform, having a lower surface on which the object to be 3D printed can be built up, and - an elevator mechanism comprising a movable frame, the frame being movable in a vertical direction between extreme positions including a first position in which the lower surface of the build platform is at a distance from the bottom of the vat and a second position in which the lower surface of the build platform is pressed against the bottom of the vat. According to the invention the build platform is connected to the frame via a ball joint, the ball joint allowing a limited range of movement of the build platform in all directions, and a locking mechanism is configured to lock the ball joint stationary for calibration of the orientation angle of the build platform in relation to the exposure arrangement so that the lower surface of the build platform is parallel with the second upper surface of the exposure arrangement. The ball joint comprises a ball member attached to the build platform, the ball member having a convex spherical outer surface, and a socket member connected to the frame, the socket member having a concave spherical inner surface adapted to receive the convex spherical outer surface of the ball member therein. A vertical guide is arranged in the frame, the socket member being arranged movable vertically inside and along the guide to permit a limited vertical movement of the socket member in relation to the frame, and the locking mechanism is configured to lock the socket member stationary for calibration of the vertical position of the build platform to determine a zero level of the build platform in relation to the second upper surface of the exposure arrangement.
The advantage of the invention is that the vertically movable ball joint lockable to a desired position provides for adjusting and fixing the tilt orientation of the build platform while it provides for adjusting and fixing the zero level.
In an embodiment of the stereolithography apparatus, the apparatus comprises a shaft extending vertically through the guide, the shaft comprising the ball member.
In an embodiment of the stereolithography apparatus, the ball member is monolithic with the shaft.
In an embodiment of the stereolithography apparatus, the shaft comprises a lower flange part having an attachment to which the build platform is attachable.
In an embodiment of the stereolithography apparatus, the socket member has a cylindrical outer periphery, and the guide has a cylindrical inner surface adapted to receive the cylindrical outer periphery of the socket member with a sliding fit.
In an embodiment of the stereolithography apparatus, the socket member is split into two socket member halves.
In an embodiment of the stereolithography apparatus, the guide is split into two guide halves comprising a first guide half and a second guide half.
In an embodiment of the stereolithography apparatus, the frame comprises a first frame part which is attached to a bracket which is movable by the elevator mechanism, the first guide half being formed in the first frame part, and a second frame part which is removably attachable to the first frame part, the second guide half being formed in the second frame part The first frame part and the second frame part are lockable to each other by the locking mechanism.
According to a second aspect, the present invention provides a method for calibration of the stereolithography apparatus according to the first aspect. The method comprises steps of: unlocking the locking mechanism, while the frame is at the first position, to allow free turning and vertical movement of the build platform in relation to the frame; lowering the frame to the second position so that the lower surface of the build platform is against the upper surface of the exposure arrangement and the lower surface becomes accurately aligned with and parallel to the second upper surface for calibration of the position of the build platform to determine a zero level of the build platform in relation to the second upper surface of the exposure arrangement; and locking the locking mechanism to lock the build platform in the calibrated position stationary in relation to the frame .
In an embodiment of the stereolithography apparatus, the apparatus is a 3D printer for fabrication of dental objects. It may be a 3D printer for creating dental splints, models, surgical guides, temporary fillings and orthodontic models with true precision and efficiency.
It is to be understood that the aspects and embodiments of the invention described above may be used in any combination with each other. Several of the aspects and embodiments may be combined together to form a further embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and constitute a part of this specification, illustrate embodiments of the invention and together with the description help to explain the principles of the invention. In the drawings :
Figure la shows a partial axonometric view of a stereolithography apparatus according to an embodiment of the invention, the build platform being in a first position,
Figure lb shows the stereolithography apparatus of Figure la, the build platform being in a second position,
Figure 2 is a cross-section II-II from Figure 1,
Figure 3 is a schematic side view of a stereolithography apparatus according to an embodiment of the invention,
Figure 4 is an axonometric partly exploded view of a detail of the stereolithography apparatus of Figure 1 showing a detail of the frame including the ball joint,
Figure 5 is a cross-section V-V from Figure 4,
Figure 6 is a cross-section VI-VI from Figure 5, and
Figure 7 is a cross-section VII-VII from Figure 6.
DETAILED DESCRIPTION OF THE INVENTION
Figures la, lb and 3 show a stereolithography apparatus which can be used for "bottom-up" three-dimensional printing of three-dimensional objects.
The stereolithography apparatus comprises a vat 1 for holding photosensitive light-curable polymer for use in a stereolithographic 3D printing process. The vat 1 has a transparent bottom 2 made of flexible film material. The film material may be a thin FEP (Fluorinated ethylene propylene) film. The thickness of the film is of the order of 0,1 mm and it is highly tensioned like "a drumhead" to a rim of the vat 1 (see also Figure 2) to form the transparent bottom 2 thereof.
The stereolithography apparatus comprises a table 3 having a horizontal first upper surface 4 on which the vat 1 is placeable. In Figures la, lb, 2 and 3 can be seen the vat 1 being placed on the table 3. Referring to Figure 2, the table has an opening 5. An exposure arrangement 6 is arranged at the opening 5 of the table 3. The exposure arrangement 6 provides, from below of the vat 1, an electromagnetic radiation pattern of a print layer to be printed and cured. The exposure arrangement 6 comprises a planar second upper surface 7 which is flush with the first upper surface 4 of the table 3. In an embodiment the exposure arrangement 6 may be an LCD display, the upper surface of which being said planar second upper surface 7. In another not-shown embodiment the exposure arrangement 6, the electromagnetic radiation pattern may be projected by a projector device on a transparent screen plate whereby the planar second upper surface 7 is the upper surface of the screen plate.
Referring to Figure la, lb and 3, the stereolithography apparatus comprises a build platform 8 having a planar lower surface 9 on which the object to be 3D printed can be built up.
Figure 3 schematically shows an elevator mechanism 10 comprising a movable frame 11, the frame 11 being movable in a vertical direction. The elevator mechanism 10 comprises a linear actuator, such as a ball screw mechanism or like, which is able to provide precise positioning. The frame 11 is movable between extreme positions including a first position I and a second position II. In the first position I shown in Figure la the planar lower surface 9 of the build platform is at a distance from the bottom 2 of the vat 1. In the second position II shown in Figure lb the planar lower surface 8 of the build platform 8 is pressed against the transparent bottom 2 of the vat 1, and thus the planar lower surface 8 is also against the planar second surface 7 of the exposure arrangement 6, the transparent bottom 8 being therebetween.
The build platform 8 is connected to the frame 11 via a ball joint 12. The ball joint allows a limited range of movement of the build platform 8 in all directions. A locking mechanism 13 is configured to lock the ball joint 12 stationary for calibration of the orientation angle of the build platform 8 in relation to the exposure arrangement 6, so that the planar lower surface 9 of the build platform 8 can be oriented to be exactly parallel with the planar second upper surface 7 of the exposure arrangement 6.
Figures 4 to 7 show the structure of the ball joint 12. The ball joint 12 comprises a ball member 14 which can be attached to the build platform 8 (not shown in Figures 7 to 7). The ball member 14 has a convex spherical outer surface 15. A socket member 16; 16-1, 16-2 connected to the frame 11. The socket member 16; 16-1, 16-2 has a concave spherical inner surface 17 adapted to receive the convex spherical outer surface 15 of the ball member 14 therein. A vertical guide 18 is arranged in the frame 11. The socket member 16 is arranged movable vertically inside and along the guide 18 to permit a limited vertical movement of the socket member 16 in relation to the frame 11. The locking mechanism 13 is configured to lock the socket member 16; 16-1, 16-2 stationary for calibration of the vertical position of the build platform to determine a zero level of the build platform 8 in relation to the planar second upper surface 7 of the exposure arrangement 6.
The apparatus comprises a shaft 19 extending vertically through the guide 18, the shaft 19 comprising the ball member 14. The ball member 14 is monolithic with the shaft 19. The shaft 19 comprises a lower flange part 20 having an attachment to which the build platform 8 is attachable. The socket member 16 has a cylindrical outer periphery, and the guide 18 has a cylindrical inner surface adapted to receive the cylindrical outer periphery of the socket member with a sliding fit to enable movement in vertical direction only.
The socket member 16 is split into two socket member halves 16-1, 16-2. Also the guide 18 is split into two guide halves 18-1, 18-2 comprising a first guide half 18-1 and a second guide half 18-2.
The frame 11 comprises a first frame part 21 which is attached to a bracket 22 which is movable by the elevator mechanism 10. The first guide half 18-1 is formed in the first frame part 21. The frame 11 further comprises a second frame part 23 which is removably attachable to the first frame part 21. The second guide half 18-2 is formed in the second frame part 23.
The first frame part 21 and the second frame part 22 are lockable to each other by the locking mechanism 13.
The locking mechanism 13 comprises two securing screws 24 at a first side of the guide 18 for securing the first frame part 21 and the second frame part 23 together. The locking mechanism 13 further comprises a tightening screw 25 at a second side of the guide 18. The second side is opposite to the first side. While joining the first frame part 21 and the second frame part 23 together the locking mechanism 13 simultaneously clamps the ball joint 12 and the socket member 16 stationary .
In a method for calibration of the stereolithography apparatus as disclosed and shown in the Figures, the method comprises the following steps. While the frame 11 is at the first position I shown in Figure I, the locking mechanism 13 in unlocked to allow free turning and vertical movement of the build platform 8 in relation to the frame 11. Then the frame 11 is lowered to the second position II shown in Figure 2, so that the planar lower surface 9 of the build platform 8 is against the planar upper surface 7 of the exposure arrangement 6 and the lower surface 9 becomes accurately aligned with and parallel to the planar second upper surface 7 for calibration of the tilt angle and position of the build platform 8 and to determine a zero level of the build platform 8 in relation to the planar second upper surface 7 of the exposure arrangement 6. In this position the locking mechanism 13 is locked to lock the build platform 8 in the calibrated position stationary in relation to the frame 11.
The calibration procedure needs to be performed occasionally before fabrication of the 3D objects is started with the stereolithography apparatus. Calibration process should be performed every time when something is changed in the apparatus so that one can assume that the zero level has changed, for example the LCD display is replaced, the elevator mechanism is maintained etc.
It is obvious to a person skilled in the art that with the advancement of technology, the basic idea of the invention may be implemented in various ways. The invention and its embodiment are thus not limited to the examples described above, but instead may vary within the scope of the claims.

Claims (11)

  1. PATENTTIVAATIMUKSET
    1. Stereolitografialaitteisto, joka käsittää
    - altaan (1), joka on tarkoitettu sisältämään valonherkkää valolla kovetettavaa polymeeriä, käytettä-
    5 väksi stereolitografisessa 3D-tulostusprosessissa, jossa altaassa on läpinäkyvä pohja (2), joka on tehty taipuisasta kalvomateriaalista,
    - pöydän (3), jossa on vaakasuuntainen ensimmäinen yläpinta (4), jolle allas (1) on asetettavissa,
    10 jossa pöydässä on aukko (5),
    - valotusjärjestelyn (6), joka on järjestetty pöydän aukon (5) kohdalle tulostettavan tulostuskerroksen sähkömagneettisen säteilykuvion aikaansaamiseksi altaan alapuolelta, joka valotusjärjestely käsittää
    15 toisen yläpinnan (7), joka on samalla tasolla pöydän (3) ensimmäisen yläpinnan (4) kanssa,
    - valmistusalustan (8), jossa on alapinta (9), jolle 3D-tulostettava kappale voidaan kerrostaa,
    - nostomekanismin (10), joka käsittää liikku20 van rungon (11), joka runko (11) on liikutettavissa pystysuunnassa ääriasentojen välillä, jossa ääriasennot sisältävät ensimmäisen asennon (I), jossa valmistusalustan alapinta (9) on etäisyydellä altaan (1) pohjasta (2), ja toisen asennon (II), jossa valmistusalustan (8)
    25 alapinta (8) on painettuna altaan (1) pohjaa (2) vasten, ja
    - lukitusmekanismin (13), jossa valmistusalusta (8) on liitetty runkoon (11) pallonivelellä (12), joka pallonivel sallii val30 mistusalustalle rajoitetun liikealueen kaikissa suunnissa, ja lukitusmekanismi (13) on sovitettu lukitsemaan pallonivel (12) paikalleen valmistusalustan orientaatiokulman kalibroimiseksi valotusjärjestelyn suhteen, niin että valmistusalustan alapinta (9) on yhdensuun35 täinen valotusjärjestelyn toisen yläpinnan (7) kanssa,
    20185582 prh 06 -06- 2019 jossa pallonivel (12) käsittää palloelimen (14), joka on kiinnitetty valmistusalustaan (8), jossa palloelimessä on kupera pallomainen ulkopinta (15), ja istukkaelimen (16; 16-1, 16-2), joka on liitetty runkoon 5 (11), jossa istukkaelimessä (16; 16-1, 16-2) on kovera pallomainen sisäpinta (17), joka on sovitettu vastaanottamaan sisäänsä palloelimen (14) kupera pallomainen ulkopinta (15), ja jossa runkoon (11) on järjestetty pystysuun10 täinen johde (18), jolloin istukkaelin (16) on järjestetty liikkuvaksi pystysuunnassa johteen (18) sisäpuolella ja sen suuntaisesti, niin että se sallii istukkaelimen (16) rajoitetun pystysuuntaisen liikkumisen rungon (11) suhteen, ja jossa lukitusmekanismi (13) on so15 vitettu lukitsemaan istukkaelin (16; 16-1, 16-2) paikalleen valmistusalustan pystysuuntaisen asennon kalibroimista varten valmistusalustan (8) nollatason määrittämiseksi suhteessa valotusjärjestelyn (6) toiseen yläpintaan (7) .
  2. 2. Patenttivaatimuksen 1 mukainen stereolitografialaitteisto, jossa laitteisto käsittää akselin (19), joka ulottuu pystysuunnassa johteen (18) läpi, joka akseli (19) käsittää palloelimen (14).
  3. 3. Patenttivaatimuksen 2 mukainen stereolitografialaitteisto, jossa palloelin (14) on yhtenäinen akselin (19) kanssa.
    30
  4. 4. Patenttivaatimuksen 2 tai 3 mukainen stereolitografialaitteisto, jossa akseli (19) käsittää alemman laippaosan (20), jossa on kiinnitys, johon valmistusalusta (8) on kiinnitettävissä.
    20185582 prh 06 -06- 2019
  5. 5. Jonkin patenttivaatimuksista 1-4 mukainen stereolitografialaitteisto, jossa istukkaelimessä (16) on sylinterimäinen ulkokehä, ja johteessa (18) on sylinterimäinen sisäpinta, joka on sovitettu vastaanottamaan is-
    5 tukkaelimen sylinterimäinen ulkokehä liukuvalla sovitteella.
  6. 6. Jonkin patenttivaatimuksista 1-4 mukainen stereolitografialaitteisto, jossa istukkaelin (16) on jaettu
    10 kahdeksi istukkaelinpuoliskoksi (16-1, 16-2).
  7. 7. Jonkin patenttivaatimuksista 1-6 mukainen stereo- litografialaitteisto, jossa johde (18) on jaettu kahdeksi johdepuoliskoksi (18-1, 18-2), jotka käsittävät
    15 ensimmäisen johdepuoliskon (18-1) ja toisen johdepuoliskon (18-2) .
  8. 8. Jonkin patenttivaatimuksista 1-7 mukainen stereolitografialaitteisto, jossa lukitusmekanismi (13) kä-
    20 sittää yhden kiristysruuvin (25) pallonivelen (12) ja istukkaelimen (16) puristamiseksi samanaikaisesti paikalleen .
  9. 9. Patenttivaatimuksen 7 tai 8 mukainen stereolitogra25 fialaitteisto, jossa runko (11) käsittää ensimmäisen runko-osan (21), joka on kiinnitetty kannattimeen (22), joka on liikutettavissa nostomekanismilla (10), jossa ensimmäinen johdepuolisko (18— 1) on muodostettu ensimmäiseen runko-osaan (21), ja
    30 toisen runko-osan (23), joka on irrotettavasti kiinnitettävissä ensimmäiseen runko-osaan (21), jossa toinen johdepuolisko (18-2) on muodostettu toiseen runko-osaan (23), jossa ensimmäinen runko-osa (21) ja toinen 35 runko-osa (22) ovat lukittavissa toisiinsa lukitusmekanismilla (13) .
    20185582 prh 06 -06- 2019
  10. 10. Patenttivaatimuksen 9 mukainen stereolitografialaitteisto, jossa lukitusmekanismi (13) käsittää kiinnitysruuvin (24) johteen (18) ensimmäi5 sellä puolella ensimmäisen runko-osan (21) ja toisen runko-osan (23) kiinnittämiseksi yhteen, ja kiristysruuvin (25) johteen (18) toisella puolella, jossa toinen puoli on vastakkainen suhteessa ensimmäiseen puoleen, ensimmäisen runko-osan (21) ja 10 toisen runko-osan (23) liittämiseksi yhteen ja pallonivelen (12) sekä istukkaelimen (16) puristamiseksi samanaikaisesti paikalleen.
  11. 11. Menetelmä jonkin patenttivaatimuksista 1-10 mu15 kaisen stereolitografialaitteiston kalibroimiseksi, joka menetelmä käsittää vaiheet, joissa
    - avataan lukitusmekanismi (13), kun runko (11) on ensimmäisessä asennossa (I), niin että sallitaan valmistusalustan (8) vapaa kääntyminen ja pystysuuntainen
    20 liikkuminen rungon (11) suhteen,
    - lasketaan runko (11) toiseen asentoon (II), niin että valmistusalustan (8) alapinta (9) on vasten valotusjärjestelyn (6) yläpintaa (7) ja alapinta tulee täsmällisesti kohdakkain ja yhdensuuntaisesti toisen
    25 yläpinnan (7) kanssa valmistusalustan asennon kalibroimista varten valmistusalustan (8) nollatason määrittämiseksi suhteessa valotusjärjestelyn (6) toiseen yläpintaan (7)
    - lukitaan lukitusmekanismi (13), joka saman30 aikaisesti lukitsee valmistusalustan (8) kalibroidussa orientaatiokulmassa ja nollatasoasennossa paikalleen suhteessa runkoon (11).
FI20185582A 2018-06-28 2018-06-28 Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi FI128049B (fi)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FI20185582A FI128049B (fi) 2018-06-28 2018-06-28 Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi
CN201980056479.1A CN112638624B (zh) 2018-06-28 2019-03-11 立体光刻设备以及用于校准立体光刻设备的方法
CA3105162A CA3105162A1 (en) 2018-06-28 2019-03-11 Stereolithography apparatus and method for calibration of the stereolithography apparatus
US17/256,276 US11472106B2 (en) 2018-06-28 2019-03-11 Stereolithography apparatus and method for calibration of the stereolithography apparatus
EP19716461.9A EP3814104B1 (en) 2018-06-28 2019-03-11 Stereolithography apparatus and method for calibration of the stereolithography apparatus
PCT/FI2019/050200 WO2020002759A1 (en) 2018-06-28 2019-03-11 Stereolithography apparatus and method for calibration of the stereolithography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20185582A FI128049B (fi) 2018-06-28 2018-06-28 Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi

Publications (2)

Publication Number Publication Date
FI128049B true FI128049B (fi) 2019-08-30
FI20185582A1 FI20185582A1 (fi) 2019-08-30

Family

ID=66102123

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20185582A FI128049B (fi) 2018-06-28 2018-06-28 Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi

Country Status (6)

Country Link
US (1) US11472106B2 (fi)
EP (1) EP3814104B1 (fi)
CN (1) CN112638624B (fi)
CA (1) CA3105162A1 (fi)
FI (1) FI128049B (fi)
WO (1) WO2020002759A1 (fi)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128151B1 (fr) * 2021-10-19 2024-05-24 Mat & Medical Solutions Appareil et procédé pour former un objet tridimensionnel
CN115625887B (zh) * 2022-10-31 2024-09-06 广州黑格智造信息科技有限公司 三维打印设备、三维打印方法及寻零控制方法
WO2024168109A1 (en) * 2023-02-10 2024-08-15 3D Systems, Inc. Method for manufacturing low modulus articles
US20240269932A1 (en) * 2023-02-10 2024-08-15 3D Systems, Inc. Method for Manufacturing Low Modulus Articles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297047A (en) * 1979-06-09 1981-10-27 Automotive Products Limited Ball and socket joint
WO2013177620A1 (en) * 2012-05-29 2013-12-05 Zydex Pty Ltd Device for making an object and a method for making an object
US20140085620A1 (en) * 2012-09-24 2014-03-27 Maxim Lobovsky 3d printer with self-leveling platform
US9452567B2 (en) * 2013-08-27 2016-09-27 Kao-Chih Syao Stereolithography apparatus
US10086566B2 (en) * 2014-01-02 2018-10-02 Old World Labs Apparatus for production of three-dimensional objects by stereolithography
TWI513572B (zh) * 2014-05-16 2015-12-21 三緯國際立體列印科技股份有限公司 用於三維列印機的成型裝置及三維列印機
JP6720137B2 (ja) * 2014-08-01 2020-07-08 ベゴ・ブレーマー・ゴルトシュレーゲライ・ヴィルヘルム・ヘルプスト・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフトBEGO Bremer GoldschlaegereiWilh.Herbst GmbH & Co.KG 容器アセンブリを有する光造形装置
US9827713B1 (en) * 2014-11-11 2017-11-28 X Development Llc Wet/dry 3D printing
CN204263550U (zh) * 2014-12-02 2015-04-15 博纳云智(天津)科技有限公司 一种3d打印机用调平机构
ITUB20160242A1 (it) * 2016-01-15 2017-07-15 Dws Srl Macchina stereolitografica ad inizializzazione facilitata perfezionata
CN206967980U (zh) * 2017-07-24 2018-02-06 上海联泰科技股份有限公司 构建平台及所适用的3d打印设备
CN207432785U (zh) * 2017-11-23 2018-06-01 深圳市纵维立方科技有限公司 光固化3d打印机的连接机构

Also Published As

Publication number Publication date
EP3814104B1 (en) 2022-05-04
CA3105162A1 (en) 2020-01-02
WO2020002759A1 (en) 2020-01-02
FI20185582A1 (fi) 2019-08-30
US11472106B2 (en) 2022-10-18
CN112638624B (zh) 2022-12-20
CN112638624A (zh) 2021-04-09
US20210260824A1 (en) 2021-08-26
EP3814104A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
FI128049B (fi) Stereolitografialaitteisto ja menetelmä stereolitografialaitteiston kalibroimiseksi
US11673296B2 (en) Device for making an object and a method for making an object
Barone et al. Development of a DLP 3D printer for orthodontic applications
US8247330B2 (en) Method of forming micropattern, die formed by this method of forming micropattern, transfer method and micropattern forming method using this die
KR100806231B1 (ko) 가공장치, 가공방법 및 칩의 제조방법
US9339970B2 (en) Imprint apparatus, and article manufacturing method
KR20200055079A (ko) 임프린트 장치 및 물품의 제조 방법
WO2010143466A1 (ja) ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法
TWI720301B (zh) 壓印裝置及製造物品的方法
JP2020535039A (ja) 三次元プリントシステムにおいてピクセル化された光エンジンを位置合わせする方法および対応する三次元プリントシステム
KR20170082044A (ko) 3차원 프린터 및 이의 광출력 장치
EP3894183A1 (en) Precision optical assembly for three dimensional printing
JP2509787B2 (ja) 光学プロッタに使用する円筒支持部
US11207833B2 (en) Precision optical assembly method for three dimensional printing
CN210390136U (zh) 一种光机调节机构和3d打印设备
JPWO2010087083A1 (ja) ウエハレンズの製造方法及びウエハレンズ製造装置
WO2020002752A1 (en) Stereolithography apparatus
KR101772997B1 (ko) 3d 프린팅 장치
CN115625893A (zh) 超级风刀辅助清洗的多材料光固化3d打印装置及方法
US20170274601A1 (en) Additive manufacturing vertical stage for moving photocured material in a non-perpendicular direction from the image plane
Milde et al. INFLUENCE OF SELECTED PHOTOPOLYMERS ON THE RESULTING ACCURACY AND SURFACE ROUGHNESS OF THE COMPONENT IN DIGITAL LIGHT PROCESSING TECHNOLOGY.
CN111844734A (zh) 一种光固化3d打印机的平台调整机构
Valentinčič et al. Towards Production of Microfeatures on a Custom-Made Stereolitographic DLP Printer
WO2023072689A1 (en) A recurrent mounting system for a uv lcd 3d printer
Tanaka et al. Durability Test of Replica Mold in UV Nanoimprinting and Enlargement of Mold Patterned Area by Mold Stitching

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 128049

Country of ref document: FI

Kind code of ref document: B