FI127041B - Lämpötilan mittausmenetelmä radiosondia käyttäen, sen korjausjärjestelmä ja korjausmenetelmä - Google Patents

Lämpötilan mittausmenetelmä radiosondia käyttäen, sen korjausjärjestelmä ja korjausmenetelmä Download PDF

Info

Publication number
FI127041B
FI127041B FI20165799A FI20165799A FI127041B FI 127041 B FI127041 B FI 127041B FI 20165799 A FI20165799 A FI 20165799A FI 20165799 A FI20165799 A FI 20165799A FI 127041 B FI127041 B FI 127041B
Authority
FI
Finland
Prior art keywords
temperature
temperature sensor
value
factors
radiosonde
Prior art date
Application number
FI20165799A
Other languages
English (en)
Swedish (sv)
Other versions
FI20165799A (fi
Inventor
Yong-Gyoo Kim
Byung Choi
Jong Kim
Sang Woo
Sang Lee
Su Kwon
Original Assignee
Korea Res Inst Standards & Sci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Res Inst Standards & Sci filed Critical Korea Res Inst Standards & Sci
Publication of FI20165799A publication Critical patent/FI20165799A/fi
Application granted granted Critical
Publication of FI127041B publication Critical patent/FI127041B/fi

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/007Radiation pyrometry, e.g. infrared or optical thermometry for earth observation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • G01W1/04Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed giving only separate indications of the variables measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/18Testing or calibrating meteorological apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

Ile.: :f : pel en J ο ·1
"IEEE”;!7 LEE .EE". ELI of ΕΕΈ EPEE E£ EFLEr' E EAELEEL ELE, CORRECTION ELELEE ΓΕΕγΕΟΕ .EE" 'Έ "FEETLEE EFEi;LL
I: - r:-: I I - -> c -- '·· ~ :..- ,00' . - 5*- - - -i -0,0 t- i i τ oded
r _ . ' . *' F - 1 ” Γ ; ’ , I - CO - l ' t -O E O 1 - Γ· . . ' . . t r tO an'apparatus embodied in order to correct. efficiently changing E :· - o - o - o Err·. : : , “ooo~ . . a " - τ r> x ^ - i: - ^'-:lSor i;? rCo-j -o or "o of nciIEj.o- . lid ::ji .ei Earl
The atmosphere surrounding a 'Surface of the Earth has a -ρο·Ε-'·; o-d r o r. r>· r coo toe 3' ro" jr? o~ i coo..- . o
On . .CL . *. / % 1 >-. λ- i Cr i o ;v - C 0..-- O OO 1 T ~ ‘ ’ -. 1 t - 0 O l ~ Έ...Γ. 1..-0 0 !. -1 , L\ E, ,.-0 0.0- Γ,'-it * ... Oo-i Ol -' ;E t . .: o r e i-., h.od ol, , .:.: > LE a nc i ir.O' *: - " ’ ' o :.-: , » . oor o.j.n r i . :o .-1-- -o ' 1 o L - o :p : o o.·": o o o t - -.'..--ο .-:, Oo :.- .o.-ei rC;r- i s ·ε V. .o ; : , o. . o o.E!'·-.: o: 1 ii:o. Τ1- : .o -c i. i - :--...--.0-0- nv -- Ό .; oo *: t_- - -ire, . ,0“.ccoe, .-i c coo-.·;.-,’, -o ,., ,.·/ :00:0 1- to-.- o:or.:o, and ’e 1 :..i - ; " ,. , - · :.g 0 0 0 0 - c :.;x . : air* ,0 ’> “ the : Ό-Ι ' c i 0 t , . 0 - ' - . C- . ---N Jo o 0 0 <-- - og a location of the radiosonde. Long :Range; Navigation (Loran) and Giöbål-/-Pösitlonift'glSystein'-'.'.{G'PS) have -been widely used. "-.I.For exampié>;;i-in^;:äa;i\:atmospher'e';-:idwer ascent and descent observation expérifténtäl-läpparätuét-öiscloséd in KR101237324B, observes ' temperature,! humidity, etc', throught-various sensors ' and in the case: of' outputhan observation signal: and a position signal on the ground, accurate observation result value may be known. '.^'V;''!hh'Conventiona'I;;v.;.'ra<äϊpsonde ' usually 1; uses. only one temperature sensor, Such a radiosonde ; is to be received radiant energy blazed from the sun consistently by flying to tbé\'.::strat'öspher'é>'\;-v---'-Iti!'':th-is process, undesirable temperature ’ _'· t , ' ~ 'ra·; >.rce may 'be; occurred, but a method of duéi;;.tö;::-;-the irradiance was not developed in. the related .art,, so'-dthe temperature-..-cannot be .measured' accurately. ... . . ' ; rm ’ n;n s’ .-a · ;; -- r. /r n- 1 . meter may . be considered. irradiance.tof particular m : (-j'tm'ii _ ' i - . j * pyrheliometer, and then ising it as a correct ion value may be applied,. However, the Ir radiance is to be changed according to area.,, time, and let ho·' is considered as a .tern ‘ m; ’ ,. ’’ -u ’ ', the pyrheliometer is a. rein‘ - - m, r-· is ’m m -1 _,ν·: ’ ; · ’ creforet using the .pyrheliometer is . economically infeasible-in; of cost.
Accordingly, development of -1:.;.£Ώ:·/·/·/: accurate method of correcting risingtemperature in/ then Ä according to the irradiance Is required. ' iDisclosure] [Technical Problem] -
The/ present disclosure is directedl ito providing an apparatus and a method /of efficiently correct Changing of the temperature measured' in the temperature /sensor according to influence of the irradiance using the /radiosonde provided plurality of the temperature sensors.
Specifically, the present disclosure provides an apparatus .and a method. installing é'ame//;typedo/-f-w:0;-:itémperature sensors by .dpatingi'/':/ma.térial//:·'/having ..different emission/ / ratio, and icörrectihg\':.'./of the ’ „r iv s λ :uxe. according to the i'airtadianCeilusingtdii: m ·= of;/tenif η,-Γ. ui - r-a sured in '/'.the./twoftemperature rs so users·.' ././Ih;·^ i: >-· t disclose·^ . ”in-- . -nvaratus .'."and'/.'./a method that or compensate v.- o- f the / irradiance regardless of theohrea, tirr- , or .1 v. £ . iition by···applying;/there0'f·/ after .observing the * eor> - - - „„ - . oerence· of··'the-.two temperature sensor si which are ' a« · oding to . ..the irradiance in/advance, and can realiz- --rv high '-recision .to users. ///.//.;. ...:/..·....:
Meanwhile, technical ''.objects to-Be: achieved in the present disclosure are not limited to the : aforeMntioned technical objects, and .other. not-nférit: .:reo :e uniCc, 1 objects will be '"''obviously under stood by v.thos'·· in axt from the "'vdescr'iption below'.'.'.'·;·;·; -1..11. ' cltTechnical SolUtiöh·!· Ά radiosonde."·.related'·'.'·;!© . · v.-. > c ; ^ry err > ^ment of the .'. present disclosure'.' includes'·, ~ - tempers c3 sensor; a second temperature sens'or.'lhavii - ' .r a eraiss. ' ratio than the first temperature sensor; > i measuring unit for calculating a corrected temperat n- Uxué, but, in order to .calculate.... ...predetermined. .compens.atidh-l^r-factors . related to calculate the corrected temperature value, the- radiosonde and a third temperature sensor are -installed in a-chamber before flying of the radiosonde, ai 'Suhlight simulator 'outputs light in the chamber, output:flight.· by thel sunlight simulator induces a first temperature dhängé'-;;'de'té;c'té'ä'· by the first temperature sensor and a second temperaturer :¾ detected by the second temperature sensor, 'ä:.';-'-compéKsäto:'E--'-:-;:derives the compensation ' factors using temperature 1;; valueo; ^measured by the first ; temperature change, the second temperature change, and the "third temperature sensor, the third temperature sensor is to be configured to block outside, compensation factorél;'.'deri\Γed'.';;.:fröffi::'.:::t¾'é:'^:.',^'cdfflp.ensator are transmitted;'to' the measuiihgyunit.y' aridf.t ie ’·'-curing unit may use the transmitted compensation'';', factor·’ : i calculating of the corrected'.'·teftiperaiuretvaluev"'·"" ·
In addition./· in the"".',case·'.'.'.''of '.".flying the rasiosonde, 'detecting;.'.: .the·''.'".first ' temperatute value .;' ng the first temperature· "sensdr., and detecting': the '..sec· ’ : * cnperature value 'using the. 'secö:äd''.'.temperät'ure''.''.'.senc · i ? tht rr - .-uring unit may calculaté·',!the."''corrected·"''/tempera < .:- val ,-. from the first témperaturei.väluél-änd thez/pecond temperat ~v'alue using the c'ömpensä'tiön'.;:fäct'6i''S. ''"'In "addition:,,'·'.'inf'order''·.to"'·'derive the ci’"!--'mation factors, illumination toi'·"light outputiin.'the' suriligh* -emulator may be changed within predetermined testihg/rseope'..,l""··;'·:
Also, the compensator may": 'bbs.ervéi..:teffiperature value '."detected by the firstitem] . .re.';'.sens:or''^ini'.''ar-bit'.raxy a first '.'.illumination 'Within .'•'the - . ' inge": scope/C;"temperature value cs-te ' - r l i in. .. lond 1 v: *rature sensor and temperature v,. tu*. rp, ' .. third \enpefature":"se^^ .idols " :n, *. ne ... cc” ; snsatd.r calculate a. relational '" expression related . to '.'téttperatu.re'".'.'changé:"-detected in the first temperature sensor according ":"tö'.':.'."i'ii'umin.ä-t:±öh" of the light output in the .sunlighti/simulator and .¾ relational .expression .".related· .to temperature''·.'" value detected in the second temperature sensor, based"".on the. obser-r,"c. result, and the calculated. relational expressions!may be- used in .derivation of the" compensation 'factors. ÄlsOr t!the temperature value'/ detected; ; by the first .teffipératuret sensor observed by the..:!cömpe:hsa.to.r in the first .illuminationi is determined according to; the: following formula
Formula 1
In the. , above.. .formula 1, ti is temperature value detected '.by.!.theI'.fi.r.s.t!.temperature;', sensor in the first' illumination, t3 ±S1 temperature. ''.value·,'.''detected, by... the third temperature sensor, ''ä.'''vds.:i!önev!.ö.f '.the'!.'compehaation!;;fa;cförs, b i s one of the compensation''factors·,.'.iändllfti' is - the!•firs·' illumination. ’tin ' addition./·' -v-'p *- - .r. ure;;lvalue;; detecte.i by the second temperature . sensor observe 3 by the compensator i: the first illumination is- 'determined 'äccördiftgf formula '2. .·'". ftp :·'·:;;····'.ν ; · Porniutai if . '''r;f'.fl';i;fti;y.'v
.flirt. the abovef"fort-. : 2,/.tm'^is ter.p i v ..'ey-talue detected •'•by;"the·'·.' second "'tempera’ t sensor in 'illumination, c '.xS'i'brie : ire compel err Ion;;: '•'facto* r, v: : ,, is! one of the '•'coffipéns.vv r. ;ac“ore.ον iniaddition, '.'.the ’ i, pensatbr :,.: · - he·.'· compensation .factors·' a, b, c, ' aftdfd mi. ngf'tfte . a 1 ani the formula 2.
Al'S'Or the measuring//-unit '.may calculate the corrected temperature value"'using the.following formula 3. "..Formula 3 "tf ' ' ' / '' "ty ' 'yl.'.
'tti- the above formula·'!'./.’ Tair is the corrected temperature value., Ti is- they first temperature:..· value, and 1¾. Is the second temperature value..y... ./'.Meanwhile, in ä·;· measuring method/of a radiosonde provided a first temperature/'sensOx·."and vafeeeond 'temperature sensor having higher emission, rätio'/th,an:"thé:.ifirst temperature sensor, a measuring method 'related· .'to an exemplary embodiment of the present '-'disclosure, ir'St step deriving .compensation, factors; a ..second step .flying ...the''.radiosonde;.'ay.th'ird.step detecting a first temperature value using:the fixst'. temperature sensor and ing , a: ; second ;, temperature ;the second temperature, sensor; and a- fourth step that/.measuring unit of the radlosoiid'e: calculates./.the./corrected temperature value from /the first temperature· value land the secondl/temperature value using/."the compensation/, factors; are included, / but the first step·-further' includes stép...l-ί installing a. third, temperature sensor/'configufedtCo block outit he radiosonde .'land' light blazed "£ roM.'; out side"-/in.·//'the cm·: r; rep' /1.-.2. output ting...the light in . the· .vcbambe £-.// using - ",n: It/'ysimu , .r or;-.'''step- 1-3 that compensator- .401,1003 predetéXminéd/cörftpensatiön factors- related to calculation:· of "the corrected temperature value; and step 1-4 transmitting compensation fa< ’ * "> e- · -* - I from the compensator' to ..the measuring unit; 1 ' > . 'tpc light by the sunlight simulator in the step 1-2 i . ) - . first temperature change' detected·" .'by "the first temper a ture-.t-sensp'r-and a second temperaturellchange detected by the ySecondytemperature sensor, in'-the step'. 1-3, the compensator .'."'may. derive; using the first temperature·.' ' .change, . the second:;-itemperature, change, and temperature''Väliie measured .by the''.third temperature sensor.
In "addition,, in the step 1-2., .'.''illumination'-of light output in the sunlight·'·'Simulator ' may bei'/changed·;within predetermined testing! scope."'.
In.' addition,' ...thélcömpéhsatoi ;·-:y · -·ονβ temperature value detected by theyfir'St;,téÉpefatu · n arbitrary a. first 'illumination within·'· ,1 the ;;; testing s:: ope, temperature value detected by the',·second,'.'; temperature sensor, and temperature .value i·-·'· - " 'dgbyit^ sensor. : . 'Meanwhile, a.· ''correction. utsys- -' - ,Ό,,η *o ru exemplary .-.embodiment Qf/.ithébypreeentt·.'dii .u .urn ..-: s , radiosonde '/provided, they·;,·'.£irst:;v.'';te'itipera d second 'temperature s.'ehs'0'r;';.:häyih;g:tthe V rv?: r . ,. ra* chan the " first·· temperature·.··,';; sensor ;;; r, - - ’;u t - r - i r ., - sensor ; '"Configured to'"'hio'c'h'.:Outy.'the;:.ii ->c- ' , ; :h r dde; the chamber installing'.ythe radio - . nu, .-- -. .„ * u *-u perature sensor therein,*',the·''.sun light c-u\ , u, : η.·· -p ’ -light in the chamber? and the compensatorv deriving; i the predetermined compensation: factors related tol calculate the corrected temperature value; but the light:output;· by the sunlight simulator induces the first temperature' change detected by the f irst 'itemperature' sensori'.; and id ei . change detected bytthe second tempera*· · "·' r, and the compensator may derive the Compensation factors·' using the first > " ,/. :: o -,-, ---. - o.'n * - - itun·. and the c nara: ,o - , - ,,-on .1 j g u ; .r, _:c cemp or.:. .,rt ,.-isor. in.t" addition, the radiosonde mayl'i i ..- -r include a meaSlirlngi.·’ unit' which is transmitted '.'.'compensation factors d'é'ri'ved,'t'from the·.''.'Compensator, and' ca-lculat ino the corrected temperat. .-. the transmittéd:icoir.pensation factors.
In a . ~r me case of flying the radiosonde, detecting the first itemperature value ;; using the first temperature; sensor,· and detecting;the second temperature value using; the secorwitemperature- osehsdr, the measuring- unit may calculate the! first temperature; " ^ the corrected . temperature value from the- second0 temperature value using the compensation factors.
Also, : a controller cohtrdXlihg: output;; of the sunlight simulator is further includéd>-----but;l'thei-'Göht'rollér may change illumination of ;the'---;light.'';-'.Q'U'fput-i-:.lfti-''the;;'-;;;p'unli;ght simulator within the '-predetermined testing ;scopeiin ;order to derive the compensation·'-factors·-.:'-·.'''
In addition, the compensator; may observe the temperature value detected by the '/first temperature sensor in the arbitrary first illdhinatlon within the testing scope, the temperature value detected by the; second temperature sensor, and the : temperature value detected -by ' the rthird temperature sensor.
In addition, -the " compensatorrelational expression related to' temperature /change· detected In the first temperature- sensor- according to Illumination / of the light output in the sunlight simulator and-;^'.thé'/-';Eé-I;at'iphal expression related ; to : temperature l value detected / /In the second ' temperature-.- sensor /based/./on ;/the observat ion / result, and the calculated relational express ions "/may/ be-Z-u-sed'/'In. derivation o f ''' the/ compehöation/..factors'·I.·;. -"i/;'.'Also,-"" "the· -''temperature./:/-/val . -v.·. - the first temperature· sensor lObservedl/by tl m --d r - the first illumination./ -is"- determined according ~ ^ . mg formula 1,- . ,· ...---'"Formula:!:: / / -1//1 ·ΐ.//·1//1ι./:ΐ/:/;'·/
In ".'the'"/'.above:. : > - v.a 1, ti is the temper. re value detected·' by 'the ; m · - „ temperature sensor in the first 'Illumination.:,'; .ta'· ..j r u -.temperature value'/', '.'detected .by the third temperature .·&amp;-:; , a is/ one of the/..compensation factors, b is one of the .compensation factors, anb; R± is the first illumination.
In addition, the temperature value detected; by the second temperature sensor obsérygd by the compensator in the first illumination is determined according to the; following formula 2 .
Formula 2
In the above tformula 2, t2 is the / temperature value detected by.·;, the second· temperature sensor.; in the first ./illuminationy/iciis one o£ the:· compensation ; factors, and d is one of' '"the··compensation ' fa-ctors. . '
In addition, the ..1-compensator may derive!/the compensation factors a, b, c>·'· and.·'d.'.using the formula 1 and; the formula 2.
Also,.. the..'·.measuring·; unit may. . calculate:.;. the corrected temperature^ value ceding· ft he 'following·".: formula/:!, ' t; ·. - Föfiifiijilä'·;
" . ih'.'.'.'the abdvé:'.;;föbinulä'· 3, Ta.tr tslfthe. corrected temperature Value,".'.ii is tfie;;.'.first'''.'temperature'.;;'taiue, tubdt-Il is the second temperature value',··";·· '"./tr -1:11.-/.--0.1
Meanwhile, a correction method related gto an exemplary embodiment .of the present disclosure includes a first step installing the radiosonde and the third temperature sensor in the chamber; a second , step outputting the'·.light. in the chamber using the sunlight simulator; and a third istep deriving the predetermined compensation factors related:; to calculate the corrected temperature value in the compensator; but the radiosonde is. provided .the first temperature sensor and the second temperature 'sensor having the higher emission ratio than the first temperature sensor, and the third temperature sensor is configured tty block out- the light blazed from outside, the light output by the sunlight simulator induces the first temperature change detected by the; first temperature sensor and tfe - second temperature changeil detected by the second temperature sensor in the second step, , the compensator may derive . the-''.compensation factors .using the first temperature change, the second temperature change, and the temperature.value' measured by the third temperature sensor in the third step:.!.
In addition, transmitting the compensation factors derived from the;compensator to measuring unit of the radiosonde; and calculating the corrected temperature b value using the transmitted·compensation;factors may further include*
In addition, in the case of flying the radiosonde, detecting the first temperature value; using the first temperature sensor,.- and detecting the' second: temperature value using the second temperature sensor, the imeasuring unit may calculate' the first 'tempera'tut é:,;-.'Valu éf. and·:;'the corrected temperature value from' the second! temperature· value using the compensation· factors,' ·'' vest "'.fit'
Meanwhile, in a'program embodied··'Instructions·-which may be executed 'by · a digital processor yinitypeshln·;;.'order to perform 'the measuring method of the-'radiosonde•''provided the first temperature sensor and the second,;.'temperature sensor having the· higher .emission ratio - than .'•"the;/.'first' temperature sensor, the measuring method of temperature!'•'related '.'to. an exemplary embodiment of 'the present disclosure·· includes;·, the first step deriving /theCompensation· .factors:;c the:;,second step flying the .'radiosonde; the third step detecting the first temperature value using the first .ftemperature!!sensör and detecting the ' second temperature valuéi'-uslng'--'-:thé;tSé-cönd;--:temperature sensor; and. the fourth step that the measuring Unit: ofthe radiosonde calculates the corrected-.';t'empefatuf-é";;vai--Uév:.fbti-t:--the first step further Includes the step: 1-1: insta-lliiid: ttelthird temperature sensor configured to blockgout the^radiosonde and light blazed from outside in the chamber;: the:/step :1^2: outputting the light in the chamber using the:sunlight-simulator; the step 1-3 that the Compensator derives.'the;predetermined compensation factors related to calculation.of the .corrected temperature value; and the step 1-4-.: transmitting the compensation.-:---.factors derived from the compensator to the measuring unit;:; the output light by the sunlight simulator in the step 1-2 induces the first temperature change detected by the first temperature sensor and the second temperature'; change ^detected by the second temperature sensor, in the; step 1-3, the' compensator may derive using the first temperature change, the second temperature change, and the temperature value measured by the third temperature sensor,'
Meanwhile, in a program embodied:instructions which may be executed by a digital processor iöt^typé:é'd¾';;.;ö'rider to perform a correcting method of the. ..radiosonde; provided..· a. plurality of temperature' sensors, the! correction ' method related to an exemplary embodiment; of the present disclosure include a first step installing the radiosonde and the third temperature sensor in the chamber.;;., a ;; second step outputting the light in the 'chambert using the. .sunlight simulator,·..; and .a third step deriving the predetermined compensation, ''.factors related to calculate; the; corrected temperature value vial the compensator; but the radiosonde is provided·the^'first temperature sensor and the second temperature -sensor : having the higher emission - ratio: than lithe first ; texnperature sensori; , the third temperature sensor configured; to block out; the light blazed from; the outside; the light output by 'thetsunlight simulator in the second step induces the first temperature change detected by the first temperature I.sensor and the second temperature change; 'detected . by 'the second·.· ti-np rature sensor, the compensator may;''.'derive the.'''.'compensation ;ors using the first temperature '.change',. the set emperature change, and the temperature Väiué-méäsuredifoy : o- J niircl· it emperature sensor.
[Advantageous Effects!·...'.'·'' 'The· ; present. ,'disclosure iixtäy. providé···.;· tö'·'· an apparatus embodied, tin .order/fed" 'éf.ficientiy\:.corréctt;.''ch;änging of measured temperature value.. •in.' .·&amp;''. temperature'' sensor -according to influence'; of irradiance, vi"; .'Specifically, ' .'the present disclosure '-.may provide an apparatus·'·' and a method installing same typed two temperature seTiSöisriby. coating't'Material·...having;..-different'·'emission ratio, and cO'rreGtihg'.'.'.'temper'a,ture change/according:fto -the irradiance Using differeh-Cé'·'..; ofi','temperäture-f.;valiiet.;ffieäéureä·· in the two temperature' sén.söt.s it'd·'.-us^ . hifhif-fi'iyiil·;'
In addition,. .. the. p sent 'disclosure/ may provide an apparatus and'.ia'..'.'.'method'.· t an hompehsate: the influence of the irradiance 'pregardless of fhe'-i-area:,i'';;;t;ime, and weather condition by applying·.·-'.'thereof after observing the temperature difference of ;.f't.he.;;'.;;.t'W'o; temperature sensors to be occurred according to the;ii.r.radiance in advance, and realize very high precision' to userst'·,',/./!','.;· g.·;.;:·:···
Meanwhile,' '..'theo'.'teehiiical objects·'.! to be achieved in the present., "disclosure··· .are'.'..hot limitédyi. to the ...aforementioned technical objects, and other notnmentioned : technical objects will be obviously understood by those skilled in the art from the description below. '.['Description of -Drawings]
The following· accompanied drawings' in this specification illustrate preferred embodiment's of the present disclosure and function to facilitate further understanding of the technical spirit of the present invention along with the detailed description of the invention. ; Accordingly'/ the present invention should not be construed aS\--/being//;-iimited to only contents illustrated in the: drawings .· / FIG,-'-/l is a schematic view ...of . fanc upper air weather observation system/.'in..''äodOrdäh&amp;e'··With'present disclosure, vplG·. 2 ;äfid·'· 'iilhstrate/v/.an- .exemplary embodiment of structure - of'""a 'radiosonde-/which.-is applicable to the present disclosure, "''/ FIG',- 4//and 5 illnstrate:iari/··; exemplary · o . v t of a structure" to .derive compensator ///£ act or,'· o lor the radiö.s'ö'hde./bfht.be-'.'/p'-re'S:ént disclosure, FIG. 6 is - a //flowchart illustrating: // an exemplary embodiment of a correction method of temperature change according to irradiance,: :/. FIG. 7 is a flowchart illustrating an exemplary embodiment of a method of deriving cofftpensation factors according to the present disclosure, FIG. 8 'illustrates a graph ;; of temperature detected in temperature sensor according t'ö3 change of 'the irradiance, <Description of Symbols> 10: radiosonde 12: a first temperature sensor 14: a/second temperature sensor 3 16: measuring unit '18 : 'humidity sensor 20: a third temperature-sensor 22: blocking panel 30: chamber . 32: .compensator· .· 40:-sunlight simulator : 42:3 controller 3 3[Bést Model / - A radiosonde 10 of the: present disclosure provides a first ' temperature sensor 12 and a secondotemperature sensor 14. - The 3 £irst temperature sensor '12 and the second temperature: sensor :14 are configured to Khave a different emission ratio.
In addition·,.·., .the .radiosonde'.'.··.'of';· the prepend disclosure provides a '"measuring·unit 16 Calculating a corrected temperature value.
Because the radiosonde UO is influenced by outside irradiahce, 'temperature vaiiie s detected in the first temperature' sensor 12 and 'the second temperature sensor 14 do not indicate accurate ternperature.
The measuring; unit ; 16" is transmitted the compensation factors derived '..from compensator ;32t in order to compensate influence of the ifradiance, andc the measuring unit 16 may calculate the corrected; temperature· value using the •compensation.'·'factors", t A correction· system·.iof" the -present- disclosure installs the·' radiosonde 10. and the thirdttemperature- sensor 20 in the chamber,' The., third temperatur:é;:.''.:S'en.sör';;;'2-0 ·. is disposed in a blocking panel 22. -Light output''i'i'fi-'ia;isunl:i'ght simulator 40 is reached the first temperature, serxsdr-'·'·'!2 of the radiosonde 10 and · , - c : ,-. ter' .·· ,---.,502:- 14, .nr the . light is not reac ' - 1td t -...- sensor . ‘ uy the^blocking panel 22',··' --:-:110.
.'[Mode for Invention I
Hereinafter, an exemplary: embodiment of::the' present disclosure will be described iri detail with reference to the accompanying drawings. In addition, ah exemplary embodiment described in the followingtwill not be construed as being limited to the detailed description of ..the present disclosure, and entire configuration described in the mode 'for the present disclosure are not deemed essential for solution of the present disclosure. '
In addition, throughout t irenee to a description of relevant fundd , * , ‘ d description of symbols will be drawings, connected' in'between other element may also be·· present. Also, unless explicitly described to the contrary, the word "comprise" and variations such as "comprises" or "comprising" will be understood to imply the inclusion of stated elements but not the exclusion ofany other elements. <Configuration>
Hereinafter, a configuration of the .present disclosure will be described in detail, with reference to the accompanying drawings. air weather obse : disclosure.
Refe /ation system may include a balloon 2, a radiosonde 10, a. UHF antenna 4, and PC 6. ' . :
The· balloon 2/ is .filled with·.' helium and other gases, and flies the radiosonde 1Ö .'.to weather observation, location in order tö· observe the weather. .,a
The· radiosonde 10· observes . weather condition of atmosphere by. connecting with the 'balloon 2, and transmits wirelessly the observed weather condition data with its location -information - to a ground by modulating it into Gaussian frequency-shift keying (GFSK) system etc.
The UHF antenna 4 .receives the transmitted weather condition information and the location information from the radiosonde 10 by modulating itinto the frequency hopping spread spectrum system. In this rase, the UHF antenna 4 may be configured with. a directional antenna; and a nondirectional antenna ·ίη pairs. ' v .. : A method of-f'Wireless · signal.;· >. jula't'ion transmits weather· condition ·. data like a.-.yffeo'.· cy hopping spread spectrum system and'/the location informs' _ an received from the UHF antenna 4 to.-;a',. computer 6 which -malyzes· the weather condition data by demodulating them ;in.t oh digital/. data.
The computer ''6· .stores, analyzes;-; weättt-étf/öbservation data oft the.:;.upper .. air transmitted /from-: the radiosonde 10, and converts : them into a : form .:needed at a weather station. Converted- data/may be printed/ through a printer or may be displayed on a monitor, br/'''niäy'-/'bé--:;t-i:'änsmitted by an intranet to the weather station, .through a hub connected-··to a computer.
Meanwhile, FIG.2 . and 3 1 illustrate an exemplary éiöbodiinent of the structure ' ofthe-.iirädibSOnde which is 'applicable to . the present!disclosure.
The radiosonde 10 of: .the. present tdisclosure is provided the first: ytemperature. /sensox '12 ' .and the .second temperature sensor' Τ·4> i tri-lll-ll·'·.·
Onlike '"the '."conventional radiosonde:,! the present di'SClOSurb;. iUSes two temperature· sensors';·;!·'however, in consideration of cost of temperaturei.l.sefisor, it may be economically feasible. " 1-1-1-11:--:.-0 the' temperature sensor ' 12. and thei;:second temperature sensor 14 are configured to be . had the different emission ratio. För . éxäfflpie-,.. .the f irst temperature sensor 12 is a sensor having a metallhurfac-é with;.very .iow. emission ratio.
The first temperature / sensor -1-2 unay use a thermocouple Such as and K-type, -; liÄlt.éf natively,· a platinum resistance· témpéräture .sens-ör'.l'--'su'r'fä'eé;:;-.'treated: to have high reffestivity or a thermistor.imay be^ used. .1
The second temperature sensor 14 has a same material with the f irst temperature sensor il2; .however, material having high emission ratio-like carbon blachiisispafedion the surface. The second temperature! sensori 14iis^ manufactured to show the greatest temperature rising e£feet·cfeyisunlight»! 1
The measuring unit: .16 - functions 11 to 1 calculate the corrected temperature value. Because the ilradiosonde 10 is influenced by the outside· irradiated.,temperature values detected in the. first ttettipératuré:;'.eehs'ör;;' 12 and the second temperature sensor 14 do not indicate the accurate temperature.
The measuring unit 16 is transmitted 'the compensation factors derived from compensator 32 in.'·dicier to- compensate the influence of the ir radiance , and the; 1 measuring unit 16 calculates'' the· corrected·.'''..temperature'.'''.'' value using the compensation factors;' A humidity sensor 18 senses' humidity in the upper. As the humidity sensor 18, a polymer; thin film ; humidity sensor may be used. The polymer thin film humidity sensor measures capacitance using polymer - thin . film, capacitance, if moisture in the; air.· permeates·''intOgälpGlynier thin film., 1'the capacitance Increases',., .and .·. if' the'.''".'moisture ist'.· low,; .'..the capacitance 'decrease's',y "therefore' ..'the'·:·'; 'humidity.. ';rftay vpeyt.ifieasured· using theredf:,.'·
The:"radiosonde '·i.Qf.mayh.further. inclrdeyother sensors like an atmospheric pressure·'.'·;·.'·&amp;0Λ«0Γ'"ί.:3ηά ';.an .:.1.:1.10011131 ion sensor apart from the. tempe:rat'ure·.'.-sensor'---.12, 1-14 and -the humidity sensor 18.
Meanwhile, ; ;PIG. 4 and 5 illustrate an exemplary embodiment of the structure to derive the compensator factors used for the- radiosonde of the: present'disclosure.
Referring tö"':FIG'·*.. .4:; -ahd .'Sl-tfche- 'tradiO'SObtie 10 and the 'third'temperature "sensor-'-are installed in 'the'"'.chamber 30. The third temperature sensor 20 is preferred to be manufactured same material as the first temperature : sensor 12 and the second temperature sensor 14.
The light blazed from outside is- reached the radiosonde 10. In the case that the light is output in the sunlight simulator 40 by control of a controller:42, the light output in the sunlight, simulator 40' travels ' in the direction of the first temperature sensor. 12 . and' the second temperature sensor 14. - 1 1-
The third temperature ;sensor/; 20 is configured to block out the light blazed from outside. 1 For example, the third temperature sensor 20 is positioned: :in the blocking panel 22, and the light output in the sunlight^simulator 40 cannot reach the third temperature sensor ,:20 by the blockirig panel 22 .
The controller 42 coritrolsi output li of ' the sunlight simulator 40, The .light: output by 1 the ' sunlight simulator 40 induces the first temperature: Change1 detected by the first temperature; .sensor 12 land'-ith'e' ' second /temperature change detected by the second temperature sensor li.
Particularly, the. i:controller 42 iimay change the illumination:: of the light output.;--'i-h-;;;'-the sunlight simulator 40 within the predetermined testing/scope in order to derive the compensation factors. 1 Hi-·.
The compensator 32 is a configuration deriving the compensation .factors. The compensator 32 may derive the compensation factors using the first temperature change, the second temperature change, and the temperature value measured by the third temperature sensor 20.
Thel compensator 32 observes the temperature value detected by the first temperature sensor 12 in arbitrary the first illumination within the testing scope, the temperature value detected by the second temperature sensor 14, and the temperature value detected: by the third temperature sensor 30. <Manufactur±ng methodh ; 1
Hereinafter, an operation of the present disclosure will be described in detail with, reference to the :accompanying drawings. .. ' ' 1 f FIG. 6 is the flowchart illustrating an exemplary embodiment of the., correction method of the temperature change according to the -irradiance, and FIG. .7 is the flowchart i:ilustratihg;i-ah\'l-exeöipiä.ry embodiment of the method of the deriving compensation 'factors according to the present disclosure.
Referrxri'gl''f'ol'.F.I'G.';--.''6/ first, the compensation factors are derived in the- compensator .lS2--::\';iS'10.) . The S10 step is conducted on- the ground beforé'::-:fly'ihg;i.the-;.:-fadios'onde 10, Ä detailed: process-lof the S10 step is iilustrated in FIG. 7,
Referring to PIG. 7, thel: radiosonde: 11Ö1 and the third temperature sensor 20 are installed in: the I chamber 30 (S2) .
The third temperature sensor 20 is positioned. in the blocking panel 22· to block out "the light 'blazed Ifrom outside.
Further, the light is Output infthe 'chamber 30 using the sunlight simulator 40 (S4} .. .The light·'output in the sunlight simulator 4.0 .is reached·'··/the . fi'rs't’i"temperature sensor 1.2 and the second temperature sensor· 14-04:.It he radiosonde 10. The light output in "the· sunlight simulator 40 ' does, not reach the third temperature seftSöi 20.
The. controller 42 controls the output of the sunlight simulator 40i · The illumination of the light Output in the sunlight simulator 40. is f Changed within'.,'the testing scope. The compensator 3'2" .Observes·· the··.temperature lvalue detected by the first temperature .ts'ensor 12 in arbitrary the first illumination within the testing scope,- the itemperature value detected by the second temper'ät'ur'e'-;v.'.séää;ö:r 14, and the temperature value detected :by the 't-hird-téaiperature sensor 30.
Further, the compensator 32 derives the predetermined compensation factors, and the compensation derived in the- compensator 32'·are transmitted·"·.to 1 e c-asuring unit 16 (S6) . The radiosonde.' IQl/stores the,:, cc-; - .c. tiori factors in the .measuring unit;.T6r ..a'nd'::thei:stored.';: cor.; - sa;io'n .factors are used for,. calculation of the temperate'· value which is compensated later, -,-./-
With reference to this, FIG, 8 illustrates the graph of the temperature detected in the temperature; sensor according to the change of the irradiance. FIG. 6 illustrates an example indicating linear temperature change according to the change of the irradiance; however,, /unlike FIG. 8, indicating nonlinear temperature change like curved shapes may be possible.
Referring to FIG. 8, in the/initial illumination without output in the sunlight simulator 40., temperature detected in the first temperature sensor 12/ the second temperature sensor 14, and the third temperature séhsör 20 are same. When the illumination, of the light Output., in... the sunlight simulator is changed, the temperature .value· . detected -;, in the first temperature sensor .12'"and the second temperature, sensor 14 are changed.·. h..f · ·;Ρ'''V: hth·-··.;:'·;
The'.· temperature' value.;'detected by'cthe first temperature sensor 12'in·arbitrary the;'first illumination may be expressed .as'"in "the following^formuiäll'. nil
Formula"! .
. In.l.the abovet'formula 1, .ti-';''.'l.-s'";.rt.:he temperature value detected .'.Ογΐ·· the first ''.'temperat'uxo-.'i-se.risor -12 in the first illumination,·. 1"to ."is / the-;.g:tOmpé:räturel--'Välué detected by the third . temperature, sensor1 ---2.0/ r a ; isone of the compensation factors, b is one of the., compensation., .factors, and Ri is the first illumination.
The temperature -value'.' detected by they .Second temperature sensor ylitin the·, first illumination may :.be;.texpressed as in the following, formula 2.,· ' . ..· . .· ylyy'l f.y.
Formula^
In the above formula. 2, tz is the· temperature value detected by the second ."temperature ' sene or'.yli in the first illumination, c. .is dfie.; off.they compensatioh-rfactors, and d is one of the compensation factors:,""'.'.'.'··' ti-.
The' compensation ifactörsy.väyy.ib·, c, '.;ahd';y'dyo-f the above formula, .1 and "the formula·;'· 2 may'··.· be ' obtained "'.'.from experiment processes· of the tempera tube .'.sensor 12," 1..4,.1 and 20 using the sunlight'· simulator';-40·..·· tltyy;'.;.. 1".';:
The ..following formula 3 may be derived.'•''when the formula 1 and the 'formula 2 are. proved. . .. ·..tyyntyi:.;'.t '.Formula 3:.1. ::i::t;.:::':yy;f:y.:
' tin'll be FIG. 8-, in the o r- v she'.'.'.'teiiiperature change is indicated.'.'nonlinear·!y.r the 1 v - - aid: the fc '>Ί . 3 may not be applied, '.the formula.",2··όχ the formula;::3:;'·:may have quadratic form.: "or cubic form., '·' in: this case,·' deriving the compensation' factors by changing·'·'· the: output .of the·"· sunlight simulator ' 40 within, the testing'. scope may ..'be possible.· "'Thatv.'iuy-lvth&amp;t-Compensator 32 observes, the temperature· /valuer ' detected hi.'by the first temperature sensor 12 in ' "the first t illuiriination, the temperature value detected by.;.the second!temperature sensor 14, and' the '"temperature value detected by ' the third temperature value 2.Ö',· 'and. an approximated function with; reference to the temperature' '"value detected by", the first!temperature sensor 12 and the···'temperature "value detected by the'..'/second temperature sensor'14'.'.may be..obtained. ':· FIG'..' '6 'is.' referred 'again.. Further, the radiosonde 10 provided ''the 'first temperature../sensof--."-12 and the second temperature .sensor" 14 " flies.' 1(.32.0 )>//..:.ås ./'described above, the first.. ..temperature sensor . - · --- ·- - i to have the low emission/.·,ratio, .and the - ,u - u - ; * ., · - i-^sor 14 is con figured!'to havett, f- --. ., ; -c -, - * , .
Further·,·..'.'·.the'.firs c : , , using the first temperature','..sen ·, - , - - i ->· r·· jure value isldetected/·using. /the , --g ’ .:.- ' · · (S30) . " / .Further, · . •thel. mea’u. - - -dioson.de 10 '.calculates·.'/'the.! first ig - .. , . -., r, < temperature .value corrected/-1: re m - - t c -g - c v ~ - t.ue using the compensatioh/Ifactor^ r/ , . : - w,·» .i * formula 3, the follow -, - Drmul ma/ i a ,,, 4- '-.airing unit 16 calculi; he te-; 1 .··*-. : .-e v-,. .:. ,4 the formula 4.
Formula 4
In the above formula: 4, Täir is the corrected temperature value, Ti is the first temperature value, and Ta is the second temperature value.·
Meanwhile, the present disclosure may be embodied in computer readable media as a computer readable code. The computer readable media includes all kinds of recording devices stored readable data by computer system. Examples of the computer readable recording media are ROM., RAM, CD-ROM, a magnetic tape,' a floppyvdisk., 'and optical 'data storage device, and· an embodiment· 'in.. the., 'form." of ''"Carrier '' wave·, (for example, transmission through., .the.'.'.Internet) are included.. In addition, the .computer readable.:.re:cording""medxa is dispersed to computer system connected· to network,·'.' and·; the computer readable code may be stored' in .dispersed'''.'method and be performed. In addition, a functional (program·,'.'.bcöde, and code segments in order '.tb·· .embody'''the present·.'.·'.'.'dis'closure are easily deduced by 'programmers:·(in the·;art. '·' yr·'·'·' .In addition, d'aforementiohed apparatus ..-änd-yméthod are not applied . limitedlyi.'tb'y.the above-ment'i.'oned.-:''.;.GO'ftf.'ig'uration and method, .of exemplary embodiments.,.;, but! may:; bet/..'freely varied through the combination of the( whole or (a (portion thereof.

Claims (18)

  1. CLAIMS Claim 1 A measuring method of temperature using a radiosonde provided a first temperature sensor and a second temperature sensor having higher emission ratio than the first temperature sensor comprising: a first step deriving compensation factors; a second step flying the radiosonde; a third step detecting a first temperature value using the first temperature sensor and detecting a second temperature value using the second temperature sensor; and a fourth step that measuring unit of the radiosonde calculates the corrected temperature value from the first temperature value and the second temperature value using the compensation factors; where, the first step further comprising, step 1-1 installing a third temperature sensor configured to block out the radiosonde and light blazed from outside in the chamber; step 1-2 outputting the light in the chamber using a sunlight simulator; step 1-3 that compensator derives predetermined compensation factors related to calculation of the corrected temperature value; and step 1-4 transmitting compensation factors derived from the compensator to the measuring unit; the output light by the sunlight simulator in the step 1-2 induces a first temperature change detected by the first temperature sensor and a second temperature change detected by the second temperature sensor, in the step 1-3, the compensator derives the compensation factors using the first temperature change, the second temperature change, and temperature value measured by the third temperature sensor. Claim 2 A measuring method of temperature of claim 1, in the step 1-2, illumination of light output in the sunlight simulator is changed within predetermined testing scope. Claim 3 The measuring method of temperature of claim 2, wherein the compensator observes temperature value detected by the first temperature sensor in arbitrary a first illumination within the testing scope, temperature value detected by the second temperature sensor and temperature value detected by the third temperature sensor. Claim 4 A correction system comprising: a radiosonde provided a first temperature sensor and a second temperature sensor having the higher emission ratio than the first temperature sensor; a third temperature sensor configured to block out the light blazed from the outside; a chamber installing the radiosonde and the third temperature sensor therein; a sunlight simulator outputting the light in the chamber; and a compensator deriving predetermined compensation factors related to calculate the corrected temperature value; but, light output by the sunlight simulator induces a first temperature change detected by the first temperature sensor and a second temperature change detected by the second temperature sensor, the compensator derives the compensation factors using the first temperature change, the second temperature change, and temperature value measured by the third temperature sensor. Claim 5 The correction system of claim 4, wherein the radiosonde further comprises a measuring unit which is transmitted compensation factors derived from the compensator, and calculates the corrected temperature value using the transmitted compensation factors. Claim 6 The correction system of claim 5, in the case of flying the radiosonde, detecting a first temperature value using the first temperature sensor, detecting a second temperature value using the second temperature sensor, the measuring unit calculates the corrected temperature value from the first temperature value and the second temperature value using the compensation factors. Claim 7 The correction system of claim 6, further comprising a measuring unit controlling output of the sunlight simulator, but, in order to derive the compensation factors, the controller changes illumination of the light output in the sunlight simulator within predetermined testing scope. Claim 8 The correction system of claim 7, wherein the compensator observes temperature value detected by the first temperature sensor in arbitrary a first illumination within the testing scope, temperature value detected by the second temperature sensor, and temperature value detected by the third temperature sensor. Claim 9 The correction system of claim 8, wherein the compensator calculates a relational expression related to temperature change detected in the first temperature sensor according to illumination of the light output in the sunlight simulator and a relational expression related to temperature value detected in the second temperature sensor based on the observation result, the calculated relational expressions are used in derivation of the compensation factors. Claim 10 The correction system of claim 8, temperature value detected by the first temperature sensor observed by the compensator in the first illumination is determined according to the following formula 1. —tj+a+b Xi?,- Formula 1 In the above formula 1, ti is temperature value detected by the first temperature sensor in the first illumination, t3 is temperature value detected by the third temperature sensor, a is one of the compensation factors, b is one of the compensation factors, and Ri is the first illumination. Claim 11 The correction system of claim 10, temperature value detected by the second temperature sensor observed by the compensator in the first illumination is determined according to the following formula 2. tl+C + d^Rf Formula 2 In the above formula 2, t2 is temperature value detected by the second temperature sensor in the first illumination, c is one of the compensation factors, and d is one of the compensation factors. Claim 12 The correction system of claim 11, wherein the compensator derives the compensation factors a, b, c, and d using the formula 1 and 2. Claim 13 The correction system of claim 12, wherein the measuring unit calculates the corrected temperature value using the following formula 3. Formula 3 In the above formula 3, Tair is the corrected temperature value, T1 is the first temperature value, and T2 is the second temperature value. Claim 14 A correction method comprising: a first step installing a radiosonde and a third temperature sensor in the chamber; a second step outputting the light in the chamber using a sunlight simulator; and a third step deriving predetermined compensation factors related to calculate the corrected temperature value in the compensator; where, the radiosonde is provided a first temperature sensor and a second temperature sensor having higher emission ratio than the first temperature sensor, the third temperature sensor is configured to block out the light blazed from the outside; light output by the sunlight simulator in the second step induces a first temperature change detected by the first temperature sensor and a second temperature change detected by the second temperature sensor, the compensator in the third step derives the compensation factors using the first temperature change, the second temperature change, and the temperature value measured by the third temperature sensor. Claim 15 The correction method of claim 14, further comprising transmitting compensation factors derived from the compensator to measuring unit of the radiosonde; and calculating the corrected temperature value using the transmitted compensation factors of the measuring unit. Claim 16 The correction method of claim 15, in the case of flying the radiosonde, detecting a first temperature value using the first temperature sensor, detecting a second temperature value using the second temperature sensor, the measuring unit calculates the corrected temperature value from the first temperature value and the second temperature value using the compensation factors. Claim 17 A program comprising instructions executed by a digital processor in order to perform a measuring method of the radiosonde provided a first temperature sensor and a second temperature sensor having the higher emission ratio than the first temperature sensor, the measuring method of temperature comprising: a first step deriving the compensation factors; a second step flying the radiosonde; a third step detecting first temperature value using the first temperature sensor and detecting second temperature value using the second temperature sensor; and a fourth step that measuring unit of the radiosonde calculates the corrected temperature value using the compensation factors; where the first step further comprising: step 1-1 utilizing a third temperature sensor configured to block out the radiosonde and light blazed from outside in the chamber; step 1-2 outputting light in the chamber using a sunlight simulator; step 1-3 that compensator derives predetermined compensation factors related to calculation of the corrected temperature value; and step 1-4 transmitting compensation factors derived from the compensator to the measuring unit; output light by the sunlight simulator in the step 1-2 induces a first temperature change detected by the first temperature sensor and a second temperature change detected by the second temperature sensor, in the step 1-3, the compensator derivation is based on using the first temperature change, the second temperature change, and temperature value measured by the third temperature sensor. Claim 18 A program comprising instructions executed by a digital processor in order to perform a correcting method of the radiosonde provided a plurality of temperature sensors, the correcting method comprising: a first step utilizing a radiosonde and a third temperature sensor in the chamber; a second step outputting light in the chamber using a sunlight simulator; and a third step deriving predetermined compensation factors related to calculate corrected temperature value in the compensator; where the radiosonde is provided a first temperature sensor and a second temperature sensor having higher emission ratio than the first temperature sensor, the third temperature sensor configured to block out light blazed from outside; output light by the sunlight simulator in the second step where said light induces a first temperature change detected by the first temperature sensor and a second temperature change detected by the second temperature sensor, the compensator in the third step derives the compensation factors using the first temperature change, the second temperature change, and temperature value measured by the third temperature sensor
    1. Lämpötilan mittausmenetelmä käyttäen radiosondia varustettuna ensimmäisellä lämpötila-anturilla ja toisella lämpötila-anturilla, jolla on korkeampi säteilysuhde kuin ensimmäisellä lämpötila-anturilla, jossa: ensimmäisessä vaiheessa johdetaan kompensaatioarvon tekijät; toisessa vaiheessa lennätetään radiosondia; kolmannessa vaiheessa mitataan ensimmäinen lämpötila-arvo käyttäen ensimmäistä lämpötila-anturia ja toinen lämpötila-arvo käyttäen toista lämpötila-anturia; ja neljännessä vaiheessa radiosondin mittausyksikkö laskee korjatun lämpötila-arvon ensimmäisestä lämpötila-arvosta ja toisesta lämpötila-arvosta käyttäen kompensaatioarvon tekijöitä; lisäksi ensimmäiseen vaiheeseen kuuluu, vaiheessa 1-1 kolmannen lämpötila-anturin asentaminen varustettuna estämään pois radiosondin ja valon, joka leimahtaa ulkopuolelta kammioon; vaiheessa 1-2 valon tuotto kammioon käyttäen aurinkovalosimulaattoria; vaiheessa 1-3 tasauslaite määrittää etukäteen määritetyt kompensaatioarvon tekijät suhteessa korjattuun lämpötila-arvon laskentaan; ja vaiheessa 1-4 siirretään tasauslaitteen saamat kompensaatioarvon tekijät mittausyksikköön; auringonvalosimulaattorin tuottama valo vaiheessa 1-2 indusoi ensimmäisen lämpötila-anturin mittaamaa ensimmäistä lämpötilamuutosta ja toisen lämpötila-anturin mittaamaa toista lämpötilamuutosta, vaiheessa 1-3 tasauslaite aikaansaa kompensaatioarvon tekijät käyttäen ensimmäistä lämpötilan muutosta, toista lämpötilan muutosta, ja kolmannen lämpötila-anturin mittaamaa lämpötila-arvoa.
  2. 2. Patenttivaatimuksen 1 mukainen lämpötilan mittausmenetelmä, jossa vaiheessa 1-2, valaisun valotehoa auringonvalosimulaattorissa muutetaan ennalta määrätyn testaustarkoituksen mukaan.
  3. 3. Patenttivaatimuksen 2 mukainen lämpötilan mittausmenetelmä, jossa mittausyksikkö havainnoi ensimmäisellä lämpötila-anturilla havaittua lämpötila-arvoa, sattumanvaraisesti ensimmäistä valaistusta testausalueella, toisella lämpötila-anturilla havaittua lämpötila-arvoa, ja kolmannella lämpötila-anturilla havaittua lämpötila-arvoa.
  4. 4. Korjausjärjestelmä, johon kuuluu: radiosondi, johon kuuluu ensimmäinen lämpötila-anturi ja toinen lämpötila-anturi, jolla on suurempi emissiosuhde kuin ensimmäisellä lämpötila-anturilla; kolmas lämpötila-anturi määritettynä poistamaan ulkoapäin tulevan valon, kammio radiosondin ja kolmannen lämpötila-anturin sijoittamista varten, auringonvalosimulaattori valon tuottamiseksi kammioon, ja tasauslaite etukäteen määritettyjen kompensaatioarvon tekijöiden aikaansaamiseksi korjatun lämpötilan arvon laskemiseksi; auringonvalosimulaattorilla tuotettu valo indusoi ensimmäisen lämpötilamuutoksen, joka havaitaan ensimmäisellä lämpötila-anturilla ja toinen lämpötilamuutos havaitaan toisella lämpötila-anturilla, tasauslaite laskee kompensaatioarvon tekijät käyttäen ensimmäistä lämpötilan muutosta, toista lämpötilan muutosta ja kolmannella lämpötila-anturilla mitattu lämpötila-arvoa.
  5. 5. Patenttivaatimuksen 4 mukainen korjausjärjestelmä, jossa radiosondiin kuuluu lisäksi mittausyksikkö, johon johdetaan tasauslaitteen laskemat kompensaatioarvon tekijät, ja joka laskee korjatun lämpötila-arvon käyttäen kompensaatioarvon tekijöitä.
  6. 6. Patenttivaatimuksen 5 mukainen korjausjärjestelmä, jossa radiosondia lennätettäessä mitataan ensimmäinen lämpötila-arvo käyttäen ensimmäistä lämpötila-anturia, mitataan toinen lämpötila-arvo käyttäen toista lämpötila-anturia, mittausyksikkö laskee korjatun lämpötila-arvon ensimmäisestä lämpötila-arvosta ja toisesta lämpötila-arvosta käyttäen kompensaatioarvon tekijöitä.
  7. 7. Patenttivaatimuksen 6 mukainen korjausjärjestelmä, johon kuuluu lisäksi auringonvalosimulaattorin toimintaa valvova mittausyksikkö, tarkoituksena kompensaatioarvon tekijöiden tuottamiseksi tasauslaite muuttaa valon voimakkuutta auringonvalosimulaattorissa edellämäärätyllä testialueella.
  8. 8. Patenttivaatimuksen 7 mukainen korjausjärjestelmä, jossa tasauslaite havainnoi ensimmäisellä lämpötila-anturilla havaittua lämpötila-arvoa, sattumanvaraisesti ensimmäistä valaistusta testausalueella, toisella lämpötila-anturilla havaittua lämpötila-arvoa, ja kolmannella lämpötila-anturilla havaittua lämpötila-arvoa.
  9. 9. Patenttivaatimuksen 8 mukainen korjausjärjestelmä, jossa tasauslaite laskee relaatiolausekkeen liittyen lämpötilan muutokseen havaittuna ensimmäisessä lämpötila-anturissa valaistuksen valotehosta auringonvalosimulaattorissa ja relaatiolausekkeen liittyen lämpötila-arvo on havaittuna toisessa lämpötila-anturissa perustuen mittaustulokseen, laskettuja relaatiolausekkeita käytetään kompensointiarvon tekijöiden laskemisessa.
  10. 10. Patenttivaatimuksen 8 mukainen korjausjärjestelmä, jossa ensimmäisen lämpötila-anturin mittaama lämpötila-arvo havaittuna tasauslaitteella ensimmäisessä valaistuksessa määritetään seuraavalla kaavalla 1. Kaava 1
    ylläesitetyssä kaavassa 1, ti on lämpötila-arvo mitattuna ensimmäisellä lämpötila-anturilla ensimmäisessä valaistuksessa, t3 on lämpötila-arvo mitattuna kolmannella lämpötila-anturilla, a on yksi kompensaatioarvon tekijöistä, b on yksi kompensaatioarvon tekijöistä, ja R, on ensimmäinen valaistus.
  11. 11. Patenttivaatimuksen 10 mukainen korjausjärjestelmä, jossa toisen lämpötila-anturin mittaama lämpötila-arvo havaittuna tasauslaitteella ensimmäisessä valaistuksessa määritetään seuraavalla kaavalla 2. Kaava 2
    ylläesitetyssä kaavassa 1, t2 on lämpötila-arvo mitattuna toisella lämpötila-anturilla ensimmäisessä valaistuksessa, c on yksi kompensaatioarvon tekijöistä, ja d on yksi kompensaatioarvon tekijöistä.
  12. 12. Patenttivaatimuksen 11 mukainen korjausjärjestelmä, jossa tasauslaite saa aikaan kompensaatioarvon tekijät a, b, e ja d käyttäen yllämainittuja kaavoja 1 ja 2.
  13. 13. Patenttivaatimuksen 12 mukainen korjausjärjestelmä mittausyksikkö laskee korjatun lämpötila-arvon käyttäen seuraava kaavaa 3. Kaava 3
    ylläesitetyssä kaavassa, Tair on korjattu lämpötila-arvo, Ti on ensimmäinen lämpötila-arvo ja T2 on toinen lämpötila-arvo.
  14. 14. Korjausmenetelmä, jossa on seuraavat vaiheet: ensimmäisessä vaiheessa sijoitetaan radiosondi ja kolmas lämpötila-anturi kammioon; toisessa vaiheessa aikaansaadaan valaistus kammiossa käyttäen auringonvalosimu-laattoria; ja kolmannessa vaiheessa määritetään etukäteen määritetyt kompensaatioarvon tekijät suhteessa korjattuun lämpötila-arvoon tasauslaitteessa; radiosondissa on ensimmäinen lämpötila-anturi ja toinen lämpötila-anturi, jolla on suurempi emissiosuhde kuin ensimmäisellä lämpötila-anturilla, kolmas lämpötila-anturi on määritetty poistamaan ulkoapäin tulevan valon, auringonvalosimulaattorin tuottama valo toisessa vaiheessa indusoi ensimmäisen lämpötila-anturin mittaamaa ensimmäistä lämpötilamuutosta ja toisen lämpötila-anturin mittaamaa toista lämpötilamuutosta, tasauslaite kolmannessa vaiheessa laskee kompensointiarvon tekijöitä käyttäen ensimmäistä lämpötilan muutosta, toista lämpötilan muutosta, ja kolmannella lämpötila-anturilla mitattua lämpötila-arvoa.
  15. 15. Patenttivaatimuksen 14 mukainen korjausmenetelmä, jossa edelleen tasauslaitteen laskemat kompensaatioarvon tekijät siirretään radiosondin mittausyksikköön, ja lasketaan korjattu lämpötila-arvo käyttäen mittausyksikön siirrettyjä kompensaatioarvon tekijöitä.
  16. 16. Patenttivaatimuksen 15 mukainen korjausmenetelmä, jossa kun kyseessä on radiosondin lennättäminen, ensimmäinen lämpötila-arvo havaitaan käyttämällä ensimmäistä lämpötila-anturia, toinen lämpötila-arvo havaitaan käyttämällä toista lämpötila-anturia, mittausyksikkö laskee korjatun lämpötila-arvon ensimmäisestä lämpötila-arvosta ja toisesta lämpötila-arvosta käyttäen kompensointiarvon tekijöitä.
  17. 17. Ohjelma varustettuna digitaaliprosessorin ohjeilla tarkoituksena toteuttaa radiosondin mittausmenetelmä, jossa radiosondissa on ensimmäinen lämpötila-anturi ja toinen lämpötila-anturi, jolla on suurempi emissiosuhde kuin ensimmäisellä lämpötila-anturilla, lämpötilan mittausmenetelmään kuuluu: ensimmäisessä vaiheessa johdetaan kompensaatioarvon tekijät; toisessa vaiheessa lennätetään radiosondia; kolmannessa vaiheessa mitataan ensimmäinen lämpötila-arvo käyttäen ensimmäistä lämpötila-anturia ja toinen lämpötila-arvo käyttäen toista lämpötila-anturia; ja neljännessä vaiheessa radiosondin mittausyksikkö laskee korjatun lämpötila-arvon käyttäen kompensaatioarvon tekijöitä; lisäksi ensimmäiseen vaiheeseen kuuluu, vaiheessa 1-1 kolmannen lämpötila-anturin asentaminen varustettuna estämään ra-diosondin ja valon, joka leimahtaa ulkopuolelta kammioon; vaiheessa 1-2 valon tuottaminen kammioon käyttäen aurinkovalosimulaattoria; vaiheessa 1-3 tasauslaite määrittää etukäteen määritetyt kompensaatioarvon tekijät suhteessa korjattuun lämpötila-arvon laskentaan; ja vaiheessa 1-4 siirretään tasauslaitteen saamat kompensaatioarvon tekijät mittausyksikköön; auringonvalosimulaattorin tuottama valo vaiheessa 1-2 indusoi ensimmäisen lämpötila-anturin mittaamaa ensimmäistä lämpötilamuutosta ja toisen lämpötila-anturin mittaamaa toista lämpötilamuutosta, vaiheessa 1-3 tasauslaite aikaansaa kompensaatioarvon tekijät käyttäen ensimmäistä lämpötilan muutosta, toista lämpötilan muutosta, ja kolmannen lämpötila-anturin mittaamaa lämpötila-arvoa.
  18. 18. Ohjelma varustettuna digitaaliprosessorin antamilla ohjeilla tarkoituksena toteuttaa radiosondin korjausmenetelmä, jossa radiosondissa on useita lämpötila-antureita, korjausmenetelmään kuuluu: ensimmäisessä vaiheessa radiosondin ja kolmannen lämpötila-anturin asentaminen kammioon; toisessa vaiheessa valon tuottaminen kammioon käyttäen auringonvalo simulaattoria, ja kolmannessa vaiheessa määritetään etukäteen määritetyt kompensaatioarvon tekijät suhteessa laskettuun korjattuun lämpötila-arvon tasauslaitteessa; lisäksi radiosondissa on ensimmäinen lämpötila-anturi ja toinen lämpötila-anturi, jolla on suurempi emissiosuhde kuin ensimmäisellä lämpötila-anturilla, kolmas lämpötila-anturi on määritetty poistamaan ulkoapäin tulevan valon, auringonvalosimulaattorin tuottama valo toisessa vaiheessa saa aikaan ensimmäisen lämpötilamuutoksen, joka havaitaan ensimmäisellä lämpötila-anturilla ja toisen lämpötilamuutoksen, joka havaitaan toisella lämpötila-anturilla, tasauslaite kolmannessa vaiheessa laskee kompensointiarvon tekijöitä käyttäen ensimmäistä lämpötilan muutosta, toista lämpötilan muutosta, ja kolmannella lämpötila-anturilla mitattua lämpötila-arvoa.
FI20165799A 2015-06-29 2016-10-21 Lämpötilan mittausmenetelmä radiosondia käyttäen, sen korjausjärjestelmä ja korjausmenetelmä FI127041B (fi)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150092093A KR101787189B1 (ko) 2015-06-29 2015-06-29 복수의 온도센서가 구비된 라디오존데와 이를 이용한 온도 측정 방법 및 그 보정 시스템과 보정 방법
PCT/KR2015/007050 WO2017002999A1 (ko) 2015-06-29 2015-07-08 복수의 온도센서가 구비된 라디오존데와 이를 이용한 온도 측정 방법 및 그 보정 시스템과 보정 방법

Publications (2)

Publication Number Publication Date
FI20165799A FI20165799A (fi) 2016-12-30
FI127041B true FI127041B (fi) 2017-10-13

Family

ID=57608391

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20165799A FI127041B (fi) 2015-06-29 2016-10-21 Lämpötilan mittausmenetelmä radiosondia käyttäen, sen korjausjärjestelmä ja korjausmenetelmä

Country Status (4)

Country Link
US (1) US10551526B2 (fi)
KR (1) KR101787189B1 (fi)
FI (1) FI127041B (fi)
WO (1) WO2017002999A1 (fi)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892502B1 (ko) 2017-03-27 2018-08-29 부경대학교 산학협력단 윈드프로파일러를 이용한 srh 산출 시스템 및 이를 이용한 srh 산출 방법
CN107843775B (zh) * 2017-12-20 2024-02-27 中国科学院大气物理研究所 姿态可感知雷暴云三维电场探空仪
KR102021704B1 (ko) * 2018-10-19 2019-09-11 한국표준과학연구원 고층기상환경 모사 기술을 이용한 라디오존데 온습도 교정장치 및 방법
US11293811B2 (en) 2019-02-26 2022-04-05 Dana Automotive Systems Group, Llc Temperature measurement system and method of calibration thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310631A1 (de) * 1983-03-24 1984-10-04 W.C. Heraeus Gmbh, 6450 Hanau Licht- und wetterechtheitspruefgeraet
FI96640C (fi) 1993-08-23 1996-07-25 Vaisala Oy Menetelmä suhteellisen kosteuden mittaamiseksi, etenkin radiosondeissa
FI95626C (fi) * 1993-09-29 1996-02-26 Vaisala Oy Menetelmä ja järjestely kosteuden mittauksessa, etenkin radiosondeissa
FI98567C (fi) 1993-09-29 1997-07-10 Vaisala Oy Impedanssianturi, etenkin radiosondikäyttöön, sekä menetelmä anturin valmistamiseksi
FI100135B (fi) 1996-01-05 1997-09-30 Vaisala Oy Menetelmä ja lämpötila-anturirakenne säteilyvirheen eliminoimiseksi
FI118162B (fi) 2003-11-18 2007-07-31 Vaisala Oyj Radiosondin kosteusmittaustulosten korjaaminen
FI119485B (fi) 2007-06-20 2008-11-28 Vaisala Oyj Menetelmä lämpötilamittausvirheen kompensoimiseksi luotaimessa
KR101153872B1 (ko) 2007-11-30 2013-11-27 한국원자력연구원 복사간섭 보정이 가능한 기체 온도 측정기
US20100156663A1 (en) * 2008-12-19 2010-06-24 Honeywell International Inc. Radiosonde having hydrophobic filter comprising humidity sensor
KR101045827B1 (ko) 2009-06-11 2011-07-04 대한민국 대기하층 승강식 관측 실험기
KR101237324B1 (ko) 2011-08-31 2013-02-28 진양공업주식회사 주파수도약확산스펙트럼 방식을 이용한 라디오존데 통신 장치
CN105209935A (zh) * 2013-02-22 2015-12-30 维萨拉公司 无线电探空仪以及用于在高温下实施大气探测的方法
US9784887B1 (en) * 2013-08-12 2017-10-10 Physical Optics Corporation Meteorological sensing systems and methods
KR101429451B1 (ko) 2014-03-11 2014-08-13 진양공업주식회사 다채널 고층관측용 라디오존데 수신 장치

Also Published As

Publication number Publication date
US20170192127A1 (en) 2017-07-06
WO2017002999A1 (ko) 2017-01-05
KR20170002741A (ko) 2017-01-09
KR101787189B1 (ko) 2017-11-16
US10551526B2 (en) 2020-02-04
FI20165799A (fi) 2016-12-30

Similar Documents

Publication Publication Date Title
FI127041B (fi) Lämpötilan mittausmenetelmä radiosondia käyttäen, sen korjausjärjestelmä ja korjausmenetelmä
CN101078656A (zh) 温度计校准
WO2016105464A3 (en) Mini point of care gas chromatographic test strip and method to measure analytes
ES555563A0 (es) Procedimiento y sensor para el analisis de gases
SG11201902868TA (en) Optical measurement device and method
CN106461544B (zh) 气体传感器的温度补偿
CN104236724B (zh) 红外温度在线测量标靶装置及测量方法
ES2631691T3 (es) Control de una distribución de propelente en un tanque de propelente de una nave espacial
US20160003975A1 (en) A radiosonde and a method for atmospheric measurements performed at an elevated temperature
Valero et al. Radiative flux measurements in the troposphere
Mesarchaki et al. Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank
US11740175B2 (en) Method and device for compensating temperature gradient effects
KR101653109B1 (ko) 라디오존데의 온도 및 습도 평가장치 및 평가방법
US9689819B2 (en) Electronic psychrometer and/or humidistat with low temperature and high humidity capability
CN106781430B (zh) 一种高灵敏度红外遥感器性能测试装置
Irani Rahaghi et al. Surface water temperature heterogeneity at subpixel satellite scales and its effect on the surface cooling estimates of a large lake: Airborne remote sensing results from Lake Geneva
RU2302984C1 (ru) Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов
WO1993000573A1 (en) Interface level detector
US20160003757A1 (en) Gas measurement device and measurement method thereof
CN206362484U (zh) 一种气压传感器
Lorenz et al. Hydrogen sensing in Titan's atmosphere: Motivations and techniques
CN105043573B (zh) 一种壁贴测温方法
CN110231370B (zh) 基于传感器的丙酮检测装置及方法
Hutchinson On the measurement of the thermal conductivity of liquids
US10627359B2 (en) Sensor platform including thermal conductivity sensor for analyzing the contents and surroundings of sealed packages or insulated glass units

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 127041

Country of ref document: FI

Kind code of ref document: B