FI127026B - Detecting the Elongated Body Angle of a Ship with LIDAR - Google Patents

Detecting the Elongated Body Angle of a Ship with LIDAR Download PDF

Info

Publication number
FI127026B
FI127026B FI20165844A FI20165844A FI127026B FI 127026 B FI127026 B FI 127026B FI 20165844 A FI20165844 A FI 20165844A FI 20165844 A FI20165844 A FI 20165844A FI 127026 B FI127026 B FI 127026B
Authority
FI
Finland
Prior art keywords
vessel
angle
lidar
rope
elongated body
Prior art date
Application number
FI20165844A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20165844A (en
Inventor
Oskar Levander
Original Assignee
Rolls-Royce Oy Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls-Royce Oy Ab filed Critical Rolls-Royce Oy Ab
Priority to FI20165844A priority Critical patent/FI127026B/en
Application granted granted Critical
Publication of FI127026B publication Critical patent/FI127026B/en
Publication of FI20165844A publication Critical patent/FI20165844A/en
Priority to PCT/FI2017/050770 priority patent/WO2018087429A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/66Tugs
    • B63B35/68Tugs for towing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Description

Angle Detection of Elongated Object of Vessel by LIDAR BACKGROUND A vessel, such as a ship, may detect its environment and surroundings by various detectors which may be alternatively referred to as sensors. The detectors provide information to a control system of the vessel, which may be used to render data information about the current situation of the vessel or an object nearby the vessel. This data information may be output, for example for control, navigation or monitoring purposes of the vessel.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
It is an object to provide angle detection of an elongated object of a vessel by LIDAR. The object is achieved by the features of the independent claims. Further embodiments are described in the dependent claims. In an embodiment, an apparatus is disclosed. The apparatus comprises: a LIDAR; a processor; a storage comprising a set of instructions that, when executed by the processor, cause the apparatus to: receive, from the LIDAR, sensor signals indicative of an elongated object extending from a vessel comprising the apparatus; determine a line based on the sensor signals indicative of the elongated object; receive data indicative of a reference line with respect to the vessel; and determine an angle between the line indicating the elongated object and the reference line, wherein the angle represents the angle of the elongated object with respect to the vessel.
In other embodiments, a vessel including the apparatus, a method and a computer program are discussed along with the features of the apparatus.
Many of the attendant features will be more readily appreciated as they become better understood by reference to the following detailed description considered in connection with the accompanying drawings .
BRIEF DESCRIPTION OF THE DRAWINGS
The present description will be better understood from the following detailed description read in light of the accompanying drawings, wherein: FIG. 1 illustrates a schematic top view of a vessel connected to an assisted ship by an elongated object extending from the vessel, illustrating a horizontal angle of the object according to an embodiment; FIG. 2 illustrates a schematic side view of a vessel connected to an assisted ship by an elongated object extending from the vessel, illustrating a vertical angle of the object according to an embodiment; FIG. 3 illustrates a schematic side view of a vessel having an elongated object extending from the vessel, which is monitored by a LIDAR according to an embodiment; FIG. 4 illustrates a schematic top view of a vessel having an elongated object, which is monitored by a LIDAR according to an embodiment; and FIG. 5 illustrates a block diagram of a computer for a LIDAR system of a vessel according to an illustrative embodiment.
Like reference numerals are used to designate like parts in the accompanying drawings.
DETAILED DESCRIPTION
The detailed description provided below in connection with the appended drawings is intended as a description of the present embodiments and is not intended to represent the only forms in which the present embodiments may be constructed or utilized. However, the same or equivalent functions and sequences may be accomplished by different embodiments.
Although the present embodiments may be described and illustrated herein as being implemented in a tug or a towing ship, this is only an embodiment of a vessel having a computer and not a limitation. As those skilled in the art will appreciate, the present embodiments are suitable for application in a variety of different types of systems and in vessels, for example in a single ship, many ships, a maritime system, a decision support tool for a user or crew, a marine remote control system, an autonomous marine navigation or position system, or other marine systems for detecting or determining an angle between an elongated object extending from the vessel.
An embodiment relates to using a LIDAR to measure an angle of an elongated object extending from a vessel, such as a rope, for example a towing rope. A detector of the angle provides this information for a vessel control system, for example a dynamic position- ing (DP) system and the operator. According to an embodiment, a LIDAR can measure both horizontal and vertical angles of the elongated object.
An embodiment relates to tug boat operation. The rope angle together with the rope force, which may be measured in the winch, gives valuable input for the tug operator or for the control system, such as DP control system, of the tug. According to an embodiment, the rope angle may also be a safety parameter. The towing system can be set with some predetermined values for a heeling moment, based on a combination of force and rope angle, at which the winch should release the tension on the rope to avoid dangerous situations .
According to an embodiment, the apparatus may also be used for anchor handling operations (such as anchor handling tug supply, AHTS), offshore support vessel (OSV) pipe loading operations, etc. The elongated object extending from the vessel may be an anchor rope or a pipeline to be installed or inspected.
An embodiment utilizes a LIDAR, also written LADAR, as a surveying technology that measures distance by illuminating a target with a laser or a noncoherent light. Lidar is an acronym of Light Detection And Ranging. A lidar may use ultraviolet, visible, or near infrared light to image objects. It can target a wide range of materials, including non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds, water, or even single molecules. A narrow laser-beam can map physical features with very high resolutions .
The portion of the lidar data, which is related to the rope, is selected. Other reflections from other objects may be discarded. According to an embodiment only those points, which reside outside the ship, are selected so that various objects belonging to the ship will not disturb the rope angle determina- tion. Also the reflections from the assisted ship may be discarded. According to an embodiment, a minimum and maximum distance may be set to guarantee selecting reflections form the rope only. In addition, points related to the water surface can be discarded based on their elevation. Naturally, other kinds of selection methods are also possible. Such methods may be needed, if the system needs to discard points related another rope used by another tug, for example. According to an embodiment, certain filtering of the data may also be used to discard flying seagulls, for instance. Time domain filtering of the calculated angles may be applied and be efficient. A median filter may be also used. FIG. 1 illustrates a schematic top view of a vessel 10 connected to an assisted ship 13 by an elongated object 15 extending out from the vessel 10, illustrating a horizontal angle 12' of the object 15 according to an embodiment. In the embodiment of FIG. 1, the vessel 10 comprises a tug and the elongated object 15 extending from the vessel 10 comprises a rope, such as a towing rope.
The tug 11 tows the assisted ship 13 by the rope 15. When towing, the rope moves to different angles depending on the positions of the tug 11 and the assisted ship 13. The tug 11 comprises a LIDAR 11 and a winch 17. The winch 17 winds the rope 15, and attaches it to the tug 10. The LIDAR 11 emits signals 14, the reflections of which the LIDAR 11 is able to detect. The signals 14' illustrate signals colliding with the rope 15 at different points, having different distances from the LIDAR 11. The LIDAR 11 detects these reflections. A computer 30 may be included in the LIDAR 11 or be connected to the LIDAR 11. According to an embodiment, the computer 30 may be a part of a control system of the vessel 10. The computer 30 receives signals 14' indicative of the rope 15. The com puter 30 creates a model representing the rope 15. This may be a substantially straight line. For example, the LIDAR 11 gives a set of points, illustrating the detections of the LIDAR 11 for the rope 15, to the computer 30. The computer may be configured, by the programmable code or logic, to use a regression analysis to derive the coefficients of the equation of the best matching straight line representing the rope 15.
The computer 30 receives a reference line 16. According to an embodiment of FIG. 1, this may be heading 16 of the tug 10. The heading 16 may be received from the control system of the vessel 10. The computer 30 determines an angle 12' between the reference line 16 and the elongated object 15, for example between the heading 16 and the rope 15. The angle 12' may be a horizontal angle in the xy plane.
The angle 12' may be utilized for controlling the vessel 10, steering the vessel 10, and/or it may act as a safety parameter etc.
According to an embodiment, the vessel 10 comprises a winch 17 winding the elongated object 15 which is flexible, such as a rope 15 or a flexible pipeline. The computer 30 receives data indicative of a force relating to the elongated object with respect to the winch 17. It combines the data indicative of the force with the angle 12. It may further compare the combined data to a certain reference value, for example an allowed maximum force, which may be even combined together with the angle information. It outputs an alert signal when the combined data exceeds the reference value. For example, when the tug 10 further includes the winch 17 which is configured to store the towing rope 15, the control system of the vessel 10 may be configured to release the winch 17 controlling the towing rope 15 on the basis of the alert signal. FIG. 2 illustrates a schematic side view of a vessel 10 connected to an assisted ship 13 by an elongated object 15 extending from the vessel 10, illustrating a vertical angle 12'' of the object 15 according to an embodiment. The embodiment of FIG. 2 is similar to the embodiment of FIG. 1, except that the computer 30 determines the vertical angle 12'' instead of the horizontal angle 12'. A water surface 16 is acting as the reference line 16 in the embodiment of FIG. 2. The LIDAR 11 may determine the water surface based on signals 14 reflecting from the water surface. The angle 12'' may be a vertical angle in the z plane.
According to an embodiment, the computer 30 may combine both of the horizontal angle 12' and the vertical angle 12''. This may establish a three dimensional model of the elongated object 15, such as the rope, between the vessel 10 and the assisted ship 13. It should be noted that this may also be the other way round, for example the computer 30 determines the three dimensional (3D) angle between the rope 15 and the reference line using the data received from the LIDAR 11. Now horizontal and vertical angles 12', 12'' are derived from the 3D angle by the computer 30. FIG. 3 illustrates a schematic side view of a vessel 10 having an elongated object 15 extending from the vessel 10, wherein the object 15 is monitored by a LIDAR 11 according to an embodiment. The embodiment of FIG. 3 detects the elongated object 15 even without another vessel. The LIDAR 11 of the vessel 10 may monitor the elongated object 15 and establish a vertical angle 12'' with respect to the reference line 16. In the embodiment of FIG. 3, the elongated object 15 may, for example, be an anchor rope or wire. This may be used at the AHTS of the vessel 10. An embodiment relates to OSV pipe loading operations etc., wherein the elongated object 15 extending from the vessel 10 may be a pipeline to be installed, inspected, repaired, etc. FIG. 4 illustrates a schematic top view of a vessel 10 having an elongated object 15 extending from the vessel 10, which is monitored by a LIDAR according to an embodiment. The embodiment of FIG. 4 is similar to FIG. 3, except that a horizontal angle 12' is detected instead of the vertical angle 12' . The heading 16 of the vessel 10 is acting as the reference line 16 for the horizontal angle 12' in the x and y plane. FIG. 5 illustrates an embodiment of components of a computer 30 which may be implemented in any form of a computing and/or electronic device configured for performing the functionalities and operations of the embodiments of FIG. 1 to 4 relating to the computer 30 operating with the LIDAR 11 in the vessel 10. The computer 30 comprises output 41, input 3, in-put/output controller 39, user interface 31, processor 36, storage 37, operating system 38, application software 40. The computer 30 is equipped with the processor 36 and storage 37 comprising a set of instructions 38,40. The one or more processors 36 may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the computer 30. The set of instructions 38 may comprise, for example, application software 40 and platform software, such as an operating system to enable application software to be executed on the computer 30. When the set of instructions 38,40 is executed by the processor 36, the computer 30 is configured to perform the functions and operations described above in the embodiments of FIG. 1 to 4. According to an embodiment, the computer 30 is configured to receive, from the LIDAR 11, sensor signals 14' indicative of an elongated object 15 extending from a vessel 10 comprising the apparatus; determine a line based on the sensor signals 14' indicative of the elongated object 15; receive data indicative of a reference line 16 with respect to the vessel 10; determine an angle 12',12'' between the line indicating the elongated object 15 and the reference line 16. The angle 12',12'' represents the angle of the elongated object 15 with respect to the vessel 10.
Alternatively, or in addition, the functionality described herein can be performed, at least in part, by one or more hardware logic components.
The term 'computer', 'computing-based device', 'apparatus' or 'device' is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realize that such processing capabilities are incorporated into many different devices and therefore the terms 'computer' and 'computing-based device' each include different types of computer devices, for example, servers, cloud computers, or any other computing devices that are enabled for the SA system.
Although the subject matter has been described in language specific to structural features and/or acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as embodiments of implementing the claims and other equivalent features and acts are intended to be within the scope of the claims .
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages. It will further be understood that reference to 'an' item refers to one or more of those items.
The steps of the method described herein may be carried out in any suitable order, or simultaneously where appropriate. Additionally, individual blocks may be deleted from any of the methods without departing from the spirit and scope of the subject matter described herein. Aspects of any of the embodiments described above may be combined with aspects of any of the other embodiments described to form further embodiments without losing the effect sought.
The term 'comprising' is used herein to mean including the method, blocks or elements identified, but that such blocks or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks or elements.
It will be understood that the above description is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this specification .

Claims (14)

1. Laite (30), joka käsittää: LIDARin (11); prosessorin (36); muistin (37), joka käsittää joukon ohjeita (38,40), jotka prosessorilla suoritettaessa saavat laitteen: vastaanottamaan LIDARista anturisignaaleja (14'), jotka ilmaisevat pitkänomaisen kappaleen (15), joka ulottuu laitteen käsittävästä aluksesta (10); tunnettu siitä, että määritetään pitkänomaisen kappaleen ilmaisevien anturisignaalien perusteella linja; vastaanotetaan dataa, joka ilmaisee referens-silinjan (16) suhteessa alukseen; määritetään pitkänomaisen kappaleen ilmaisevan linjan ja referenssilinjan välinen kulma (12',12''), jossa kulma edustaa pitkänomaisen kappaleen kulmaa suhteessa alukseen; ja lähetetään kulma aluksen ohjausjärjestelmään, jossa ohjausjärjestelmä on konfiguroitu toteuttamaan toiminnon, joka ohjaa alusta kulman perusteella.An apparatus (30) comprising: a LIDAR (11); a processor (36); a memory (37) comprising a plurality of instructions (38,40) which, when executed by the processor, cause the device to: receive from the LIDAR sensor signals (14 ') indicating an elongate body (15) extending from the vessel (10) comprising the device; characterized in that a line is defined based on sensor signals detecting an elongated body; receiving data indicating a reference line (16) relative to the vessel; determining the angle (12 ', 12' ') between the elongate body indicating line and the reference line, wherein the angle represents the angle of the elongated body relative to the vessel; and transmitting the angle to the vessel control system, wherein the control system is configured to perform a function that controls the vessel based on the angle. 2. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa referenssilinja käsittää aluksen suunnan.The device according to any one of the preceding claims, wherein the reference line comprises the direction of the vessel. 3. Patenttivaatimuksen 1 mukainen laite, jossa kulma käsittää horisontaalisen kulman (12') x- ja y-tasossa.The device of claim 1, wherein the angle comprises a horizontal angle (12 ') in the x and y planes. 4. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa referenssilinja käsittää aluksen vedenpinnan .The device of any preceding claim, wherein the reference line comprises the water surface of the vessel. 5. Patenttivaatimuksen 4 mukainen laite, jossa kulma käsittää vertikaalisen kulman (12'') z-tasossa.The device of claim 4, wherein the angle comprises a vertical angle (12 '') in the z-plane. 6. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa pitkänomainen kappale, joka ulottuu aluksesta, käsittää hinausköyden, ankkuriköyden tai putkijohdon .The device according to any one of the preceding claims, wherein the elongate body extending from the vessel comprises a tow rope, anchor rope or pipeline. 7. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa pitkänomainen kappale, joka ulottuu aluksesta, käsittää hinausköyden ja alus käsittää hinaajan, jossa hinausköysi on sovitettu hinaajan ja hinaajan avustaman laivan väliin.Apparatus according to any one of the preceding claims, wherein the elongated body extending from the vessel comprises a towing rope and the vessel comprises a tug, wherein the towing rope is arranged between the tug and the tug assisted vessel. 8. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa joukko ohjeita, prosessorilla suoritettaessa, saa edelleen laitteen: vastaanottamaan pitkänomaiseen kappaleeseen liittyvän voiman ilmaisevaa dataa; ja yhdistämään voiman ilmaisevan datan kulman kanssa.The device according to any one of the preceding claims, wherein the plurality of instructions, when executed by the processor, further causes the device to: receive data indicating the force associated with the elongated body; and connect the force indicating data with the angle. 9. Patenttivaatimuksen 8 mukainen laite, jossa joukko ohjeita, prosessorilla suoritettaessa, saa edelleen laitteen: vertaamaan yhdistettyä dataa referenssiar- voon; ja lähettämään hälytyssignaalin, kun yhdistetty data ylittää referenssiarvon.The device of claim 8, wherein the plurality of instructions, when executed by the processor, further causes the device to: compare the combined data to a reference value; and transmitting an alarm signal when the combined data exceeds a reference value. 10. Jonkin edellisen patenttivaatimuksen mukainen laite, jossa hinaajaan kuuluu edelleen vinssi (17), joka on sovitettu hinausköyden säilyttämiseksi, ja jossa aluksen ohjausjärjestelmä on konfiguroitu vapauttamaan vinssin ohjaten hinausköyttä hälytyssignaalin perusteella .Apparatus according to any one of the preceding claims, wherein the tug further comprises a winch (17) adapted to retain the tow rope, and wherein the vessel control system is configured to release the winch by guiding the tow rope based on the alarm signal. 11. Alus, joka käsittää jonkin edellisistä patenttivaatimuksista mukaisen laitteen.A vessel comprising a device according to any one of the preceding claims. 12. Patenttivaatimuksen 11 mukainen alus, jossa alus käsittää laivan.The vessel of claim 11, wherein the vessel comprises a vessel. 13. Menetelmä, joka käsittää: vastaanotetaan LIDARista (11) anturisignaale-ja (14')/ jotka ilmaisevat pitkänomaisen kappaleen (15), joka ulottuu laitteen käsittävästä aluksesta (10) ; määritetään pitkänomaisen kappaleen ilmaisevien anturisignaalien perusteella linja; vastaanotetaan dataa, joka ilmaisee referens-silinjan (16) suhteessa alukseen; määritetään pitkänomaisen kappaleen ilmaisevan linjan ja referenssilinjan välinen kulma (12',12''), jossa kulma edustaa pitkänomaisen kappaleen kulmaa suhteessa alukseen; ja lähetetään kulma aluksen ohjausjärjestelmään, jossa ohjausjärjestelmä on konfiguroitu toteuttamaan toiminnon, joka ohjaa alusta kulman perusteella.A method comprising: receiving from a LIDAR (11) sensor signals and (14 ') / detecting an elongate body (15) extending from a vessel (10) comprising the device; determining a line based on the sensor signals detecting the elongated body; receiving data indicating a reference line (16) relative to the vessel; determining the angle (12 ', 12' ') between the elongate body indicating line and the reference line, wherein the angle represents the angle of the elongated body relative to the vessel; and transmitting the angle to the vessel control system, wherein the control system is configured to perform a function that controls the vessel based on the angle. 14. Tietokoneohjelma, joka käsittää joukon ohjeita, jotka on konfiguroitu saamaan tietokoneen toteuttamaan patenttivaatimuksen 13 mukaiset vaiheet, kun ne suoritetaan .A computer program comprising a plurality of instructions configured to cause the computer to perform the steps of claim 13 when executed.
FI20165844A 2016-11-09 2016-11-09 Detecting the Elongated Body Angle of a Ship with LIDAR FI127026B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20165844A FI127026B (en) 2016-11-09 2016-11-09 Detecting the Elongated Body Angle of a Ship with LIDAR
PCT/FI2017/050770 WO2018087429A1 (en) 2016-11-09 2017-11-08 Angle detection of elongated object of vessel by lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20165844A FI127026B (en) 2016-11-09 2016-11-09 Detecting the Elongated Body Angle of a Ship with LIDAR

Publications (2)

Publication Number Publication Date
FI127026B true FI127026B (en) 2017-09-29
FI20165844A FI20165844A (en) 2017-09-29

Family

ID=59925874

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20165844A FI127026B (en) 2016-11-09 2016-11-09 Detecting the Elongated Body Angle of a Ship with LIDAR

Country Status (2)

Country Link
FI (1) FI127026B (en)
WO (1) WO2018087429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO343539B1 (en) * 2017-11-15 2019-04-01 Daafjorden Slipp As Trigger system for supply or tug

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025193A (en) * 1974-02-11 1977-05-24 The Boeing Company Apparatus suitable for use in orienting aircraft in-flight for refueling or other purposes
US4158885A (en) * 1977-11-09 1979-06-19 The Boeing Company Guidance-light display apparatus and method for in-flight link-up of two aircraft
US7336349B1 (en) * 2006-11-09 2008-02-26 The Boeing Company Systems and methods for determining a configuration of a barge complex
US7904222B2 (en) * 2007-06-27 2011-03-08 GM Global Technology Operations LLC Trailer articulation angle estimation
US9933521B2 (en) * 2014-04-14 2018-04-03 The Boeing Company Aerial positioning systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO343539B1 (en) * 2017-11-15 2019-04-01 Daafjorden Slipp As Trigger system for supply or tug
NO20171812A1 (en) * 2017-11-15 2019-04-01 Daafjorden Slipp As Release system for supply or tugboat
US11267534B2 (en) 2017-11-15 2022-03-08 Bifrost Tug As Automatic release system on a supply or tug vessel

Also Published As

Publication number Publication date
WO2018087429A1 (en) 2018-05-17
FI20165844A (en) 2017-09-29

Similar Documents

Publication Publication Date Title
Zhang et al. Subsea pipeline leak inspection by autonomous underwater vehicle
US20140012434A1 (en) Sensor location method and system
KR101693981B1 (en) Apparatus and method for vessel collision avoidance
US10126408B2 (en) Method and device for displaying ship vicinity information
JP6661708B2 (en) Ship berthing support equipment
EP3015940B1 (en) Position-locking for a watercraft using an auxiliary water vessel
CN107945580B (en) System and method for marking AIS virtual warning marks of marine towing system
FI127026B (en) Detecting the Elongated Body Angle of a Ship with LIDAR
US11841415B2 (en) Apparatus, method and system for determining speeding of vessel based on artificial intelligence
KR20240080189A (en) Distance measurement method and distance measurement device using the same
US20220363357A1 (en) Underwater vehicle control system
JP2023181079A (en) Water-surface moving body vehicle collision warning apparatus and output method of collision warning signal
JP2022137867A (en) Information processing device, control method, program, and storage medium
KR101595695B1 (en) Whale Monitoring system apparatus using ultrasonic underwater sensor
CN112799067A (en) Anti-collision early warning method, device and system for chute of ship loader and early warning equipment
KR20170080417A (en) Wave measurement system and method using marine rader
JP5142632B2 (en) Magnetic signal detection method, magnetic signal detection program, and magnetic signal detection apparatus
EP4091139A1 (en) Inspection device for inspecting a building or structure
JPS6130000A (en) Automatic collision preventor for ship
JP7243319B2 (en) Disappearance prevention device and disappearance prevention method
KR102670260B1 (en) Distance measurement method and distance measurement device using the same
KR20140007614A (en) Method and apparatus for establishing minimum required region for collision prevention of object
WO2023175715A1 (en) Information processing device, control method, program, and storage medium
WO2023175714A1 (en) Information processing device, control method, program, and storage medium
JP2022137864A (en) Information processing device, control method, program, and storage medium

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 127026

Country of ref document: FI

Kind code of ref document: B

PC Transfer of assignment of patent

Owner name: KONGSBERG MARITIME FINLAND OY