FI124972B - Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi - Google Patents
Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi Download PDFInfo
- Publication number
- FI124972B FI124972B FI20125787A FI20125787A FI124972B FI 124972 B FI124972 B FI 124972B FI 20125787 A FI20125787 A FI 20125787A FI 20125787 A FI20125787 A FI 20125787A FI 124972 B FI124972 B FI 124972B
- Authority
- FI
- Finland
- Prior art keywords
- performance
- training effect
- exercise
- data
- physiological
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
- A61B5/221—Ergometry, e.g. by using bicycle type apparatus
- A61B5/222—Ergometry, e.g. by using bicycle type apparatus combined with detection or measurement of physiological parameters, e.g. heart rate
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0062—Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Child & Adolescent Psychology (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
Description
Method and Apparatus for Determining Effect of Training on Improving Fitness Field of the Invention
The invention relates to monitoring of physical performances. In particular, the invention relates to determining a training effect by monitoring intensity of the performance.
Background of the Invention
Determining training effect (TE) by estimating Excess Post-Exercise Oxygen Consumption (EPOC) and activity class of a person is well-known prior art (see for example "EPOC Based Training Effect Assessment", White paper by Firstbeat Technologies Ltd., February 2007). EPOC measures the quantity of exercise-induced disturbance of body's homeostasis using heart beat measurements, whereas TE indicates the effect of a single exercise session on improvement of cardiorespiratory fitness and fatigue resistance during a prolonged exercise. Activity class is an index which describes the activity level of the person and is used to individualize the determination of TE. Activity class is typically determined based on the classification of Shvartz & Reibold in 1990.
The method to assess TE as described in the above-references publication is commonly used in wearable sports monitoring devices, such as wrist-worn sports monitors.
The known method suffers from some disadvantages. First, it has been noted that the TE determined during sports performances with a certain type of intensity profile does not correspond to the actual physiological effect achieved. For example, in the case of an exercise with a high intensity period in the beginning and a constant lower intensity period in the end, the TE has been found not to change during the constant intensity period although the person feels that the training is still effective.
Second, the TE may not reflect the true physiological effect in the case of very long training sessions. For example, during a long low-intensity exercise, a user may not see the TE rise significantly although the stressfulness felt during the exercise would be relatively high.
Third, the TE determination during discontinuous training sessions, i.e. sessions with pauses, is not reliable.
Fourth, the TE does not take into account base endurance of an individual in all circumstances. Although common TE calculation methods utilize activity class given as an index number, the result may not be truthful, since there are many personal factors affecting the base endurance that cannot be fully described by a simple activity class index. These include for example trajectories and economy of movements and habituation to stress. The latter includes a plurality of sub-factors comprising for example cell metabolism, number of mitochondria, capability of cells to produce ATP, state of development of capillaries, hormonal factors, and capability of heart to circulate blood.
On the basis of the above, there exists a need for improved methods and apparatuses to estimate the effect of training in improving the fitness of individuals.
Summary of the Invention
It is an aim of the invention to respond to the abovementioned need and to provide a method and apparatus capable of more reliably indicating the effect of training in improving fitness.
The aim is achieved by the invention as defined in the independent claims.
Advantageous embodiments are defined in the dependent claims.
According to one aspect, the invention provides a method of determining physiological training effect of a physiological performance of a person on improving his/her fitness, the method comprising - monitoring the performance using one or more performance-monitoring means comprising at least heartbeat monitoring means, in order to obtain performance data, - determining, using computing means capable of utilizing the performance data, o a first training effect parameter describing a first physiological effect (such as homeostatic disturbance) of the performance using a first determination method, and o a second training effect parameter describing a second physiological effect (such as cumulative physiological load) of the performance using a second determination method, and - storing and/or displaying the first and second training effect parameters on storage and/or display means, respectively.
According to another aspect, the method comprises - monitoring the performance using one or more performance-monitoring means comprising at least heartbeat monitoring means in order to obtain performance data, - determining, using computing means capable of utilizing the performance data, a third training effect parameter describing a third physiological effect of the performance using a third determination method, the third physiological effect being a combination effect of the first and second physiological effects which are different from each other and are descriptive of different physiological effects of training (such as homeostatic disturbance and cumulative physiological load, respectively), - storing and/or displaying the third training effect parameter on storage and/or display means, respectively.
It should be noted that the explicit calculation of the first and second training effect parameters can be carried out, but is by no means necessary, for being able to calculate the third training effect parameter.
According to one embodiment, the method is a combination of both of the above main aspects, in which case all three training effect parameters are determined and stored and/or displayed.
According to one embodiment, the performance data and performance-monitoring means used for estimating the oxygen intake comprise interbeat interval data and heartbeat monitoring means, respectively.
According to one embodiment, the method further comprises determining a third training effect parameter describing the cumulative physiological training effect of the performance. The cumulative training effect is frequently referred to as totalTE (total training effect) below. The third training effect parameter is preferably calculated using said first and second training effect parameters, but it may also be calculated directly on the basis of the performance data using a third determination method.
According to one embodiment, the first physiological effect of the performance correlates with maximum stress experienced by the person during the performance. The stress is caused by the homeostatic disturbance of the performance on the person's body, and it correlates with maximal cardio-respiratory load experienced by the person during the performance. In other words, the first training effect parameter is descriptive of the effect of the performance on the person's maximal aerobic capacity or, in more common terms, peak fitness. For this reason, the first training effect parameter is referred to as peakTE (peak training effect) below.
According to one embodiment, the maximum stress, i.e. homeostatic disturbance, is determined by estimating oxygen intake during or after the performance, for example by calculating Excess Post-Exercise Oxygen Consumption (EPOC) or using any a corresponding oxygen intake model yielding an oxygen intake-dependent parameter. According to one embodiment, the performance data comprises interbeat interval data and the performance-monitoring means comprise heartbeat monitoring means.
According to one embodiment, the second determination method comprises estimating the cumulative physiological load of the performance. In other words, the second training effect parameter, also referred to as baseTE (base training effect) is a cumulative intensity parameter.
The cumulative physiological load can be determined in various ways. According to one embodiment, the same heartbeat monitoring means that are used for determining peakTE, are used for determining baseTE. In alternative solutions, the intensity estimated based on energy consumption data measured using energy consumption monitoring means, position or velocity data measured using a positioning sensor and/or velocity sensor, acceleration data measured using an acceleration sensor, or power data measured using a power output sensor. Also a combination of any of the above methods can be used.
According to one embodiment, the second determination method utilizes a formula which weights at least one intensity range of the performance compared with at least one other intensity range of the performance. The weighted range is preferably a range which improves base endurance. According to one embodiment, the weighting function is normally distributed around a selected intensity.
According to one embodiment, the second determination method comprises using heart beat frequency data measured using heartbeat monitoring means, and the second training effect parameter is determined as a cumulative heart rate frequency weighed with a nonconstant weighing function.
According to one embodiment, the calculation of totalTE, irrespective of its calculation method, is adapted to provide a temporally monotonically increasing result for all kinds of temporal intensity profiles of performance. That is, the cumulative training effect never decreases during a single exercise. This corresponds to the true effect of training experienced by people doing sports.
Considerable advantages are obtained by means of the invention. In particular, as the invention adds one "dimension" more to the determination of training effect, it is able to give more truthful information on the real effect of training, which has been found not to be a "one-dimensional" quantity fundamentally. Thus, the information obtained by the person doing sports better corresponds to the actual physiological effect achieved.
Adding another dimension also allows the training effect to reflect the true physiological effect in the case of very long training sessions or discontinuous training sessions, in which previous methods have failed to produce reliable information.
In particular the various embodiments disclosed herein take into account the development of base endurance of an individual in all circumstances better than the previous methods trough evaluation of the intensity of training in addition to the maximum stress and/or oxygen intake.
Definition of terms
The first determination method is adapted to produce a first training effect parameter describing a first effect of performance. Preferably, the first effect of performance correlates with maximal stress, or more specifically, homeostatic disturbance and/or maximal cardio-respiratory load caused by the performance. In the detailed discussion below, the first effect of performance is referred to as peakTE.
The second determination method is adapted to produce a second training effect parameter describing a second effect of performance, the second training effect parameter and second effect being different that the first training effect parameter and first effect of performance, respectively. Preferably, the second effect of performance correlates with the cumulative physiological load of the performance. The second training effectparameter differs from the first training effect parameter discussed above in that it reflects the portion of the performance which improves base endurance of the person. Consequently, it has a stronger correlation with total energy consumption than the first training effect parameter. On the other hand, the first training effect parameter typically has a stronger correlation with peak EPOC than the second training effect parameter. In the detailed discussion below, the first effect of performance is referred to as baseTE.
The third determination method is adapted to produce a third training effect parameter describing a third effect of performance, the third training effect parameter being different that the first and second training effect parameters. The third effect of performance can be calculated using both the first and second effect of performance or directly from the performance data measured. Preferably, the third training effect is the cumulative training effect which is determinable based on both the first and second effect of performance. The third training effect parameter has a stronger correlation with recovery time than each the first and second training effect parameters considered alone. Recovery time describes the resting time needed by the person for fully recovering from the current exercise. In the detailed discussion below, the first effect of performance is referred to as totalTE.
Next, embodiments of the invention and advantages thereof are described with reference to the attached drawings.
Brief Description of the Drawings
Fig. 1 shows a block diagram of a device according to one embodiment of the invention. Fig. 2 shows a flow diagram of a method according to one embodiment of the invention. Fig. 3 show an exemplary graph of peakTE, totalTE (TTE) and heart rate (HR) vs. time. Fig. 4 shows an exemplary weighing function for the calculation of baseTE.
Detailed Description of Embodiments
With reference to Fig. 1, the present invention can be carried out in a portable device 10. The device comprises a performance monitoring unit 12 having means for measuring or receiving heartbeat data of the user of the device. Typically, the unit 12 comprises a heartbeat data receiver 12A which is in wireless communication with a heart rate sensor unit 13, such as a heart rate belt. In addition, the performance monitoring unit may comprise one or more additional subunits 12B, which are adapted to measure or receive performance intensity data other than heartbeat data. The subunit(s) 12B may comprise e g. acceleration measurement subunit, satellite positioning subunit, velocity measurement subunit or power measurement subunit.
The performance monitoring unit 12 is in functional connection with a computing unit 16 adapted to carry out the mathematical functions and/or algorithms required to obtain the training effect data desired. The results can be stored and/or displayed in a storage and/or display unit 18.
The device may also comprise means for communicating with an external computing unit 19, such as a computer.
With an additional reference to Fig. 2, the method may comprise as first steps 21A, 21B obtaining first and second performance data from the performance monitoring unit 12. The first and second performance data may be different or the same. Next, the computing unit 16 applies in the next steps 22A, 22B a first and second determination method on the first and second performance data, respectively. The first and second determination methods are different and reflect different "dimensions" of the physiological training. In steps 23 A, 23B, the first and second training effect parameters are obtained as results of the first and second determination methods. In steps 24A, 24B, the parameters are stored on and/or displayed in the storage and/or display unit 18.
Next, the first and second training effect parameters are used to further calculate a third training effect parameter in step 26 in the computing unit 16.
Calculation of peakTE
According to one embodiment, peakTE is calculated using an estimated maximum stress experienced by the person during the performance. The maximum stress can be estimated based on heart rate measured.
Using mathematical expressions, maxstress = maxstress(HRRejf,maxstress), and peakTE = peakTE(maxstress)
As reflected by the equation above, maxstress is preferably calculated using an interative algorithm taking into account the previously determined maxstress value. HRReff refers to the person's effective heart rate calculated as the ratio of current heart rate to the difference between the maximum heart rate of the person and an recovery heart rate of the person (the difference thus depicting the available "heart rate reserve" at each moment of time). The recovery heart rate is an estimated heart rate level dynamically updated during the exercise and to which the heart rate of the person recovers in a certain time when the exercise is ended. For more information of the definitions used above, we refer to EP2371278..
According to one embodiment, the maximum stress is determined by estimating oxygen intake during or after the performance. A commonly known parameter correlating with oxygen intake is Excess Post-Exercise Oxygen Consumption (EPOC). However, any other parameter correlating with oxygen intake or, more generally, the stress state of the person, can be used instead of EPOC.
Calculation ofbaseTE
According to one embodiment, base TE is calculated as a weighed sum of the level of usage of heartbeat reserve.
Using a mathematical expression baseTE = base TE( Ywt *HRReff), where i references to a series which is determined based on the hearbeat measurements at predetermined intervals, for example every ten seconds, w, is a weighing factor for each HRReff,. An exemplary shape of the weighing function is shown in Fig. 4. The function is a normal distribution with an average of 33% of HRReff and standard distribution 5% of HRReff. The weighing function can be fixed, i.e. the same for all users, or alternatively adaptable or individually definable to correspond the personal properties of the person.
Calculation of totalTE
The calculation of totalTE can be implemented as a combination of the calculations of peakTE and baseTE.
Formulated mathematically, totalTE = total! Ifmaxstress, fww, * HRReff]), where ww, is again a weighing factor for each HRReffi. However, it needs not be the same as in the direct baseTE calculation, i.e. it may be that w, / wwj.
Fig. 3 illustrates the calculation of peakTE and totalTE (TTE) parameters based on heart rate (HR) over time according to the above-described principles.
Claims (13)
1. Menetelmä henkilön fysiologisen suorituksen fysiologisen harjoitteluvaikutuksen määrittämiseksi, joka menetelmä käsittää, että - tarkkaillaan suoritusta käyttäen yhtä tai useampaa suorituksentarkkailuvälinettä, jotta saadaan suoritusdataa, - määritetään käyttämällä suoritusdataa hyödyntämään kykenevää tietojenkäsittelyvälinettä • ensimmäinen harjoitteluvaikutusparametri, joka kuvaa ensimmäistä fysiologista vaikutusta, joka korreloi henkilön homeostaattisen häiriön kanssa suorituksen aikana käyttäen ensimmäistä määritysmenetelmää, ja • toinen harjoitteluvaikutusparametri, joka kuvaa toista eri fysiologista vaikutusta, joka korreloi suorituksen kumulatiivisen fysiologisen kuormituksen kanssa käyttäen toista määritysmenetelmää, ja • kolmas harjoitteluvaikutusparametri, joka kuvaa suorituksen kolmatta fysiologista vaikutusta käyttäen kolmatta määritysmenetelmää, missä kolmas fysiologinen vaikutus on laskettu ensimmäisen ja toisen fysiologisen vaikutuksen yhdistelmävaikutuksesta, - tallennetaan ja/tai näytetään harjoitteluvaikutusparametrit vastaavasti tallennus-ja/tai näyttövälineellä.
2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että kolmas harjoitteluvaikutusparametri j kuvaa kumulatiivista fysiologista harjoitteluvaikutusta suoritukseen.
3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, tunnettu siitä, että mainittu ensimmäinen suorituksen fysiologinen vaikutus korreloi henkilön suorituksen aikana kokeman maksimaalisen homeostaattisen häiriön kanssa.
4. Jonkin edeltävän patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että ensimmäinen määritysmenetelmä käsittää, että arvioidaan hapenottoa suorituksen aikana tai sen jälkeen laskemalla EPOC (Excess Post-Exercise Oxygen Consumption) tai mikä tahansa vastaava hapenottoparametri, ensimmäisen harjoitteluvaikutusparametrin määrittämiseksi.
5. Jonkin edeltävän patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että toinen määritysmenetelmä käsittää, että käytetään vähintään yhtä seuraavista suoritusdatana ja suorituksentarkkailuvälineenä: - sydämenlyöntien taajuusdata mitattuna käyttäen sydämenlyöntien tarkkailuvälinettä, - energiankulutusdata mitattuna käyttäen energiankulutuksen tarkkailuvälinettä, - sijainti- tai nopeusdata mitattuna käyttäen sijaintisensoria ja/tai nopeussensoria, - kiihtyvyysdata mitattuna käyttäen kiihtyvyyssensoria, - tehodata mitattuna käyttäen tehontuottosensoria.
6. Patenttivaatimuksen 5 mukainen menetelmä, tunnettu siitä, että toinen määritysmenetelmä käsittää, että käytetään vähintään kahden mainitun suoritusdatan ja suorituksentarkkailuvälineen yhdistelmää.
7. Jonkin edeltävän patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että toinen määritysmenetelmä on sovitettu tuottamaan toinen harjoitteluvaikutusparametri, joka on painotettu vähintään yhdellä suorituksen intensiteettialueella suhteessa vähintään yhteen muuhun suorituksen intensiteettialueeseen, edullisesti peruskestävyyttä parantavalla alueella.
8. Jonkin patenttivaatimuksien 5 - 7 mukainen menetelmä, tunnettu siitä, että toinen määritysmenetelmä käsittää, että käytetään sydämenlyöntien taajuusdataa mitattuna käyttämällä sydämenlyöntien tarkkailuvälinettä, ja toinen harjoitteluvaikutusparametri on määritetty kumulatiivisena syketaajuutena painotettuna ei-vakioisella painotusfunktiolla.
9. Jonkin edeltävän patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että harjoitteluvaikutusparametrit täyttävät yhden tai useamman seuraavista kriteereistä: - toisella harjoitteluvaikutusparametrilla on vahvempi korrelaatio kokonaisenergiankulutuksen kanssa kuin kuin ensimmäisellä harjoitteluvaikutusparametrilla, - ensimmäisellä harjoitteluvaikutusparametrilla on vahvempi korrelaatio huippu-EPOC:n kanssa kuin toisella harjoitteluvaikutusparametrilla, - kolmannella harjoitteluvaikutusparametrilla on vahvempi korrelaatio palautumisajan kanssa kuin kummallakaan ensimmäisestä ja toisesta harjoitteluvaikutusparametrista yksinään.
10. Laite henkilön fysiologisen suorituksen fysiologisen harjoitteluvaikutuksen määrittämiseksi, joka laite käsittää - suorituksentarkkailuvälineet suoritusdatan saamiseksi, - tietojenkäsittelyvälineen suoritusdatan käsittelemiseksi, missä tietojenkäsittelyväline konfiguroidaan määrittämään • suoritusdataan perustuen ensimmäinen harjoitteluvaikutusparametri, joka kuvaa ensimmäistä fysiologista vaikutusta, joka korreloi henkilön suorituksenaikaisen homeostaattisen häiriön kanssa, käyttäen ensimmäistä määritysmenetelmää, • suoritusdataan perustuen toinen harjoitteluvaikutusparametri, joka kuvaa toista fysiologista vaikutusta, joka korreloi suorituksen kumulatiivisen fysiologisen kuormituksen kanssa, käyttäen toista määritysmenetelmää; • suoritusdataan sekä ensimmäiseen ja toiseen harjoitteluvaikutusparametriin perustuen laskettu kolmas harjoitteluvaikutusparametri, joka kuvaa suorituksen yhdistettyä fysiologista harjoitteluvaikutusta, käyttäen kolmatta määritysmenetelmää, ja - välineen näyttää ja/tai tallentaa harjoitteluparametrit.
11. Patenttivaatimuksen 10 mukainen laite, tunnettu siitä, että suorituksentarkkailuvälineet käsittävät sykesensorin sykedatan saamiseksi ja että ensimmäinen määritysmenetelmä on konfiguroitu laskemaan hapenotto suorituksen aikana tai sen jälkeen käyttäen sydämenlyöntien aikavälin muuttumattomuusdataa, edullisesti laskemalla EPOC (Excess Post-Exercise Oxygen Consumption).
12. Jonkin patenttivaatimuksista 14-18 mukainen laite, tunnettu siitä, että suorituksentarkkailuväline ja suoritusdata käsittävät yhden tai useamman seuraavista: - sydämenlyöntien tarkkailuvälineen, joka kykenee tarjoamaan mitattua sydämenlyöntien taajuusdataa, - energiankulutuksen tarkkailuvälineen, joka kykenee tarjoamaan energiankulutusdataa, - sijaintisensorin ja/tai nopeussensorin, joka kykenee tarjoamaan sijainti- tai nopeusdataa, - kiihtyvyyssensorin, joka kykenee tarjoamaan kiihtyvyysdataa, - tehontuottosensorin, joka kykenee tarjoamaan tehodataa, ja toinen määritysmenetelmä on konfiguroitu laskemaan vähintään yksi integraali mainitusta datasta toisen harjoitteluvaikutuksen määrittämiseksi.
13. Patenttivaatimuksen 12 mukainen laite, tunnettu siitä, että toinen määritysmenetelmä on konfiguroitu laskemaan painotettu integraali, missä painotus on kohdistettu vähintään yhteen suorituksen intensiteettialueeseen suhteessa vähintään yhteen muuhun suorituksen intensiteettialueeseen, edullisesti alueeseen, joka parantaa peruskestävyyttä.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20125787A FI124972B (fi) | 2012-07-10 | 2012-07-10 | Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi |
GB1214844.1A GB2503959B (en) | 2012-07-10 | 2012-08-21 | Method and apparatus for determining effect of training on improving fitness |
US13/832,001 US10722750B2 (en) | 2012-07-10 | 2013-03-15 | Method and apparatus for determining effect of training on improving fitness |
DE102013107035.3A DE102013107035B4 (de) | 2012-07-10 | 2013-07-04 | Verfahren und vorrichtung zur bestimmung eines fitnessverbesserungstrainingseffekts |
HK14103571.5A HK1190297A1 (zh) | 2012-07-10 | 2014-04-14 | 用於確定改進健康的訓練效果的方法和設備 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20125787 | 2012-07-10 | ||
FI20125787A FI124972B (fi) | 2012-07-10 | 2012-07-10 | Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi |
Publications (2)
Publication Number | Publication Date |
---|---|
FI20125787A FI20125787A (fi) | 2014-01-11 |
FI124972B true FI124972B (fi) | 2015-04-15 |
Family
ID=47017057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI20125787A FI124972B (fi) | 2012-07-10 | 2012-07-10 | Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi |
Country Status (5)
Country | Link |
---|---|
US (1) | US10722750B2 (fi) |
DE (1) | DE102013107035B4 (fi) |
FI (1) | FI124972B (fi) |
GB (1) | GB2503959B (fi) |
HK (1) | HK1190297A1 (fi) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160220866A1 (en) | 2015-01-29 | 2016-08-04 | Ambiorun | Training device for determining timing of next training session |
EP3534783A1 (en) | 2016-11-07 | 2019-09-11 | Koninklijke Philips N.V. | System, method and computer program for quantifying physical fatigue of a subject |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5435315A (en) | 1994-01-28 | 1995-07-25 | Mcphee; Ron J. | Physical fitness evalution system |
US6305943B1 (en) * | 1999-01-29 | 2001-10-23 | Biomed Usa, Inc. | Respiratory sinus arrhythmia training system |
IL130818A (en) * | 1999-07-06 | 2005-07-25 | Intercure Ltd | Interventive-diagnostic device |
FI20025038A0 (fi) | 2002-08-16 | 2002-08-16 | Joni Kettunen | Menetelmä fysiologisen signaalin analysoimiseksi |
FI6796U1 (fi) * | 2004-06-16 | 2005-09-26 | Firstbeat Technologies Oy | Järjestelmä fysiologisen tilan seuraamiseksi ja ennakoimiseksi fyysisen rasituksen alaisuudessa |
FI120960B (fi) * | 2004-07-01 | 2010-05-31 | Suunto Oy | Menetelmä ja laitteisto liikuntasuorituksen aikaisen suorirustason ja väsymisen mittaamiseksi |
US20070232455A1 (en) | 2004-10-22 | 2007-10-04 | Mytrak Health System Inc. | Computerized Physical Activity System to Provide Feedback |
FI20065147A (fi) | 2006-03-03 | 2006-03-03 | Firstbeat Technologies Oy | Järjestelmä ja menetelmä harjoittelun ohjaamiseksi |
WO2008003830A1 (en) * | 2006-07-04 | 2008-01-10 | Firstbeat Technologies Oy | Method and system for guiding a person in physical exercise |
EP1897598A1 (en) * | 2006-09-06 | 2008-03-12 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | System for training optimisation |
US7840346B2 (en) * | 2006-11-02 | 2010-11-23 | Nokia Corporation | Real time performance comparison |
FI120619B (fi) * | 2006-11-17 | 2009-12-31 | Suunto Oy | Laite ja menetelmä suorituksen seuraamiseksi |
US8292820B2 (en) * | 2006-11-17 | 2012-10-23 | Suunto Oy | Apparatus and device for performance monitoring |
DE102010012519A1 (de) | 2010-03-17 | 2011-09-22 | Theodor Maier Gmbh & Co. Kg | Vorrichtung und Verfahren zum Verarbeiten und Anzeigen von Messsignalen an einem Trainingsgerät |
FI124368B (fi) * | 2010-03-26 | 2014-07-31 | Suunto Oy | Menetelmä ja laite fysiologisten harjoitusparametrien laskemiseksi |
CN104168819B (zh) * | 2012-02-28 | 2018-03-30 | 皇家飞利浦有限公司 | 用于监视生命体征的设备和方法 |
-
2012
- 2012-07-10 FI FI20125787A patent/FI124972B/fi active IP Right Grant
- 2012-08-21 GB GB1214844.1A patent/GB2503959B/en active Active
-
2013
- 2013-03-15 US US13/832,001 patent/US10722750B2/en active Active
- 2013-07-04 DE DE102013107035.3A patent/DE102013107035B4/de active Active
-
2014
- 2014-04-14 HK HK14103571.5A patent/HK1190297A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
DE102013107035B4 (de) | 2022-03-17 |
DE102013107035A1 (de) | 2014-01-16 |
HK1190297A1 (zh) | 2014-07-04 |
FI20125787A (fi) | 2014-01-11 |
US20140018945A1 (en) | 2014-01-16 |
GB201214844D0 (en) | 2012-10-03 |
GB2503959B (en) | 2015-12-09 |
US10722750B2 (en) | 2020-07-28 |
GB2503959A (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10709382B2 (en) | Computing user's physiological state related to physical exercises | |
US11806120B2 (en) | Health risk indicator determination | |
EP3340248B1 (en) | A method and an apparatus for determining training status | |
US9370691B2 (en) | Apparatus for metabolic training load, mechanical stimulus, and recovery time calculation | |
US10098549B2 (en) | Local model for calorimetry | |
US10238915B2 (en) | Method to determine body's physiological response to physical exercise for assessing readiness and to provide feedback, and system for implementing the method | |
US20170056725A1 (en) | Walking-load-degree calculation apparatus, maximum-oxygen-consumption calculation apparatus, recording medium, and control method | |
EP2745777A1 (en) | Device and method for calculating cardiorespiratory fitness level and energy expenditure of a living being | |
US10674959B2 (en) | Method and an apparatus for determining training status | |
CN107466222B (zh) | 生命体征监测系统 | |
US20170079572A1 (en) | Method and apparatus for evaluating exercise capacity | |
FI124972B (fi) | Menetelmä ja laite harjoituksen kuntoa kohottavan vaikutuksen määrittämiseksi | |
KR20100062735A (ko) | 걷기를 이용한 체력 추정 방법 및 장치 | |
JP2017123897A (ja) | 生体情報処理システム、電子機器、プログラム及び生体情報処理システムの制御方法 | |
Kawahara et al. | Monitoring daily energy expenditure using a 3-axis accelerometer with a low-power microprocessor | |
WO2022144081A1 (en) | Estimation of individual's maximum oxygen uptake, vo2max | |
CN113040752A (zh) | 一种基于心率的运动量监测方法和系统 | |
WO2009057033A2 (en) | Computing a user's condition | |
JP2007122325A (ja) | 保険契約システム | |
KR20140102871A (ko) | 생체 정보 모니터링 시스템 | |
Vathsangam et al. | On determining the best physiological predictors of activity intensity using phone-based sensors | |
KR20160136685A (ko) | 심박수를 이용하여 운동 능력을 평가하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Ref document number: 124972 Country of ref document: FI Kind code of ref document: B |
|
PC | Transfer of assignment of patent |
Owner name: AMER SPORTS DIGITAL SERVICES OY |
|
PC | Transfer of assignment of patent |
Owner name: SUUNTO OY |