FI105595B - Improved gas sampling chamber - Google Patents

Improved gas sampling chamber Download PDF

Info

Publication number
FI105595B
FI105595B FI933298A FI933298A FI105595B FI 105595 B FI105595 B FI 105595B FI 933298 A FI933298 A FI 933298A FI 933298 A FI933298 A FI 933298A FI 105595 B FI105595 B FI 105595B
Authority
FI
Finland
Prior art keywords
gas
sample chamber
chamber
sample
elongated hollow
Prior art date
Application number
FI933298A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI933298A (en
FI933298A0 (en
Inventor
Jacob Y Wong
Original Assignee
Gaztech Internat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24001190&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=FI105595(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gaztech Internat Corp filed Critical Gaztech Internat Corp
Publication of FI933298A0 publication Critical patent/FI933298A0/en
Publication of FI933298A publication Critical patent/FI933298A/en
Application granted granted Critical
Publication of FI105595B publication Critical patent/FI105595B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J2001/161Ratio method, i.e. Im/Ir
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/18Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors using comparison with a reference electric value
    • G01J2001/182Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors using comparison with a reference electric value with SH sample and hold circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • G01N2001/2261Sampling from a flowing stream of gas in a stack or chimney preventing condensation (heating lines)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0321One time use cells, e.g. integrally moulded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0385Diffusing membrane; Semipermeable membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/052Tubular type; cavity type; multireflective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0228Moulded parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06186Resistance heated; wire sources; lamelle sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Glass Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Incineration Of Waste (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Paper (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A diffusion-type gas sample chamber for use in a gas analyzer consists of an elongated hollow tube having an inwardly-facing specularly-reflective surface that permits the tube to function also as a light pipe for transmitting radiation from a source to a detector through the sample gas. A number of filtering apertures in the wall of the otherwise non-porous hollow tube permit the sample gas to enter and exit freely under ambient pressure. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.

Description

105595105595

Parannettu kaasunäytekammio - Förbättrad gasprovkammare Keksinnön alue 5 Esillä olevan keksinnön kohteena on kaasuanalysaattorien alue ja erityisesti näytekammio, jota käytetään tyypiltään NDIR (ei-dispergoiva infrapuna) olevissa analysaattoreissa.FIELD OF THE INVENTION The present invention relates to a range of gas analyzers, and in particular to a sample chamber used in NDIR (non-dispersive infrared) type analyzers.

Keksinnön taustaa 10 NDIR-tekniikka on kauan pidetty yhtenä parhaista kaasumit-tausmenetelmistä. Huomattavan tarkkuutensa lisäksi NDIR-kaa-suanalysaattorit ovat myös erittäin herkkiä, vakaita, luotettavia ja huolloltaan helppoja. NDIR-kaasumittaustekniikan pääasiallisena haittana on ollut sen monimutkainen ja kallis 15 toteutus.BACKGROUND OF THE INVENTION NDIR technology has long been considered one of the best gas measurement methods. In addition to their remarkable accuracy, NDIR gas analyzers are also extremely sensitive, stable, reliable and easy to maintain. The main disadvantage of NDIR gas measurement technology has been its complex and expensive implementation.

NDIR-kaasuanalysaattori sisältää yleensä infrapunasäteilyläh- teen, moottorikäyttöisen mekaanisen värähdinmuuttajän tämän lähteen moduloimiseksi siten, että tahdistettua ilmaisua 20 voidaan käyttää, pumpun kaasun työntämiseksi tai vetämiseksi näytekammion läpi, kaistanpäästösuodattimen, herkän infra- Y: punailmaisimen sekä kalliin infrapunaoptiikan ja ikkunat « · infrapunasäteilyn fokusoimiseksi sanotusta lähteestä il- ,·. : maisimeen. Siten huolimatta siitä, että NDIR-kaasumittaustek- • · · .!_/25 nilkka on yksi parhaista, se ei ole saavuttanut laajaa suo- · I.’ s.iota monimutkaisuutensa ja kalliin toteutuksensa johdosta.The NDIR gas analyzer generally includes an infrared source, a motor-driven mechanical vibration transducer to modulate this source so that synchronous expression 20 can be used to push or pull pump gas through the sample chamber, a bandpass filter, an infrared infrared and an infrared detector. from il-, ·. : to the corn. Thus, despite being one of the best, the NDIR Gas Measurement Technique has not achieved widespread protection because of its complexity and costly implementation.

• * * λ • · • » • M f I < *·' * Esillä oleva keksintö yksinkertaistaa huomattavasti NDIR- kaausmittaustekniikan toteuttamista, tämän yksinkertaistami- V « · • '.SO sen johtaessa samalla kustannusten alenemiseen mahdollistaen m · · Y · siten useiden NDIR-tekniikan sovellutusten käyttöönoton, joita tähän asti on pidetty epäkäytännöllisinä niiden kustansi > nusten tai monimutkaisuuden johdosta.The present invention greatly simplifies the implementation of the NDIR measurement technique by simplifying this, while leading to a reduction in costs, thus allowing m · · Y · Deployment of NDIR technology applications, which up to now have been considered impractical due to their cost or complexity.

• · t · « : ‘.35 Esimerkiksi esillä olevan keksinnön mukainen näytekammio t · 2 105595 muodostaa paljon nopemman ja herkemmän hiilidioksidi-ilmaisimen ytimen, jota käytetään palonilmaisussa (US-patenttijulkaisu 5 053 754, julkaistu 1. lokakuuta 1991 esillä olevan keksinnön hakijan nimellä) sekä myös tuuletusvalvontalaitteen 5 eli VENTOSTAT'in ytimen (tuuletustermostaatti, joka on selostettu US-paytenttihakemuksessa n s ro 07/611 630, jätetty sisään 6. kesäkuuta 1991 otsikolla TUULETUSVALVONTALAITE esillä olevan keksinnön hakijan nimellä), joka on erittäin käyttökelpoinen laite huoneilman likaantumisen valvonnassa tarkkai-10 lemalla huoneilman hiilidioksidipitoisuutta ja syöttämällä raitista ilmaa, kun tämä hiilidioksidipitoisuus tulee liian suureksi.For example, the sample chamber t · 2 105595 of the present invention forms the core of the much faster and more sensitive carbon dioxide detector used in fire detection (U.S. Patent 5,053,754, issued October 1, 1991, to the Applicant). ) as well as the core of the VENTOSTAT ventilation control unit 5 (Ventilation Thermostat disclosed in U.S. Patent Application No. 07 / 611,630 filed June 6, 1991, under the heading VENTILATION CONTROL UNIT in the name of the Applicant of the present invention), which is a very useful -10 lowering the carbon dioxide content of the room air and supplying fresh air when this carbon dioxide content becomes too high.

Esillä oleva yksinkertaistettuun kaasunäytekammioon kohdistu-15 va keksintö tarjoaa käyttöön uuden lähestymistavan NDIR-kaa-sumittausjärjestelmien vähentämiseksi eliminoimalla kalliin optiikan, mekaanisten värähdinmuuttajien ja kaasua näytekam-mioon vetävän tai työntävän pumpun tarpeen. Lisäksi esillä olevan keksinnön mukainen näytekammio tarjoaa käyttöön pitkän 20 ja tehokkaan väyläpituuden, joka lisää ilmaisuherkkyyttä.The present invention relating to a simplified gas sample chamber provides a novel approach for reducing NDIR gas measurement systems by eliminating the need for expensive optics, mechanical vibration converters, and a pump for drawing or pushing gas into the sample chamber. In addition, the sample chamber of the present invention provides a long and efficient bus length that increases detection sensitivity.

·.·. US-patentti julkaisussa n:ro 4 709 150, myönnetty 24. marras-kuuta 1987 Burough et al'ille, selostetaan kaasunäytekammio, ! . joka käsittää huokoisesta materiaalista, kuten muovista tai • · « \mm ]^5 sintratusta metallista tehdyn putken. Tässä Burough et ai'in • · · • ·* patentissa selostetaan, että huokoskoon olisi oltava 0,3 - : .* 100 mikronia. Mitään selostusta tai ehdotusta ei anneta tämän • · · V · huokoisen putken seinien käytön suhteen heijastavina säteilyä ohjaavina elementteinä. Ehkä juuri tästä syystä johtuen kaa-:*·*30 sun kondensaation muodostamaa ongelmaa sen tiivistyessä pie-ninä pisaroina näytekammion sisälle ei selosteta.·. ·. U.S. Patent No. 4,709,150, issued November 24, 1987 to Burough et al., Discloses a gas sample chamber,! . comprising a tube made of a porous material such as plastic or • sintered metal. In this patent of Burough et al., It is stated that the pore size should be between 0.3 and 100 microns. No description or suggestion is made with respect to the use of the walls of this • · · V · porous tube as reflective radiation guiding elements. Perhaps it is for this reason that the problem of condensation of 30: 30 sun as it condenses into small droplets inside the sample chamber is not explained.

• · ” • ♦ · *·// Burough et ai eivät selosta moninkertaisia heijastuksia pei-• « limäisesti heijastavasta pinnasta. Tämä vaikuttaa huomatta-:*·*35 vasti heidän järjestelmänsä suorituskykyyn. Hyödyntämättä 9 • » 3 105595 näytekairanion säteilyä keräävää kykyä Burough et ai'in järjestelmällä on paljon huonompi säteilyn keräämiskyky, mikä johtaa alhaisempaan signaalikohinasuhteeseen. Lisäksi Burough et ai'in järjetselmä ei tarjoa käyttöön pitkää väyläpituutta ja 5 siten tämän järjestelmän herkkyys on huonompi esillä olevaan keksintöön verrattuna.Multiple reflections on the reflective surface are not described by Burough et al. This is noticeable -: * · * 35 in line with the performance of their system. Utilizing 9 • »3 105595 Sample Radius Absorbing Ability The Burough et al. System has a much lower radiation acquisition ability, resulting in a lower signal-to-noise ratio. In addition, the Burough et al system does not provide a long fairway, and thus the sensitivity of this system is inferior to the present invention.

Mitä taas tulee kaasun diffuusioon Burough et ai'in järjestelmän mukaisessa kammiossa esillä olevaan keksintöön verrat-10 tuna, niin voidaan havaita, että Burough et ai'in syöttökam-miota varten käytetty huokoinen materiaali on paksuudeltaan useita satoja mikroneja. Sen sijaan esillä olevan keksinnön yhteydessä diffuusio näytekammioon tapahtuu puoliläpäisevän kalvon kautta, jonka paksuus on suuruusluokkaa 25 - 50 mikro-15 nia. Siten kaasulta tai kaasun pitoisuusmuutoksilta kuluu paljon pitempi aika Burough et ai'in kammioon hajaantumiseen esillä olevaan keksintöön verrattuna. Tämä pidentää suuresti Burough et ai'in kammion reagointiaikaa saaden aikaan paloil-maisinanturin huonon suorituskyvyn, kun taas esillä oleva 20 keksinnön mukainen kammio reagoi erittäin nopeasti muutoksiin hiilidioksidipitoisuudessa, ja laboratoriokokeet ovat osoit- V: taneet, että esillä olevan keksinnön mukaisella näytekammiol- · .'j‘; la on erittäin nopea reagointiaika, mikä on sangen suotavaa .·. : paloilmaisimena toimimista ajatellen.As regards gas diffusion in a chamber according to the system of Burough et al., As compared to the present invention, it can be seen that the porous material used for the Burough et al. Feed chamber is several hundred microns in thickness. Instead, in the context of the present invention, diffusion into the sample chamber occurs through a semipermeable film having a thickness in the order of 25-50 micro-15nm. Thus, the gas or gas concentration changes take a much longer time to decompose into the Burough et al chamber compared to the present invention. This greatly extends the response time of the chamber of Burough et al., Resulting in poor performance of the fire detector sensor, while the chamber of the present invention responds very rapidly to changes in carbon dioxide concentration, and laboratory tests have shown that the sample chamber of the present invention. 'j'; la is a very fast response time, which is highly desirable. : for operating as a fire detector.

* · · .125 • · t • · *. 1. Japanilaisessa patenttijulkaisussa n:ro 59-173734(A) Miya2aki I · 1 Λ selostaa infrapunasädekaasuanalyysimittaria, jossa säteily • · · *·1 1 kulkee rinnakkain näytekennoa ja vertailukennoa pitkin. Nämä kennot ovat kierukkaputken muotoisia.* · · .125 • · t • · *. 1. Japanese Patent Publication No. 59-173734 (A), Miya2aki I · 1 Λ, discloses an infrared gas analyzer in which radiation is transmitted parallel to a sample cell and a reference cell. These cells have the shape of a helical tube.

j’-30 t » v • · · : Miyazakin patentin mukainen järjestelmä kuuluu tavanomaisen .·1.·, NDIR-kaasumittausjärjestelmän mukaiseen kategoriaan. Ellei !.! tuleva säteily joutuisi moninkertaisten heijastusten alaisek-si sekä näyte- että vertailukennossa, ei olisi olemassa mi- M · • ‘.35 tään eroa tavanomaiseen NDIR-järjestelmään verrattuna eikä · 4 105595 siten myöskään mitään etua. Miyazakin ratkaisu vaatii yhä mekaanisen värähdinmuuttajan, kaasut näyte- ja vertailukennon läpi johtavan pumpun ja kahden ilmaisimen käyttöä. Siten, kun nämä tekijät otetaan huomioon, Miyazakin keksintö ei tule 5 yksinkertaisuudessaan ja tehokkuudessaan lähellekään esillä olevaa keksintöä.j'-30 t »v • · ·: Miyazaki's patented system belongs to the conventional. · 1. ·, NDIR gas measurement system. Unless!.! incoming radiation would be subject to multiple reflections in both the sample and reference cells, there would be no difference in M ·• .35 compared to a conventional NDIR system and thus no advantage. Miyazaki's solution still requires the use of a mechanical vibration converter, a pump for passing gases through a sample and reference cell, and two detectors. Thus, with these factors in mind, Miyazaki's invention, by its simplicity and efficiency, is nowhere near the present invention.

Japanilaisessa patenttijulkaisussa n:ro 63-298031(A) Fujimura selostaa suodattimen käyttöä, jota vaaditaan hänen keksinnös-10 sään, koska hänen järjestelmässään käytetty säteilylähde ja ilmaisimet on asetettu näytekammion sisään ja ne ovat siten alttiita näytteen aiheuttamalle likaantumiselle.In Japanese Patent No. 63-298031 (A), Fujimura describes the use of a filter required in his invention because the radiation source and detectors used in his system are placed inside a sample chamber and are thus susceptible to sample contamination.

US-patenttijulkaiusssa n:ro 4 499 379, myönnetty 12. helmi-15 kuuta 1985 Miyatake et al'ille, ja US-patenttijulkaisussa n:ro 4 501 968, myönnetty 26. helmikuuta 1985 Ebi et al'ille selostetaan kaasuanalysaattori varustettuna kuumennetulla näytekaasusäiliöllä, joka sisältää näytekaasua lämpötilassa, jossa pitoisuudeltaan määritettävä komponentti lähettää in-20 frapunasäteilyä ominaisaallonpituudella. Tämä kaasuanalysaattori toimii_emissioperiaatteen mukaisesti eikä ole tyypiltään ·.·. ei-dispergoiva infrapuna-adsorptioanalysaattori. Näytekennon seinässä oleva kuumennin kuumentaa näytekaasun suuruudeltaan • · . vähintään 100 °C oleviin lämpötiloihin kaasun saamiseksi lä-U.S. Patent No. 4,499,379, issued Feb. 12, 1985 to Miyatake et al., And U.S. Patent No. 4,501,968, issued February 26, 1985 to Ebi et al., Disclose a gas analyzer with a heated sample gas reservoir. , containing sample gas at a temperature at which the component to be determined emits in-20 rays of radiation at a specific wavelength. This gas analyzer operates according to the emission principle and is not of the type. a non-dispersive infrared adsorption analyzer. The heater in the sample cell wall heats the sample gas to • ·. at temperatures of at least 100 ° C to obtain gas

• M• M

.* .25 hettämään infrapunasäteilyä. Tämän sanotaan lisäävän kaasu- * * · i.;* näytteestä tulevaa säteilyä vähentäen samalla taustasäteilyä • · · Λ J .* kaasusta tulevan säteilyn suhteen. Näytekennon sisäpinnan • · · : kerrotaan olevan peilipinta, mutta nämä patenttijulkaisut eivät anna mitään syytä siihen. Koska itse kaasu muodostaa : ’[SO säteilylähteen, joka on isotrooppinen, eivät kammion seinät :*·*: ilmeisestikään ohjaa säteilyä millään käyttökelpoisella ta- valla.. * .25 emit infrared radiation. This is said to increase the radiation of the gas * * · i.; * From the sample while reducing the background radiation • · · Λ J. * With respect to the radiation from the gas. The inner surface of the sample cell • · · is said to be a mirror surface, but these patents give no reason for it. Because the gas itself forms: '[SO a radiation source which is isotropic, the walls of the chamber: * · *: obviously do not direct the radiation in any useful way.

« · • · « • » · *·”’ US-patenttijulkaisussa n:ro 3 966 439, myönnetty 29. kesäkuu- ί"·*35 ta 1976 Vennosille, selostetaan juoksevan väliaineen kokoa-• · 5 105595 mislaite, joka sisältää pumpun ja jota käytetään keräämään näytteitä ilmassa, tehtaissa, voimalaitokisa, kaivoksissa jne. olevasta ilmasta.U.S. Patent No. 3,966,439, issued Jun. 29, 1976 to Vennos, discloses a fluid medium assembly device including a pump. and used to collect samples of air in the air, factories, power plant races, mines, etc.

5 Vennos ei ole kiinnostunut infrapunasäteilyn lähettämisestä kaasunäytteen läpi sen pitoisuuden määrittämiseksi, ja siten Vennosin suodatusjärjestelmä ei ole luonteeltan analoginen.5 Vennos is not interested in transmitting infrared radiation through a gas sample to determine its concentration, and thus the Vennos filtration system is not analogous in nature.

Samalla tavoin US-patenttijulkaisussa n:ro 4 947 578, myön-10 netty 14. elokuuta 1990 Anderson et al'ille, selostetaan valvottu päästöjärjestelmä hyönteismyrkkyä varten. Tässä patentissa hyönteisiä puoleensa vetävän höyryn annetaan hajaantua kalvon läpi. Koska huokoskoon määrittää haluttu pääs-tönopeus, ei Anderson et ai'in patentissa esiintyvä kalvon 15 käyttö ole analoginen esillä olevan keksinnön kanssa.Similarly, U.S. Patent No. 4,947,578, issued August 14, 1990 to Anderson et al., Discloses a controlled release system for an insecticide. In this patent, the vapor attracting insects is allowed to diffuse through the membrane. Because the pore size is determined by the desired release rate, the use of film 15 in the patent of Anderson et al. Is not analogous to the present invention.

Keksinnön selostusDESCRIPTION OF THE INVENTION

Esillä olevan keksinnön mukaisen kaasunäytekammion ensimmäisenä tarkoituksena on toimia valoputkena säteilyn siirtä-20 miseksi tehokkaasti kaasunäytteen läpi ilmaisimeen.The first object of the gas sample chamber of the present invention is to serve as a light tube for efficiently transferring radiation through the gas sample to the detector.

Esillä olevan keksinnön mukaisen kaasunäytekammion toisena · tarkoituksena on pitää valikoivasti suuruudeltaan yli 0,1 . mikronia olevat savu- ja pölyhiukkaset poissa näytekammiosta, 1· .125 niin että ne eivät aiheuta virhettä mitattavan kaasun pitoi- « i · ·’ suusmittauksen yhteydessä ja sallivat samalla kaasumolekyyli- • i « Λ • ·1 en vapaan tulon näytekammioon ja poistumisen siitä.Another purpose of the gas sample chamber of the present invention is to selectively hold above 0.1. microns of smoke and dust particles are removed from the sample chamber, 1 · 125, so that they do not cause error in the measurement of the concentration of the gas being measured, while allowing the free entry and exit of the gas molecule into the sample chamber.

• t · • · · • · «• t · • · · • ««

Keksinnön erään suositeltavan sovellutusmuodon mukaisesti :**]S0 näytekammion sisäänpäin oleva seinä on varustettu peilimäi-:1·1: sellä heijastavalla pinnalla, joka toimii valoputkena johtaen • \t pitkänomaisen näytekammion yhteen päähän säteilylähteestä • · · lähetetyn säteilyn näytekammion toiseen päähän asetettuun ilmaisimeen.According to a preferred embodiment of the invention: **] S0, the inward wall of the sample chamber is provided with a reflective surface which acts as a light tube, leading to one end of the elongated sample chamber from the radiation source to the other end of the transmitted radiation sample chamber.

•'35 • » · 6 105595• '35 • »· 6 105595

Esillä olevan keksinnön mukaisesti kammion seinä on varustettu myös aukolla, joka on peitetty puoliläpäisevällä kalvoker-roksella, joka estää suuruudeltaan ylii 0,1 mikronia olevien hiukkasten pääsyn kammioon.According to the present invention, the chamber wall is also provided with an aperture covered with a semipermeable film layer that prevents particles having a size greater than 0.1 microns from entering the chamber.

55

Keksinnön eräänä lisätarkoituksena on saada aikaan kaa-sunäytekammio, jonka yhteydessä kaasujen tai höyryjen tiivistyminen näytekammion sisäänpäin oleviin seiniin voidaan estää.A further object of the invention is to provide a gas sample chamber whereby the condensation of gases or vapors on the inward walls of the sample chamber can be prevented.

1010

Keksinnön erään suositeltavan sovellutusmuodon mukaisesti käytössä ovat välineet näytekammion kuumentamiseksi siten, että sen lämpötila ylittää minkä tahansa kaasun tai höyryn kastepisteen, joka saattaa tiivistyä näytekammion sisäsei-15 niin.In accordance with a preferred embodiment of the invention, means are provided for heating the sample chamber so that its temperature exceeds the dew point of any gas or vapor that may condense inside the sample chamber.

Keksinnölle luonteenomaiset uudet ominaispiirteet sekä organisaation että käyttömentelmän suhteen yhdessä keksinnön tarjoamien lisäkohteiden ja -etujen kanssa käyvät havainnol-20 lisemmin ilmi seuraavasta yksityiskohtaisesta selostuksesta oheisiin piirustuksiin viitaten.The novel features of the invention, both in terms of organization and method of operation, together with the additional objects and advantages provided by the invention, will become more apparent from the following detailed description with reference to the accompanying drawings.

a a f « • · a aa a f «• · a a

Piirustusten lyhyt kuvausBrief Description of the Drawings

I I II I I

^ . Kuvio 1 esittää sivupystykuvantoa näyttäen esillä olevan^. Figure 1 is a side elevational view showing the present

• M• M

,1 .*25 keksinnön mukaisen kaasuanalysaattorin pääosat; • · * • · f · • · · * • · · λ : ·' Kuvio 2 esittää kaaviota, joka näyttää säteilyn tyypillisen V * kulkuväylän kaasunäytekammion kautta; ja I 'e:30 Kuvio 3 esittää jaksottaista poikkileikkauskuvantoa esillä olevan keksinnön erään suositeltavan sovellutusmuodon mukai- • sesta kaasunäytekammiosta., 1. * 25 main parts of a gas analyzer according to the invention; Figure 2 shows a diagram showing a typical V * path of radiation through a gas sample chamber; and I 'e: Figure 3 is a sectional cross-sectional view of a gas sample chamber in accordance with a preferred embodiment of the present invention.

§ · · • | I · I ? ·§ · · • | I · I? ·

Keksinnön paras toteuttamismuoto :·’35 Kuten kuviosta 1 näkyy, kaasuanalysaattori sisältää lähdekam- ta 105595 7 mion 12, jossa on säteilylähde. Tämä säteilylähde voi käsittää pienen hehkulampun ja säteilynä voi olla näkyvä valo ja/tai lampun aikaansaama infrapunasäteily. Lähdekammio 12 on liitetty kaasunäytekammioon 10, joka sisältää analysoitavan 5 kaasunäytteen, kyseisen kaasukomponentin pitoisuuden määrittämistä varten. Lähdekammiosta 12 tuleva säteily 12 kulkee kaasunäytekammiossa 10 olevan kaasunäytteen kautta ja sen jälkeen säteily kohdistuu ilmaisinkammioon 14 asetettuun ilmaisimeen. Tämä ilmaisin muodostaa sähkösignaalin, joka edus-10 taa siihen tulevan säteilyn voimakkuutta. Laitteen herkkyyden lisäämiseksi on yleisesti tunnettua asettaa kapea kaistan-päästösuodatin optiseen väylään ilmaisimen eteen, niin että ilmaisin vastaanottaa pääasiassa sellaisella aallonpituudella olevaa säteilyä, jonka pitoisuudeltaan määritettävä kaasu 15 imee voimakkaasti itseensä. Ilmaisimen synnyttämä sähkösig-naali lähetetään elektroniseen piiriin 15, joka muuttaa se kyseisen kaasun pitoisuutta edustavaksi signaaliksi.Best Mode for Carrying Out the Invention: As shown in Figure 1, the gas analyzer includes a source chamber 105595 7 mion 12 having a radiation source. This radiation source may comprise a small incandescent lamp and the radiation may be visible light and / or infrared radiation produced by the lamp. The source chamber 12 is connected to a gas sample chamber 10 containing a gas sample to be analyzed for determining the concentration of the gas component in question. The radiation 12 from the source chamber 12 passes through the gas sample in the gas sample chamber 10 and thereafter the radiation is directed to the detector positioned in the detector chamber 14. This detector generates an electrical signal that represents the intensity of the incident radiation. In order to increase the sensitivity of the device, it is generally known to place a narrow bandpass filter on an optical path in front of the detector so that the detector receives radiation at a wavelength substantially absorbed by the gas 15 to be determined. The electrical signal generated by the detector is transmitted to the electronic circuit 15, which converts it into a signal representative of the concentration of the gas in question.

Kuvio 2 esittää optista kaaviota näyttäen optisen väylän, 20 jonka tyypillinen lähteestä 16 tuleva säde valitsee tullessaan moninkertaisesti heijastetuksi kulkiessaan alaspäin \\ kaasunäytekammiota pitkin ja osuessaan lopulta ilmaisimeen 20.Fig. 2 is an optical diagram showing an optical path 20 selected by a typical beam from source 16 as it is multiplexed as it travels down the gas sample chamber and finally hits the detector 20.

< < I<<I

4 4 • 4 · 4 « · .*25 Kuvio 3 esittää jaksottaista poikkileikkausta kaasunäytekam- * · · \m \ .rjiosta. Kaasunäytekmmion runko käsittää pitkänomaisen onton • · · • ·* putken 21, jonka sisäpinta 22 on peilimäisesti heijastava.4 4 • 4 · 4 «·. * 25 Figure 3 shows an intermittent cross-section of a gas sample chamber. The body of the gas sample chamber comprises an elongated hollow tube 21 · whose inner surface 22 is mirror-reflective.

*.· * Suositeltavassa sovellutusmuodossa tämä pinta 22 muodostaa yhtenäisen osan putken 21 seinää, kun taas eräässä vaihtoeh- • · t j 't!30 toisessa sovellutusmuodosssa tämä pinta voi käsittää peili-mäisesti heijastavan päällystyskerroksen.In a preferred embodiment, this surface 22 forms an integral part of the wall of the tube 21, while in another embodiment, this surface may comprise a mirror-reflecting coating.

« 4 4 4 % 4 • 4 · M Pitkänomainen ontto putki 21 sisältää ainakin yhden aukon, kuten aukon 24. Nämä aukot sallivat ympäristöilman tulemisen :’·’:35 näytekammioon ja poistumisen siitä. Ei ole kuitenkaan suota- • 4 8 105595 vaa, että pöly- ja savuhiukkaset pääsisivät tunkeutumaan kammioon vapaasti, ja tätä varten aukko 24 on peitetty puoli-läpäisevästä kalvosta tehdyllä levyllä, joka estää kooltaan yli 0,1 mikronia olevien hiukkasten tunkeutumisen. Korkeiden 5 diffuusionopeuksien aikaansaamiseksi kooltaan alle 0,1 mikronia olevia hiukkasia varten tämän puoliläpäisevän kalvolevyn 28 on oltava sangen ohut, ja siten se on tuettu tukiverkkoon 26. Suositeltavassa sovellutusmuodossa puoliläpäisevä kalvo on tehty silikonikumista.The elongated hollow tube 21 includes at least one orifice, such as orifice 24. These openings allow ambient air to enter and exit the sample chamber, "·": 35. However, it is not desirable to allow dust and smoke particles to penetrate the chamber freely, and for this purpose, the aperture 24 is covered with a sheet of semipermeable film that prevents particles larger than 0.1 micron in size. In order to provide high diffusion rates for particles of less than 0.1 microns in size, this semipermeable membrane sheet 28 must be quite thin and thus supported on a support screen 26. In a preferred embodiment, the semipermeable membrane is made of silicone rubber.

1010

Koska kaasunäytekammio on täytetty aina kaasulla, on olemassa mahdollisuus, että ympäristölämpötilan laskiessa riittävästi vesihöyryä tai jotain muuta kaasua tiivistyy nestemäiseen tilaan ja kerrostuu pienten pisaroiden muodossa peilimäisesti 15 heijastavalle pinnalle 22 sekä ilmaisimeen 20. Tämä häiritsisi peilimäistä heijastusta, jota tarvitaan näytekammion toimintaa varten, ja johtaisi virheellisiin tuloksiin.Because the gas sample chamber is always filled with gas, there is a possibility that when the ambient temperature drops, enough water vapor or other gas will condense into the liquid space and deposit in the form of tiny droplets on the reflective surface 22 and detector 20. This would interfere with the mirror reflection. incorrect results.

Tämän estämiseksi suositeltavassa sovellutusmuodossa käyte- 20 tään kuumenninlankaa 30 kaasunäytekammiossa 10. Termistori 32 mittaa näytekammion seinän lämpötilan. Sekä termistori että kuumenninlanka on liitetty kuumwennninvalvontapiiriin 34, t·;·, joka käsittää servoelimen, joka toimii yleisesti tunnetulla * « · . tavalla pitäen näytekammion asetuslämpötilassa.To prevent this, in a preferred embodiment, the heating wire 30 is used in the gas sample chamber 10. The thermistor 32 measures the temperature of the sample chamber wall. Both the thermistor and the heater wire are connected to a heater control circuit 34, t ·; ·, which comprises a servo element operating in a generally known manner. keeping the sample chamber at the set temperature.

• H• H

* *25 M I ^ • · f jt ·* Edellä on siten selostettu kaasunäytekammio pitkänomaisen « · · ' ·' putkimaisen elimen muodossa, joka on varustettu peilimäisesti ·«· V · heijastavalla sisäpinnalla, joka johtaa säteilyn kaasun läpi ilmaisimesta lähteeseen. Pöly- ja savuhiukkaset pidetään :**[30 poissa näytekammiosta puoliläpäisevän kalvolevyn avulla, joka peittää näytekammion putkimaisessa seinässä olevat aukot.The gas sample chamber described above is in the form of an elongated tubular member provided with a mirror-like reflective inner surface that transmits radiation through the gas to the source. The dust and smoke particles are held: ** [30 out of the sample chamber by means of a semipermeable membrane plate which covers the openings in the tubular wall of the sample chamber.

* Näytekammion seinää voidaan kuumentaa kaasumaisten komponent- I I « tien tiivistymisen estämiseksi kammioon, ja suositeltavassa* The wall of the sample chamber may be heated to prevent condensation of gaseous components into the chamber, and

J JJ J

·;' sovellutusmuodossa ennalta asetettu lämpötila pidetään yllä :'·'35 servoelimen avulla.·; ' in the embodiment, the preset temperature is maintained: '· '35 by means of a servo element.

• · « • · 9 105595• · «• · 9 105595

Teolliset käyttösovellutuksetIndustrial applications

Esillä olevan keksinnön mukaista parannettua kaasunäytekam-miota voidaan käyttää erityisesti komponenttiosana ilmai-sinanturissa, joka mittaa ilmassa olevan hiilidioksidin pi-5 toisuuden. Tämän parannetun kaasunäytekammion käyttö lisää suuresti anturin herkkyyttä ja reaktionopeutta tehden siitä käyttökekpoisen valinnan tulipalojen ilmaisemiseksi ja käyttöä varten tuuletusjärjestelmissä, joissa hiilidioksidin pitoisuutta valvotaan.The improved gas sample chamber of the present invention can be used, in particular, as a component in a detector sensor that measures the carbon dioxide concentration in the air. The use of this enhanced gas sample chamber greatly increases the sensitivity and response rate of the sensor, making it a usable choice for fire detection and use in ventilated systems that control carbon dioxide.

10 • 1 • 9 » 9 9 1 · I I < Ψ 1 · w I 4 Ψ 9 9 • 1 · • · H » I · • · • » ·· 1 V · 9 • « * « • « · I « 1 4 · 1 • f ♦ · : 1 ί ♦ 1 *·« * · · » i · « « f · # · · • « • · « I · • I *9 f »» 1 • # · • · « ♦ «10 • 1 • 9 »9 9 1 · II <Ψ 1 · w I 4 Ψ 9 9 • 1 · • · H» I · • • • · · · 1 V · 9 • «*« • «· I« 1 4 · 1 • f ♦ ·: 1 ί ♦ 1 * · «* · ·» i · «« f · # · · • «• ·« I · • I * 9 f »» 1 • # · • · «♦ «

Claims (2)

1. En gasp.rovkammare som effektivt leder straining frän en källa igenom gasprovet, varvid nämnda gasprovkammare är , kännetecknad av: tv. ett längsträckt ihäligt rör, som bestär av ett gastätt material och som har en inatvättande spegellikt reflekterande yta, vilken leder den vid ena ändan av nämnda langsträckta ihäliga rör införda stralningen tili den andra ändan med hög effektivitet med tillhjälp av en mängfald av reflektioner frän nämnda inatvättande spegellikt reflekterande yta, varvid delar av nämnda langsträckta ihäliga rör definierar ätminsto-ne en öppning omedelbart invid ändorna av nämnda längsträck-ta ihäliga rör; en hinna av en halvgenomtränglig membran spänd över nämnda ätminstone ena öppning, varvid nämnda hinna tilläter luffbur-na partiklar mindre än 0,1 mikroner att diffunderas igenom den tili utrymmet inne i nämnda längsträckta ihäliga rör och hindrarvluftburna partiklar större än 0,1 mikroner frän att inträda i nämnda utrymme.A gas sample chamber which effectively conducts straining from a source through the gas sample, said gas sample chamber being, characterized by: television. an elongated hollow tube consisting of a gas-tight material and having an inward-washing mirror-like reflective surface which conducts the radiation introduced at one end of said elongated hollow tube to the other end with high efficiency with the aid of a plurality of reflections from said inward-washing mirror-like reflective surface, wherein portions of said elongated hollow tubes define the dining means an opening immediately adjacent the ends of said elongated hollow tubes; a membrane of a semi-permeable membrane spanned over said at least one aperture, said membrane allowing the airborne particles less than 0.1 microns to diffuse through the space into said elongated hollow tubes and obstructing airborne particles greater than 0.1 microns entry into said space. 2. Prövgaskammaren enligt patentkravet 1 dessutom k ä n - • · ·’·1 netecknad av organ för att uppvärma nämnda spegel-# · ’ likt ref lekterande yta tili en temperatur över gasprovets daggpunkt för att hindra kondensation pä nämnda spegellikt • · · • reflekterande yta. • · · » · • · . 1 • « Λ « ·« • · · * · · ·« · » i · » · • · • · · • · · # « · * • « · »aa • · · » 9 • · • · · · • · m § · # · m ·2. The sampling chamber according to claim 1 further comprises - · · · 1 non-signed by means for heating said mirror-like reflecting surface at a temperature above the dew point of the gas sample to prevent condensation on said mirror lamp. reflective surface. • · · »· • ·. 1 • «Λ« · «· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 · M § · # · m ·
FI933298A 1990-04-02 1993-07-22 Improved gas sampling chamber FI105595B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US50321690 1990-04-02
US07/503,216 US5060508A (en) 1990-04-02 1990-04-02 Gas sample chamber
PCT/US1991/008822 WO1993011418A1 (en) 1990-04-02 1991-11-25 Improved gas sample chamber
US9108822 1991-11-25

Publications (3)

Publication Number Publication Date
FI933298A0 FI933298A0 (en) 1993-07-22
FI933298A FI933298A (en) 1993-08-13
FI105595B true FI105595B (en) 2000-09-15

Family

ID=24001190

Family Applications (1)

Application Number Title Priority Date Filing Date
FI933298A FI105595B (en) 1990-04-02 1993-07-22 Improved gas sampling chamber

Country Status (11)

Country Link
US (2) US5060508A (en)
EP (1) EP0568549B1 (en)
JP (1) JP2895229B2 (en)
AT (1) ATE154128T1 (en)
AU (1) AU658855B2 (en)
CA (1) CA2101082C (en)
DE (1) DE69126443T2 (en)
DK (1) DK0568549T3 (en)
FI (1) FI105595B (en)
NO (1) NO308332B1 (en)
WO (1) WO1993011418A1 (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060508A (en) * 1990-04-02 1991-10-29 Gaztech Corporation Gas sample chamber
US5341214A (en) * 1989-09-06 1994-08-23 Gaztech International Corporation NDIR gas analysis using spectral ratioing technique
US5222389A (en) * 1990-04-02 1993-06-29 Gaztech International Corporation Multi-channel gas sample chamber
US5340986A (en) * 1991-11-18 1994-08-23 Gaztech International Corporation Diffusion-type gas sample chamber
SE468782B (en) * 1992-01-03 1993-03-15 Artema Mecical Ab gas analyzer
US5384640A (en) * 1993-01-19 1995-01-24 Gaztech International Corporation Gas sample chamber for use with a source of coherent radiation
US5414264A (en) * 1993-04-16 1995-05-09 Gaztech International Corporation Enhanced pathlength gas sample chamber
US5767776A (en) * 1996-01-29 1998-06-16 Engelhard Sensor Technologies, Inc. Fire detector
US6107925A (en) * 1993-06-14 2000-08-22 Edwards Systems Technology, Inc. Method for dynamically adjusting criteria for detecting fire through smoke concentration
US5592147A (en) * 1993-06-14 1997-01-07 Wong; Jacob Y. False alarm resistant fire detector with improved performance
FR2712390B1 (en) * 1993-11-12 1996-02-09 Saphir Gas detection device by infrared absorption.
US5363199A (en) * 1994-01-14 1994-11-08 Victor Bruce H Smoke opacity detector
US5747808A (en) * 1994-02-14 1998-05-05 Engelhard Sensor Technologies NDIR gas sensor
US5444249A (en) * 1994-02-14 1995-08-22 Telaire Systems, Inc. NDIR gas sensor
US5464983A (en) * 1994-04-05 1995-11-07 Industrial Scientific Corporation Method and apparatus for determining the concentration of a gas
US5428222A (en) * 1994-04-06 1995-06-27 Janos Technology Inc. Spectral analyzer with new high efficiency collection optics and method of using same
USRE36489E (en) * 1994-04-06 2000-01-11 Janos Technology Inc. Spectral analyzer with new high efficiency collection optics and method of using same
US5394934A (en) * 1994-04-15 1995-03-07 American Standard Inc. Indoor air quality sensor and method
US5502998A (en) * 1994-04-25 1996-04-02 The Procter And Gamble Company Device and method for the simulation of samples of airborne substances
US5578829A (en) * 1994-05-23 1996-11-26 Texas Instruments Incorporated On-line monitor for moisture contamination in HCL gas and copper contamination in NH4 OH solutions
WO1996001418A1 (en) * 1994-07-05 1996-01-18 Telaire Systems, Inc. Ndir gas analysis using spectral ratioing technique
DE4424909A1 (en) * 1994-07-14 1996-01-18 Siemens Ag Method and device for locating pollutant accumulations
US5453620A (en) 1994-08-12 1995-09-26 Texas Instruments Incorporated Nondispersive infrared gas analyzer and gas sample chamber used therein
DE4438244C1 (en) * 1994-10-26 1996-03-07 Frobenius Wolf Dietrich Prof D Gas component concn. in mixture measuring appts. for esp. carbon dioxide in atmos.
US5475222A (en) * 1994-12-05 1995-12-12 Detector Electronics Corporation Ruggedized gas detector
DE29505014U1 (en) * 1995-03-24 1996-08-01 Mußeleck, Jörg, Dipl.-Ing., 21037 Hamburg Low cost multi-channel gas analyzer
DE19512126C1 (en) * 1995-04-04 1996-09-05 Hekatron Gmbh Gas or aerosol detector, using photoreceivers and parabolic mirrors
US5650624A (en) * 1995-04-13 1997-07-22 Engelhard Sensor Technologies, Inc. Passive infrared analysis gas sensor
US5721430A (en) * 1995-04-13 1998-02-24 Engelhard Sensor Technologies Inc. Passive and active infrared analysis gas sensors and applicable multichannel detector assembles
DE19520488C1 (en) * 1995-06-03 1996-09-05 Draegerwerk Ag IR absorption measuring device for detecting gas concentration
EP0773435A3 (en) 1995-07-21 1998-03-11 Texas Instruments Incorporated Method and devices for measuring radiation
US7119337B1 (en) * 1997-08-04 2006-10-10 Ion Optics, Inc. Infrared radiation sources, sensors and source combinations, and methods of manufacture
WO2000007411A1 (en) 1998-07-30 2000-02-10 Ion Optics, Inc. Infrared radiation sources, sensors and source combinations, and methods of manufacture
SE510549C2 (en) * 1995-11-13 1999-05-31 Hans Goeran Evald Martin Gas sensor
US5692822A (en) * 1995-11-29 1997-12-02 Minnesota Mining & Manufacturing Co. Uniform bi-directional dependent line light source via controlled partial reflection
DE19605054C2 (en) * 1996-02-12 1999-09-02 Palocz Andresen Multi-channel gas analyzer for the determination of gas components of a gas in compact form
AU2526697A (en) * 1996-03-05 1997-09-22 Michael S. Levine Holographic gas analyzer
DE19608604C2 (en) * 1996-03-06 1998-09-10 Conducta Endress & Hauser Gas analyzer and measuring cell for use in a gas analyzer
US5811812A (en) * 1996-11-01 1998-09-22 Andros, Incorporated Multiple-gas NDIR analyzer
US5933245A (en) * 1996-12-31 1999-08-03 Honeywell Inc. Photoacoustic device and process for multi-gas sensing
US5886348A (en) * 1997-02-14 1999-03-23 American Intell-Sensors Corporation Non-dispersive infrared gas analyzer with interfering gas correction
US6037592A (en) * 1997-02-14 2000-03-14 Underground Systems, Inc. System for measuring gases dissolved in a liquid
US5831524A (en) * 1997-04-29 1998-11-03 Pittway Corporation System and method for dynamic adjustment of filtering in an alarm system
US5869749A (en) * 1997-04-30 1999-02-09 Honeywell Inc. Micromachined integrated opto-flow gas/liquid sensor
US5936250A (en) * 1997-07-24 1999-08-10 General Monitors, Incorporated Ultraviolet toxic gas point detector
US6067840A (en) * 1997-08-04 2000-05-30 Texas Instruments Incorporated Method and apparatus for infrared sensing of gas
DE19743954C2 (en) * 1997-10-04 2000-10-12 Wwu Wissenschaftliche Werkstat Cold start measuring system for measuring the cold start emission
DE69829688T2 (en) 1997-10-28 2006-03-09 Edwards Systems Technology, Inc., Cheshire DIFFUSION NDIR GAS ANALYZER WITH CONVECTION FLOW
US6410918B1 (en) * 1997-10-28 2002-06-25 Edwards Systems Technology, Inc. Diffusion-type NDIR gas analyzer with improved response time due to convection flow
FR2767195A1 (en) * 1997-12-15 1999-02-12 Commissariat Energie Atomique Radiation absorption cell especially for IR spectrophotometric gas analyser
US6250133B1 (en) 1998-01-06 2001-06-26 Edwards Systems Technology, Inc. Method for detecting venting of a combustion appliance within an improper space
DE29802972U1 (en) 1998-02-20 1998-08-27 WWU Wissenschaftliche Werkstatt für Umweltmeßtechnik GmbH, 20459 Hamburg Gas measuring pen as a device for air monitoring in everyday use
US6201245B1 (en) * 1998-06-18 2001-03-13 Robert J. Schrader Infrared, multiple gas analyzer and methods for gas analysis
TW354647U (en) * 1998-06-29 1999-03-11 Ind Tech Res Inst Air sampler
TW354646U (en) 1998-06-29 1999-03-11 Ind Tech Res Inst Twin tube air sampler
US6229439B1 (en) 1998-07-22 2001-05-08 Pittway Corporation System and method of filtering
US6222456B1 (en) 1998-10-01 2001-04-24 Pittway Corporation Detector with variable sample rate
US6261851B1 (en) 1999-09-30 2001-07-17 International Business Machines Corporation Optimization of CMP process by detecting of oxide/nitride interface using IR system
SE522941C2 (en) * 2000-04-26 2004-03-16 Senseair Ab gas cell
US6469303B1 (en) 2000-05-17 2002-10-22 Rae Systems, Inc. Non-dispersive infrared gas sensor
EP1170583A1 (en) * 2000-06-06 2002-01-09 Stefano Tosi Non-dispersive infrared cell for gas analysis
DE10058469C1 (en) * 2000-11-24 2002-05-02 Draeger Safety Ag & Co Kgaa Robust, compact optical gas sensor, comprises reflective annular chamber promoting long, multiply-reflected circumferential beam path
GB2372099B (en) * 2001-02-08 2003-11-05 Status Scient Controls Ltd Gas sensor
DE20301081U1 (en) * 2002-05-24 2003-04-10 Dräger Safety AG & Co. KGaA, 23560 Lübeck Optical gas sensor
US6882426B1 (en) 2002-06-26 2005-04-19 Digital Control Systems, Inc. Gas sensor with slotted diffusive gas sample chamber
SE524900C2 (en) * 2002-07-22 2004-10-19 Senseair Ab Gas analyzing arrangements
GB2396405B (en) * 2002-12-05 2006-03-08 E2V Tech Uk Ltd Gas sensors
US7034304B2 (en) * 2003-07-25 2006-04-25 Honeywell International, Inc. Chamber for gas detector
ATE521881T1 (en) * 2003-12-19 2011-09-15 Medair Ab LIQUID OR GAS SENSOR AND METHOD
JP2005345146A (en) * 2004-05-31 2005-12-15 Tdk Corp Measuring instrument of concentration of carbon dioxide, method for measuring concentration of carbon dioxide and combustion device
DE102004030855A1 (en) * 2004-06-25 2006-01-12 Tyco Electronics Raychem Gmbh Method for reducing condensation in gas sensor arrangements
US7301640B2 (en) * 2004-12-21 2007-11-27 Honeywell International, Inc. System and method of condensation reduction in an electrical unit
US7358489B2 (en) * 2005-08-04 2008-04-15 Airware, Inc. Ultra low cost NDIR gas sensors
US7664607B2 (en) 2005-10-04 2010-02-16 Teledyne Technologies Incorporated Pre-calibrated gas sensor
US7214939B1 (en) 2005-11-21 2007-05-08 Airware, Inc. Ultra low power NDIR carbon dioxide sensor fire detector
US7259374B2 (en) * 2005-12-23 2007-08-21 Airware, Inc. Method for detecting a gas species using a super tube waveguide
US20080035848A1 (en) * 2005-12-23 2008-02-14 Wong Jacob Y Ultra-high sensitivity NDIR gas sensors
GB2449433B (en) * 2007-05-21 2009-12-09 Clairair Ltd Optical gas sensor
JP5187674B2 (en) * 2007-05-31 2013-04-24 独立行政法人石油天然ガス・金属鉱物資源機構 Sensor head for gas detection
US9215421B2 (en) 2008-03-18 2015-12-15 Avaya Inc. Open cable application platform (OCAP) and set-top box (STB)-based bill notification and payment application
JP5345333B2 (en) * 2008-03-31 2013-11-20 Hoya株式会社 Photomask blank, photomask and manufacturing method thereof
US20090300694A1 (en) 2008-05-30 2009-12-03 Avaya Technology Llc Open cable application platform (ocap) and set-top box (stb)-based calendering application
JP2010032374A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Inspection device of multilayered molded object
US8759767B2 (en) * 2008-08-21 2014-06-24 Lawrence Livermore National Security, Llc Combined raman and IR fiber-based sensor for gas detection
CN102473339B (en) 2009-07-07 2016-01-27 爱克斯崔里斯科技有限公司 Room regulates
US8272279B2 (en) * 2009-07-16 2012-09-25 Seer Technology, Inc. Systems and methods for chemical sampling in particulate laden gaseous environments
US8097856B2 (en) * 2009-08-21 2012-01-17 Airware, Inc. Super-miniaturized NDIR gas sensor
AU2010284205A1 (en) * 2009-08-21 2012-03-15 Airware, Inc. Absorption biased NDIR gas sensors
TW201107744A (en) * 2009-08-28 2011-03-01 Radiant Innovation Inc Measurement apparatus for gas concentration and method of the same
CN101672754B (en) * 2009-10-15 2011-05-04 大连理工大学 Laser processing gas-melt ratio detection device and method
US8365724B2 (en) * 2009-12-29 2013-02-05 General Electric Company Medical vaporizer and method of control of a medical vaporizer
GB201000756D0 (en) * 2010-01-18 2010-03-03 Gas Sensing Solutions Ltd Gas sensor with radiation guide
CN101979988B (en) * 2010-10-11 2012-04-25 陈文选 Analysis evaporator
US8178832B1 (en) * 2011-05-31 2012-05-15 Wong Jacob Y Re-calibration methodology for NDIR gas sensors
US9927365B2 (en) * 2011-10-21 2018-03-27 Ag Instruments Ltd. Gas analysers and a method of making a gas analyser
DE102012007561B4 (en) * 2012-04-14 2014-07-10 Dräger Safety AG & Co. KGaA Gas detection system
US9804084B2 (en) * 2013-11-11 2017-10-31 Amphenol Thermometrics, Inc. Optical gas sensor
JP2016536589A (en) * 2013-11-11 2016-11-24 アンフェノール サーモメトリックス インコーポレイテッドAmphenol Thermometrics, Inc. Optical gas sensor
CN106461552B (en) * 2014-10-17 2020-07-17 株式会社堀场制作所 Gas analysis device
FR3030041B1 (en) 2014-12-12 2017-12-22 Bertin Technologies Sa OPTICAL FILTERING DEVICE FOR DETECTING GAS
US10121673B2 (en) * 2015-08-19 2018-11-06 Industrial Technology Research Institute Miniaturize particulate matter detector and manufacturing method of a filter
CN106468648B (en) 2015-08-19 2019-09-10 财团法人工业技术研究院 Micro-particle detector and method for manufacturing screening element
CN110462377A (en) 2016-12-09 2019-11-15 新加坡国立大学 Gas sensor MEMS structure and its manufacturing method
EP3477275A1 (en) * 2017-10-25 2019-05-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Apparatus for the measurement of chemical activity coefficients of gas phase species in thermodynamic equilibrium with liquid phase
US10656080B2 (en) * 2018-07-06 2020-05-19 Asahi Kasei Microdevices Corporation Gas detection apparatus
EP3599455B1 (en) * 2018-07-27 2022-03-23 Heraeus Quarzglas GmbH & Co. KG Device and method for detecting particles
DE102019210163A1 (en) * 2019-07-10 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTICAL MEASURING ARRANGEMENT AND GAS SENSOR WITH THE SAME
KR102267044B1 (en) * 2019-12-11 2021-06-18 주식회사 태성환경연구소 Carbon dioxide gas sensor using non-dispersive infrared
WO2023277913A1 (en) * 2021-06-30 2023-01-05 Halliburton Energy Services, Inc. Gas detection integration into a gas extractor
US11804118B2 (en) * 2022-03-01 2023-10-31 Honeywell International Inc. Aspirating smoke detector discreet sample point

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH546989A (en) * 1972-12-06 1974-03-15 Cerberus Ag METHOD AND DEVICE FOR FIRE NOTIFICATION.
US3893601A (en) * 1973-05-14 1975-07-08 Samuel J Winslow Spout construction
US3950980A (en) * 1974-03-27 1976-04-20 Minnesota Mining And Manufacturing Company Vapor sampling device
US3966439A (en) * 1974-11-11 1976-06-29 Vennos Spyros Lysander N Fluid sampling device
US4155247A (en) * 1977-05-02 1979-05-22 Westinghouse Electric Corp. Multi-part gas sampler
US4235097A (en) * 1979-03-27 1980-11-25 E. I. Du Pont De Nemours And Company Dosimeter for measuring gaseous contaminants
JPS5633551U (en) * 1979-08-23 1981-04-02
JPS59173734A (en) * 1983-03-23 1984-10-01 Mitsubishi Heavy Ind Ltd Infrared-ray gas analysis meter
US4554721A (en) * 1983-09-26 1985-11-26 Combustion Engineering, Inc. Method of manufacturing a wear resistant pipe
JPS60105946A (en) * 1983-11-15 1985-06-11 Fuji Electric Corp Res & Dev Ltd Infrared gas analyzer
JPS60105947A (en) * 1983-11-15 1985-06-11 Fuji Electric Corp Res & Dev Ltd Infrared gas analyzer
JPS61155757U (en) * 1985-03-20 1986-09-27
US4749276A (en) * 1986-01-23 1988-06-07 Mcdonnell Douglas Corporation Long path absorption cell
US4709150A (en) * 1986-03-18 1987-11-24 Burough Irvin G Method and apparatus for detecting gas
JPS62280638A (en) * 1986-05-30 1987-12-05 Showa Denko Kk Gas concentration detection cell
US4800272A (en) * 1987-03-04 1989-01-24 New York University Environmental gamma-ray and radon detector
JPS63298031A (en) * 1987-05-29 1988-12-05 Fujitsu Ten Ltd Outside air fouling detector
JPS63304133A (en) * 1987-06-05 1988-12-12 Hitachi Ltd Analyzer using mixed gas
US4946092A (en) * 1987-11-06 1990-08-07 Nagron Precision Tooling B.V. Method for arranging a through-channel in a solid body, and the body obtained with this method
US4947570A (en) * 1988-12-22 1990-08-14 Wesco Promotions, Inc. Display unit
US4947578A (en) * 1989-06-16 1990-08-14 Ecolab Inc. Controlled release system for insect attractant
US5060508A (en) * 1990-04-02 1991-10-29 Gaztech Corporation Gas sample chamber

Also Published As

Publication number Publication date
US5060508A (en) 1991-10-29
NO932669D0 (en) 1993-07-23
JP2895229B2 (en) 1999-05-24
CA2101082A1 (en) 1993-05-26
CA2101082C (en) 1997-02-04
ATE154128T1 (en) 1997-06-15
WO1993011418A1 (en) 1993-06-10
NO308332B1 (en) 2000-08-28
JPH05508929A (en) 1993-12-09
US5163332A (en) 1992-11-17
AU9119891A (en) 1993-06-28
NO932669L (en) 1993-07-23
AU658855B2 (en) 1995-05-04
DK0568549T3 (en) 1997-09-22
FI933298A (en) 1993-08-13
EP0568549A4 (en) 1994-11-17
FI933298A0 (en) 1993-07-22
DE69126443D1 (en) 1997-07-10
EP0568549B1 (en) 1997-06-04
EP0568549A1 (en) 1993-11-10
DE69126443T2 (en) 1998-01-22

Similar Documents

Publication Publication Date Title
FI105595B (en) Improved gas sampling chamber
US5222389A (en) Multi-channel gas sample chamber
EP0634009B1 (en) Improved diffusion-type gas sample chamber
US4740086A (en) Apparatus for the photoacoustic detection of gases
JP2622430B2 (en) Analysis method
US5468961A (en) Infrared gas analyser and humidity sensor
US20040175837A1 (en) Compact opto-fluidic chemical sensor
KR970701341A (en) IMPROVED NDIR GAS SENSOR
FI95322C (en) Spectroscopic measuring sensor for analyzing media
CA2199336A1 (en) A gas analyser
US6368560B1 (en) Photometric gas detection system and method
GB2262338A (en) Infra red gas detector
GB2358245A (en) Photo-acoustic gas sensor
WO1996001418A1 (en) Ndir gas analysis using spectral ratioing technique
EP0536978A1 (en) Humidity sensors
TODA et al. Measurement of atmospheric hydrogen sulfide by continuous flow fluorometry
JP2691374B2 (en) Concentration measuring device
JPS61108947A (en) Optical gas analyzer

Legal Events

Date Code Title Description
MA Patent expired