ES2963699T3 - Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica - Google Patents

Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica Download PDF

Info

Publication number
ES2963699T3
ES2963699T3 ES19817956T ES19817956T ES2963699T3 ES 2963699 T3 ES2963699 T3 ES 2963699T3 ES 19817956 T ES19817956 T ES 19817956T ES 19817956 T ES19817956 T ES 19817956T ES 2963699 T3 ES2963699 T3 ES 2963699T3
Authority
ES
Spain
Prior art keywords
flange
section
elements
shear web
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES19817956T
Other languages
English (en)
Inventor
Jonathan Smith
Robert Charles Preston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Application granted granted Critical
Publication of ES2963699T3 publication Critical patent/ES2963699T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/302Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6015Resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Un método para formar una sección (36) de brida de alma de corte de pala de turbina eólica mediante moldeo por transferencia de resina comprende proporcionar un conjunto de molde (84) que comprende una superficie de molde (86) que define una cavidad de molde y disponer una pluralidad de elementos de brida alargados (46) con la superficie del molde en una matriz (80) de manera que los elementos de brida estén colocados uno encima de otro con el primer y segundo extremo longitudinal (56,60) de cada elemento de brida desplazado longitudinalmente de los respectivos primeros y segundos extremos longitudinales de un elemento de brida vecino para formar una porción cónica (58, 62) en cada uno de un primer y segundo extremo longitudinal de la sección de brida (36). El método comprende además inyectar resina en la cavidad del molde y curar el conjunto de elementos de brida en una matriz de resina para formar una sección de brida curada que tiene una construcción laminada. (Traducción automática con Google Translate, sin valor legal)

Description

DESCRIPCIÓN
Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica
Campo técnico
La presente invención se refiere en general a palas de turbinas eólicas y, más específicamente, a una pestaña de un alma de cizallamiento de pala de turbina eólica.
Antecedentes
Las palas de las turbinas eólicas modernas comprenden una carcasa exterior que define el contorno aerodinámico de la pala. Normalmente, una o más almas de cizallamiento están dispuestas dentro de la carcasa exterior. Las almas de cizallamiento son estructuras que se extienden longitudinalmente y comprenden un panel con pestañas superiores e inferiores que se extienden a lo largo de los bordes longitudinales del panel. Estas pestañas se utilizan para unir el alma de cizallamiento a tapas de larguero de soporte de carga opuestas que pueden estar integradas dentro de la estructura de carcasa o unidas a una superficie interna de la carcasa.
En la solicitud PCT WO2016/177375A1 del solicitante se describe un ejemplo de una pestaña de alma de cizallamiento conocida. La pestaña tiene sustancialmente forma de T en sección transversal y comprende un montante que se extiende transversalmente con respeto a una base. Como se describe en esta solicitud, el uso de pestañas de alma de cizallamiento prefabricadas simplifica el proceso de fabricación de un alma de cizallamiento porque permite usar herramientas y procesos de moldeo de alma de cizallamiento relativamente simples, y además evita la necesidad de unión posterior de pestañas de retorno.
Las pestañas en forma de T descritas en el documento WO2016/177375A1 se forman mediante un proceso de pultrusión, en el que las fibras recubiertas de resina se estiran a través de una matriz de pultrusión en forma de T. El proceso de pultrusión requiere necesariamente que una proporción significativa de las fibras se extienda en paralelo a la longitud de las pestañas (es decir, en la dirección de 0°). Sin embargo, las fibras de 0° en estas pestañas sometidas a pultrusión pueden impartir en algunos casos un nivel de rigidez longitudinal indeseablemente alto a las pestañas. Si la rigidez longitudinal de las pestañas es demasiado alta, una parte de las cargas de flexión pueden ser soportadas por las pestañas en lugar de por las tapas de los largueros. Por lo tanto, es deseable reducir o evitar el uso de fibras de 0° orientadas longitudinalmente en las pestañas de alma de cizallamiento.
Una pestaña de alma de cizallamiento se puede dividir en secciones de pestaña longitudinales para acomodar la torsión de la pala resultante de la geometría variable de una pala de turbina eólica a lo largo de su longitud. La división de la pestaña de alma de cizallamiento en secciones de pestaña longitudinales también ayuda en el transporte de los componentes antes del montaje final para completar la pala de la turbina eólica. Al fabricar un alma de cizallamiento, las secciones de pestaña se disponen extremo con extremo. La figura 1 muestra una primera y una segunda secciones de pestaña 500a, 500b de alma de cizallamiento conocidas con sus ejes longitudinales A-A alineados antes de unirse extremo con extremo para formar parte de una pestaña de alma de cizallamiento. Las secciones de pestaña 500a, 500b se extienden longitudinalmente y tienen una sección transversal en forma de T constante a lo largo de su longitud.
Los extremos opuestos 502a, 502b de las secciones de pestaña 500a, 500b conocidas han sido biselados transversalmente con respecto a sus ejes longitudinales A-A para formar una unión suficientemente fuerte entre secciones de pestaña 500a, 500b adyacentes. Los extremos biselados 502a, 502b definen superficies de unión 504a, 504b a las que se aplica adhesivo antes de presionar las superficies 504a, 504b entre sí para formar una junta unida entre las secciones de pestaña 500a, 500b. El biselado de los extremos 502a, 502b de las secciones de pestaña 500a, 500b logra una junta suficientemente fuerte entre las secciones 500a, 500b, pero también da como resultado un desperdicio de material considerable, ya que se deben desechar grandes porciones de las secciones de pestaña 500a, 500b cuando se hacen los cortes biselados. Este desperdicio de material agrega un coste significativo al coste total de materiales para la pala.
Las discontinuidades a lo largo de la pestaña de alma de cizallamiento, por ejemplo, donde se unen secciones de pestaña adyacentes, pueden generar concentraciones de tensión cuando la pala se somete a carga durante el uso. En consecuencia, es deseable aumentar el área de unión para minimizar las concentraciones de tensión en las juntas entre secciones de pestaña adyacentes. Sin embargo, en el caso de la técnica anterior, se debe llegar a un compromiso entre el desperdicio de material y un área de unión deseable que pueda tener el coste de mayores concentraciones de tensión en la junta.
Es en este contexto que se ha desarrollado la presente invención.
Sumario de la invención
En un primer aspecto de la invención, se proporciona un método para formar una sección de pestaña de alma de cizallamiento de pala de turbina eólica mediante moldeo por transferencia de resina. El método comprende proporcionar un conjunto de moldes emparejados que comprende una primera y segunda partes de molde y una superficie de molde que define una cavidad de molde y disponer una pluralidad de elementos de pestaña alargados con la superficie de molde en una serie, de modo que los elementos de pestaña se colocan uno encima de otro con el primer y segundo extremos longitudinales de cada elemento de pestaña desplazados longitudinalmente con respecto al respectivo primer y segundo extremos longitudinales de un elemento de pestaña vecino para formar una porción de sección decreciente en cada uno del primer y segundo extremos longitudinales de la sección de pestaña. El método comprende además sujetar o presionar entre sí la primera y segunda partes de molde para cerrar el molde; inyectar resina en la cavidad de molde cerrada y posteriormente curar la serie de elementos de pestaña en una matriz de resina para formar una sección de pestaña curada que tiene una construcción laminada.
El moldeo por transferencia de resina (RTM) significa un proceso de molde cerrado en el que el material de refuerzo fibroso se coloca en un molde emparejado. Entonces se inyecta resina bajo presión en la cavidad de molde que fluye a través de las fibras para llenar el espacio del molde. El molde emparejado normalmente es en dos partes que se sujetan o presionan entre sí. El RTM se distingue del moldeo por bolsa al vacío, tal como el moldeo por transferencia de resina asistido por vacío (VARTM), en el que no hay un molde emparejado y, en su lugar, se coloca una lámina flexible sobre el material fibroso seco para formar una cavidad de molde y, una vez que se sella la cavidad de molde, se aplica el vacío y la resina se infunde en la cavidad de molde.
Los elementos de pestaña pueden disponerse en una primera porción de la superficie de molde para formar una base de la sección de pestaña, y en una segunda porción de la superficie de molde, que se extiende sustancialmente alejándose de la primera porción, para formar un montante de la sección de pestaña que se extiende sustancialmente alejándose de la base de dicha sección de pestaña.
Los elementos de pestaña pueden preformarse con una sección transversal sustancialmente en forma de L antes de disponer los elementos de pestaña con la superficie de molde. Preferiblemente, los elementos de pestaña comprenden un material fibroso, tal como un tejido biaxial de /- 45 grados. El material fibroso puede comprender menos del 30 % de fibras orientadas en una dirección longitudinal del elemento de pestaña. Preferiblemente, el material fibroso comprende un 0 % de fibras orientadas en una dirección longitudinal del elemento de pestaña.
Los elementos de pestaña consecutivos en la serie pueden disponerse con al menos un borde longitudinal desplazado con respecto a un borde longitudinal correspondiente de un elemento de pestaña vecino para formar un montante que presenta una sección decreciente a medida que aumenta la distancia desde la base, y/o una base que presenta una sección decreciente a medida que aumenta la distancia desde el montante.
La cavidad de molde puede tener un perfil sustancialmente en forma de T en sección transversal. Se pueden disponer cuatro o más elementos de pestaña en la serie, de modo que al menos dos elementos de pestaña formen un primer lado de la sección de pestaña y al menos dos elementos de pestaña formen un segundo lado de la sección de pestaña, dando como resultado una sección de pestaña sustancialmente en forma de T.
Los elementos de pestaña en el segundo lado de la sección de pestaña pueden disponerse de tal manera que los primeros extremos longitudinales de dichos elementos de pestaña estén desplazados longitudinalmente con respecto a los primeros extremos longitudinales correspondientes de los elementos de pestaña en el primer lado de la sección de pestaña.
En un segundo aspecto de la invención, se proporciona un método para fabricar un alma de cizallamiento de pala de turbina eólica, comprendiendo el método formar una pluralidad de secciones de pestaña según el método de una cualquiera de las reivindicaciones 1 a 8; disponer un panel alargado; disponer una pluralidad de secciones de pestaña a lo largo de un borde longitudinal del panel alargado, integrarla pluralidad de secciones de pestaña y el panel alargado para formar un alma de cizallamiento de pala de turbina eólica. Las porciones de sección decreciente de las secciones de pestaña longitudinalmente adyacentes pueden superponerse para definir al menos una junta biselada entre dichas secciones de pestaña adyacentes.
Breve descripción de los dibujos
Ya se ha proporcionado una breve descripción de la figura 1 a modo de antecedente de la presente invención. A continuación, se describirá la presente invención a modo de ejemplos no limitativos con referencia a las siguientes figuras, en las que:
La figura 2 es una vista en despiece de una pala de turbina eólica;
La figura 3 es una vista en sección transversal esquemática de una pala de turbina eólica;
La figura 4 es una vista esquemática en perspectiva de una sección de pestaña de alma de cizallamiento;
La figura 5 es una vista esquemática en perspectiva de una disposición de una primera y segunda secciones de pestaña de alma de cizallamiento;
La figura 6 es una vista esquemática en perspectiva de cuatro secciones de pestaña dispuestas para formar parte de una pestaña de alma de cizallamiento;
La figura 7 es una vista en sección transversal esquemática de una pala de turbina eólica de acuerdo con un segundo ejemplo;
La figura 8 es una vista en sección transversal esquemática de una pala de turbina eólica según un desarrollo del segundo ejemplo;
Las figuras 9a a 9c muestran esquemáticamente las etapas involucradas en la fabricación de secciones de pestaña de alma de cizallamiento;
Las figuras 10a a 10d muestran esquemáticamente las etapas involucradas en la fabricación de secciones de pestaña de alma de cizallamiento mediante un proceso de moldeo por transferencia de resina; y
Las figuras 11a a 11g muestran esquemáticamente las etapas involucradas en la fabricación de un alma de cizallamiento de una pala de turbina eólica.
Descripción detallada
La figura 2 es una vista en despiece de una pala de turbina eólica 10. La pala 10 comprende una carcasa exterior 12 de una construcción compuesta y formada en dos partes: una media carcasa de sotavento 14 y una media carcasa de barlovento 16. La pala 10 se extiende en una dirección a lo largo de la envergadura (S) entre una raíz 18 y una punta 20, y en una dirección a lo largo de la cuerda (C) entre un borde de ataque 22 y un borde de salida 24. Un alma de cizallamiento 26 está ubicada dentro de la pala 10. El alma de cizallamiento 26 comprende un panel alargado 28 y unas pestañas superior e inferior 30a, 30b que se extienden transversalmente con respecto al panel 28 y están dispuestas a lo largo de los bordes longitudinales 32a, 32b del mismo. El panel alargado 28 está formado por un material de núcleo ligero, tal como espuma de poliuretano, poliestireno o madera de balsa. En este ejemplo, el alma de cizallamiento 26 tiene una sección transversal sustancialmente en forma de L en la que las pestañas 30a, 30b se extienden transversalmente con respecto al panel de alma de cizallamiento 28 tanto en el primer lado 34a como en el segundo lado opuesto 34b del alma de cizallamiento 26.
Cada pestaña de alma de cizallamiento 30a, 30b se extiende en la dirección a lo largo de la envergadura (S) y comprende secciones de pestaña longitudinales 36 (que se muestran en la figura 4) que se integran con el panel 28 cuando se forma el alma de cizallamiento 26. Una sección de pestaña 36 según un ejemplo de la invención se describe con más detalle a continuación con referencia a la figura 4. Se apreciará que la invención no se limita a almas de cizallamiento 26 que tienen una sección transversal en forma de l como la que se muestra en la figura 2 ; en algunos ejemplos, un alma de cizallamiento 226 puede comprender pestañas que se extienden transversalmente con respecto al panel de alma de cizallamiento 28 en solo uno del primer o segundo lados 34a, 34b de la misma, como se muestra, por ejemplo, en la figura 7.
La figura 3 muestra una vista en sección transversal de la pala de turbina eólica 10 según un primer ejemplo. La pala 10 incluye una primera y segunda tapas de larguero 38a, 38b integradas respectivamente en las medias carcasas de sotavento y barlovento 14, 16 de la pala 10. Las pestañas superior e inferior 30a, 30b del alma de cizallamiento 26 están unidas respectivamente a la primera y segunda tapas de larguero 38a, 38b por medio de adhesivo 40.
En este ejemplo, las pestañas del alma de cizallamiento 30a, 30b tienen una sección transversal sustancialmente en forma de T. Las pestañas en forma de T 30a, 30b comprenden una pluralidad de secciones de pestaña 36, cada una de las cuales comprende una base 42 y un montante 44 que se extiende sustancialmente alejándose de la respectiva base 42 y que tiene una sección transversal sustancialmente en forma de L. El montante 44 de cada sección de pestaña 36 está integrado con el panel de alma de cizallamiento 28. La base 42 de cada sección de pestaña 36 define una superficie de montaje 45 que, por medio del adhesivo 40, está unida a una tapa de larguero 38a, 38b. El alma de cizallamiento 26, por lo tanto, se monta entre las tapas de larguero opuestas 38a, 38b a través de la superficie de montaje 45 definida por la base 42 de cada sección de pestaña 36.
Cada sección de pestaña 36 está formada por una pluralidad de elementos de pestaña 46, como se describirá con más detalle a continuación. Las secciones de pestaña 36 que forman una pestaña de alma de cizallamiento 30a, 30b pueden no tener todas necesariamente exactamente el mismo perfil. Por ejemplo, es posible formar secciones de pestaña 36 que tengan una variedad de formas de perfil dependiendo de la ubicación prescrita de una sección de pestaña 36 en la pestaña de alma de cizallamiento 30, 30b. En el ejemplo que se muestra en la figura 3, las secciones de pestaña 36 comprenden una base 42 y un montante 44 que son sustancialmente perpendiculares entre sí. Sin embargo, en otros lugares a lo largo de la longitud de la envergadura S del alma de cizallamiento 26, se pueden implementar secciones de pestaña 36 que tengan un perfil diferente para adaptarse mejor al perfil aerodinámico de la carcasa exterior 12 de la pala 10.
Además de esto, una anchura a lo largo de la cuerda C de la pestaña 30a, 30b puede variar a lo largo de la longitud de la envergadura S del alma de cizallamiento 26 para proporcionar propiedades estructurales óptimas específicas del sitio a lo largo de la pala 10. Las secciones de pestaña 36 se pueden adaptar como resultado de las propiedades de los elementos de pestaña individuales 46, tal como la anchura y el material de un elemento 46 y en cómo los elementos de pestaña 46 están dispuestos entre sí. Alternativamente, cada una de las secciones de pestaña 36 puede comprender una anchura uniforme que da como resultado una pestaña de alma de cizallamiento 30a, 30b que tiene una anchura a lo largo de la cuerda C uniforme a lo largo de toda su longitud de envergadura S.
La figura 4 es una vista esquemática en perspectiva de una sección de pestaña 36 de alma de cizallamiento según el primer ejemplo. En este ejemplo, la sección de pestaña 36 es un componente curado de construcción laminada, que comprende una pluralidad de elementos de pestaña 46 en una matriz de resina curada. Sin embargo, se apreciará que, en algunos ejemplos, como se describe a continuación con referencia a las figuras 11 a a 11 g, los elementos de pestaña 46 solo pueden integrarse entre sí en la matriz de resina al mismo tiempo que la sección de pestaña 36 está integrada con el panel alargado 28 al fabricar el alma de cizallamiento 26 completo.
Los elementos de pestaña 46 comprenden un material fibroso, tal como un tejido biaxial de /- 45° en el que las fibras están orientadas a /- 45° con respecto a la dirección longitudinal (S) del elemento de pestaña 46. En un ejemplo, las fibras son fibras de vidrio. En ejemplos preferidos, el material fibroso comprende menos del 30 % de fibras orientadas en la dirección longitudinal (S) del elemento de pestaña 46. Preferiblemente, el material fibroso comprende un 0 % de fibras orientadas en la dirección longitudinal (S) del elemento de pestaña 46.
La pestaña de alma de cizallamiento 30 formada por una pluralidad de secciones de pestaña 36 que se muestra en la figura 4 puede ser una pestaña superior 30a o una pestaña inferior 30b del alma de cizallamiento 26 que se muestra en las figuras 2 y 3. La sección de pestaña 36 es alargada y se extiende en la dirección a lo largo de la envergadura (S) desde un primer extremo 48 hasta un segundo extremo 50. En la figura 4 se indica un eje longitudinal B-B de la sección de pestaña 36. La sección de pestaña 36 comprende una pluralidad de elementos de pestaña alargados 46 dispuestos uno encima de otro. Los elementos de pestaña 46 tienen una sección transversal sustancialmente en forma de L, comprendiendo cada elemento de pestaña 46 una base 52 y un montante 54 que se extiende sustancialmente alejándose de la base 52. En el ejemplo ilustrado en la figura 4, la sección de pestaña 36 comprende tres elementos de pestaña discretos 46 aunque se apreciará que cualquier número de una pluralidad de elementos de pestaña 46 dispuestos como se describe puede ser aplicable para una sección de pestaña 36 sin apartarse del alcance de la invención.
Los elementos de pestaña 46 están desplazados entre sí en una dirección longitudinal (S) de la sección de pestaña 36, es decir, un primer extremo longitudinal 56 de cada elemento de pestaña 46 está longitudinalmente desplazado con respecto a un primer extremo longitudinal 56 correspondiente de un elemento de pestaña 46 vecino, definiendo una porción de sección decreciente 58 en el primer extremo longitudinal 48 de la sección de pestaña 36. En el presente ejemplo, los elementos de pestaña 46 tienen la misma longitud (L) y por tanto, el desplazamiento longitudinal de los respectivos primeros extremos 56 de los elementos de pestaña 46 da como resultado un desplazamiento longitudinal similar de un segundo extremo longitudinal 60 de cada elemento de pestaña 46 con respecto a la de un elemento de pestaña 46 vecino que define otra porción de sección decreciente 62. De este modo, se forma una porción de sección decreciente 58, 62 en cada uno del primer y segundo extremos longitudinales 48, 50 de la sección de pestaña 36.
Como se muestra en la figura 4, las porciones de sección decreciente 58a, 62a en el primer y segundo extremos longitudinales 48, 50 están formadas en la base 42 de la sección de pestaña 36. Cada una de las porciones de sección decreciente 58a, 62a en la base 42 de la sección de pestaña 36 define una de las superficies biseladas 64a, 66a orientadas hacia arriba o hacia abajo. El desplazamiento longitudinal entre los elementos de pestaña 46 de la sección de pestaña 36 forma de manera similar porciones de sección decreciente 58b, 62b del montante 44 en el primer y segundo extremos longitudinales 48, 50 del mismo. Las porciones de sección decreciente 58b, 62b del montante 44 definen la primera y segunda superficies biseladas 64b, 66b del montante 44.
Las secciones de pestaña en el extremo de raíz 18 y el extremo de punta 20 de la pestaña 30 se forman de manera diferente a las secciones de pestaña 36 descritas en el presente documento. Las porciones de sección decreciente 58, 62 de una sección de pestaña 36 están configuradas para formar una junta biselada entre secciones de pestaña 36 longitudinalmente adyacentes en una pestaña de alma de cizallamiento 30. Por lo tanto, en una sección de pestaña más en la punta o en la raíz que tiene solo otra sección de pestaña 36 longitudinalmente adyacente, una porción de sección decreciente solo puede formarse en uno de los primeros o segundos extremos longitudinales 48, 50 de dicha sección de pestaña más en la punta o en la raíz.
Los bordes longitudinales 68 de cada elemento de pestaña 46 están desplazados entre sí en una dirección T normal a la dirección longitudinal B de la sección de pestaña 36. Como resultado del desplazamiento entre los bordes longitudinales 68 correspondientes de cada elemento de pestaña 46, el montante 44 de la sección de pestaña 36 presenta una sección decreciente; un espesor a lo largo de la cuerda C del montante 44 disminuye a medida que aumenta la distancia Y desde la base 42 de la sección de pestaña. En este ejemplo, los bordes longitudinales adicionales 70 de los elementos de pestaña 46 están desplazados entre sí de manera similar, de modo que el espesor H de la base de la sección de pestaña 42 disminuye a medida que aumenta la distancia Q desde el montante 44. En otros ejemplos, una sección de pestaña 36 puede comprender elementos de pestaña 46, cada uno de los cuales tiene anchuras diferentes. En este caso, incluso con un desplazamiento entre los bordes longitudinales 68 de cada elemento de pestaña 46 para formar un montante de sección decreciente 44, los bordes longitudinales adicionales 70 de cada elemento de pestaña 46 están alineados entre sí, dando como resultado una base 42 que tiene un espesor H constante a lo largo de la anchura de la cuerda C de la sección de pestaña 36.
La figura 5 muestra una vista esquemática en perspectiva de una primera y segunda secciones de pestaña 36a, 36b dispuestas con sus ejes longitudinales B-B alineados. Las superficies biseladas 64a, 64b en el primer extremo 48 de la primera sección de pestaña 36a están configuradas para acoplarse con las superficies biseladas 66a, 66b en el segundo extremo 50 de la segunda sección de pestaña 36b. Es decir, la superficie biselada 64a definida en la base 42 en el primer extremo 48 de la primera sección de pestaña 36a y la superficie biselada 66a definida en la base 42 en el segundo extremo 50 de la segunda sección de pestaña 36b forman una junta biselada 72 cuando se ensamblan para formar la pestaña de alma de cizallamiento 30. De manera similar, se forma una junta biselada 74 entre los montantes 44 de las secciones de pestaña 36 longitudinalmente adyacentes donde las porciones de sección decreciente 58, 62 en el primer extremo 48 de la primera sección de pestaña 36a y el segundo extremo 50 de la segunda sección de pestaña 36b se superponen en una pestaña de alma de cizallamiento 30 ensamblada.
La figura 6 muestra una vista esquemática en perspectiva de cuatro secciones de pestaña 36 en forma de L dispuestas para formar parte de una pestaña de alma de cizallamiento 30, tal como la pestaña 30a o 30b que se muestra en las figuras 2 y 3. Las secciones de pestaña 36 están dispuestas de manera que una pluralidad de secciones de pestaña 36 están dispuestas a lo largo de cada uno del primer y segundo lados 34a, 34b del panel de alma de cizallamiento 28, como también se muestra en la figura 3. Los montantes 44 de las secciones de pestaña 36 en el primer lado 34a del panel 28 están orientados hacia los montantes 44 de las secciones de pestaña 36 en el segundo lado 34b del panel 28. En otras palabras, los montantes 44 de cada una de las secciones de pestaña 36 están dirigidos sustancialmente en la misma dirección, es decir, sustancialmente paralelos al primer y segundo lados 34a, 34b del panel de alma de cizallamiento alargado 28. La pestaña 30 que se extiende longitudinalmente formada por la pluralidad de secciones de pestaña 36 comprende, por lo tanto, una sección transversal en forma de T.
Aunque cada una de las secciones de pestaña 36 en el ejemplo que se muestra en la figura 6 comprende sustancialmente el mismo perfil, es decir, con un montante 44 y una base 42 sustancialmente perpendiculares entre sí, se anticipa que en algunos ejemplos las secciones de pestaña 36 en el primer lado 34a del alma de cizallamiento 26 pueden comprender un perfil diferente a una sección de pestaña 36 en el segundo lado 34b del alma de cizallamiento 26. Un ejemplo donde esto puede ocurrir es en el extremo de la punta 20 del alma de cizallamiento 26, donde la carcasa 12 de la pala de la turbina eólica 10 presenta una sección decreciente y se tuerce para optimizar las propiedades aerodinámicas y estructurales de la pala 10. En el extremo de la punta 20 del alma de cizallamiento 26, las secciones de pestaña 36 en el primer lado 34a del alma de cizallamiento 26 pueden comprender un perfil en el que un ángulo entre el montante 44 y la base 42 es sustancialmente menor que 90°, y las secciones de pestaña 36 en el segundo lado 34b del alma de cizallamiento 26 pueden comprender un perfil en el que un ángulo entre el montante 44 y la base 42 es sustancialmente mayor que 90°.
Las secciones de pestaña 36 están dispuestas de tal manera que los extremos longitudinales 48, 50 de la pluralidad de secciones de pestaña 36 en el primer lado 34a del panel alargado 28 están desplazados longitudinalmente con respecto a los extremos longitudinales 48, 50 de la pluralidad de secciones de pestaña 36 en el segundo lado 34b del panel alargado 28. En consecuencia, las juntas biseladas 72, 74 formadas entre secciones de pestaña 36 longitudinalmente adyacentes en el primer lado 34a del alma de cizallamiento 26 están desplazadas longitudinalmente (es decir, en la dirección a lo largo de la envergadura) de las juntas biseladas 72, 74 formadas entre secciones de pestaña 36 longitudinalmente adyacentes dispuestas en el segundo lado 34b del alma de cizallamiento 26. Ventajosamente, en una pala 10 que comprende una disposición de secciones de pestaña 36 de este tipo, existe una trayectoria de carga continua entre las tapas de larguero 38a, 38b, el panel alargado 28 y las pestañas del alma de cizallamiento 30a, 30b a lo largo de toda la longitud del alma de cizallamiento 26. Por lo tanto, se proporciona una solución de unión mejorada entre secciones de pestaña 36 de una pestaña de alma de cizallamiento 30, que reduce o supera completamente las concentraciones de tensión en las discontinuidades entre secciones de pestaña 36 longitudinalmente adyacentes.
La figura 7 muestra una vista en sección transversal de una pala de turbina eólica 10 según un segundo ejemplo. La pala de turbina eólica 10 comprende un alma de cizallamiento 26 unida entre tapas de larguero 38a, 38b mutuamente opuestas en cada media carcasa 14, 16. El alma de cizallamiento 26 en este ejemplo comprende un panel alargado 28 que tiene un primer lado 34a y un segundo lado opuesto 34b. Como en el primer ejemplo, una pestaña 30a, 30b que se extiende longitudinalmente formada por una pluralidad de secciones de pestaña 36 está dispuesta a lo largo de un borde longitudinal 32a, 32b del panel 28. En el presente ejemplo, las secciones de pestaña 36 están dispuestas a lo largo del primer lado 34a del panel 28 y se integran con el mismo para formar un alma 26 en forma de C en lugar del alma de cizallamiento 26 en forma de L del primer ejemplo.
En este segundo ejemplo, las secciones de pestaña 36 se forman de acuerdo con la descripción del primer ejemplo anterior, a partir de una pluralidad de elementos de pestaña 46 en forma de L dispuestos uno encima de otro y desplazados longitudinalmente entre sí de tal manera que el desplazamiento entre los elementos de pestaña 46 define una porción de sección decreciente en cada uno del primer y segundo extremos longitudinales de la sección de pestaña. De manera similar, en este ejemplo, los elementos de pestaña 46 comprenden un material fibroso tal como un tejido biaxial de /- 45°. Una pluralidad de secciones de pestaña 36 están dispuestas a lo largo del primer lado 34a del panel 28 con porciones de sección decreciente superpuestas para formar juntas biseladas entre secciones de pestaña 36 longitudinalmente adyacentes.
La figura 8 muestra un desarrollo del segundo ejemplo descrito anteriormente. La pala de turbina eólica 10 del segundo ejemplo puede comprender además una pluralidad de secciones de pestaña 36 dispuestas a lo largo del segundo lado 34b del panel de alma de cizallamiento 28. Los montantes 44 de las secciones de pestaña 36 en el segundo lado 34b del panel alargado 28 están orientados hacia los montantes 44 de las secciones de pestaña 36 en el primer lado 34a del panel alargado 28, es decir, el montante 44 de cada sección de pestaña 36 se extiende sustancialmente paralelo al primer o segundo lado 34a, 34b del panel alargado 28, de modo que la pestaña de alma de cizallamiento 30a, 30b resultante tiene una sección transversal sustancialmente en forma de T. En este ejemplo, el panel alargado 28 está intercalado entre los montantes 44 de las secciones de pestaña 36. Las secciones de pestaña 36 están dispuestas de tal manera que los extremos longitudinales de la pluralidad de secciones de pestaña 36 en el primer lado 34a del panel alargado 28 están desplazados longitudinalmente con respecto a los extremos longitudinales de la pluralidad de secciones de pestaña 36 en el segundo lado 34b del panel alargado 28.
A continuación, se describirán con referencia a las figuras 9a a 11g métodos de fabricación de secciones de pestaña 36 y almas de cizallamiento 26 según varios ejemplos. Las secciones de pestaña 36 de alma de cizallamiento pueden prefabricarse antes de formar el alma de cizallamiento 26 de la pala de turbina eólica 10 según un método como se muestra en las figuras 9a a 9c, que no está dentro del alcance de la presente invención. Según la invención, las secciones de pestaña 36 se prefabrican ventajosamente antes de formar el alma de cizallamiento 26 que se describe con referencia a las figuras 10a a 10d, en las que las secciones de pestaña 36 se forman mediante un proceso de moldeo por transferencia de resina (RTM). Finalmente, en otro ejemplo más, las secciones de pestaña 36 formadas por una pluralidad de elementos de pestaña 46 pueden formarse cuando el alma de cizallamiento 26 completa se forma en una sola operación, como se describe a continuación con referencia a las figuras 11 a a 11 g.
La figura 9a muestra una vista esquemática de una herramienta de molde 76 que se puede usar para formar una sección de pestaña 36 de alma de cizallamiento de pala de turbina eólica. Aunque en la figura 9a se representa una superficie de molde macho (convexa) 78, el método de fabricación es igualmente posible usando una superficie de molde hembra (cóncava) 78 sin apartarse del alcance de la invención. Se proporciona una pluralidad de elementos de pestaña 46 que comprenden un material fibroso tal como tejido biaxial de /- 45° y se disponen sobre la superficie de molde 78 como se muestra en la figura 9b. Los elementos de pestaña 46 se pueden formar usando cintas de material fibroso que se proporcionan en anchuras estándar y se cortan en tiras de la longitud deseada. Esto da como resultado cero desperdicio de material al preparar los elementos de pestaña 46 para una sección de pestaña 36.
Los elementos de pestaña 46 están dispuestos en una serie 80 con elementos de pestaña 46 consecutivos colocados uno encima de otro. El primer y segundo extremos longitudinales 56, 60 de cada elemento de pestaña 46 están desplazados longitudinalmente con respecto al primer y segundo extremos longitudinales 56, 60 correspondientes de los elementos de pestaña 46 en la serie 80 para formar porciones de sección decreciente 58, 62 en el primer y segundo extremos 48, 50 de la sección de pestaña 36.
Los elementos de pestaña 46 adyacentes en la serie 80 están dispuestos con al menos un borde longitudinal 68 desplazado desde un borde longitudinal 68 correspondiente de un elemento de pestaña 46 vecino para formar una sección decreciente en una dirección normal a la dirección longitudinal de la sección de pestaña 46. En el presente ejemplo, dos bordes longitudinales 68, 70 de cada elemento de pestaña 46 están desplazados con respecto a los bordes longitudinales 68, 70 correspondientes de los elementos de pestaña vecinos 46, lo que da como resultado el montante de sección decreciente 44 y la base 42 de la sección de pestaña 36 como se ha descrito anteriormente con referencia a la figura 4.
Opcionalmente, como se muestra en la figura 9c, al menos otro elemento de pestaña 46 puede disponerse junto a la serie 80 de elementos de pestaña 46 en una superficie de molde 82 para formar una sección de pestaña 36 que tiene una sección transversal sustancialmente en forma de T. En un ejemplo preferido, una pluralidad de elementos de pestaña 46 adicionales están dispuestos junto a la serie 80 de elementos de pestaña 46. En este caso, puede ser ventajoso disponer los elementos de pestaña 46 sobre una superficie de molde 82 que tenga una sección transversal sustancialmente en forma de T. La pluralidad de otros elementos de pestaña 46 están dispuestos uno encima de otro con los extremos longitudinales 56, 60 de cada elemento de pestaña 46 desplazados longitudinalmente entre sí para formar porciones de sección decreciente 58, 62 en el primer y segundo extremos 48, 50 de la sección de pestaña 36. La pluralidad de elementos de pestaña 46 adicionales están dispuestos de tal manera que las porciones de sección decreciente 58, 62 formadas por los elementos de pestaña 46 adicionales en cada uno del primer y segundo extremos 48, 50 están desplazadas longitudinalmente con respecto a las porciones de sección decreciente 58, 62 formadas en el primer y segundo extremos 48, 50 de la serie 80 de elementos de pestaña 46.
Los elementos de pestaña 46 se unen entre sí en un proceso de moldeo compuesto para formar la sección de pestaña 36.
Las secciones de pestaña 36 descritas anteriormente están formadas por un proceso de moldeo por transferencia de resina (RTM) según la invención como se establece en las reivindicaciones.
Un ejemplo de esto se ilustra en las figuras 10a a 10d. Un conjunto de moldes 84 que comprende una superficie de molde 86 que define una cavidad de molde 88 se proporciona como se muestra esquemáticamente en la figura 10a. En este ejemplo, el conjunto de moldes 84 comprende una primera y segunda partes de molde 90, 92.
La superficie de molde 86 comprende una primera porción 86a que forma la base 42 de una sección de pestaña 36 y una segunda porción 86b que se extiende sustancialmente alejándose de la primera porción 86a. La segunda porción 86b de la superficie de molde 86 forma el montante 44 de una sección de pestaña 36 que se extiende sustancialmente alejándose de la base 42 de dicha sección de pestaña 36.
Como se muestra en la figura 10b, una pluralidad de elementos de pestaña 46 están dispuestos con la superficie de molde 86 en una serie 80, de manera que los elementos de pestaña 46 están colocados uno encima de otro. Los elementos de pestaña 46 comprenden un material fibroso tal como fibra biaxial de /- 45°. Los elementos de pestaña 46 están dispuestos en la primera porción 86a de la superficie de molde 86 para formar la base 42 de la sección de pestaña 36, y en la segunda porción 86b de la superficie de molde 86 para formar un montante 44 que se extiende sustancialmente alejándose de la base. 42.
Los elementos de pestaña 46 están dispuestos con el primer y segundo extremos longitudinales 56, 60 de cada elemento de pestaña 46 desplazados longitudinalmente con respecto a los respectivos primer y segundo extremos longitudinales 56, 60 de los elementos de pestaña 46 vecinos. Por lo tanto, se forman porciones de sección decreciente 58, 62 en el primer y segundo extremos longitudinales 48, 50 de la sección de pestaña 36. Los elementos de pestaña 46 consecutivos en la serie 80 están dispuestos con al menos un borde longitudinal 68 desplazado con respecto a un borde longitudinal 68 correspondiente de un elemento de pestaña 46 vecino para formar un montante de sección decreciente 44 y/o una base de sección decreciente 42 de la sección de pestaña 36.
Los elementos de pestaña 46 pueden preformarse con una sección transversal sustancialmente en forma de L antes de disponer dichos elementos 46 con la superficie de molde 86. Por lo tanto, cada uno de los elementos de pestaña 46 comprende una base 52 y un montante 54 que se extiende sustancialmente alejándose de la base 52. Cuando se disponen elementos de pestaña preformados 46 con la superficie de molde 86 en el proceso RTM, la base 52 de cada elemento de pestaña 46 se dispone en la primera porción 86a de la superficie de molde 86 para formar la base 42 de la sección de pestaña 36. De manera similar, el montante 54 de cada elemento de pestaña 46 está dispuesto en la segunda porción 86b de la superficie de molde 86 para formar el montante 44 de la sección de pestaña 36.
Los elementos de pestaña 46 pueden formarse previamente disponiendo los elementos de pestaña 46 en una superficie de molde 78 de la manera descrita anteriormente con referencia a las figuras 9a a 9c. Los elementos de pestaña 46 pueden comprender un agente aglutinante, tal como un aglutinante epoxi, o dicho aglutinante se puede aplicar alternativamente a los elementos de pestaña 46 una vez dispuestos en la serie 80. Preformar los elementos de pestaña 46 como un componente semirrígido antes de colocarlos en la superficie de molde 86 en el proceso RTM reduce el tiempo de espera en el molde RTM 84 y puede aumentar la precisión y la capacidad de repetición de formar cada sección de pestaña 36. Los elementos de pestaña preformados 46 se pueden producir fuera de línea en paralelo con la operación de moldeo por transferencia de resina y se pueden producir en un proceso automatizado para aumentar aún más la precisión en la formación de porciones de sección decreciente 58, 62 uniformes de cada sección de pestaña 36. Los elementos de pestaña preformados 46 pueden comprender material fibroso seco o, alternativamente, pueden comprender material fibroso preimpregnado.
La cavidad de molde 88 puede comprender un perfil sustancialmente en forma de T en sección transversal, como se muestra esquemáticamente en la figura 10c. Tal conjunto de moldes 84 puede usarse para formar una sección de pestaña 36 sustancialmente en forma de T mediante un proceso RTM. Como se ilustra en la figura 10c, cuatro o más elementos de pestaña 46 están dispuestos en la serie 80 sobre la superficie de molde 86 para formar una sección de pestaña 36 sustancialmente en forma de T según el presente ejemplo en un proceso RTM. Al menos dos elementos de pestaña 46 están dispuestos para formar un primer lado 94a de la sección de pestaña 36 y al menos dos elementos de pestaña 46 están dispuestos para formar un segundo lado 94b de la sección de pestaña 36. Aunque se muestran seis elementos de pestaña 46, se puede disponer cualquier número de una pluralidad de elementos de pestaña 46 para formar cada uno del primer y segundo lados 94a, 94b de la sección de pestaña 36 y la invención no se limita a una sección de pestaña 36 que comprende solo tres elementos de pestaña 46 que forman el primer y segundo lados 94a, 94b. Los elementos de pestaña 46 que forman cada uno del primer y segundo lados 94a, 94b de la sección de pestaña 36 están dispuestos en la superficie de molde 86 de manera coherente con la disposición de los elementos de pestaña 46 para formar las secciones de pestaña 36 descritas anteriormente, es decir, con el primer y segundo extremos longitudinales 56, 60 de cada elemento de pestaña 46 desplazados longitudinalmente con respecto a los respectivos primer y segundo extremos longitudinales 56, 60 de un elemento de pestaña 46 vecino.
Como en otros ejemplos, el desplazamiento longitudinal entre cada uno de los elementos de pestaña 46 en cada lado 94a, 94b de la sección de pestaña en forma de T 36 da como resultado la formación de una porción de sección decreciente 58, 62 en el primer y segundo extremos 48, 50 de la sección de pestaña 36 en cada uno del primer y segundo lados 94a, 94b de la sección de pestaña 36, respectivamente. Los elementos de pestaña 46 dispuestos para formar el segundo lado 94b de la sección de pestaña 36 están dispuestos de tal manera que los primeros extremos longitudinales 56 de dichos elementos de pestaña 46 están desplazados longitudinalmente con respecto a los primeros extremos longitudinales 56 correspondientes de los elementos de pestaña 46 dispuestos para formar el primer lado 94a de la sección de pestaña 36. Las porciones de sección decreciente 58 formadas en el primer extremo 56 en cada uno del primer y segundo lados 94a, 94b de la sección de pestaña 36 están, por lo tanto, desplazadas de manera similar en la dirección longitudinal.
Con referencia a la figura 10d, siguiendo la disposición de los elementos de pestaña 46 con la superficie de molde 86 del conjunto de moldes 84, la resina 96 se inyecta en la cavidad de molde 88. La cavidad de molde 88 se vacía para crear una presión de vacío antes de inyectar la resina 96 en la cavidad 88. La resina 96 se cura en la cavidad de molde 88, curando así la serie 80 de elementos de pestaña 46 en una matriz de resina para formar una sección de pestaña curada 36 que tiene una construcción laminada.
Cada una de las superficies de una sección de pestaña 36 formada en un proceso RTM es una superficie moldeada que puede usarse como superficie de referencia al ensamblar las secciones de pestaña 36 con otros componentes de la pala 10. El proceso RTM puede producir secciones de pestaña 36 sistemáticamente uniformes a una alta tasa de rendimiento, lo que da como resultado un proceso de fabricación más rentable. Además de esto, se puede lograr una fracción de alto volumen en el proceso RTM, en el que es posible una mayor proporción de material fibroso de refuerzo con respecto a resina que en muchos otros procesos de moldeo, lo que da como resultado propiedades estructurales mejoradas de la sección de pestaña 36.
Las figuras 11a a 11g representan algunas de las etapas implicadas en la fabricación de un alma de cizallamiento 26 de pala de turbina eólica según varios ejemplos. La figura 11a muestra una vista esquemática en perspectiva de la superficie de molde 98 del alma de cizallamiento. En algunos ejemplos, las capas de material fibroso 100 están dispuestas sobre la superficie de molde 98 para formar una piel exterior del alma de cizallamiento 26 como se muestra en la figura 11b. Un panel alargado 28 está dispuesto en la superficie de molde 98 o encima de las capas 100 del alma de cizallamiento 100.
A continuación, se dispone una pluralidad de secciones de pestaña 36, como se ha descrito anteriormente, a lo largo de un borde longitudinal 32 del panel alargado 28, como se muestra en la figura 11c. Las secciones de pestaña 36 son componentes prefabricados de una construcción laminada con una pluralidad de elementos de pestaña 46 dispuestos en una matriz de resina curada como se ha descrito anteriormente con referencia a las figuras 4 y 10a a 10d.
En otro ejemplo, que no está dentro del alcance de la invención, las secciones de pestaña 36 pueden formarse in situ al disponer los componentes para formar el alma de cizallamiento 26 como se muestra en la figura 11 d, donde las secciones de pestaña 36 se forman in situ, es decir, al mismo tiempo que se forma el alma de cizallamiento 26 completa, se proporciona una pluralidad de elementos de pestaña 46 en un estado sin curar. Como en otros ejemplos, los elementos de pestaña 46 comprenden material fibroso tal como tejido biaxial de /- 45°. Los elementos de pestaña 46 están dispuestos a lo largo de un borde longitudinal 32 del panel alargado 28 en la superficie de molde 98 del alma de cizallamiento. Las secciones de pestaña 36 se forman disponiendo los elementos de pestaña 46 uno encima de otro en una disposición como la descrita en ejemplos anteriores. Como se muestra en la figura 11d, las porciones de sección decreciente 58, 62 se forman en el primer y segundo extremos longitudinales 48, 50 de cada sección de pestaña 36 al disponer los elementos de pestaña 46 de manera que el primer y segundo extremos 56, 60 de cada elemento de pestaña 46 estén desplazados longitudinalmente con respecto al primer y segundo extremos 56, 60 correspondientes de los elementos de pestaña 46 vecinos.
Las secciones de pestaña prefabricadas 36 están dispuestas de manera que las porciones de sección decreciente 58, 62 en el primer y segundo extremos longitudinales 48, 50 se superponen con las porciones de sección decreciente 62, 58 de los respectivos segundo y primer extremos 50, 48 de las secciones de pestaña 36 longitudinalmente adyacentes. Al disponer las secciones de pestaña 36 con las porciones de sección decreciente 58, 62 de las secciones de pestaña 36 adyacentes longitudinalmente superpuestas, se forma al menos una junta biselada 102 entre las secciones de pestaña 36 adyacentes que forman la pestaña de alma de cizallamiento 30 de pala de turbina eólica.
Como se muestra en la figura 11e, se dispone una capa de material permeable 104 entre las secciones de pestaña 36 adyacentes cuando se dispone la pluralidad de secciones de pestaña 36 con el panel alargado 28. El material permeable 104 promueve una infusión de resina más completa entre los diversos componentes del alma de cizallamiento 26 y sirve para reducir defectos o irregularidades en la fabricación del alma de cizallamiento 26. Especialmente cuando se fabrica un alma de cizallamiento 26 usando secciones de pestaña 36 curadas, la capa de material permeable 104 permite que la resina se infunda completamente entre superficies adyacentes de secciones de pestaña curadas adyacentes.
Para formar una pestaña de alma de cizallamiento 30 sustancialmente en forma de T, disponer la pluralidad de secciones de pestaña 36 a lo largo de un borde longitudinal 32 del panel alargado 28 puede comprender disponer una pluralidad de elementos de pestaña 46 que tengan una sección transversal sustancialmente en forma de L a lo largo de ambos primer y segundo lados 34a, 34b del panel alargado 28, como se muestra en la figura 11f. Una pluralidad de elementos de pestaña 46 están dispuestos espalda con espalda, es decir, con montantes 44 enfrentados entre sí para formar secciones de pestaña 36 que tienen una sección transversal sustancialmente en forma de T. Las secciones de pestaña 36 son componentes laminados curados y la pluralidad de elementos de pestaña 46 dispuestos a lo largo del primer y segundo lados 34a, 34b del panel 28 están incluidos en las secciones de pestaña 36 curadas. Como se mencionó anteriormente, una capa de material permeable 104 se dispone preferiblemente entre secciones de pestaña 36 adyacentes.
Alternativamente, una sección de pestaña 36 curada que comprende una sección transversal sustancialmente en forma de T como se ha descrito en otros ejemplos anteriores puede disponerse a lo largo de un borde longitudinal 32 del panel alargado 28 para formar una pestaña de alma de cizallamiento 30 con una sección transversal sustancialmente en forma de T.
Se pueden disponer capas adicionales de material fibroso 100 con las secciones de pestaña 36 y el panel alargado 28 en algunos ejemplos, como se muestra en la figura 11g. En este ejemplo, el alma de cizallamiento 26 comprende una estructura de panel en sándwich en la que el material del núcleo del panel alargado 28 se intercala entre capas de material fibroso 100 en el primer y segundo lados 34a, 34b del alma de cizallamiento 26. Una bolsa de vacío 106 de plástico está dispuesta sobre la superficie de molde 98 y los componentes dispuestos sobre ella para formar una región sellada 108 entre dicha bolsa de vacío 106 y la superficie de molde 98 que encapsula los componentes del alma de cizallamiento. La resina se admite en la región sellada 108 para integrar la pluralidad de secciones de pestaña 36 y el panel alargado 28, y luego se cura la resina para formar el alma de cizalladura 26 de la pala de la turbina eólica. La pluralidad de secciones de pestaña laminadas 36 y el panel alargado 28 se integran así dentro de una matriz de resina para formar el alma de cizallamiento 26 de la pala de la turbina eólica. En un ejemplo preferido, la región sellada 108 puede evacuarse para formar una cavidad de vacío antes de la infusión de resina de acuerdo con un proceso conocido de moldeo por transferencia de resina asistido por vacío (VARTM).
Aunque la invención se ha descrito a lo largo con referencia a un alma de cizallamiento 26 de una pala de turbina eólica 10, también debe apreciarse que la disposición de las secciones de pestaña 36 y los métodos de fabricación descritos anteriormente pueden ser igualmente aplicables a otras almas de cizallamiento en una pala de turbina eólica 10. Por ejemplo, un alma de borde posterior, utilizada además de un alma de cizallamiento 26 para brindar soporte estructural al borde posterior 24, puede construirse de manera similar a partir de secciones de pestaña 36 que comprenden las características descritas anteriormente y siguiendo un método descrito anteriormente con referencia a un alma de cizallamiento 26.

Claims (10)

  1. REIVINDICACIONES
    i.Un método para formar una sección de pestaña (36) de alma de cizallamiento de pala de turbina eólica mediante moldeo por transferencia de resina, comprendiendo el método:
    proporcionar un conjunto de moldes emparejados (84) que comprende primera y segunda partes de molde (90, 92), comprendiendo además el conjunto de moldes emparejados (84) una superficie de molde (86) que define una cavidad de molde (88);
    disponer una pluralidad de elementos de pestaña alargados (46) con la superficie de molde en una serie (80), de modo que los elementos de pestaña se colocan uno encima de otro con el primer y segundo extremos longitudinales (56, 60) de cada elemento de pestaña desplazados longitudinalmente con respecto al respectivo primer y segundo extremos longitudinales de un elemento de pestaña vecino para formar una porción de sección decreciente (58, 62) en cada uno de un primer y un segundo extremos longitudinales de la sección de pestaña (36);
    sujetar o presionar entre sí la primera y la segunda partes de molde para cerrar el molde;
    inyectar resina (96) en la cavidad de molde (88) cerrada; y posteriormente
    curar la serie (80) de elementos de pestaña (46) en una matriz de resina para formar una sección de pestaña (36) curada que tiene una construcción laminada.
  2. 2. El método según la reivindicación 1, en el que los elementos de pestaña (46) están dispuestos en una primera porción (86a) de la superficie de molde (86) para formar una base (42) de la sección de pestaña (36), y en una segunda porción (86b) de la superficie de molde, que se extiende sustancialmente alejándose de la primera porción, para formar un montante (44) de la sección de pestaña que se extiende sustancialmente alejándose de la base de dicha sección de pestaña.
  3. 3. El método según cualquier reivindicación anterior, en el que los elementos de pestaña (46) se preforman con una sección transversal sustancialmente en forma de L antes de disponer los elementos de pestaña con la superficie de molde (86).
  4. 4. El método según cualquier reivindicación anterior, en el que los elementos de pestaña (46) comprenden un material fibroso, tal como un tejido biaxial de /- 45 grados.
  5. 5. El método según cualquiera de las reivindicaciones 2 a 4, en el que elementos de pestaña (46) consecutivos en la serie (80) están dispuestos con al menos un borde longitudinal (68) desplazado con respecto a un borde longitudinal (68) correspondiente de un elemento de pestaña vecino para formar un montante (44) que presenta una sección decreciente a medida que aumenta la distancia desde la base (42), y/o una base que presenta una sección decreciente a medida que aumenta la distancia desde el montante.
  6. 6. El método según cualquier reivindicación anterior, en el que la cavidad de molde (88) tiene un perfil sustancialmente en forma de T en sección transversal.
  7. 7. El método según la reivindicación 6, en el que cuatro o más elementos de pestaña (46) están dispuestos en la serie (80), de manera que al menos dos elementos de pestaña forman un primer lado (94a) de la sección de pestaña (36) y al menos dos elementos de pestaña formar un segundo lado (94b) de la sección de pestaña, que da como resultado una sección de pestaña sustancialmente en forma de T.
  8. 8. El método según la reivindicación 7, en el que los elementos de pestaña (46) en el segundo lado (94b) de la sección de pestaña están dispuestos de tal manera que los primeros extremos longitudinales (56) de dichos elementos de pestaña están desplazados longitudinalmente con respecto a los primeros extremos longitudinales correspondientes de los elementos de pestaña en el primer lado (94a) de la sección de pestaña.
  9. 9. Un método para fabricar un alma de cizallamiento (26) de pala de turbina eólica, comprendiendo el método:
    formar una pluralidad de secciones de pestaña según el método de una cualquiera de las reivindicaciones anteriores;
    disponer un panel alargado (28);
    disponer la pluralidad de secciones de pestaña (36) a lo largo de un borde longitudinal (32a) del panel alargado; e
    integrar la pluralidad de secciones de pestaña (36) y el panel alargado (28) para formar un alma de cizallamiento de pala de turbina eólica.
  10. 10. Un método según la reivindicación 9, en el que las porciones de sección decreciente (58, 60) de secciones de pestaña (36) longitudinalmente adyacentes se superponen para definir al menos una junta biselada entre dichas secciones de pestaña adyacentes.
ES19817956T 2018-12-10 2019-12-09 Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica Active ES2963699T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201870803 2018-12-10
PCT/DK2019/050381 WO2020119871A1 (en) 2018-12-10 2019-12-09 Improvements relating to wind turbine blade manufacture

Publications (1)

Publication Number Publication Date
ES2963699T3 true ES2963699T3 (es) 2024-04-01

Family

ID=68847918

Family Applications (1)

Application Number Title Priority Date Filing Date
ES19817956T Active ES2963699T3 (es) 2018-12-10 2019-12-09 Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica

Country Status (5)

Country Link
US (1) US11760041B2 (es)
EP (1) EP3894190B1 (es)
CN (1) CN113165282B (es)
ES (1) ES2963699T3 (es)
WO (1) WO2020119871A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236290A (zh) * 2018-06-07 2021-01-15 Ocv智识资本有限责任公司 用于形成结构部件的系统和方法
EP3922446A1 (en) * 2020-06-12 2021-12-15 Siemens Gamesa Renewable Energy A/S Method for producing a wind turbine blade and wind turbine blade obtained thereby
WO2022105976A1 (en) * 2020-11-19 2022-05-27 Vestas Wind Systems A/S Wind turbine blade shear web

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3101290A (en) * 1957-04-01 1963-08-20 Pneumatiques & Caoutchous Manu Method of joining the ends of a multi-ply laminated belt
US3096958A (en) * 1959-01-22 1963-07-09 Minnesota Mining & Mfg Ribbed sheet structure
GB921135A (en) * 1959-08-21 1963-03-13 Bristol Siddeley Engines Ltd Articles of reinforced resin and methods of making same
US4173670A (en) * 1977-05-27 1979-11-06 Exxon Research & Engineering Co. Composite tubular elements
US4331723A (en) * 1980-11-05 1982-05-25 The Boeing Company Advanced composite
FR2497839A1 (fr) * 1981-01-12 1982-07-16 Brochier Fils J Tissu tridimensionnel pour le renforcement de materiaux stratifies et elements en forme obtenus a partir d'un tel tissu
WO2003023104A1 (en) * 2001-09-12 2003-03-20 Lockheed Martin Corporation Woven preform for structural joints
US7244487B2 (en) * 2003-04-24 2007-07-17 Lockheed Martin Corporation Apparatus, system, and method of joining structural components with a tapered tension bond joint
CA2635651C (en) * 2005-12-30 2012-05-29 Airbus Espana, S.L. Method for producing panels of composite materials with u-shaped stiffening elements
EP2047971B1 (en) * 2007-10-09 2013-12-04 Saab Ab Method for manufacturing beams of fiber-reinforced composite material
US8752293B2 (en) * 2007-12-07 2014-06-17 The Boeing Company Method of fabricating structures using composite modules and structures made thereby
EP2345529B1 (en) * 2010-01-18 2016-03-30 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A method of fabricating a part out of reinforced composite material
TR201810926T4 (tr) 2010-08-13 2018-08-27 Lm Wind Power Int Tech Ii Aps Bir uzatılmış kompozit yapının imal edilmesi için bir usul.
US20120027609A1 (en) 2011-05-17 2012-02-02 Prasad Ogde Wind turbine rotor blade with precured fiber rods and method for producing the same
US9150985B2 (en) * 2011-11-03 2015-10-06 Groupe Ctt Inc. Method of manufacturing weaved preform with oriented weft yarns
US9604389B2 (en) * 2012-02-17 2017-03-28 Albany Engineered Composites, Inc. Pi-shaped preform with bias fibers
DE102012210043A1 (de) * 2012-06-14 2013-12-19 Airbus Operations Gmbh Verfahren und Vorrichtung zur Herstellung einer Leichtbaustruktur sowie Leichtbaustruktur
EP2781734B1 (en) 2013-03-20 2019-02-20 Siemens Aktiengesellschaft Rotor blade with a segmented supporting structure and method for manufacturing the rotor blade
WO2014175798A1 (en) 2013-04-25 2014-10-30 Saab Ab Stiffening element run-out
ES2747767T3 (es) 2013-12-03 2020-03-11 Lm Wp Patent Holding As Un método para fabricar una red de cizallamiento utilizando una brida de pie de red preformada
US20170320275A1 (en) 2014-10-30 2017-11-09 Lm Wp Patent Holding A/S Manufacture of i-shaped shear web
GB201507519D0 (en) 2015-05-01 2015-06-17 Vestas Wind Sys As Reinforcing Structure for a Wind Turbine Blade
JP6614225B2 (ja) * 2017-10-31 2019-12-04 トヨタ自動車株式会社 タンクの製造方法およびタンク
US11135789B2 (en) * 2018-04-26 2021-10-05 The Boeing Company Methods and devices of forming a tensioned stringer for a vehicle
US10864688B2 (en) * 2018-04-26 2020-12-15 The Boeing Company Method and apparatus of modular punch forming plates for alignment of a stringer for a vehicle
JP7359619B2 (ja) * 2019-09-26 2023-10-11 株式会社Subaru 繊維強化樹脂複合材及び繊維強化樹脂複合材の製造方法
US11285641B2 (en) * 2020-02-26 2022-03-29 The Boeing Company Methods and systems for forming curved composite charges for stringers

Also Published As

Publication number Publication date
US20220032562A1 (en) 2022-02-03
EP3894190A1 (en) 2021-10-20
EP3894190B1 (en) 2023-11-01
CN113165282B (zh) 2023-09-05
CN113165282A (zh) 2021-07-23
US11760041B2 (en) 2023-09-19
WO2020119871A1 (en) 2020-06-18
EP3894190C0 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
ES2869238T3 (es) Palas de turbina eólica
ES2963699T3 (es) Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica
ES2747767T3 (es) Un método para fabricar una red de cizallamiento utilizando una brida de pie de red preformada
ES2687694T3 (es) Componente compuesto de fibras para la pala de rotor de una turbina eólica
US11041477B2 (en) Reinforcing structure for a wind turbine blade
US20190270261A1 (en) Reinforcing structure for a wind turbine blade
US11396154B2 (en) Modular wind turbine blade and associated method of manufacture
KR101713882B1 (ko) 윈드 터빈 로터 블레이드 컴포넌트 및 그것을 만드는 방법
CN108472902B (zh) 关于风轮机叶片制造的改进
ES2900974T3 (es) Palas de turbina eólica y procedimientos de fabricación relacionados
ES2676269T3 (es) Un método para producir una capa de refuerzo de fibra continua de esteras de fibra individuales
ES2872401T3 (es) Un método para fabricar una pala de rotor para una turbina eólica
ES2959648T3 (es) Alma de cizallamiento de pala de turbina eólica, método de fabricación y pala de turbina eólica
WO2015003713A1 (en) Wind turbine blade with sections that are joined together
ES2676200T3 (es) Método de fabricación de una parte de una carcasa oblonga y tal parte de la carcasa
ES2605930T3 (es) Procedimiento y herramienta de moldeo para fabricar un segmento de larguero de una pala de rotor de aerogenerador
ITMI20101796A1 (it) Metodo per realizzare un longherone tubolare di una pala di una turbina eolica
ES2834056T3 (es) Cordón de larguero del borde trasero de una pala del rotor de una planta de energía eólica, pala del rotor y método para fabricar un cordón de larguero del borde trasero
ES2886131T3 (es) Ballesta, procedimiento y molde de fabricación de dicha ballesta
ES2957685T3 (es) Prolongación de pala de rotor