ES2899656T3 - Use of layered structures in wind power plants - Google Patents

Use of layered structures in wind power plants Download PDF

Info

Publication number
ES2899656T3
ES2899656T3 ES10784326T ES10784326T ES2899656T3 ES 2899656 T3 ES2899656 T3 ES 2899656T3 ES 10784326 T ES10784326 T ES 10784326T ES 10784326 T ES10784326 T ES 10784326T ES 2899656 T3 ES2899656 T3 ES 2899656T3
Authority
ES
Spain
Prior art keywords
layer
plastic material
reaction mixture
isocyanate
necessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10784326T
Other languages
Spanish (es)
Inventor
Dirk Passmann
Klaus Franken
Stefan Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Intellectual Property GmbH and Co KG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Application granted granted Critical
Publication of ES2899656T3 publication Critical patent/ES2899656T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2875/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Uso de una estructura estratificada en la fabricación de palas del rotor para plantas de energía eólica, en el que la estructura estratificada presenta las siguientes capas: a) una capa central de separación b) dado el caso, una capa de revestimiento de gel c) una capa de fibras tratada con material plástico d) dado el caso, una capa separadora e) una capa de fibras provista con material plástico f) dado el caso, una hoja de material plástico caracterizado porque como material plástico se emplea poliuretano, que se inyecta en la estructura estratificada evacuada ya preparada como mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos.Use of a laminated structure in the production of rotor blades for wind power plants, wherein the laminated structure has the following layers: a) a central separating layer b) possibly a gel coating layer c) a layer of fibers treated with plastic material d) optionally a separating layer e) a layer of fibers provided with plastic material f) optionally a sheet of plastic material characterized in that polyurethane is used as the plastic material, which is injected in the evacuated layered structure already prepared as a reaction mixture formed by isocyanate components and compounds with at least two hydrogen atoms reactive towards isocyanates.

Description

DESCRIPCIÓNDESCRIPTION

Uso de estructuras estratificadas en plantas de energía eólicaUse of layered structures in wind power plants

La presente invención se refiere al uso de estructuras estratificadas en la fabricación de palas de rotor para plantas de energía eólica, así como a palas de rotor para plantas de energía eólica.The present invention relates to the use of laminated structures in the manufacture of rotor blades for wind power plants, as well as rotor blades for wind power plants.

La energía obtenida de la fuerza eólica adquiere una importancia cada vez mayor, de tal manera que las plantas de energía eólica, en particular las palas de rotor y su fabricación son el objeto de estudios y desarrollos intensivos. A este respecto, un centro de atención principal se refiere a la calidad de las palas de rotor fabricadas, así como en una fabricación económicamente favorable. Las palas de rotor conocidas hasta ahora para para plantas de energía eólica están hechas de materiales plásticos reforzados con fibras basados en resinas como material de matriz, tales como, por ejemplo, resinas de poliéster (UP), resinas de viniléster (VE), resinas epoxi (EP). La fabricación de las palas se efectúa principalmente de tal manera que respectivamente una mitad inferior y una mitad superior de la pala se fabrican como una sola pieza. Posteriormente, estas dos mitades se superponen y se unen adhesivamente. Como refuerzo, en la unión adhesiva se incluyen tirantes o correas.The energy obtained from wind power is becoming increasingly important, so that wind power plants, in particular rotor blades and their manufacture are the object of intensive study and development. In this connection, a main focus of attention is on the quality of the manufactured rotor blades, as well as on economically favorable manufacturing. Until now known rotor blades for wind power plants are made of fiber-reinforced plastic materials based on resins as matrix material, such as, for example, polyester resins (UP), vinyl ester resins (VE), resins epoxy (EP). The manufacture of the blades is mainly carried out in such a way that respectively a lower half and an upper half of the blade are manufactured as one piece. Subsequently, these two halves are superimposed and adhesively joined. As reinforcement, braces or straps are included in the adhesive joint.

En la fabricación de las dos mitades de pala, primero se fabrican los materiales compuestos de fibras, que deben solidificarse y endurecerse. El proceso de endurecimiento consume mucho tiempo y es desventajoso para la rapidez con que se puede efectuar el proceso de fabricación general. Las palas de rotor para plantas de energía eólica hechas de las resinas previamente mencionadas se fabrica normalmente por laminación manual, laminación manual con apoyo de la tecnología de preimpregnación, mediante procedimientos de arrollamiento o a través de un procedimiento de infusión apoyada por vacío. En la laminación manual, en primer lugar se prepara un molde, mediante la aplicación de un medio de separación y, dado el caso, una película de gel, sobre la superficie del molde. Después se colocaron sucesivamente tejidos de fibra de vidrio con orientación unidireccional o biaxial dentro del molde. Luego se aplica la resina sobre el tejido y se integra manualmente en el tejido mediante rodillos. Esta etapa se puede repetir tantas veces como sea necesario. Adicionalmente, se pueden integrar correas como material de refuerzo u otros componentes, tales como, por ejemplo, dispositivos de protección contra rayos. Sobre esta primera capa reforzada con fibra de vidrio se aplica una así llamada capa distanciadora, normalmente hecha de madera balsa, espuma de polivinilcloruro (PVC) o de poliuretano (PUR), y de manera análoga una segunda capa reforzada con fibra de vidrio. Aunque este procedimiento presenta la ventaja de que las inversiones en maquinaria se mantienen reducidas y el reconocimiento de errores y las posibilidades de corrección son simples, este tipo de fabricación, sin embargo, es demasiado intensivo en lo referente a salarios, por lo que los costes del procedimiento son muy elevados y los largos tiempos de fabricación resultan en más errores y en un alto dispendio para el aseguramiento de la calidad.In the manufacture of the two blade halves, the fiber composite materials are first manufactured, which must be solidified and hardened. The curing process is time consuming and disadvantageous to the speed with which the overall manufacturing process can be carried out. Rotor blades for wind power plants made from the aforementioned resins are usually manufactured by hand rolling, hand rolling with the support of prepreg technology, by winding processes or through a vacuum-supported infusion process. In manual lamination, a mold is first prepared by applying a release medium and, if necessary, a gel film, to the surface of the mold. Fiberglass fabrics with unidirectional or biaxial orientation were then successively placed inside the mold. The resin is then applied to the fabric and manually integrated into the fabric using rollers. This stage can be repeated as many times as necessary. Additionally, straps can be integrated as reinforcing material or other components, such as, for example, lightning protection devices. A so-called spacer layer, usually made of balsa wood, polyvinylchloride (PVC) or polyurethane (PUR) foam, is applied on top of this first fiberglass-reinforced layer, and a second fiberglass-reinforced layer is applied analogously. Although this procedure has the advantage that investments in machinery are kept low and error recognition and correction possibilities are simple, this type of manufacturing is, however, too labor intensive, so that the costs of the procedure are very high and the long manufacturing times result in more errors and a high expense for quality assurance.

El procedimiento de laminación manual con apoyo de la tecnología de preimpregnación se efectúa de manera similar al procedimiento de laminación manual simple. A este respecto, sin embargo, los así llamados géneros preimpregnados (esteras de fibra de vidrio prefabricadas e impregnadas con resina) se fabrican fuera del molde y posteriormente se colocan en el molde de la pala de rotor. Si bien la automatización parcial para la fabricación del género preimpregnado, comparado con la laminación manual simple, lleva a una constancia mejorada de la calidad en la fabricación del rotor, la protección de los trabajadores contra los compuestos muy volátiles contenidos en las mezclas de resina líquida significa un gasto sustancial (seguridad en el sitio de trabajo, etc.).The manual lamination process supported by prepreg technology is carried out in a similar way to the simple manual lamination process. In this regard, however, so-called prepregs (prefabricated resin-impregnated fiberglass mats) are made outside the mold and subsequently placed in the rotor blade mould. While partial automation for prepreg fabrication, compared to simple manual lamination, leads to improved quality consistency in rotor fabrication, worker protection from highly volatile compounds contained in liquid resin blends means a substantial expense (job site safety, etc.).

En el documento EP 2 148087 A se divulga el uso de una espuma de poliuretano junto con una “ línea de soporte” (“ line support”) para cables dentro de la turbina, pero no en la pala de rotor. La utilización de polvos de poliuretano para la preparación de materiales compuestos preimpregnados para palas de rotor no se describe en el documento WO 2010/108701 A publicado anteriormente. El documento DE 10150247 divulga el revestimiento exterior de un cuerpo alrededor del cual fluyen fluidos, que contiene una capa de poliuretano como capa exterior fina (dado el caso, con formación de perfil), la cual está laminada sobre una capa de tejido asimismo fina. En este caso, el poliuretano y la capa de tejido no están combinados para formar un plástico reforzado con fibras.EP 2 148087 A discloses the use of a polyurethane foam in conjunction with a "line support" for cables inside the turbine, but not in the rotor blade. The use of polyurethane powders for the preparation of prepreg composite materials for rotor blades is not described in previously published WO 2010/108701 A. DE 10150247 discloses the outer covering of a body around which fluids flow, which contains a polyurethane layer as a thin outer layer (possibly profiled), which is laminated to an equally thin fabric layer. In this case, the polyurethane and the fabric layer are not combined to form a fiber reinforced plastic.

En el procedimiento de inyección de resina (también conocido como “Moldeo por transferencia de resina” (“Resin Transfer Molding” o RTM por las siglas en inglés) o “Moldeo por transferencia de resina apoyada por vacío” (VA RTM) o el “Proceso SCRIMP” (“Seeman Composites Resin jnfusion Molding Process” o “Proceso de moldeo por infusión de resina de Seemann Composites”), los moldes se preparan mediante la aplicación de un medio de separación y eventualmente una capa de revestimiento de gel. Después, las esteras de fibras secas se colocan en el molde de acuerdo con un plan de fabricación exacto. La primera capa colocada posteriormente será la capa orientada hacia el exterior de la pala de rotor. Luego se colocan los materiales distanciadores, después de lo que nuevamente se colocan esteras de fibras, que luego forman la capa interior de la mitad de rotor acabada o semicasco de rotor, respectivamente. Con una hoja resistente al vacío, después se cierra herméticamente el molde entero. Del molde así preparado se extrae entonces el aire de las esteras de fibras y de los materiales distanciadores, antes de que en diferentes sitios se inyecte la resina en el molde (espacio entre la hoja y el molde). Al igual que los dos procedimientos antes mencionados, también este procedimiento presenta la desventaja de que el tiempo de endurecimiento necesario hasta que se pueda efectuar el desmolde de la pieza es muy largo con hasta 12 horas de duración, por lo que la productividad de las instalaciones se limita fuertemente.In the resin injection process (also known as "Resin Transfer Molding" or "Vacuum Supported Resin Transfer Molding" (VA RTM) or the " SCRIMP Process” (“Seeman C omposites R esin j nfusion M olding P rocess” or “Seemann Composites Resin Infusion Molding Process”), the molds are prepared by applying a separating medium and possibly a layer of gel coat. The dry fiber mats are then placed in the mold according to an exact manufacturing plan. The first layer placed afterwards will be the layer facing the outside of the rotor blade. Spacer materials are then placed, after which fiber mats are laid again, which then form the inner layer of the finished rotor half or half-rotor shell, respectively With a vacuum-resistant sheet, the entire mold is then hermetically sealed. The thus prepared mold is then de-aired from the fiber mats and spacer materials, before the resin is injected into the mold at different places (gap between sheet and mold). Like the two procedures mentioned above, this procedure also has the disadvantage that the hardening time required until the piece can be demoulded is very long, up to 12 hours, so the productivity of the facilities is strongly limited.

Por lo tanto, el objetivo de la presente invención consistió en proveer palas de rotor que no presenten las desventajas previamente mencionadas y que además puedan fabricarse de manera económicamente favorable en un tiempo más corto.Therefore, the object of the present invention was to provide rotor blades that do not have the disadvantages previously mentioned and which can also be manufactured in an economically favorable manner in a shorter time.

Este objetivo se ha podido lograr de manera sorprendente, debido a que las palas de rotor se fabrican con poliuretano, como material plástico empleado en lugar de las resinas arriba mencionadas. En particular en la capa exterior de la pala de rotor, de acuerdo con la presente invención se usa poliuretano como material plástico; con este material se cargan las capas fibrosas insertadas en la capa exterior.This objective has surprisingly been achieved because the rotor blades are made of polyurethane as the plastic material used instead of the above-mentioned resins. In particular in the outer layer of the rotor blade, according to the present invention polyurethane is used as the plastic material; The fibrous layers inserted in the outer layer are loaded with this material.

El objeto de la invención es un procedimiento para la fabricación de palas de rotor para plantas de energía eólica, que presentan una capa exterior que está formada por lo menos parcialmente por una estructura estratificada con las siguientes capas:The object of the invention is a process for the manufacture of rotor blades for wind power plants, which have an outer layer that is formed at least partially by a stratified structure with the following layers:

a) una capa central de separacióna) a central separating layer

b) dado el caso, una capa de revestimiento de gelb) if necessary, a layer of gel coating

c) una capa de fibras tratada con material plásticoc) a layer of fibers treated with plastic material

d) dado el caso, una capa separadorad) if necessary, a separating layer

e) una capa de fibras provista con material plásticoe) a layer of fibers provided with plastic material

f) dado el caso, una hoja de material plásticof) if necessary, a sheet of plastic material

en donde se inyecta la mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos en la estructura estratificada evacuada ya preparada, y where the reaction mixture formed by isocyanate components and compounds with at least two reactive hydrogen atoms against isocyanates is injected into the already prepared evacuated layered structure, and

Un objeto adicional de la invención son palas de rotor para plantas de energía eólica, que se fabrican según el procedimiento de acuerdo con la invención.A further object of the invention are rotor blades for wind power plants, which are produced by the method according to the invention.

Un objeto adicional de la invención es el uso de una estructura estratificada en el caso de la fabricación de palas de rotor para plantas de energía eólica según el procedimiento de acuerdo con la invención, en donde la estructura estratificada presenta las siguientes capas:An additional object of the invention is the use of a layered structure in the case of manufacturing rotor blades for wind power plants according to the method according to the invention, where the layered structure has the following layers:

a) una capa de separación centrala) a central separating layer

b) dado el caso, una capa de revestimiento de gelb) if necessary, a layer of gel coating

c) una capa de fibras tratada con material plásticoc) a layer of fibers treated with plastic material

d) dado el caso, una capa separadorad) if necessary, a separating layer

e) una capa de fibras provista con material plásticoe) a layer of fibers provided with plastic material

f) dado el caso, una hoja de material plásticof) if necessary, a sheet of plastic material

y está caracterizada porque se emplea poliuretano como material plástico, que se inyecta en la estructura estratificada evacuada ya preparada como mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos.and is characterized in that polyurethane is used as plastic material, which is injected into the already prepared evacuated layer structure as a reaction mixture consisting of isocyanate components and compounds with at least two isocyanate-reactive hydrogen atoms.

Para la capa de separación central se emplean preferentemente medios de separación que contienen silicona o cera. Éstos se conocen de la literatura.Silicone- or wax-containing release agents are preferably used for the central separating layer. These are known from the literature.

La capa de revestimiento de gel preferentemente consiste en resinas de poliuretano, resinas epoxi, resinas insaturadas de poliéster o de vinilo.The gel coat layer preferably consists of polyurethane resins, epoxy resins, unsaturated polyester or vinyl resins.

Como capa de fibras se pueden usar preferentemente estructuras de fibras de orientación aleatoria, tejidos y géneros de fibra de vidrio, fibras de vidrio o fibras minerales cortadas o molidas, así como esteras de fibras, velos de fibras y géneros de mallas de fibras basados en fibras de polímeros, minerales, carbono, vidrio o aramida, así como sus mezclas, y de manera particularmente preferente esteras de fibra de vidrio o velos de fibra de vidrio. Como capa distanciadora se pueden emplear preferentemente espumas de material plástico, madera o metal.As fiber layer, it is preferable to use randomly oriented fiber structures, fabrics and fabrics made of chopped or ground glass fiber, glass fibers or mineral fibers, as well as fiber mats, fiber fleeces and fiber mesh fabrics based on polymer, mineral, carbon, glass or aramid fibers and mixtures thereof, particularly preferably glass fiber mats or glass fiber fleeces. Foams made of plastic, wood or metal can preferably be used as the spacer layer.

La hoja de material plástico, empleada opcionalmente, en la fabricación de la pala de rotor puede permanecer como capa en la envuelta, o bien puede retirarse durante el desmoldeo de la respectiva mitad de la pala de rotor. La misma sirve en particular para estanqueizar el semicasco de molde, que está dotado con las capas previamente mencionadas, durante el proceso de fabricación, antes del llenado con la mezcla de resina líquida.The plastic foil optionally used in the production of the rotor blade can remain as a layer in the casing or can be removed during demoulding of the respective rotor blade half. It serves in particular to seal the mold shell, which is provided with the previously mentioned layers, during the manufacturing process, before filling with the liquid resin mixture.

Como material plástico se usa poliuretano. Los poliuretanos se pueden obtener mediante la transformación de poliisocianatos con compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos. La mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se inyecta en la estructura estratificada evacuada ya preparada.Polyurethane is used as plastic material. Polyurethanes can be obtained by reacting polyisocyanates with compounds containing at least two hydrogen atoms that are reactive towards isocyanates. The reaction mixture consisting of isocyanate components and compounds with at least two isocyanate-reactive hydrogen atoms is injected into the already prepared evacuated layer structure.

Como compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se tienen en cuenta en general aquellos que portan en la molécula dos o varios grupos reactivos, tales como, por ejemplo, grupos OH, grupos SH, grupos NH, grupos NH2 y grupos CH ácidos. Preferentemente, se utilizan polioles de poliéter y/o polioles de poliéster, de manera especialmente preferente polioles de poliéter. La formulación de poliol preferentemente contiene como polioles aquellos que presenten un índice OH de 200 a 1830 mg de KOH/g, preferentemente de 300 a 1000 mg KOH/g y de manera particularmente preferente de 350 a 500 mg de KOH/g. La viscosidad de los polioles es preferentemente < 800 mPas (a 25 °C). Preferentemente, los polioles tienen por lo menos el 60 %, preferentemente por lo menos el 80 %, de grupos OH secundarios y de manera especialmente preferente el 90 % de grupos OH secundarios. Resultan especialmente preferentes los polioles de poliéter a base de óxido de polipropileno.Compounds with at least two hydrogen atoms that are reactive towards isocyanates are generally considered to be those that carry two or more reactive groups in the molecule, such as, for example, OH groups, SH groups, NH groups, NH2 groups. and acidic CH groups. Preference is given to using polyether polyols and/or polyester polyols, particularly preferably polyether polyols. The polyol formulation preferably contains as polyols those having an OH number of 200 to 1,830 mg KOH/g, preferably 300 to 1,000 mg KOH/g, and particularly preferably 350 to 500 mg KOH/g. The viscosity of polyols is preferably < 800 mPas (at 25 °C). The polyols preferably contain at least 60%, preferably at least 80%, secondary OH groups and more preferably 90% secondary OH groups. Polyether polyols based on polypropylene oxide are particularly preferred.

Como componente de poliisocianato se emplean los di- y/o poliisocianatos alifáticos, cicloalifáticos y en particular aromáticos comúnmente usados. Ejemplos de tales poliisocianatos apropiados son 1,4-butilendiisocianato, 1,5-pentadiisocianato, 1,6-hexametilendiisocianato (h Di), isoforondiisocianato (IPDI), 2,2,4- y/o 2,4,4-trimetilhexametilendiisocianato, bis(4,4'-isocianatociclohexil)metano o sus mezclas con los isómeros comunes, 1,4-ciclohexilendiisocianato, 1,4-fenilendiisocianato, 2,4- y/o 2,6-toluilendiisocianato (TDI), 1,5-naftilendiisocianato, 2,2'-y/o 2,4'- y/o 4,4'-difenilmetandiisocianato (MDI) y/o homólogos superiores (pMDI) de los mismos,1,3- y/o 1,4-bis-(2-isocianato-prop-2-il)-benzol (TMXDI), 1,3-bis-(isocianatometil)benzol (XDI). Como isocianato se emplea preferentemente difenilmetandiisocianato (MDI) en particular mezclas de difenilmetandiisocianato y polifenilenpolimetilenpoliisocianato (pMDI). Las mezclas de difenilmetandiisocianato y polifenilenpolimetilenpoliisocianato (pMDI) presentan un contenido de monómero preferente de entre 40 y 100 % en peso, más preferentemente entre 50 y 90 % en peso, y aún más preferentemente entre 60 y 80 % en peso. El contenido de NCO del poliisocianato empleado preferentemente debería ubicarse por encima de 25 % en peso, más preferentemente por encima de 30 % en peso y aún más preferentemente por encima de 31,4 % en peso. Preferentemente, el MDI empleado debería presentar un contenido conjunto de 2,2'-difenilmetandiisocianato y 2,4'-difenilmetandiisocianato de por lo menos 3 % en peso, preferentemente de por lo menos 20 % en peso, de manera especialmente preferente de por lo menos el 40 % en peso. La viscosidad del isocianato debería ser preferentemente de < 250 mPas (a 25 °C), más preferentemente de < 100 mPas (a 25 °C) y aún más preferentemente de < 50 mPas (a 25 °C).The commonly used aliphatic, cycloaliphatic and, in particular, aromatic di- and/or polyisocyanates are used as polyisocyanate component. Examples of such suitable polyisocyanates are 1,4-butylene diisocyanate, 1,5-pentadiisocyanate, 1,6-hexamethylene diisocyanate (h Di), isophorone diisocyanate (IPDI), 2,2,4- and/or 2,4,4-trimethylhexamethylene diisocyanate, bis(4,4'-isocyanatocyclohexyl)methane or its mixtures with the common isomers, 1,4-cyclohexylene diisocyanate, 1,4-phenylenediisocyanate, 2,4- and/or 2,6-toluylene diisocyanate (TDI), 1,5- naphthylene diisocyanate, 2,2'-and/or 2,4'- and/or 4,4'-diphenylmethane diisocyanate (MDI) and/or higher homologs (pMDI) thereof, 1,3- and/or 1,4- bis-(2-isocyanato-prop-2-yl)-benzol (TMXDI), 1,3-bis-(isocyanatomethyl)benzol (XDI). Diphenylmethanediisocyanate (MDI) is preferably used as isocyanate, in particular mixtures of diphenylmethanediisocyanate and polyphenylenepolymethylenepolyisocyanate (pMDI). The mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate (pMDI) have a monomer content preferably between 40 and 100% by weight, more preferably between 50 and 90% by weight, and even more preferably between 60 and 80% by weight. The NCO content of the polyisocyanate used should preferably be above 25% by weight, more preferably above 30% by weight and even more preferably above 31.4% by weight. The MDI used should preferably have a combined content of 2,2'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate of at least 3% by weight, preferably at least 20% by weight, particularly preferably at least less than 40% by weight. The viscosity of the isocyanate should preferably be <250 mPas (at 25°C), more preferably <100 mPas (at 25°C) and even more preferably <50 mPas (at 25°C).

La mezcla de reacción de poliuretano, además de los componentes reactivos, aditivos y agentes de adición conocidos, preferentemente puede incluir cargas, tales como nanotúbulos de carbono, sulfato de bario, dióxido de titanio, fibras de vidrio cortas o minerales naturales en forma de fibras o plaquetas, por ejemplo, volastonita o muscovita. Como aditivos y agentes de adición se emplean preferentemente despumadores, catalizadores, así como catalizadores latentes. Otros aditivos y agentes de adición conocidos se pueden usar según sea necesario.The polyurethane reaction mixture, in addition to the known reactive components, additives and addition agents, may preferably include fillers, such as carbon nanotubules, barium sulfate, titanium dioxide, short glass fibers or natural minerals in the form of fibers. or platelets, eg volastonite or muscovite. Defoamers, catalysts and latent catalysts are preferably used as additives and addition agents. Other known additives and adding agents can be used as needed.

Los sistemas de poliuretano apropiados son en particular aquellos que son transparentes. Debido a que para la fabricación de piezas moldeadas de mayor tamaño se requiere una baja viscosidad para un rellenado uniforme del molde, resultan particularmente apropiados los sistemas de poliuretano que presentan una viscosidad de < 5000 mPas (a 25 °C; 30 minutos después del mezclado de los componentes), preferentemente de < 2000 mPas, de manera particularmente preferente de < 1000 mPas. Preferentemente, la relación de transformación entre el componente de isocianato y los compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se selecciona de tal manera que en la mezcla de reacción la relación del número de grupos de isocianato con respecto al número de grupos reactivos frente al isocianato se ubica entre 0,9 y 1,5, preferentemente entre 1,0 y 1,2, y aún más preferentemente entre 1,02 y 1,1.Suitable polyurethane systems are in particular those that are transparent. Since a low viscosity is required for uniform mold filling in the production of larger molded parts, polyurethane systems with a viscosity of < 5000 mPas (at 25 °C; 30 minutes after mixing) are particularly suitable. of the components), preferably <2000 mPas, particularly preferably <1000 mPas. Preferably, the conversion ratio between the isocyanate component and the compounds with at least two isocyanate-reactive hydrogen atoms is selected such that the ratio of the number of isocyanate groups to the number of isocyanate groups in the reaction mixture of reactive groups towards isocyanate is between 0.9 and 1.5, preferably between 1.0 and 1.2, and even more preferably between 1.02 and 1.1.

En una forma de realización preferente, la mezcla de reacción formada por el componente de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se inyecta a una temperatura de entre 20 y 80 °C, más preferentemente de entre 25 y 40 °C.In a preferred embodiment, the reaction mixture formed by the isocyanate component and compounds with at least two reactive hydrogen atoms against isocyanates is injected at a temperature between 20 and 80 °C, more preferably between 25 and 40°C.

Después del rellenado de la mezcla de reacción, el endurecimiento del poliuretano se puede acelerar mediante el calentamiento del molde. En una forma de realización preferente, la mezcla de reacción inyectada formada por el componente de isocianato y los demás compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se endurece a una temperatura de entre 40 y 160 °C, preferentemente entre 60 y 120 °C, más preferentemente entre 70 y 90 °C.After the filling of the reaction mixture, the hardening of the polyurethane can be accelerated by heating the mold. In a preferred embodiment, the injected reaction mixture consisting of the isocyanate component and the other compounds with at least two isocyanate-reactive hydrogen atoms is hardened at a temperature between 40 and 160 °C, preferably between 60 and 120 °C, more preferably between 70 and 90 °C.

La presente invención se describe más detalladamente a continuación basándose en los siguientes ejemplos.The present invention is described in more detail below based on the following examples.

Ejemplosexamples

Se fabricaron cuerpos moldeados (placas) de diferentes sistemas de poliuretano y se compararon con un sistema de resina epoxi estándar. El tamaño de las placas era de 17 cm * 17 cm con un espesor de 4 mm.Moldings (plates) of different polyurethane systems were made and compared with a standard epoxy resin system. The size of the plates was 17 cm * 17 cm with a thickness of 4 mm.

El tiempo de desmoldeo es aquel tiempo después del cual los cuerpos de muestra de PUR se pueden extraer del molde de placa manualmente sin deformación.The demould time is that time after which the PUR sample bodies can be removed from the plate mold manually without deformation.

La viscosidad fue determinada 30 minutos después de mezclarse los componentes, puesto que para la fabricación de piezas moldeadas de mayor tamaño, durante un tiempo determinado se requiere una baja viscosidad para un llenado uniforme del molde.The viscosity was determined 30 minutes after the components were mixed, since for the manufacture of larger molded parts, a low viscosity is required for a uniform filling of the mold for a certain time.

Ejemplo 1Example 1

Se agitaron 70 g de Baygal® K 55 (poliol de poliéter de la empresa Bayer MaterialScience AG; índice OH: 385 ± 15 mg de KOH/g; viscosidad a 25 °C: 600 ± 50 mPas) con 65,3 g de Baymidur® K 88 (producto de la empresa Bayer MaterialScience AG; mezcla de diisocianato de difenilmetano y poliisocianato de polifenilenpolimetileno; contenido de NCO 31,5 ± 0,5 % en peso; viscosidad a 25 °C: 90 ± 20 mPas) a temperatura ambiente y desgasificaron con presión negativa. La solución se vertió en un molde de placa y se almacenó a temperatura ambiente durante una hora. Después, la muestra se atemperó a 80 °C. El tiempo de gelificación ascendió a de aproximadamente 70 minutos y el tiempo de desmoldeo ascendió a dos horas.70 g of Baygal® K 55 (polyether polyol from Bayer MaterialScience AG; OH number: 385 ± 15 mg KOH/g; viscosity at 25 °C: 600 ± 50 mPas) were stirred with 65.3 g of Baymidur ® K 88 (product of the company Bayer MaterialScience AG; mixture of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate; content of NCO 31.5 ± 0.5% by weight; viscosity at 25 °C: 90 ± 20 mPas) at room temperature and degassed with negative pressure. The solution was poured into a plate mold and stored at room temperature for one hour. Afterwards, the sample was tempered at 80 °C. The gelation time was about 70 minutes and the demoulding time was two hours.

El cuerpo de prueba tenía una dureza de 76 Shore D.The test body had a hardness of 76 Shore D.

La viscosidad a 25 °C ascendió a 1540 mPas 30 minutos después de la mezcla de los componentes.The viscosity at 25[deg.] C. was 1540 mPas 30 minutes after mixing the components.

Ejemplo 2Example 2

Se agitaron 70 g de Baygal® K 55 (poliol de poliéter de la empresa Bayer MaterialScience AG; índice OH: 385 ± 15 mg de KOH/g; viscosidad a 25 °C: 600 ± 50 mPas) con 63 g de Baymidur® VP.KU 3-5009 (empresa Bayer MaterialScience AG; mezcla de diisocianato de difenilmetano y poliisocianato de polifenilenpolimetileno; contenido de NCO 31,5 ± 33,5 % en peso; viscosidad a 25 °C: 15 - 30 mPas) a temperatura ambiente y desgasificaron con presión negativa. La solución se vertió en un molde de placa y se almacenó a temperatura ambiente durante una hora. Después, la muestra se atemperó a 80 °C. El tiempo de desmoldeo ascendió a dos horas.70 g of Baygal® K 55 (polyether polyol from Bayer MaterialScience AG; OH number: 385 ± 15 mg KOH/g; viscosity at 25 °C: 600 ± 50 mPas) were stirred with 63 g of Baymidur® VP .KU 3-5009 (Bayer MaterialScience AG; mixture of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate; NCO content 31.5 ± 33.5% by weight; viscosity at 25 °C: 15 - 30 mPas) at room temperature and degassed with negative pressure. The solution was poured into a plate mold and stored at room temperature for one hour. Afterwards, the sample was tempered at 80 °C. The demoulding time was two hours.

El cuerpo de prueba tenía una dureza de 76 Shore D.The test body had a hardness of 76 Shore D.

La viscosidad a 25 °C ascendió a 974 mPas 30 minutos después de la mezcla de los componentes.The viscosity at 25[deg.] C. was 974 mPas 30 minutes after mixing the components.

Ejemplo comparativo 3Comparative Example 3

Se agitaron 180 g de resina de infusión Larit RIM 135 (L-135i) (producto de la empresa Lange+Ritter) con 60 g de endurecedor Larit RIMH 137 (producto de la empresa Lange+Ritter) a temperatura ambiente y desgasificaron con presión negativa. La solución se vertió en un molde de placa y se almacenó a temperatura ambiente durante una hora. Después, la muestra se atemperó a 80 °C. El tiempo de desmoldeo ascendió a doce horas.180 g of infusion resin Larit RIM 135 (L-135i) (product of the company Lange+Ritter) were stirred with 60 g of hardener Larit RIMH 137 (product of the company Lange+Ritter) at room temperature and degassed under negative pressure. . The solution was poured into a plate mold and stored at room temperature for one hour. Afterwards, the sample was tempered at 80 °C. The demoulding time was twelve hours.

El cuerpo de prueba tenía una dureza de 76 Shore D.The test body had a hardness of 76 Shore D.

El sistema de poliuretano se pudo desmoldear significativamente más rápido. El tiempo de desmoldeo más rápido del sistema de poliuretano posibilita una productividad más alta, puesto que el tiempo de ocupación de los moldes se puede reducir considerablemente y, por lo tanto, se pueden fabricar más cuerpos de moldeo. The polyurethane system could be demoulded significantly faster. The faster demolding time of the polyurethane system enables higher productivity, since the holding time of the molds can be considerably reduced and thus more moldings can be produced.

Claims (8)

REIVINDICACIONES 1. Uso de una estructura estratificada en la fabricación de palas del rotor para plantas de energía eólica, en el que la estructura estratificada presenta las siguientes capas:1. Use of a laminated structure in the manufacture of rotor blades for wind power plants, wherein the laminated structure has the following layers: a) una capa central de separacióna) a central separating layer b) dado el caso, una capa de revestimiento de gelb) if necessary, a layer of gel coating c) una capa de fibras tratada con material plásticoc) a layer of fibers treated with plastic material d) dado el caso, una capa separadorad) if necessary, a separating layer e) una capa de fibras provista con material plásticoe) a layer of fibers provided with plastic material f) dado el caso, una hoja de material plásticof) if necessary, a sheet of plastic material caracterizado porque como material plástico se emplea poliuretano, que se inyecta en la estructura estratificada evacuada ya preparada como mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos. characterized in that polyurethane is used as the plastic material, which is injected into the already prepared evacuated layered structure as a reaction mixture consisting of isocyanate components and compounds with at least two isocyanate-reactive hydrogen atoms. 2. Procedimiento para la fabricación de palas de rotor para plantas de energía eólica, que presentan una envoltura que se compone por lo menos parcialmente de una estructura estratificada con las siguientes capas:2. Process for the manufacture of rotor blades for wind power plants, which have an envelope that is composed at least partially of a stratified structure with the following layers: a) una capa central de separacióna) a central separating layer b) dado el caso, una capa de revestimiento de gelb) if necessary, a layer of gel coating c) una capa de fibras tratada con material plásticoc) a layer of fibers treated with plastic material d) dado el caso, una capa separadorad) if necessary, a separating layer e) una capa de fibras provista con material plásticoe) a layer of fibers provided with plastic material f) dado el caso, una hoja de material plástico,f) if necessary, a sheet of plastic material, caracterizado porque las capas de fibra se tratan con una mezcla de reacción para la preparación de poliuretano como material plástico, en donde la mezcla de reacción formada por componentes de isocianato y compuestos con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos se inyecta en la estructura estratificada evacuada ya preparada como mezcla de reacción. characterized in that the fiber layers are treated with a reaction mixture for the preparation of polyurethane as plastic material, wherein the reaction mixture consisting of isocyanate components and compounds with at least two isocyanate-reactive hydrogen atoms is injected in the evacuated layered structure already prepared as a reaction mixture. 3. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque la mezcla de reacción como isocianato contiene difenilmetandiisocianato y/o polifenilenpolimetilenpoliisocianato con un contenido de NCO de más del 25 % en peso.Process according to Claim 2, characterized in that the reaction mixture contains diphenylmethanediisocyanate and/or polyphenylenepolymethylenepolyisocyanate with an NCO content of more than 25% by weight as isocyanate. 4. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque la mezcla de reacción como compuesto con por lo menos dos átomos de hidrógeno reactivos frente a los isocianatos contiene un poliol de poliéter, en el que por lo menos el 60 % de los grupos OH son grupos OH secundarios y que tiene un índice OH de 200 a 1830 mg de KOH/g.Process according to claim 2, characterized in that the reaction mixture as a compound with at least two isocyanate-reactive hydrogen atoms contains a polyether polyol in which at least 60% of the OH groups are secondary OH groups and have an OH value of 200 to 1830 mg KOH/g. 5. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque la mezcla de reacción se aplica dentro de las capas de fibras a una temperatura de entre 20 y 80 °C.Method according to claim 2, characterized in that the reaction mixture is applied inside the fiber layers at a temperature between 20 and 80 °C. 6. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque la mezcla de reacción se endurece a una temperatura de entre 40 y 160 °C.6. Process according to claim 2, characterized in that the reaction mixture is cured at a temperature between 40 and 160 °C. 7. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque la mezcla de reacción a 30 minutos después del mezclado tiene una viscosidad de < 5000 mPas.7. Process according to claim 2, characterized in that the reaction mixture has a viscosity of <5000 mPas 30 minutes after mixing. 8. Palas de rotor para plantas de energía eólica, fabricadas según un procedimiento de acuerdo con la reivindicación 2. 8. Rotor blades for wind power plants, manufactured according to a method according to claim 2.
ES10784326T 2009-12-12 2010-12-06 Use of layered structures in wind power plants Active ES2899656T3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009058101A DE102009058101A1 (en) 2009-12-12 2009-12-12 Use of layer structures in wind turbines
PCT/EP2010/068992 WO2011069975A1 (en) 2009-12-12 2010-12-06 Use of layer superstructures in wind power plants

Publications (1)

Publication Number Publication Date
ES2899656T3 true ES2899656T3 (en) 2022-03-14

Family

ID=43875224

Family Applications (1)

Application Number Title Priority Date Filing Date
ES10784326T Active ES2899656T3 (en) 2009-12-12 2010-12-06 Use of layered structures in wind power plants

Country Status (17)

Country Link
US (2) US10293586B2 (en)
EP (1) EP2509790B1 (en)
JP (1) JP6000852B2 (en)
KR (1) KR101761954B1 (en)
CN (1) CN102753345B (en)
AU (1) AU2010329978B2 (en)
BR (1) BR112012014193A2 (en)
CA (1) CA2783986A1 (en)
DE (1) DE102009058101A1 (en)
DK (1) DK2509790T3 (en)
ES (1) ES2899656T3 (en)
IN (1) IN2012DN05174A (en)
MX (1) MX348378B (en)
PL (1) PL2509790T3 (en)
RU (1) RU2549070C9 (en)
WO (1) WO2011069975A1 (en)
ZA (1) ZA201203805B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058101A1 (en) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Use of layer structures in wind turbines
DE102011004723A1 (en) * 2011-02-25 2012-08-30 Bayer Materialscience Aktiengesellschaft Use of layer structures in wind turbines
US9855711B2 (en) 2011-10-11 2018-01-02 Siemens Aktiengesellschaft Method for manufacturing a composite panel
EP2766174A1 (en) * 2011-10-11 2014-08-20 Bayer Intellectual Property GmbH Composite profile and method for manufacturing a composite profile
DK2768891T3 (en) 2011-10-21 2018-10-29 Covestro Deutschland Ag FIBER REINFORCED POLYISOCYANURATE COMPONENT AND A PROCEDURE FOR PREPARING IT
EP2920220A1 (en) * 2012-11-14 2015-09-23 Bayer Materialscience AG Method for producing composite components
US20140248813A1 (en) * 2013-03-04 2014-09-04 Basf Se Crystal-clear polyurethanes
CN104045806B (en) * 2013-03-13 2021-01-19 科思创德国股份有限公司 Polyurethane composition for preparing polyurethane composite material
US10787550B2 (en) 2014-06-26 2020-09-29 Covestro Deutschland Ag Composite components on the basis of hydrophobic polyols
CN105778005B (en) * 2014-12-01 2020-04-28 科思创德国股份有限公司 Free-radically polymerizable polyurethane composition
WO2016207191A1 (en) 2015-06-24 2016-12-29 Covestro Deutschland Ag Polyurethane systems for layer structures in wind turbines
DE102017108902A1 (en) * 2017-04-26 2018-10-31 Wobben Properties Gmbh Method for the simultaneous production of two or more fiber composite components and fiber composite component
WO2019051637A1 (en) 2017-09-12 2019-03-21 Covestro Deutschland Ag Composite material comprising a polyurethane-polyacrylate resin matrix
US20200316892A1 (en) 2017-10-13 2020-10-08 Covestro Deutschland Ag Composite wind turbine blade and manufacturing method and application thereof
EP3536492A1 (en) 2018-03-06 2019-09-11 Covestro Deutschland AG Composite wind turbine blade and manufacturing method and application thereof
EP3549670A1 (en) 2018-04-06 2019-10-09 Covestro Deutschland AG Manufacturing method for a polyurethane-poly(meth)acrylate resin
CN111019089B (en) * 2019-12-20 2021-10-22 万华化学(北京)有限公司 Polyurethane composite material and preparation method thereof
IT202100023918A1 (en) * 2021-09-17 2023-03-17 Permare S R L Apparatus for molding a shell element in composite material, particularly of a boat hull, and related method

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691000A (en) 1971-03-10 1972-09-12 Celanese Corp Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
US3746604A (en) * 1971-05-21 1973-07-17 A Reynolds Foamed plastic laminate and method of making same
US3989781A (en) * 1971-08-17 1976-11-02 Shell Oil Company Process for producing a fibrous reinforced thermosetting resin impregnated foamed polymeric resin article
DE2248382C2 (en) * 1972-10-03 1982-12-02 Bayer Ag, 5090 Leverkusen Polyurethane elastomers, their manufacture and use
US3963656A (en) * 1972-10-03 1976-06-15 Bayer Aktiengesellschaft Thermoplastic polyurethanes and a two-stage process for their preparation
DE2300371C3 (en) * 1973-01-05 1979-04-19 Basf Ag, 6700 Ludwigshafen Photopolymerizable printing plate for flexographic printing
CA1043948A (en) * 1974-05-17 1978-12-05 Manfred Dahm Process for the production of polyurethane foams
US4073997A (en) * 1974-12-06 1978-02-14 Owens-Corning Fiberglas Corporation Composite panel
US3911190A (en) * 1974-12-23 1975-10-07 Monsanto Co Composite construction
FR2336246A2 (en) * 1975-02-05 1977-07-22 Roth Sa Freres MANUFACTURING PROCESS OF SHAPED PANELS BASED ON CARDBOARD AND FOAM, AND PANELS THUS REALIZED
DE2623346C2 (en) * 1976-05-25 1978-07-13 Bayer Ag, 5090 Leverkusen Method for consolidating geological formations and two-chamber cartridge
US4242415A (en) * 1978-12-26 1980-12-30 Ici Americas Inc. In-mold coating compositions containing functional group terminated liquid polymers
DE2915610A1 (en) * 1979-04-18 1980-10-30 Bayer Ag METHOD FOR PRODUCING MODIFIED POLYETHER POLYOLS AND THE USE THEREOF IN METHOD FOR PRODUCING POLYURETHANE PLASTICS
DE2920525A1 (en) * 1979-05-21 1980-12-04 Bayer Ag METHOD FOR THE PRODUCTION OF POLYADDITION PRODUCTS FROM ISOCYANATES AND DENATURED BIOMASSES AND THE USE THEREOF AS REACTIVE FILLER AND AS PLANT NUTRIENTS AND METHOD FOR THE PRODUCTION OF PLATES OR MOLDED DISPOSITIONS OF THE POLAND
DE2921681A1 (en) * 1979-05-29 1980-12-11 Bayer Ag NEW EMULSIFIERS, AQUEOUS ISOCYANATE EMULSIONS CONTAINING THESE EMULSIFIERS AND THE USE THEREOF AS BINDERS IN A METHOD FOR PRODUCING MOLDED BODIES
US4289717A (en) * 1979-10-18 1981-09-15 The Soft Bathtub Company Method of making a cushioned bathroom article
US4692291A (en) * 1980-04-14 1987-09-08 Union Carbide Corporation Molding method using fast curing fiber reinforced, low viscosity thermosetting resin
DE3528812A1 (en) * 1985-08-10 1987-02-12 Bayer Ag LAMINATES
US4828910A (en) * 1987-12-16 1989-05-09 Reinhold Haussling Sound absorbing laminate
SU1548504A1 (en) * 1988-01-13 1990-03-07 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Wind power plant
DE3808081A1 (en) * 1988-03-11 1989-09-21 Bayer Ag METHOD FOR PRODUCING POLYURETHANE FOAMS
US4902215A (en) 1988-06-08 1990-02-20 Seemann Iii William H Plastic transfer molding techniques for the production of fiber reinforced plastic structures
JPH03104799A (en) * 1989-09-20 1991-05-01 Fuji Heavy Ind Ltd Manufacture of composite material blade
SU1785910A1 (en) * 1990-02-19 1993-01-07 B Yuzhn K Method and device for producing composite laminated structures
US5142835A (en) * 1990-10-12 1992-09-01 Taylor Building Products Company Reaction injection molded door assembly
US5582670A (en) * 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5660900A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix
US5830548A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
EP0790276A3 (en) * 1996-02-14 1998-05-13 Basf Aktiengesellschaft Process for producing flat polyurethane moldings
FR2760681B1 (en) * 1997-03-12 1999-05-14 Alternatives En METHOD FOR MANUFACTURING A LARGE-DIMENSIONAL PART OF COMPOSITE MATERIAL AND PROPELLER BLADE, PARTICULARLY A WIND TURBINE, MANUFACTURED ACCORDING TO THIS PROCESS
US5821275A (en) * 1997-11-10 1998-10-13 Bayer Corporation Flexible foams and flexible molded foams based on liquid isocyanate-terminated allophanate-modified MDI prepolymer blends and processes for the production of these foams
JP3930200B2 (en) * 1998-10-06 2007-06-13 三菱重工業株式会社 Method for manufacturing wind turbine blades
US7202302B2 (en) * 1998-11-16 2007-04-10 Huntsman International Llc Polyisocyanurate compositions and composites
JP2002530445A (en) * 1998-11-16 2002-09-17 ハンツマン・インターナショナル・エルエルシー Polyisocyanurate composition and composite
KR20030029825A (en) * 2000-08-18 2003-04-16 헌트스만 인터내셔날, 엘엘씨 One component thermoset polyurethane system
US8419883B2 (en) * 2000-12-27 2013-04-16 Milliken & Company Fiber reinforced composite cores and panels
JP3894035B2 (en) * 2001-07-04 2007-03-14 東レ株式会社 Carbon fiber reinforced substrate, preform and composite material comprising the same
DE10150247B4 (en) * 2001-10-11 2013-01-03 Josef Moser Outer skin of a fluid-flowed body, method for its production
DK176335B1 (en) * 2001-11-13 2007-08-20 Siemens Wind Power As Process for manufacturing wind turbine blades
US6821087B2 (en) 2002-01-21 2004-11-23 Honda Giken Kogyo Kabushiki Kaisha Flow-rectifying member and its unit and method for producing flow-rectifying member
JP3983553B2 (en) 2002-01-21 2007-09-26 本田技研工業株式会社 Rectification member
US7199168B2 (en) * 2002-02-13 2007-04-03 Bayer Materialscience Llc Process for making cellular composites using polymeric isocyanates as binders for hollow filler particles
US6773756B2 (en) * 2002-03-20 2004-08-10 Bayer Polymers Llc Process to manufacture three dimensionally shaped substrate for sound abatement
US6723273B2 (en) * 2002-09-11 2004-04-20 Keith Johnson Curable liquid sealant used as vacuum bag in composite manufacturing
US6811877B2 (en) * 2003-02-21 2004-11-02 The Goodyear Tire & Rubber Company Reinforcing structure
CN1867770A (en) 2003-02-28 2006-11-22 维斯塔斯风力系统有限公司 Method for manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
US7045090B2 (en) * 2003-06-06 2006-05-16 Bayer Materialscience Llc Method of preparing an article
DE10343099B3 (en) * 2003-09-18 2005-06-09 Bayer Materialscience Ag Process for the preparation of low-emission plastic molded parts and use of carboxylic acid anhydrides therefor
DE102004017294A1 (en) * 2004-04-05 2005-10-20 Basf Ag Process for the production of polyurethane foams
US8129018B2 (en) 2004-06-18 2012-03-06 Ocv Intellectual Capital, Llc Sizing for high performance glass fibers and composite materials incorporating same
JP4302610B2 (en) 2004-10-21 2009-07-29 日本光機工業株式会社 Manufacturing method for lightweight wind turbine blades
WO2006082479A1 (en) 2005-02-03 2006-08-10 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member
JP4552019B2 (en) 2005-02-08 2010-09-29 国立大学法人群馬大学 Method for producing silicon carbide nanofiber
ES2289613T3 (en) * 2005-02-24 2008-02-01 Vestas Wind Systems A/S METHOD FOR MANUFACTURING A WIND TURBINE SHOVEL, WIND TURBINE WATER MANUFACTURING INSTALLATION AND USE OF THE SAME.
CN101228030B (en) * 2005-04-29 2011-04-20 3M创新有限公司 Multilayer polyurethane protective films
AT502234B1 (en) * 2005-07-21 2008-06-15 Isovolta PROCESS FOR PREPARING WEATHER-RESISTANT LAMINATES FOR THE INCLUSION OF SOLAR CELL SYSTEMS
DE102005048808A1 (en) * 2005-10-10 2007-04-12 Basf Ag Coated slag
US8402652B2 (en) 2005-10-28 2013-03-26 General Electric Company Methods of making wind turbine rotor blades
TWI414543B (en) * 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
US20070251090A1 (en) * 2006-04-28 2007-11-01 General Electric Company Methods and apparatus for fabricating blades
EP1880833A1 (en) * 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
US8293807B2 (en) * 2006-09-15 2012-10-23 Basf Aktiengesellschaft Method for the production of rigid polyurethane foam
US20090025084A1 (en) * 2007-05-11 2009-01-22 Fraud Management Technologies Pty Ltd Fraud detection filter
DE102008004388A1 (en) * 2008-01-14 2009-07-16 Tesa Ag Foamed, in particular pressure-sensitive adhesive, method of production and use thereof
US20090220795A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Composites comprising a multi-layer coating system
GB0805713D0 (en) 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
DK2106900T3 (en) * 2008-04-03 2012-07-09 Siemens Ag Form and Method of Vacuum Supported Resino Transfer Molding
ES2359655T3 (en) * 2008-05-21 2011-05-25 Siemens Aktiengesellschaft PROCEDURE FOR MANUFACTURING A COMPOSITE MATERIAL.
US7985047B2 (en) * 2008-07-24 2011-07-26 General Electric Company Expandable line support for wind turbine
EP2153964A1 (en) * 2008-08-14 2010-02-17 Lm Glasfiber A/S A method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material
EP2159039A1 (en) * 2008-08-14 2010-03-03 Lm Glasfiber A/S A method of manufacturing a composite structure comprising a magnetisable material
CN101402791A (en) 2008-11-14 2009-04-08 上海世鹏聚氨酯科技发展有限公司 Low-density high-strength nano-polyurethane wind wheel leaf blade composite material
US7988416B2 (en) * 2009-03-18 2011-08-02 Vestas Wind Systems A/S Wind turbine blade with damping element
DE102009001793A1 (en) * 2009-03-24 2010-10-07 Evonik Degussa Gmbh Prepregs and moldings produced therefrom
US7963747B2 (en) * 2009-04-02 2011-06-21 General Electric Company Braided wind turbine blades and method of making same
US8043065B2 (en) * 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
EP2255957B1 (en) * 2009-05-25 2013-07-10 LM WP Patent Holding A/S A method of manufacturing a composite structure with a prefabricated reinforcement element
IN2012DN01887A (en) * 2009-09-04 2015-07-24 Bayer Materialscience Llc
DE102009058101A1 (en) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Use of layer structures in wind turbines
EP2338668A1 (en) * 2009-12-22 2011-06-29 Lm Glasfiber A/S Method of producing a composite shell structure
US7922454B1 (en) * 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine
DE102011004723A1 (en) * 2011-02-25 2012-08-30 Bayer Materialscience Aktiengesellschaft Use of layer structures in wind turbines
US9580598B2 (en) * 2011-03-25 2017-02-28 Covestro Llc Polyurethane composites produced by a vacuum infusion process

Also Published As

Publication number Publication date
CA2783986A1 (en) 2011-06-16
IN2012DN05174A (en) 2015-10-23
AU2010329978A1 (en) 2012-06-21
RU2012129266A (en) 2014-01-20
US11904582B2 (en) 2024-02-20
KR101761954B1 (en) 2017-07-26
DK2509790T3 (en) 2021-12-06
ZA201203805B (en) 2013-08-28
JP6000852B2 (en) 2016-10-05
JP2013513748A (en) 2013-04-22
RU2549070C9 (en) 2015-11-27
WO2011069975A1 (en) 2011-06-16
DE102009058101A1 (en) 2011-06-16
EP2509790B1 (en) 2021-10-06
CN102753345B (en) 2015-08-12
MX2012006685A (en) 2012-10-15
CN102753345A (en) 2012-10-24
US20120244006A1 (en) 2012-09-27
MX348378B (en) 2017-05-19
US20180050526A1 (en) 2018-02-22
EP2509790A1 (en) 2012-10-17
US10293586B2 (en) 2019-05-21
BR112012014193A2 (en) 2016-05-31
PL2509790T3 (en) 2022-02-14
AU2010329978B2 (en) 2015-06-11
KR20120104573A (en) 2012-09-21
RU2549070C2 (en) 2015-04-20

Similar Documents

Publication Publication Date Title
ES2899656T3 (en) Use of layered structures in wind power plants
ES2646391T3 (en) Use of stratified structures in wind power plants
CN103201304B (en) Fiber composite component and preparation method thereof
ES2690972T3 (en) Construction element made of fiber reinforced polyisocyanurate and a process for its production
CN107771193B (en) Polyurethane system for a layer structure in a wind turbine
WO2019072948A1 (en) Composite wind turbine blade and manufacturing method and application thereof
JP4031632B2 (en) Manufacturing method of fiber reinforced plastic
CN109667708A (en) Composite wind turbine blade and the preparation method and application thereof
US20140072753A1 (en) Process for producing sandwich elements
EP3536492A1 (en) Composite wind turbine blade and manufacturing method and application thereof