ES2342091T3 - TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET. - Google Patents

TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET. Download PDF

Info

Publication number
ES2342091T3
ES2342091T3 ES05796064T ES05796064T ES2342091T3 ES 2342091 T3 ES2342091 T3 ES 2342091T3 ES 05796064 T ES05796064 T ES 05796064T ES 05796064 T ES05796064 T ES 05796064T ES 2342091 T3 ES2342091 T3 ES 2342091T3
Authority
ES
Spain
Prior art keywords
substrate
layer
incipient
absorbent layer
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES05796064T
Other languages
Spanish (es)
Inventor
Craig Leidholm
Brent Bollman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanosolar Inc
Original Assignee
Nanosolar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/943,658 external-priority patent/US7858151B2/en
Application filed by Nanosolar Inc filed Critical Nanosolar Inc
Application granted granted Critical
Publication of ES2342091T3 publication Critical patent/ES2342091T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method for forming an absorber layer of a photovoltaic device comprises forming a nascent absorber layer on a metal foil substrate; and using a roll-to-roll system to transport the substrate through a furnace. The nascent absorber layer and/or substrate is heated in the furnace and in an H 2 Se gas, H 2 S gas, or group VIA vapor without destroying the aluminum foil substrate.

Description

Formación de células solares sobre sustratos de lámina metálica.Formation of solar cells on substrates of metal foil

Campo de la invenciónField of the Invention

La presente invención se refiere a la fabricación de dispositivos fotovoltaicos, y más en concreto al procesamiento y recocido de capas absorbentes para dispositivos fotovoltaicos.The present invention relates to the manufacture of photovoltaic devices, and more specifically when processing and annealing absorbent layers for devices photovoltaic

Antecedentes de la invenciónBackground of the invention

Los dispositivos fotovoltaicos eficientes, tales como las células solares, se han fabricado utilizando capas absorbentes realizadas con aleaciones que contienen elementos de los grupos IB, IIIA y VIA, por ejemplo, aleaciones de cobre con indio y/o galio o aluminio, y selenio y/o azufre. A menudo, dichas capas absorbentes son denominadas capas CIGS y los dispositivos resultantes son denominados a menudo células solares CIGS. La capa CIGS puede estar depositada sobre un sustrato. Sería deseable fabricar una capa absorbente semejante sobre un sustrato de lámina metálica de aluminio, debido a que la lámina metálica de aluminio es relativamente económica, ligera y flexible. Desgraciadamente las técnicas actuales para depositar capas absorbentes CIGS son incompatibles con la utilización de lámina metálica de aluminio como sustrato.Efficient photovoltaic devices, such like solar cells, they have been manufactured using layers absorbents made with alloys containing elements of the IB, IIIA and VIA groups, for example, copper alloys with indium and / or gallium or aluminum, and selenium and / or sulfur. Often these layers absorbents are called CIGS layers and devices resulting are often referred to as CIGS solar cells. The layer CIGS may be deposited on a substrate. It would be desirable manufacture a similar absorbent layer on a sheet substrate aluminum metal, because the aluminum metal sheet is relatively economical, light and flexible. Unfortunately the Current techniques for depositing CIGS absorbent layers are incompatible with the use of aluminum foil as a substrate

Las técnicas típicas de deposición incluyen evaporación, deposición catódica, deposición química en fase de vapor y similares. Estos procesos de deposición se llevan a cabo típicamente a temperaturas elevadas y durante períodos prolongados. Ambos factores pueden tener como resultado daños en el sustrato sobre el que se está produciendo la deposición. Dichos daños pueden generarse directamente a partir de cambios en el material de sustrato tras la exposición al calor, y/o a partir de reacciones químicas no deseables conducidas por el calor del proceso de deposición. Por lo tanto, se requieren típicamente materiales de sustrato muy robustos para la fabricación de células solares CIGS. Estas limitaciones han excluido la utilización aluminio y de láminas metálicas basadas en lámina de aluminio.Typical deposition techniques include evaporation, cathodic deposition, chemical deposition in phase of steam and the like. These deposition processes are carried out typically at elevated temperatures and for prolonged periods. Both factors can result in damage to the substrate over which the deposition is occurring. Such damages can generated directly from changes in the material of substrate after exposure to heat, and / or from reactions undesirable chemicals driven by the heat of the process deposition Therefore, materials are typically required. Very robust substrate for the manufacture of CIGS solar cells. These limitations have excluded the use of aluminum and sheets  Metals based on aluminum foil.

Un enfoque de deposición alternativo es la impresión basada en solución, de los materiales precusores CIGS sobre un sustrato. Ejemplos de técnicas de impresión basadas en soluciones se describen, por ejemplo, en la Solicitud Publicada PCT WO 2002/084 708 y en la patente concedida comúnmente U.S. 2005-0 183 767. Las ventajas de este enfoque de deposición incluyen tanto la temperatura de deposición relativamente menor como la rapidez del proceso de deposición. Ambas ventajas sirven para minimizar el potencial de daños inducidos por calor, en el sustrato sobre el que está formándose la deposición.An alternative deposition approach is the Solution-based printing of CIGS precussor materials on a substrate. Examples of printing techniques based on solutions are described, for example, in the PCT Published Application WO 2002/084 708 and in the commonly granted U.S. patent. 2005-0 183 767. The advantages of this approach to deposition include both the deposition temperature relatively less like the speed of the deposition process. Both advantages serve to minimize the potential for heat-induced damage, in the substrate on which the deposition is forming.

Si bien la deposición en solución es una etapa a temperaturas relativamente bajas en la fabricación de células solares CIGS, no es la única etapa. Además de la deposición, una etapa clave en la fabricación de células solares CIGS es la selenización y el recocido de la capa absorbente CIGS. La selenización introduce selenio en la capa absorbente de CIG o CI a granel, donde el elemento se incorpora a la estructura, mientras que el recocido proporciona a la capa absorbente la estructura cristalina apropiada. En la técnica anterior, la selenización y el recocido se han llevado a cabo calentando el sustrato en presencia de vapor de H_{2}Se o Se, y manteniendo esta capa absorbente incipiente a temperaturas elevadas durante períodos prolongados de tiempo.While deposition in solution is a stage to relatively low temperatures in cell manufacturing Solar CIGS, is not the only stage. In addition to deposition, a key stage in the manufacture of solar cells CIGS is the selenization and annealing of the CIGS absorbent layer. The selenization introduces selenium into the absorbent layer of CIG or CI to bulk, where the element is incorporated into the structure, while annealing provides the absorbent layer with the structure appropriate crystalline In the prior art, selenization and Annealing have been carried out by heating the substrate in the presence of H 2 Se or Se vapor, and maintaining this absorbent layer incipient at elevated temperatures for prolonged periods of weather.

Si bien sería deseable la utilización de Al como sustrato para dispositivos de células solares debido tanto al coste reducido como a la naturaleza ligera de dicho sustrato, las técnicas convencionales que recuecen eficazmente la capa absorbente de CIGS calientan asimismo el sustrato a temperaturas elevadas, lo que tiene como resultado daños en los sustratos de Al. Hay varios factores que tienen como resultado la degradación del sustrato de Al tras la exposición prolongada al calor y/o a compuestos que contienen selenio durante períodos prolongados. En primer lugar, tras el calentamiento prolongado, las capas discretas en el interior de un sustrato de Al recubierto con Mo se pueden fundir y formar un contacto posterior intermetálico para el dispositivo, que disminuye la funcionalidad eléctrica prevista de la capa de Mo. En segundo lugar, la morfología interfacial de la capa de Mo se altera durante el calentamiento, lo que puede afectar negativamente al subsiguiente crecimiento de grano CIGS a través de cambios en los patrones de nucleación que pueden surgir en la superficie de la capa de Mo. En tercer lugar, tras el calentamiento extendido, el Al puede emigrar hacia la capa absorbente CIGS, deteriorando la función del semiconductor. En cuarto lugar, las impurezas que están presentes típicamente en la lámina metálica de Al (por ejemplo Si, Fe, Mn, Ti, Zn y V) pueden desplazarse junto con Al móvil que se difunde hacia la célula solar tras el calentamiento prolongado, lo que puede perjudicar las funciones tanto electrónica como optoelectrónica de la célula. En quinto lugar, cuando se expone Se al Al durante períodos relativamente prolongados y a temperaturas relativamente elevadas, puede formarse seleniuro de aluminio, el cual es inestable. En el aire húmedo, el seleniuro de aluminio puede reaccionar con vapor de agua para formar óxido de aluminio y seleniuro de hidrógeno. El seleniuro de hidrógeno es un gas extremadamente tóxico, cuya formación libre puede representar un riesgo para la seguridad. Por todas estas razones, la deposición a temperaturas elevadas, el recocido y la selenización son por lo tanto poco viables para sustancias fabricadas de aluminio o de aleaciones de aluminio.While it would be desirable to use Al as substrate for solar cell devices due to both cost reduced as to the light nature of said substrate, the techniques Conventionals that effectively coat the CIGS absorbent layer they also heat the substrate at elevated temperatures, which has  As a result damage to Al substrates. There are several factors which result in degradation of the Al substrate after prolonged exposure to heat and / or compounds containing Selenium for prolonged periods. First, after the Prolonged heating, discrete layers inside a Al substrate coated with Mo can melt and form a intermetallic rear contact for the device, which decreases the expected electrical functionality of the Mo layer. In second instead, the interfacial morphology of the Mo layer is altered during heating, which may adversely affect the subsequent CIGS grain growth through changes in the patterns of nucleation that may arise on the surface of the Mo layer. Third, after extended warming, Al can emigrate towards the CIGS absorbent layer, deteriorating the function of the semiconductor. Fourth, the impurities that are present typically in the metal sheet of Al (for example Si, Fe, Mn, Ti, Zn and V) can move along with the mobile that is broadcast towards the solar cell after prolonged heating, which can impair the electronic and optoelectronic functions of the cell. Fifth, when Se is exposed to Al during relatively long periods and at relatively hot temperatures elevated, aluminum selenide can be formed, which is unstable. In moist air, aluminum selenide can react with water vapor to form aluminum oxide and hydrogen selenide Hydrogen selenide is a gas extremely toxic, whose free formation can represent a Security risk For all these reasons, the deposition to high temperatures, annealing and selenization are therefore both unfeasible for substances made of aluminum or aluminum alloys

Debido a las etapas de deposición de larga duración a temperatura elevada, y de recocido, las células solares CIGS no pueden ser fabricadas eficazmente sobre sustratos de aluminio (por ejemplo, láminas metálicas flexibles compuestas de Al y/o de aleaciones basadas en Al), y en su lugar deben ser fabricadas de sustratos más pesados hechos de materiales más robustos (y más costosos) tales como láminas metálicas de acero inoxidable, titanio o molibdeno, sustratos de vidrio, o vidrio recubierto con metal o con óxidos metálicos. De este modo, incluso aunque las células solares CIGS basadas en láminas metálicas de aluminio serían más ligeras, flexibles y económicas que las láminas metálicas de acero inoxidable, titanio o molibdeno, que los sustratos de vidrio, o que los sustratos de vidrio recubierto con metal o con óxidos metálicos, la práctica actual no permite que la lámina metálica de aluminio sea utilizada como sustrato.Due to the long deposition stages duration at elevated temperature, and annealing, solar cells CIGS cannot be efficiently manufactured on substrates of aluminum (for example, flexible metal sheets composed of Al and / or Al) based alloys, and instead must be manufactured of heavier substrates made of more robust materials (and more expensive) such as stainless steel, titanium metal sheets or molybdenum, glass substrates, or metal coated glass or With metal oxides. In this way, even though the cells CIGS solar based on aluminum foil would be more Light, flexible and economical than steel sheet metal stainless, titanium or molybdenum, which glass substrates, or that glass substrates coated with metal or oxides metallic, current practice does not allow the metal sheet of Aluminum be used as a substrate.

El documento WO03/007 386 da a conocer un dispositivo fotovoltaico, que comprende: un sustrato de lámina metálica de aluminio eléctricamente conductor; por lo menos una capa de electrodo base eléctricamente conductora que comprende una capa de molibdeno; una capa de adhesión situada entre el sustrato de lámina metálica de aluminio y la capa de electrodo, dicha capa de adhesión comprendiendo cromo; y una capa absorbente que contiene uno o más elementos de los grupos IB, IIIA y VIA dispuestos en el sustrato de lámina metálica de aluminio.WO03 / 007 386 discloses a photovoltaic device, comprising: a sheet substrate electrically conductive aluminum metal; at least one electrically conductive base electrode layer comprising a molybdenum layer; an adhesion layer located between the substrate of aluminum foil and electrode layer, said layer of adhesion comprising chromium; and an absorbent layer containing one  or more elements of the IB, IIIA and VIA groups arranged in the Aluminum foil substrate.

Resumen Summary

Es un objetivo de la presente invención dar a conocer un proceso de fabricación mejorado para proteger el sustrato de aluminio durante la fabricación.It is an objective of the present invention to give know an improved manufacturing process to protect the Aluminum substrate during manufacturing.

La presente invención da a conocer un método mejorado de formación de una capa absorbente de un dispositivo fotovoltaico, de acuerdo con la reivindicación 1. En las reivindicaciones dependientes se exponen otras realizaciones ventajosas.The present invention discloses a method improved formation of an absorbent layer of a device photovoltaic, according to claim 1. In the dependent claims other embodiments are set forth advantageous

Breve descripción de los dibujosBrief description of the drawings

Las descripciones de la presente invención pueden comprenderse fácilmente considerando la siguiente descripción detallada junto con los dibujos anexos, en los cuales:The descriptions of the present invention can be easily understood considering the following description  detailed together with the attached drawings, in which:

la figura 1 es un diagrama esquemático en sección transversal, que ilustra la fabricación de una capa absorbente acorde con una realización de la presente invención.Figure 1 is a schematic diagram in cross section, illustrating the manufacture of a layer absorbent according to an embodiment of the present invention.

Descripción de las realizaciones específicasDescription of specific embodiments

Aunque la siguiente descripción detallada contiene muchos detalles específicos por razones ilustrativas, cualquier experto en la materia apreciará que muchas variaciones y alteraciones a los siguientes detalles están dentro del alcance de la invención. Por consiguiente, las realizaciones ejemplares de la invención descrita a continuación, se exponen sin ninguna pérdida de generalidad para la invención reivindicada y sin imponer limitaciones a ésta.Although the following detailed description It contains many specific details for illustrative reasons, any subject matter expert will appreciate that many variations and alterations to the following details are within the scope of the invention. Therefore, exemplary embodiments of the invention described below, are exposed without any loss of generality for the claimed and unimposed invention limitations to it.

Las realizaciones de la presente invención permiten la fabricación de capas absorbentes CIGS sobre sustratos de lámina metálica de aluminio. De acuerdo con realizaciones de la presente invención, una capa absorbente incipiente que contiene elementos de los grupos ID y IIIA formados sobre un sustrato de aluminio mediante deposición en solución, puede ser recocida mediante calentamiento rápido desde temperatura ambiente hasta un rango de temperaturas de meseta de entre unos 200ºC y unos 600ºC. La temperatura se mantiene en el rango de meseta durante entre unos 2 minutos y unos 30 minutos, y a continuación se reduce. Alternativamente, en un ejemplo que no forma parte de la invención, la temperatura de recocido podría modularse para oscilar en el interior de un rango de temperaturas sin mantenerse en una temperatura de meseta concreta.The embodiments of the present invention allow the manufacture of CIGS absorbent layers on substrates Aluminum foil. According to realizations of the present invention, an incipient absorbent layer containing elements of groups ID and IIIA formed on a substrate of aluminum by deposition in solution, can be annealed by rapid heating from room temperature to a plateau temperatures range between about 200ºC and about 600ºC. The temperature remains in the plateau range for about 2 minutes and about 30 minutes, and then it comes down. Alternatively, in an example that is not part of the invention, the annealing temperature could be modulated to oscillate in the inside a temperature range without staying in a concrete plateau temperature.

La figura 1 describe un dispositivo fotovoltaico 100 fabricado parcialmente, y una unidad de calentamiento rápido 110; el dispositivo incluye en general un sustrato 102 de lámina metálica de aluminio, un electrodo 104 base opcional, y una capa absorbente incipiente 106. El sustrato 102 de lámina metálica de aluminio puede ser de unas 5 micras hasta unas cien o más micras de grosor, y de cualquier anchura y longitud adecuadas. El sustrato 102 de lámina metálica de aluminio puede estar fabricado de aluminio o de una aleación basada en aluminio. Alternativamente, el sustrato 102 de lámina metálica de aluminio puede estar fabricado por metalización de un sustrato de lámina metálica polimérica donde el polímero está seleccionado entre el grupo de poliésteres, naftalato de polietileno, polieterimidas, polietersulfonas, poliéter éter cetona, poliimidas y/o combinaciones de los anteriores. A modo de ejemplo, el sustrato 102 puede estar en forma de una hoja larga de lámina metálica de aluminio adecuada para su procesamiento en un sistema rollo a rollo. El electrodo base 104 está fabricado de un material conductor eléctricamente compatible con el procesamiento de la capa absorbente incipiente 106. A modo de ejemplo, el electrodo base 104 puede ser una capa de molibdeno, por ejemplo, de aproximadamente 0,1 a 25 micras de grosor, y más preferentemente desde unas 0,1 hasta 5 micras de grosor. La capa de electrodo base puede ser depositada mediante deposición catódica o evaporación, o alternativamente mediante deposición química en fase de vapor (CVD, chemical vapor deposition), deposición de capa atómica (ALD, atomic layer deposition), recubrimiento sol-gel, electroplastia y similares.Figure 1 describes a photovoltaic device 100 partially manufactured, and a rapid heating unit 110; the device generally includes a sheet substrate 102 Aluminum metal, an optional 104 base electrode, and a layer incipient absorbent 106. The metal sheet substrate 102 of aluminum can be from about 5 microns to about one hundred or more microns from thickness, and of any suitable width and length. The substrate 102 aluminum foil can be made of aluminum or of an aluminum based alloy. Alternatively, the substrate 102 aluminum foil can be manufactured by metallization of a polymeric metal sheet substrate where the polymer is selected from the group of polyesters, naphthalate polyethylene, polyetherimides, polyethersulfones, polyether ether ketone, polyimides and / or combinations of the above. By way of example, the substrate 102 may be in the form of a long sheet of Aluminum foil suitable for processing in a roll to roll system. The base electrode 104 is made of a conductive material electrically compatible with the processing of the incipient absorbent layer 106. By way of example, the electrode base 104 may be a molybdenum layer, for example, of approximately 0.1 to 25 microns thick, and more preferably from about 0.1 to 5 microns thick. Base electrode layer it can be deposited by cathodic deposition or evaporation, or alternatively by chemical vapor deposition (CVD, chemical vapor deposition), atomic layer deposition (ALD, atomic layer deposition), sol-gel coating, electroplasty and the like.

El aluminio y el molibdeno pueden inter-difundirse uno en el otro, con efectos electrónicos y/u optoelectrónicos perjudiciales en el dispositivo 100. Para inhibir dicha inter-difusión, puede incorporarse una capa interfacial 103, intermedia, entre el sustrato 102 de lámina metálica de aluminio y el electrodo base 104 de molibdeno. La capa interfacial puede estar formada de compuestos tales como nitruros (que incluyen nitruro de tantalio, nitruro de tungsteno y nitruro de silicio) óxidos y/o carburos. El grosor de esta capa puede variar de 10 nm a 50 nm, y más preferentemente de 10 nm a 30 nm.Aluminum and molybdenum can inter-diffuse in each other, with effects harmful electronic and / or optoelectronic devices in the device 100. To inhibit such inter-diffusion, you can an intermediate interfacial layer 103 being incorporated between the substrate 102 of aluminum foil and base electrode 104 Molybdenum The interfacial layer may be formed of compounds such as nitrides (which include tantalum nitride, nitride tungsten and silicon nitride) oxides and / or carbides. The thickness of this layer may vary from 10 nm to 50 nm, and more preferably from 10 nm to 30 nm.

La capa absorbente incipiente 106 incluye material que contiene elementos de los grupos 1B, IIIA y (opcionalmente) VIA. Preferentemente, el cobre (Cu) de la capa absorbente es el elemento del grupo IB, galio (Ga) y/o indio (In) y/o aluminio pueden ser los elementos del grupo IIIA, y selenio (Se) y/o azufre (S) los elementos del grupo VIA. El elemento del grupo VIA puede ser incorporado a la capa absorbente incipiente 106 cuando se deposita inicialmente en solución o durante el procesamiento subsiguiente para formar una capa absorbente final a partir de la capa absorbente incipiente 106. La capa absorbente incipiente 106 puede ser de unos 1000 nm de grosor cuando es depositada. El subsiguiente proceso térmico rápido y la incorporación de elementos del grupo VIA pueden cambiar la morfología de la capa absorbente resultante, de modo que incremente su grosor (por ejemplo, como mucho hasta aproximadamente el doble del grosor de la capa incipiente bajo ciertas circunstancias).The incipient absorbent layer 106 includes material containing elements of groups 1B, IIIA and (optionally) VIA. Preferably, the copper (Cu) of the layer absorbent is the element of group IB, gallium (Ga) and / or indium (In) and / or aluminum may be the elements of group IIIA, and selenium (Se) and / or sulfur (S) elements of the VIA group. The group element VIA can be incorporated into the incipient absorbent layer 106 when initially deposited in solution or during processing subsequent to form a final absorbent layer from the incipient absorbent layer 106. The incipient absorbent layer 106 It can be about 1000 nm thick when deposited. He subsequent rapid thermal process and the incorporation of elements of the VIA group can change the morphology of the absorbent layer resulting, so that it increases its thickness (for example, as much up to about twice the thickness of the layer incipient under certain circumstances).

La fabricación de la capa absorbente en el sustrato 102 de lámina metálica de aluminio es relativamente directa. En primer lugar, la capa absorbente incipiente se deposita sobre el sustrato 102 directamente sobre el aluminio o bien sobre una capa más alta tal como el electrodo 104. A modo de ejemplo, y sin pérdida de generalidad, la capa absorbente incipiente es depositada en forma de película de un material precursor basado en solución, que contiene nanopartículas que incluyen uno o más elementos de los grupos IB, IIIA y (opcionalmente) VIA. Se describen ejemplos de dichas películas en dichas técnicas de impresión basadas en solución, por ejemplo en la patente concedida comúnmente U.S. 2005-0 183 767, titulada "SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELL" (fabricación basada en solución de célula fotovoltaica) y asimismo en la Publicación PCT WO 02/084 708 titulada "METHOD OF FORMING SEMICONDUCTOR COMPOUND FILM FOR FABRICATION OF ELECTRONIC DEVICE AND FILM PRODUCED BY SAME" (método de formación de una película compuesta de semiconductor para la fabricación de dispositivo electrónico y película producida por el mismo).The manufacture of the absorbent layer in the aluminum sheet metal substrate 102 is relatively direct. First, the incipient absorbent layer is deposited on the substrate 102 directly on the aluminum or on a higher layer such as electrode 104. By way of example, and without loss of generality, the incipient absorbent layer is deposited as a film of a precursor material based on solution, which contains nanoparticles that include one or more elements of groups IB, IIIA and (optionally) VIA. Be describe examples of said films in said techniques of solution-based printing, for example in the granted patent commonly U.S. 2005-0 183 767, titled "SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELL "(manufacturing based on photovoltaic cell solution) and also in PCT Publication WO 02/084 708 entitled "METHOD OF FORMING SEMICONDUCTOR COMPOUND FILM FOR FABRICATION OF ELECTRONIC DEVICE AND FILM PRODUCED BY SAME "(method of forming a semiconductor composite film for the manufacture of electronic device and film produced by it).

Alternativamente, pero no incluido en la invención, la capa absorbente incipiente 106 puede estar fabricada mediante una secuencia de reacciones de deposición de capa atómica o mediante cualquier otro proceso utilizado normalmente para formar dichas capas. La deposición de capa atómica de las capas absorbentes IB-IIIA-VIA se describe, por ejemplo, en el documento concedido comúnmente, US 2005-0 186 342, titulado "FORMATION OF CIGS ABSORBER LAYER MATERIALS USING ATOMIC LAYER DEPOSITION AND HIGH THROUGHPUT SURFACE TREATMENT ON COILED FLEXIBLE SUBSTRATES" (formación de materiales de capa absorbente CIGS utilizando deposición de capa atómica y tratamiento superficial de rendimiento elevado sobre sustratos flexibles en espiral).Alternatively, but not included in the invention, the incipient absorbent layer 106 may be manufactured by a sequence of atomic layer deposition reactions or by any other process normally used to form said layers. Atomic layer deposition of absorbent layers IB-IIIA-VIA is described, for example, in the document commonly granted, US 2005-0 186 342, entitled "FORMATION OF CIGS ABSORBER LAYER MATERIALS USING ATOMIC LAYER DEPOSITION AND HIGH THROUGHPUT SURFACE TREATMENT ON COILED FLEXIBLE SUBSTRATES "(formation of CIGS absorbent layer materials using atomic layer deposition and high performance surface treatment on flexible spiral substrates).

A continuación, la capa absorbente incipiente 106 es recocida por calentamiento instantáneo, y/o el sustrato 102, desde una temperatura ambiente hasta un rango de temperaturas de meseta promedio de entre unos 200ºC y unos 600ºC, con la unidad de calentamiento 110. La unidad de calentamiento 110 proporciona preferentemente calor suficiente para incrementar rápidamente la temperatura de la capa absorbente incipiente 106 y/o del sustrato 102 (o de una parte significativa del mismo) por ejemplo, a entre unos 5ºC/s y unos 150ºC/s. A modo de ejemplo, la unidad de calentamiento 110 puede incluir una o más lámparas de infrarrojos (IR) que proporcionen calor radiante suficiente. A modo de ejemplo, 8 lámparas de IR a una potencia nominal de unos 500 W situadas cada una aproximadamente a entre 3,1750 mm (1/8'') y 24,4 mm (1'') desde la superficie del sustrato 102 (4 encima y 4 debajo del sustrato, todas dirigidas hacia el sustrato) pueden proporcionar calor radiante suficiente para procesar un área de sustrato de unos 25 cm^{2} por hora, en un horno de tubo de unos 101,6000 mm (4''). Las lámparas pueden activarse gradualmente de manera controlada, por ejemplo a una velocidad de subida de unos 10ºC/s. Los expertos en la materia podrán concebir otros tipos de configuraciones de fuentes de calor que puedan utilizarse como unidad de calentamiento 110. Por ejemplo, en la línea de fabricación rollo a rollo, el calentamiento y otros procesos pueden llevarse a cabo mediante la utilización de lámparas IR separadas en 25,4 mm (1'') a lo largo de la longitud de la región de procesamiento, con lámparas IR situadas homogéneamente tanto encima como debajo del sustrato, y donde ambas lámparas IR tanto por encima como por debajo del sustrato están dirigidas hacia el sustrato. Alternativamente, las lámparas IR podrían situarse solo encima o bien solo debajo del sustrato 102, y/o en configuraciones que aumenten el calentamiento lateral desde el lado de la cámara hacia el lado del sustrato 102.Next, the incipient absorbent layer 106 is annealed by instantaneous heating, and / or the substrate 102, from an ambient temperature to a temperature range of average plateau between about 200ºC and about 600ºC, with the unit of heating 110. Heating unit 110 provides preferably enough heat to rapidly increase the temperature of the incipient absorbent layer 106 and / or the substrate 102 (or a significant part thereof) for example, between about 5ºC / s and about 150ºC / s. As an example, the unit of heating 110 may include one or more infrared lamps (IR) that provide sufficient radiant heat. As an example, 8 IR lamps at a nominal power of about 500 W located each approximately to between 3.1750 mm (1/8 '') and 24.4 mm (1 '') from the surface of the substrate 102 (4 above and 4 below the substrate, all directed towards the substrate) can provide heat radiant enough to process a substrate area of about 25 cm2 per hour, in a tube oven of about 101.6000 mm (4``). The lamps can be activated gradually in a controlled manner, by example at a rising speed of about 10 ° C / s. The experts in the subject may conceive other types of font configurations of heat that can be used as heating unit 110. For example, in the roll-to-roll manufacturing line, the heating and other processes can be carried out by use of IR lamps separated by 25.4 mm (1``) along the length of the processing region, with IR lamps located homogeneously both above and below the substrate, and where both IR lamps both above and below the substrate are directed towards the substrate. Alternatively, IR lamps they could be placed only above or only below the substrate 102, and / or in configurations that increase lateral warming from the side of the chamber towards the side of the substrate 102.

La capa absorbente 106 y/o el sustrato en 102 se mantienen en el rango de temperaturas de meseta promedio durante entre unos 2 minutos y unos 30 minutos. Por ejemplo, la temperatura puede mantenerse en el rango deseado reduciendo la cantidad de calor procedente de la unidad de calentamiento 110 hasta un nivel adecuado. En el ejemplo de las lámparas IR, el calor puede reducirse simplemente desconectando las lámparas. Alternativamente, las lámparas pueden ser enfriadas activamente. La temperatura de la capa absorbente 106 y/o del sustrato 102 se reduce subsiguientemente hasta un nivel adecuado, por ejemplo, mediante seguir reduciendo o desconectar el suministro de calor procedente de la unidad de calentamiento 110.The absorbent layer 106 and / or the substrate at 102 is maintained in the average plateau temperature range for between about 2 minutes and about 30 minutes. For example, the temperature can be maintained in the desired range by reducing the amount of heat from heating unit 110 to a level suitable. In the example of IR lamps, heat can be reduced simply by disconnecting the lamps. Alternatively, The lamps can be actively cooled. The temperature of the absorbent layer 106 and / or substrate 102 is reduced subsequently to an appropriate level, for example, by continue to reduce or disconnect the heat supply from of the heating unit 110.

En realizaciones de la invención, se llevan a cabo secuencialmente dos o más etapas de recocido discretas o continuas, en las cuales se incorporan elementos del grupo VIA tales como selenio o azufre, en una segunda o última etapa. Por ejemplo, la capa absorbente incipiente 106 puede exponerse a H_{2}Se gaseoso, H_{2}S gaseoso o vapor de Se antes, o durante, el calentamiento instantáneo o el procesamiento térmico rápido (RTP, rapid thermal processing). En esta realización, la relativa brevedad de la exposición permite que el sustrato de aluminio resista mejor la presencia de gases y vapores, especialmente a niveles térmicos elevados.In embodiments of the invention, they are carried sequentially perform two or more discrete annealing stages or continuous, in which elements of the VIA group are incorporated such as selenium or sulfur, in a second or last stage. For example, the incipient absorbent layer 106 may be exposed to H2 Se gas, H2S gas or Se vapor before, or during, the instant heating or rapid thermal processing (RTP, rapid thermal processing). In this embodiment, the relative brevity of exposure allows the aluminum substrate to resist better the presence of gases and vapors, especially at thermal levels high.

Una vez que la capa absorbente incipiente 106 ha sido recocida, pueden formarse capas adicionales para completar el dispositivo 100. Por ejemplo, típicamente se utiliza una capa en ventana como pareja de unión para la capa absorbente. A modo de ejemplo, la capa de pareja de unión puede incluir sulfuro de cadmio (CdS), sulfuro de cinc (ZnS) o seleniuro de cinc (ZnSe) o alguna combinación de dos o más de estos. Pueden depositarse capas de estos materiales, por ejemplo mediante deposición en baño químico, deposición química superficial, o pirólisis en aerosol, hasta un grosor de entre unos 50 m y unos 100 nm. Además, puede formarse un electrodo transparente, por ejemplo una capa de óxido conductor, en la capa de ventana mediante deposición catódica, deposición de vapor, CVD, ALD, epitaxia electroquímica de capa atómica y similares.Once the incipient absorbent layer 106 has been annealed, additional layers can be formed to complete the device 100. For example, a layer is typically used in window as a couple for the absorbent layer. By way of example, the binding partner layer may include cadmium sulfide (CdS), zinc sulphide (ZnS) or zinc selenide (ZnSe) or some combination of two or more of these. Layers of these materials, for example by chemical bath deposition, surface chemical deposition, or aerosol pyrolysis, up to a thickness between 50 m and 100 nm. In addition, a transparent electrode, for example a layer of conductive oxide, in the window layer by cathodic deposition, deposition of steam, CVD, ALD, electrochemical atomic layer epitaxy and Similar.

Las realizaciones de la presente invención superan las desventajas asociadas con la técnica anterior mediante el procesamiento térmico rápido de capas absorbentes CIGS incipientes depositadas, o formadas de otro modo, sobre sustratos de aluminio. Los sustratos de aluminio son mucho más económicos y más ligeros que los sustratos convencionales. Por lo tanto, las células solares basadas en sustratos de aluminio pueden tener un coste por vatio inferior y un período de retorno energético más corto, en comparación con las células solares convencionales basadas en silicio. Además, los sustratos de aluminio permiten un factor de forma flexible que permite tanto una impresión rollo a rollo de rendimiento elevado durante la fabricación de células solares, como procesos de instalación más rápidos y sencillos durante la instalación de módulos y sistemas solares.The embodiments of the present invention overcome the disadvantages associated with the prior art by fast thermal processing of CIGS absorbent layers incipients deposited, or otherwise formed, on substrates of aluminum. Aluminum substrates are much cheaper and lighter than conventional substrates. Therefore, the solar cells based on aluminum substrates can have a lower cost per watt and one more energy return period short, compared to conventional solar cells based on silicon. In addition, aluminum substrates allow a flexible form factor that allows both a roll impression to high performance roll during cell manufacturing solar, as faster and easier installation processes during the installation of modules and solar systems.

Las realizaciones de la presente invención permiten la fabricación de dispositivos fotovoltaicos ligeros y económicos sobre sustratos de aluminio. El procesamiento de calentamiento instantáneo/procesamiento térmico rápido, de la capa absorbente incipiente 106, permite el recocido apropiado y la incorporación de elementos del grupo VIA sin dañar o destruir el sustrato 102 de lámina metálica de aluminio. El rango de temperaturas de meseta está lo suficientemente por debajo del punto de fusión del aluminio (de unos 660ºC) como para evitar daños o destruir el sustrato de lámina metálica de aluminio. La utilización de sustratos de lámina metálica de aluminio reduce enormemente los costes materiales de los dispositivos fotovoltaicos, por ejemplo, las células solares, fabricados sobre dichos sustratos, reduciendo de ese modo el coste por vatio. Puede obtenerse economías de escala procesando el sustrato de lámina de aluminio de forma rollo a rollo, construyéndose las diversas capas de los dispositivos fotovoltaicos sobre el sustrato a medida que éste pasa a través de una serie de etapas de deposición, recocido y otras etapas de proceso.The embodiments of the present invention allow the manufacture of light photovoltaic devices and Economical on aluminum substrates. The processing of instantaneous heating / rapid thermal processing of the layer incipient absorbent 106, allows proper annealing and incorporation of elements of the VIA group without damaging or destroying the substrate 102 of aluminum foil. The range of plateau temperatures is sufficiently below the point of fusion of aluminum (about 660ºC) to avoid damage or destroy the aluminum foil substrate. The utilization of aluminum foil substrates greatly reduces material costs of photovoltaic devices, for example, solar cells, manufactured on said substrates, reducing that way the cost per watt. Economies of scale can be obtained processing the aluminum foil substrate from roll to roll form, building the various layers of photovoltaic devices on the substrate as it passes through a series of stages of deposition, annealing and other process stages.

Si bien lo anterior es una descripción completa de la realización preferida de la presente invención, es posible utilizar varias alternativas, modificaciones y equivalentes. Por lo tanto, el alcance de la presente invención no debería determinarse haciendo referencia a la descripción anterior si no haciendo referencia a las reivindicaciones anexas, con todo el alcance de sus equivalentes.While the above is a complete description of the preferred embodiment of the present invention, it is possible Use various alternatives, modifications and equivalents. For the therefore, the scope of the present invention should not be determined referencing the above description if not doing reference to the appended claims, with the full scope of its equivalents

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Referencias citadas en la descripciónReferences cited in the description

La lista de referencias citadas por el solicitante es solo para comodidad del lector. No forma parte del documento de Patente Europea. Aunque se ha tomado especial cuidado en recopilar las referencias, no puede descartarse errores u omisiones y la EPO rechaza toda responsabilidad a este respecto. The list of references cited by the applicant is for the convenience of the reader only. It is not part of the European Patent document. Although special care has been taken in collecting references, errors or omissions cannot be ruled out and the EPO disclaims all responsibility in this regard .

Documentos de patentes citados en la descripciónPatent documents cited in the description

\bullet WO 2002 084 708 A [0004]WO 2002 084 708 A [0004]

\bullet US 2005 0 183 767 A [0004] [0017]US 2005 0 183 767 A [0004] [0017]

\bullet WO 03 007 386 A [0008]WO 03 007 386 A [0008]

\bullet WO 02 084 708 A [0017]WO 02 084 708 A [0017]

\bullet US 2005 0 186 342 A [0019]US 2005 0 186 342 A [0019]

Claims (8)

1. Método para formar una capa absorbente de un dispositivo fotovoltaico, que comprende las etapas de:1. Method for forming an absorbent layer of a photovoltaic device, comprising the steps of:
proporcionar un sustrato que comprende por lo menos un sustrato de lámina metálica de aluminio eléctricamente conductora (102), por lo menos una capa de interfaz (103) que incluye por lo menos un material seleccionado entre el grupo que consiste en un carburo, un óxido, un nitruro, nitruro de tantalio, nitruro de tungsteno y nitruro de silicio, y por lo menos una capa (104) de electrodo base eléctricamente conductora que comprende una capa de molibdeno, en el que la capa de interfaz está situada entre el sustrato de lámina metálica de aluminio y la capa de electrodo base y en el que la capa de interfaz actúa como una barrera de difusión para inhibir la inter-difusión de molibdeno en el electrodo y de aluminio en el sustrato durante el calentamiento, y,provide a substrate comprising at least one metal sheet substrate electrically conductive aluminum (102), at least one layer interface (103) that includes at least one selected material between the group consisting of a carbide, an oxide, a nitride, tantalum nitride, tungsten nitride and silicon nitride, and at least one electrically based electrode layer (104) conductive comprising a molybdenum layer, in which the layer interface is located between the metal sheet substrate of aluminum and the base electrode layer and in which the interface layer acts as a diffusion barrier to inhibit the inter-diffusion of molybdenum in the electrode and of aluminum in the substrate during heating, and,
formar una capa absorbente incipiente (106) que contiene uno o más elementos del grupo IB, IIIA y VIA sobre el sustrato de lámina metálica de aluminio, caracterizado por:forming an incipient absorbent layer (106) containing one or more elements of group IB, IIIA and VIA on the aluminum foil substrate, characterized by:
depositar la capa absorbente incipiente desde una solución de materiales precursores de nanopartículas;deposit the incipient absorbent layer from a solution of materials nanoparticle precursors;
recocer la capa absorbente incipiente depositada y/o el sustrato mediante:anneal the layer incipient absorbent deposited and / or the substrate by:
calentar rápidamente la capa absorbente incipiente y/o el sustrato desde una temperatura ambiente hasta un rango de temperaturas de meseta de entre 200ºC y 600ºC, a una velocidad de entre 5ºC/s y 150ºC/s;to warm quickly the incipient absorbent layer and / or the substrate from a ambient temperature up to a plateau temperature range of between 200ºC and 600ºC, at a speed between 5ºC / s and 150 ° C / s;
mantener la capa absorbente y/o el sustrato en el rango de temperaturas de meseta durante entre 2 minutos y 30 minutos; ykeep the cape absorbent and / or substrate in the plateau temperature range for between 2 minutes and 30 minutes; Y
reducir la temperatura de la capa absorbente y/o del sustrato; ereduce the temperature of the absorbent layer and / or the substrate; and
incorporar uno o más elementos del grupo VIA a la capa absorbente en una segunda o posterior etapa de recocido.incorporate one or more elements of the VIA group to the absorbent layer in a second or subsequent annealing stage.
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
2. El método de la reivindicación 1, en el que dichos uno o más elementos del grupo VIA incluyen selenio.2. The method of claim 1, wherein said one or more elements of the VIA group include selenium. 3. El método de la reivindicación 1, en el que dichos uno o más elementos del grupo VIA incluyen azufre.3. The method of claim 1, wherein said one or more elements of the VIA group include sulfur. 4. El método de la reivindicación 1, en el que el calentamiento rápido de la capa absorbente incipiente y/o del sustrato se lleva a cabo mediante el calentamiento radiante de la capa absorbente incipiente y/o del sustrato.4. The method of claim 1, wherein rapid heating of the incipient absorbent layer and / or the substrate is carried out by radiant heating of the incipient and / or substrate absorbent layer. 5. El método de la reivindicación 4, en el que una o más lámparas infrarrojas aplican el calor radiante.5. The method of claim 4, wherein one or more infrared lamps apply radiant heat. 6. El método de la reivindicación 1, en el que las etapas de formación y calentamiento rápido de la capa absorbente incipiente tienen lugar cuando el sustrato pasa a través del proceso rollo a rollo.6. The method of claim 1, wherein The formation and rapid heating stages of the absorbent layer  incipient take place when the substrate passes through the roll to roll process. 7. El método de la reivindicación 1, en el que el sustrato de lámina metálica de aluminio tiene un grosor de por lo menos unas 5 micras o más.7. The method of claim 1, wherein The aluminum foil substrate has a thickness of at least 5 microns or more. 8. El método de la reivindicación 1, en el que dichas etapas de recocido son discretas o bien continuas.8. The method of claim 1, wherein said annealing stages are discrete or continuous.
ES05796064T 2004-09-18 2005-09-06 TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET. Active ES2342091T3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US943658 2004-09-18
US943685 2004-09-18
US10/943,685 US20060060237A1 (en) 2004-09-18 2004-09-18 Formation of solar cells on foil substrates
US10/943,658 US7858151B2 (en) 2004-02-19 2004-09-18 Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment

Publications (1)

Publication Number Publication Date
ES2342091T3 true ES2342091T3 (en) 2010-07-01

Family

ID=36072640

Family Applications (2)

Application Number Title Priority Date Filing Date
ES10003020T Active ES2380564T3 (en) 2004-09-18 2005-09-06 Formation of solar cells on metal foil substrates
ES05796064T Active ES2342091T3 (en) 2004-09-18 2005-09-06 TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES10003020T Active ES2380564T3 (en) 2004-09-18 2005-09-06 Formation of solar cells on metal foil substrates

Country Status (6)

Country Link
US (3) US20060060237A1 (en)
EP (2) EP2348540B1 (en)
CN (2) CN102136522A (en)
AT (2) ATE540428T1 (en)
DE (1) DE602005020174D1 (en)
ES (2) ES2380564T3 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642455B2 (en) * 2004-02-19 2014-02-04 Matthew R. Robinson High-throughput printing of semiconductor precursor layer from nanoflake particles
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
US7732229B2 (en) * 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US8613973B2 (en) * 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer
US20090305449A1 (en) * 2007-12-06 2009-12-10 Brent Bollman Methods and Devices For Processing A Precursor Layer In a Group VIA Environment
JP2011515852A (en) * 2008-03-18 2011-05-19 ソレクサント・コーポレイション Improved back contact for thin film solar cells
US8410357B2 (en) * 2008-03-18 2013-04-02 Solexant Corp. Back contact for thin film solar cells
US8143512B2 (en) * 2008-03-26 2012-03-27 Solexant Corp. Junctions in substrate solar cells
JP2009259872A (en) * 2008-04-11 2009-11-05 Rohm Co Ltd Photoelectric conversion device, method of manufacturing the same, and solid-state imaging device
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
WO2010126699A2 (en) 2009-04-29 2010-11-04 Hunter Douglas Industries B.V. Architectural panels with organic photovoltaic interlayers and methods of forming the same
CN102473778A (en) * 2009-08-04 2012-05-23 普瑞凯瑟安质提克斯公司 Methods for photovoltaic absorbers with controlled stoichiometry
EP2462151A2 (en) * 2009-08-04 2012-06-13 Precursor Energetics, Inc. Polymeric precursors for caigas aluminum-containing photovoltaics
JP2013501128A (en) 2009-08-04 2013-01-10 プリカーサー エナジェティクス, インコーポレイテッド Polymer precursors for CIS and CIGS photovoltaic devices
EP2462150A2 (en) * 2009-08-04 2012-06-13 Precursor Energetics, Inc. Polymeric precursors for caigs and aigs silver-containing photovoltaics
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
KR101810383B1 (en) 2009-09-24 2017-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
WO2011084171A1 (en) * 2009-12-17 2011-07-14 Precursor Energetics, Inc. Molecular precursors for optoelectronics
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
CN101838788A (en) * 2010-05-06 2010-09-22 深圳丹邦投资集团有限公司 Method for growing Cu2SixSn1-xS3 photovoltaic film in situ
CN101882640B (en) * 2010-06-28 2011-08-10 普尼太阳能(杭州)有限公司 CuInSe2-based thin film solar cell
TW201203584A (en) 2010-07-02 2012-01-16 Adpv Technology Ltd Rapid thermal process heating system and method thereof
TW201230379A (en) 2010-09-15 2012-07-16 Precursor Energetics Inc Deposition processes and devices for photovoltaics
US8409906B2 (en) 2010-10-25 2013-04-02 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
US8748216B2 (en) 2010-10-25 2014-06-10 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
WO2012074524A1 (en) 2010-12-01 2012-06-07 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
WO2012074523A1 (en) 2010-12-01 2012-06-07 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US8343267B2 (en) * 2011-02-18 2013-01-01 Rohm And Haas Electronic Materials Llc Gallium formulated ink and methods of making and using same
EP2720279A4 (en) * 2011-06-13 2014-12-24 Posco Solar cell substrate and solar cell using same
JP5536153B2 (en) * 2011-09-16 2014-07-02 新日光能源科技股▲ふん▼有限公司 Method of forming chalcogenide semiconductor film and photovoltaic device
CN102412319A (en) * 2011-09-30 2012-04-11 陈聪茂 High-efficiency gallium arsenide solar cell manufactured on metal film and manufacturing method thereof
JP6002207B2 (en) * 2012-02-27 2016-10-05 株式会社日本マイクロニクス Method for producing CIGS-based solar cell alloy
US9054264B2 (en) * 2012-02-29 2015-06-09 Alliance For Sustainable Energy, Llc Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium
CN103296129A (en) * 2012-03-05 2013-09-11 任丘市永基光电太阳能有限公司 Preparation technology for flexible CIGS solar cell back electrode layer
KR101720884B1 (en) * 2012-07-19 2017-03-28 쌩-고벵 글래스 프랑스 Avoidance of glass bending in thermal processes
US9130113B2 (en) 2012-12-14 2015-09-08 Tsmc Solar Ltd. Method and apparatus for resistivity and transmittance optimization in TCO solar cell films
CN103268899B (en) * 2012-12-18 2015-10-28 深圳首创光伏有限公司 Manufacture the method for thin-film solar cells
US9105799B2 (en) * 2013-06-10 2015-08-11 Tsmc Solar Ltd. Apparatus and method for producing solar cells using light treatment

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423301A (en) * 1964-11-02 1969-01-21 Monsanto Co Electrolytic production of high-purity gallium
US3449705A (en) * 1966-04-21 1969-06-10 Ncr Co Photoconductive matrix sheet
CA1054556A (en) * 1974-10-21 1979-05-15 Cecil L. Crossley Electrowinning of gallium
US4191794A (en) * 1978-05-11 1980-03-04 Westinghouse Electric Corp. Integrated solar cell array
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4522663A (en) * 1980-09-09 1985-06-11 Sovonics Solar Systems Method for optimizing photoresponsive amorphous alloys and devices
DE3135933A1 (en) * 1980-09-26 1982-05-19 Unisearch Ltd., Kensington, New South Wales SOLAR CELL AND METHOD FOR THEIR PRODUCTION
DE3280293D1 (en) * 1981-11-04 1991-02-21 Kanegafuchi Chemical Ind BENDING PHOTOVOLTAIC INTERIOR.
JPS59201471A (en) * 1983-04-29 1984-11-15 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
US4536607A (en) * 1984-03-01 1985-08-20 Wiesmann Harold J Photovoltaic tandem cell
DE3528087C2 (en) * 1984-08-06 1995-02-09 Showa Aluminum Corp Substrate for amorphous silicon solar cells
US4642140A (en) * 1985-04-30 1987-02-10 The United States Of America As Represented By The United States Department Of Energy Process for producing chalcogenide semiconductors
US4677250A (en) * 1985-10-30 1987-06-30 Astrosystems, Inc. Fault tolerant thin-film photovoltaic cell
JPS6464369A (en) * 1987-09-04 1989-03-10 Matsushita Electric Ind Co Ltd Manufacture of indium copper selenide
US5045409A (en) * 1987-11-27 1991-09-03 Atlantic Richfield Company Process for making thin film solar cell
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
US5078804A (en) * 1989-06-27 1992-01-07 The Boeing Company I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
US5093453A (en) * 1989-12-12 1992-03-03 Administrator Of The National Aeronautics And Space Administration Aromatic polyimides containing a dimethylsilane-linked dianhydride
JP2784841B2 (en) * 1990-08-09 1998-08-06 キヤノン株式会社 Substrates for solar cells
JPH04266068A (en) * 1991-02-20 1992-09-22 Canon Inc Photoelectric conversion element and its manufacture
US5286306A (en) * 1992-02-07 1994-02-15 Shalini Menezes Thin film photovoltaic cells from I-III-VI-VII compounds
DE69304143T2 (en) * 1992-05-19 1997-01-30 Matsushita Electric Ind Co Ltd Method of making a chalcopyrite type composition
EP0662247B1 (en) * 1992-09-22 1999-03-10 Siemens Aktiengesellschaft Process for rapidly generating a chalkopyrite semiconductor on a substrate
US5401573A (en) * 1992-11-30 1995-03-28 Mcdonnell Douglas Corporation Protection of thermal control coatings from ultraviolet radiation
US5441897A (en) * 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5436204A (en) * 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
EP0654831A3 (en) * 1993-11-18 1998-01-14 Matsushita Battery Industrial Co Ltd Method of manufacturing solar cell
US5633033A (en) * 1994-04-18 1997-05-27 Matsushita Electric Industrial Co., Ltd. Method for manufacturing chalcopyrite film
US5518968A (en) * 1994-10-17 1996-05-21 Cooper Industries, Inc. Low-temperature lead-free glaze for alumina ceramics
SE508676C2 (en) * 1994-10-21 1998-10-26 Nordic Solar Energy Ab Process for making thin film solar cells
DE4442824C1 (en) * 1994-12-01 1996-01-25 Siemens Ag Solar cell having higher degree of activity
EP0743686A3 (en) * 1995-05-15 1998-12-02 Matsushita Electric Industrial Co., Ltd Precursor for semiconductor thin films and method for producing semiconductor thin films
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
WO1997038145A1 (en) * 1996-04-03 1997-10-16 Alusuisse Technology & Management Ag Coating substrate
US6169246B1 (en) * 1998-09-08 2001-01-02 Midwest Research Institute Photovoltaic devices comprising zinc stannate buffer layer and method for making
US5925228A (en) * 1997-01-09 1999-07-20 Sandia Corporation Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6107562A (en) * 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
DE19921515A1 (en) * 1999-05-10 2000-11-30 Ist Inst Fuer Solartechnologie Thin-film solar cell based on the Ia / IIIb / VIa compound semiconductors and process for their production
US6258408B1 (en) * 1999-07-06 2001-07-10 Arun Madan Semiconductor vacuum deposition system and method having a reel-to-reel substrate cassette
AU2249201A (en) * 1999-11-16 2001-05-30 Midwest Research Institute A novel processing approach towards the formation of thin-film Cu(In,Ga)Se2
US6372538B1 (en) * 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
FR2820241B1 (en) * 2001-01-31 2003-09-19 Saint Gobain TRANSPARENT SUBSTRATE PROVIDED WITH AN ELECTRODE
WO2002084708A2 (en) 2001-04-16 2002-10-24 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
WO2004032189A2 (en) * 2002-09-30 2004-04-15 Miasolé Manufacturing apparatus and method for large-scale production of thin-film solar cells
SE525704C2 (en) * 2003-08-12 2005-04-05 Sandvik Ab Coated steel product of metal strip material comprising an electrically insulating layer doped with one or more alkali metals
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US7605328B2 (en) * 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates

Also Published As

Publication number Publication date
CN101061588B (en) 2010-12-22
DE602005020174D1 (en) 2010-05-06
ATE540428T1 (en) 2012-01-15
ATE462200T1 (en) 2010-04-15
EP2348540B1 (en) 2013-02-13
EP2230693B1 (en) 2012-01-04
EP2348540A3 (en) 2011-11-09
EP2230693A1 (en) 2010-09-22
ES2380564T3 (en) 2012-05-16
CN102136522A (en) 2011-07-27
US20090305455A1 (en) 2009-12-10
CN101061588A (en) 2007-10-24
US20060060237A1 (en) 2006-03-23
EP2348540A2 (en) 2011-07-27
US20120329195A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
ES2342091T3 (en) TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET.
EP1805804B1 (en) Formation of solar cells on foil substrates
ES2526694T3 (en) Semiconductor manufacturing process in thin films based on compounds I-III-VI (2) for photovoltaic applications
Song et al. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics
ES2292216T3 (en) AN OXIDE-BASED METHOD OF MANUFACTURE OF COMPOSITE SEMICONDUCTOR FILMS AND MANUFACTURE OF RELATED ELECTRONIC DEVICES.
Thangaraju et al. Spray pyrolytic deposition and characterization of SnS and SnS2 thin films
JP4919710B2 (en) Thin film solar cell
JP5185171B2 (en) Method for forming light absorption layer of thin film solar cell
US20080302413A1 (en) Formation of photovoltaic absorber layers on foil substrates
US20110207297A1 (en) Method for Manufacturing Chalcopyrite Film
Yoon et al. Carbon-and oxygen-free Cu (InGa)(SSe) 2 solar cell with a 4.63% conversion efficiency by electrostatic spray deposition
Badgujar et al. Cu (In, Ga) Se2 thin film absorber layer by flash light post-treatment
US20090032108A1 (en) Formation of photovoltaic absorber layers on foil substrates
US20130025532A1 (en) Formation of photovoltaic absorber layers on foil substrates
JP2017050337A (en) Method of manufacturing cigs semiconductor precursor film, method of manufacturing cigs semiconductor film using the same, and method of manufacturing cigs solar battery using them
Reddy et al. Preparation and characterization of CuIn0. 75Al0. 25Se2 thin films by co-evaporation
ES2753449T3 (en) Method of Producing a Layer System for Thin Film Solar Cells Having a Buffer Layer of Sodium and Indium Sulfide
KR101583027B1 (en) Method of manufacturimg of CZTS-based solar cell light absorber and CZTS-based solar cell light absorber thereby
US8541048B1 (en) Formation of photovoltaic absorber layers on foil substrates
WO2014136921A1 (en) Compound-semiconductor thin-film manufacturing method and manufacturing device
Ho Synthesis of Thin Films on Flexible Substrates: A Review
JP2014216479A (en) Method of manufacturing photoelectric conversion element
EP2179449A2 (en) Formation of photovoltaic absorber layers on foil substrates
Khottoommee Structural and optical properties of Cu2ZnSnS4 films deposition by screen coating technique of sol-gel process
Deepa et al. Synthesis of Cu 2 ZnSnSn 4 nanoparticles for solar cell applications