EP4407384A1 - Monocular module for perpetual calendar mechanism of a clock movement - Google Patents
Monocular module for perpetual calendar mechanism of a clock movement Download PDFInfo
- Publication number
- EP4407384A1 EP4407384A1 EP23153711.9A EP23153711A EP4407384A1 EP 4407384 A1 EP4407384 A1 EP 4407384A1 EP 23153711 A EP23153711 A EP 23153711A EP 4407384 A1 EP4407384 A1 EP 4407384A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mobile
- cam
- module
- rocker
- secular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 15
- 239000000523 sample Substances 0.000 claims description 6
- 230000009471 action Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B19/00—Indicating the time by visual means
- G04B19/24—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
- G04B19/243—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
- G04B19/247—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
- G04B19/253—Driving or releasing mechanisms
- G04B19/25306—Independent date indicating devices activated by hand or by clockwork, e.g. calendar watches
- G04B19/25313—Independent date indicating devices activated by hand or by clockwork, e.g. calendar watches driven or released by a steady movement
- G04B19/2532—Independent date indicating devices activated by hand or by clockwork, e.g. calendar watches driven or released by a steady movement automatically corrected at the end of mounths having less than 31 days
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B19/00—Indicating the time by visual means
- G04B19/24—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
- G04B19/243—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
- G04B19/247—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
- G04B19/253—Driving or releasing mechanisms
- G04B19/25333—Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement
- G04B19/2534—Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement driven or released continuously by the clockwork movement
Definitions
- the present invention relates to a secular module for a perpetual calendar mechanism for a watch movement.
- the secular module is intended to activate a correction device to manage the transition from the end of February to March 1st according to leap years while taking into account the absence of leap years every hundred years and optionally maintaining leap years every 400 years.
- Another aspect is to be able to easily integrate a secular module capable of activating a correction device to manage the transition from the end of February to March 1 depending on leap years, taking into account the absence of leap years every hundred years and possibly maintaining leap years every 400 years.
- An aim of the present invention is therefore to propose a secular module capable of operating a correction device to manage the transition from the end of February to March 1 as a function of leap years taking into account the absence of years leaps every hundred years.
- Another aim of the present invention is to propose a secular module which is easy to modify to operate the correction device while also taking into account leap years every 400 years.
- Another aim of the present invention is to propose a reversible secular module to allow easy correction of the display of the year in both directions, namely both in the direction of an increment and in that of a decrement. .
- An additional goal is to propose a secular perpetual calendar integrating the secular module.
- a secular module for a perpetual calendar mechanism comprising three mobiles mounted in series, one of which is arranged to be driven by a months mobile.
- the first mobile preferably comprises a driving member, a so-called leap cam, a driven member arranged to be rotated by a finger of the months mobile.
- the leap cam and the driving member of the first mobile are integral with the driven member.
- the second mobile comprises a driven member arranged to be rotated by the driving member of the first mobile, a so-called tens cam and a drive member typically comprising a finger.
- the tens cam and the drive member of the second mobile are integral with the driven member.
- the third mobile comprises a rotating member arranged to be driven by the finger that the drive member of the second mobile includes and a so-called hundreds cam secured to the rotating member.
- the secular module further comprises a first and a second flip-flop.
- the first rocker comprises a feeler arranged to cooperate with the leap cam of the first mobile to bring the first rocker into a first or a second position.
- the first rocker is in the first position when the probe cooperates with a first portion of the leap cam corresponding to a non-leap year.
- the first rocker is in a second position when the probe cooperates with a second portion of the leap cam corresponding to a leap year in order to activate a correction device to take into account the 29th day of the month of February of a year leap year.
- the second rocker comprises a first and a second feeler arranged to cooperate with respectively the tens cam of the second mobile and the hundreds cam of the third mobile.
- the second rocker is arranged to maintain the first rocker in the first position when the first and second feelers are on a portion of the cam corresponding respectively to a multiple of ten years of the tens cam and to a multiple of one hundred years of the came hundreds.
- the secular module further comprises a finger secured to the rotating member of the third mobile, a fourth mobile as well as a third rocker.
- the fourth mobile comprises a rotating member arranged to be driven by the passage of the finger of the third mobile and a so-called 400 cam secured to the rotating member of this fourth mobile.
- the third rocker includes a feeler to cooperate with the cam of 400.
- the third rocker is arranged to tilt the second rocker so that it does not act on the first rocker when the feeler of the third rocker cooperates with a portion of the cam of 400 corresponding to a multiple of 400 years.
- the cam of the 400 has two diametrically opposed recesses.
- the rotating member of the third mobile and the driven member of the first mobile are each in the form of a pinion comprising several pairs of teeth. These are distributed evenly around the circumference of the gable and are spaced from each other to define clearances.
- the drive member of the second mobile and the drive member of the months mobile each comprise a circular edge, a finger whose free end projects from the circular edge and two grooves arranged on either side and the other with the finger.
- two pairs of adjacent teeth of the respective pinion are arranged so that one of the teeth of each of the pairs of adjacent teeth abuts against the circular edges of the drive member of the month mobile and the the drive member of the second mobile thus making it possible to limit the angular movement of the respective pinions of the first and third mobile.
- the latter are therefore immobilized in a relatively stable position after each passage of the finger engaging a pair of teeth until the next passage of the finger engaging an adjacent pair of teeth.
- the secular module further comprises a jumper arranged to come to bear against a support zone of one of the clearances of the pinion of the third mobile in order to bring the pinion into an indexed angular position.
- the pairs of teeth of the pinions respectively of the first and third mobiles are obtained from a pinion of which one tooth out of three has been truncated.
- the first mobile is arranged to be driven by the finger of the month mobile at the rate of one revolution every multiple of four years, preferably one revolution every eight or twelve years.
- the second mobile is arranged to be driven by the driving member of the first mobile at a rate of one revolution every ten years.
- the rotating member of the third mobile is arranged to be driven by the finger of the second mobile at a rate of one revolution every hundred years.
- the leap cam of the first mobile has two diametrically opposed recesses or three recesses separated from each other by 120°.
- the tens and hundreds cams each have a unique recess.
- the secular module further comprises an indexing star secured to the first mobile and an indexing jumper cooperating with the indexing star in order to bring the first mobile in an indexed position after each passage of the finger from the month mobile.
- the first rocker further comprises a rake arranged to engage with teeth of the correction device.
- a display module for displaying the years comprising the aforementioned secular module according to any of its embodiments, in which the third mobile further comprises a second rotating member arranged to be driven by the driven member of the second mobile at the rate of one revolution every ten years.
- the third mobile also comprises an axis secured to the second rotating member and a barrel arranged around the axis and secured to the first rotating member.
- the display module further comprising a units ring mounted integrally with the axis and a tens ring arranged concentrically outside the units ring and secured to the barrel.
- This mechanism includes in particular a month cam comprising at least one notch whose depth corresponds to the month of February of a non-leap year as well as a correction device in order to limit the depth of said at least one notch so that it corresponds to the month of February in a leap year.
- the mechanism further comprises the aforementioned secular module, according to any of its embodiments, so that the pivoting of the first rocker in the second position activates the correction device to limit the depth of said at least one notch.
- Another aspect of the invention relates to a timepiece comprising the display module or the perpetual calendar mechanism mentioned above.
- the secular module 10 is arranged to cooperate with a mobile of the months 100 of a watch movement and is adapted to take into account the absence of leap years every hundred years.
- the secular module 10 can also be adapted to take into account leap years every 400 years according to an advantageous embodiment which will be described in a second step.
- a leap year is a year which has 366 days instead of 365 with an extra day in the month of February.
- Years are generally leap years if they are multiples of four, however they are not if they are multiples of one hundred with the exception of years multiples of four hundred which are leap years. This is how the years 2020, 2024 and 2028 are leap years, the years 2000 and 2400 are also leap years, but not the years 1900, 2100, 2200 and 2300.
- This kind of year exists to compensate for the time difference between the common calendar year of 365 days and the solar year which is the time required for the Earth to complete one revolution around the Sun, which is 365.242 days.
- a supernumerary day must therefore be added regularly so that the average length of the calendar years is as close as possible to the solar year by making a correction according to the aforementioned rule.
- the secular module 10 illustrated by the figures 1 and 2 comprises three mobiles 20, 30, 40 engaged directly or indirectly with the mobile of months 100 and two rockers 70, 80 each arranged to cooperate with at least one of these three mobiles in order to be able to operate, every four years at With the exception of every hundred years, a correction device which will be described later.
- the month mobile 100 typically comprises a pinion 102 with twelve teeth, a jumper 108 engaged with the pinion 102 as well as a drive member 104 secured to the pinion 102 and comprising a finger 105.
- the pinion 102 is arranged to be driven by the watch movement in order to complete a 360° turn every twelve months, preferably in successive jumps of 30°. To do this, at the end of December typically, the pinion 102 produces, under the effect of the jumper 108, an almost instantaneous rotation. to the finger 105 in order to drive the first mobile 20 with a predetermined angular step almost instantly.
- the first mobile 20 comprises a driving member 27, for example a wheel, on which are coaxially superimposed a so-called leap cam 25, a driven member 21 and preferably an indexing star 24.
- the driving wheel 27, the leap cam 25, the indexing star 24 and the driven member 21 are fixed together to form a unitary block.
- the driven member 21 is arranged to be rotated by the finger 105 of the month mobile 100 so that all the elements of the first mobile 20 can together rotate 360° every multiple of four years, in particular every eight years according to the preferred embodiment.
- the leap cam 25 therefore rotates 360° every eight years.
- the second mobile 30 comprises a driven member 37, for example a wheel or a pinion, on which a so-called tens cam 35 and a drive member 31 comprising a finger 32 are superimposed coaxially.
- the driven wheel 37, the cam tens 35 and the drive member 31 are fixed together to form a unitary block, like the first mobile 20.
- the driven wheel 37 of the second mobile 30 is engaged with the driving wheel 27 of the first mobile 20
- the gear ratio between these two wheels 27, 37 is in this example 8:10 so that all the elements of the second mobile 30 can together rotate 360° every ten years.
- the tens cam 35 therefore rotates 360° every ten years.
- the third mobile 40 comprises a first rotating member 41 arranged to be driven by the finger 32 of the drive member 31 of the second mobile 30, a so-called hundreds cam 45 integral with the first rotating member 41 and a second rotating member 47 in taken with the driven wheel 37 of the second mobile 30.
- the first rotating member 41 is thus driven by the finger 32 of the drive member 31 of the second mobile 30 to rotate 360° every hundred years.
- the hundreds cam 45 therefore rotates 360° every hundred years.
- the gear ratio between the driven wheel 37 of the second mobile 30 and the second rotating member 47 is 1:1 so that the latter can also perform a 360° turn every ten years.
- the driven member 21 of the first mobile 20 as well as the first and second rotating members 41, 47 of the third mobile 40 can be in the form of pinions.
- these pinions preferably have a particular set of teeth provided with several pairs of teeth 22, 42 distributed regularly around their circumference and spaced from each other to define clearances 23, 43 between the pairs of teeth.
- the pinion 21 of the first mobile 20 can for example comprise eight pairs of teeth 22 and clearances 23 arranged between the pairs of teeth 22. This singular toothing is obtained from a pinion of twenty-four teeth including one tooth out of three has been truncated.
- the drive member 104 of the month mobile 100 has a specific shape for driving the pinion 21.
- This drive member comprises a disc 106 with a circular edge over almost its entire circumference, a finger 105 whose free end projects from the circular edge of the disc 106 as well as a first and a second groove 107a, 107b arranged on either side of the finger 105. Each groove 107a, 107b extends along a direction parallel to the axis of rotation of the mobile of months 100 on the thickness of the disc 106.
- the finger 105 of the month mobile 100 is housed in the space formed by a pair of teeth 22 of the pinion 21 of the first mobile 20 while the first and second teeth of this pair of teeth are housed in turn respectively in the first groove 107a downstream of the finger 105 relative to its direction of rotation and in the second groove 107b arranged in upstream of the finger 105.
- the pinion 21 continues temporarily to be driven under the action of the second groove 107b against the second tooth of the pair of teeth 22.
- the indexing star 24 is arranged to cooperate with an indexing jumper 28.
- the star 24 has eight teeth, that is to say the number of teeth of the star 24 corresponds to the number of pairs of teeth 22 of the pinion 21. The function of the indexing star 24 will be described later.
- the first and second rotating members 41, 47 of the third mobile 40 can both be in the form of pinions provided with ten pairs of teeth 42 spaced regularly over 360° to define clearances 43 arranged between the pairs of teeth 42.
- This toothing is obtained from a pinion of thirty teeth of which one tooth out of three has been truncated.
- a first and a second jumper 53, 54 are arranged so that their respective heads 53a, 54a come against a bearing surface of a clearance 43 respectively of the first and second pinions 41, 47 in order to bring the two gears 41, 47 in an indexed angular position.
- the finger 105 of the drive member 104 of the month mobile 100 engages, typically at the end of December of each year, a pair of teeth 22 of the pinion 21 of the first mobile 20, the latter pivots from a certain angle.
- the indexing star 24 is therefore rotated under the action of the finger 105, which raises the indexing jumper 28 until the latter gives a jump to the first mobile 20 to bring it into an indexed angular position.
- the star and the indexing jumper serve two functions.
- the first function consists of adding sufficient torque to the first mobile 20, which torque will be added to the torque exerted by the jumper 108 on the pinion 102 of the mobile of the months 100, so that this pinion 102 has sufficient torque to drive the jumpers 53 and 54 as well as the seesaws 70 and 80, and can thus jump one step.
- the second function consists of completing the rotation of the first mobile 20 so that it can make a jump of 45° at the end of each year.
- Each jump of the first mobile 20 makes it possible to actuate the third mobile 40, via the second mobile 30, so that the first pinion 41 and the second pinion 47 of the third mobile can make a jump of 36° at the end respectively of every ten years and every year.
- this jump also ensures that the heads 53a, 54a of the two jumpers 53, 54 act correctly against a bearing surface of one of the clearances of the two pinions 41, 47 of the third mobile 40 , and not on a pair of teeth 42, in order to lock the third mobile 40 in an indexed position after each jump.
- indexing star 24 and the indexing jumper 28 are not essential to the proper functioning of the secular module. We could in fact reduce the rigidity of the jumper of the mobile of months 100 so that the torque transmitted to this mobile is sufficient to activate the jump and drive the first mobile 20 of the secular module 10.
- the unique shape of the drive member 104 of the month mobile and of the pinion 21 of the first mobile 20 makes it possible to limit the angular movement of the pinion 21 during the current year between two passages of the finger 105. This is made possible by two pairs of adjacent teeth of the pinion 21 which are arranged so that one of the teeth of each pair abuts against the edge of the disc 106 in the case where the first mobile 20 were to move in one direction or the other following an impact for example.
- first and second jumpers 53, 54 acting on the third mobile 40 are not essential to the proper functioning of the secular module, because the more or less stable angular position of the first and second pinions 41, 47 is ensured thanks to the singular shape of the drive member 31 of the second mobile 30 and that of the first and second pinions 41, 47 of the third mobile 40 according to the above-mentioned explanation for the driving of the first mobile 20.
- the unique shapes of the drive members 104, 31 of the first and third mobiles 20, 40 and the respective pinions 21, 41 that they drive advantageously allow the reversibility of the secular module.
- reversibility we mean the possibility of driving the first mobile 20 in one direction or the other by the month module 100 in order to allow easy correction of a display of the years which will be described later.
- the gear ratio between the driving wheel 27 of the first mobile 20 and the driven wheel 37 of the second mobile 30 as well as the shape of the pinion 21 of the first mobile could be different.
- this gear ratio could be 12:10 and the pinion 21 could have twelve pairs of teeth, instead of eight, so that all the elements of the first mobile 20 can rotate together. of 360° every 12 years.
- the leap cam would have three recesses arranged at 120° to each other, because each recess represents a leap year on a four-year cycle.
- the secular module 10 further comprises a first rocker 70 and a second rocker 80.
- the first rocker 70 is in particular arranged to cooperate, on the one hand, with the leap cam 25 of the first mobile 20 and, on the other hand, with a correction device.
- the first rocker 70 further comprises transmission means for actuating the correction device when this first rocker is brought to a certain position.
- the transmission means are in the form of a rake 74 in this example to engage with teeth of the correction device which will be described later.
- the second rocker 80 is arranged to cooperate with the tens cam 35 of the second mobile 30 and with the hundreds cam 45 of the third mobile 40.
- the second rocker 80 is arranged so as to move the first rocker 70 as a function of the angular position of the tens cam 35 and that of the hundreds cam 45.
- the first rocker 70 comprises a feeler 72 and a rocker spring 78 arranged to force the feeler 72 to come into contact with the contour of the leap cam 25 of the first mobile 20.
- the profile of this cam includes in this example two diametrically opposite recesses 26a, 26b and two circular portions 26d, 26e.
- the second rocker 80 comprises a first feeler 81 and a second feeler 82.
- the first feeler 81 is arranged to feel the contour of the tens cam 35 of the second mobile 30.
- the profile of this cam includes in this example a recess 36 as well as a circular portion 36a which typically extends over more than 300°.
- the second probe 82 is arranged to feel the contour of the hundreds cam 45 of the third mobile 40.
- the profile of this cam includes in this example a recess 46 as well as a circular portion which, preferably, extends over more than 300°.
- the second rocker 80 also comprises a rocker spring 86 intended to force the first and second feelers 81, 82 against the profile of the respective cams of the second and third mobiles 30, 40.
- This second rocker 80 also includes an actuating arm 83 a free end 84 of which is intended to act on an actuable part 76 of the first rocker 70.
- the cumulative consideration of the angular positions of the tens cam 35 and the hundreds cam 45 makes it possible to determine whether the current year is a multiple of 100 years, in which case it is not a leap year.
- the tens cam 35 makes a complete revolution every ten years while the hundreds cam 45 makes a complete revolution every hundred years, their respective recess 36, 46 are in the same angular position at each multiple of 100 years.
- the tens cam 35 can be considered as an indicator of the units of the current year.
- the hundreds cam 45 can be considered as an indicator of the tens of the current year.
- the tens cam 35 and the hundreds cam 45 of the second and third mobiles 30, 40 are not in the same angular position.
- the current year is therefore not a multiple of 100 years.
- the angular position of the leap cam 25 indicates that the current year is a leap year.
- the first rocker 70 pivots, under the action of the rocker spring 78, so that its feeler 72 abuts against the bottom of the recess 26a.
- the pivoting of the first rocker 70 activates the rake 74, secured to one of its branches, so that this in turn activates the correction device in order to take into account the 29th day of the month of February.
- the tens cam 35 and the hundreds cam 45 are in the same angular position.
- the current year is therefore a multiple of 100 years. It is therefore not a leap year.
- the leap cam 25 is in an angular position where the recess 26a is opposite the feeler 72 of the first rocker 70.
- the second rocker 80 pivots, under the action of the rocker spring 86, when its first and second feelers 81, 82 abut against the bottoms of the recesses 36, 46 respectively of the tens cam 35 and the hundreds cam 45.
- the pivoting of the second rocker 80 allows the free end 84 of its actuating arm 83 to act on the actuable part 76 of the first rocker 70 in order to position its feeler 72 at a distance from the bottom of the recess 26a of the leap cam 25.
- This action may consist of preventing its feeler 72 from coming into abutment against the bottom of the recess 26a of the leap cam 25 or to raise this feeler 72 if it has come into abutment against the bottom of the recess or if it is tilting towards the bottom of this recess 26a.
- the first rocker 70 cannot therefore move, which makes it possible to avoid activating the correction device to carry out a correction which does not need to be made.
- the third mobile 40 can, according to an advantageous embodiment illustrated in the Figure 4 , support a display of the years 200.
- This comprises a ring of units 210 and a ring of tens 220 arranged concentrically outside the ring of units 210 and each comprising a succession of numbers from 0 to 9.
- the third mobile 40 further comprises an axis 50 secured to the second rotating member 47 and a barrel 44 arranged around the axis 50 and secured to the first rotating member 41.
- the ring of the units 210 has in its center a fixing element 212 comprising a hub 213 fixed on the axis 50 of the second rotating member 47 ( figure 1 ), for example by driving, and several fixing arms 214 extending radially from the hub 213 and whose free ends are fixed on the lower face of the ring of units 210.
- the ring of tens 220 also includes in its between a hub (not visible) arranged under the hub 213 of the ring of the units and several fixing arms 222 extending radially from the hub and the free ends of which are fixed on the lower face of the ring of the tens 220.
- the hub of the tens ring 220 is fixed to the barrel 44 of the first rotating member 41 ( figure 1 ), for example by hunting.
- the secular module is adapted to not only take into account the absence of leap years every hundred years like the secular module 100 which has just been described but also the years divisible by 400 as leap years when well even they are also divisible by 100.
- the secular module comprises three mobiles and two rockers identical or similar to the three mobiles 20, 30, 40 and the two rockers 70, 80 as described previously for the embodiment illustrated in figures 1 and 2 .
- a transmission member 51 comprising a finger 52 is mounted on the third mobile in order to be integral with the first rotating member 41 to be driven at a rate of one 360° revolution every hundred years.
- the centuries-old modular also includes a fourth mobile 60 and a third rocker 90 as illustrated in the figure 5 .
- the fourth mobile 60 comprises a rotating member 62 arranged to be driven by the passage of the finger 51 of the third mobile.
- the rotating member can for example be in the form of a pinion 62 equipped with eight pairs of teeth, like the pinion 21 of the first mobile 20 of the figure 1 , so that pinion 63 can complete a 360° turn every 800 years.
- a so-called 400 64 cam is mounted integrally with pinion 62 so that this cam 64 can also complete a 360° turn every 800 years.
- the profile of this 400 cam has two diametrically opposed recesses 65a, 65b as well as two circular portions.
- the fourth mobile 60 could be presented in other forms, in particular with regard to the number of teeth or pairs of teeth of the pinion 62 and the number of recesses 65a, 65b that the cam 64 has. What is important is that is that the elements of the fourth mobile 60 can together rotate 360° every multiple of four hundred years.
- the third rocker 90 comprises a feeler 92, a rocker spring (not shown) to force the feeler 92 to follow the profile of the cam of the 400, as well as an actuating arm 94.
- This has a free end 95 intended to act on an actuable part 85 of the second rocker 80 so that it does not act on the first rocker 70 when the feeler 92 of the third rocker 90 cooperates with one or the other of the two recesses 65a , 65b of the cam of 400 corresponding to a multiple of 400.
- the first rocker 70 can thus pivot, under the action of its rocker spring, and thus force its feeler 72 to come to the bottom of a recess 26c of the leap cam 25.
- the leap cam 25 comprises in this example three recesses 26a, 26b, 26c arranged at 120° relative to each other and that the driving wheel 27 of the first mobile and the driven wheel 37 of the second mobile have a ratio of gear of 12:10 so that the second mobile comprising the tens cam 35 can make a complete revolution every ten years when the first mobile makes a complete revolution every twelve years.
- the secular module 10 is intended to be incorporated into a perpetual calendar mechanism preferably equipped with a month cam (not illustrated) of thirty-six notches or less, unlike most calendars conventional perpetuals which are equipped with a month cam with forty-eight notches, commonly referred to as a 48 cam, in order to cover a four-year cycle including a leap year.
- a month cam not illustrated
- forty-eight notches commonly referred to as a 48 cam
- the thirty-six notches of the month cam extend toward the center of the cam and have three different depths. These notches are arranged successively respecting the length of the months ordered from January to December. The notches with the smallest depth correspond to 31-day months, the notches with the greatest depth correspond to 28-day months, and the intermediate notches correspond to 30-day months.
- This months cam has the advantage of having a smaller footprint, compared to a 48 cam, while preserving notches of the same width.
- the cam therefore only represents a cycle of three consecutive years with three notches arranged at 120° to each other for correction at the end of February for non-leap years.
- the months of February of such a cam would be represented by notches having a representative depth of 28 days.
- the month cam therefore does not have any notch dedicated to the correction necessary for a month of February in a leap year.
- the perpetual calendar mechanism includes a correction device intended to limit the depth of the notch for the month of February during a leap year so that the depth corresponds to a month of 29 days.
- the correction device comprises a rotating member in the form of a disc mounted coaxially with the month cam, for example in the same plane as the latter.
- the disc has on its contour a circular portion, a radial slot and teeth.
- the rake 74 of the first rocker 70 of the secular module is engaged with the teeth of the disc so as to pivot the disc so that its radial slot is aligned with the notch for the month of February of the month cam during a year normal, and that on the contrary this radial slot is not aligned with the notch for the month of February during a leap year.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromechanical Clocks (AREA)
Abstract
La présente invention concerne un module séculaire (10) pour mécanisme de quantième perpétuel d'un mouvement horloger, comportant un premier mobile (20) agencé pour être entraîné par un mobile des mois (100) du mouvement horloger, un deuxième et troisième mobiles (30, 40) montés en série avec le premier mobile (20) et deux bascules (70, 80). Les trois mobiles 20, 30, 40) comportent respectivement une came bissextile (25), une came des dizaines (35) et une came des centaines (45). La première bascule (70) est agencée pour coopérer avec la came bissextile (25) pour amener la première bascule (70) respectivement dans une première position lorsqu'elle coopère avec une première portion de la came bissextile (25) correspondant à une année non-bissextile et dans une seconde position lorsqu'elle coopère avec une seconde portion (26a, 26b, 26c) de la came bissextile (25) correspondant à une année bissextile afin d'actionner un dispositif de correction pour prendre en compte le 29<sup>ème</sup> jour du mois de février d'une année bissextile. La seconde bascule (80) est agencée pour coopérer avec respectivement la came des dizaines (35) et la came des centaines (45) et pour agir sur la première bascule (70) afin d'empêcher celle-ci de coopérer avec la seconde portion de la came bissextile (25) lorsque un premier et un second palpeurs (81, 82) de la seconde bascule (80) se trouvent sur une portion de la came correspondant respectivement à un multiple de dix ans de la came des dizaines (33) et à un multiple de cent ans de la came des centaines (45).The present invention relates to a secular module (10) for a perpetual calendar mechanism of a watch movement, comprising a first mobile (20) arranged to be driven by a month mobile (100) of the watch movement, a second and third mobile ( 30, 40) mounted in series with the first mobile (20) and two rockers (70, 80). The three mobiles 20, 30, 40) respectively comprise a leap cam (25), a tens cam (35) and a hundreds cam (45). The first rocker (70) is arranged to cooperate with the leap cam (25) to bring the first rocker (70) respectively into a first position when it cooperates with a first portion of the leap cam (25) corresponding to a year not -leap year and in a second position when it cooperates with a second portion (26a, 26b, 26c) of the leap cam (25) corresponding to a leap year in order to activate a correction device to take into account the 29<sup >th</sup> day of February in a leap year. The second rocker (80) is arranged to cooperate with the tens cam (35) and the hundreds cam (45) respectively and to act on the first rocker (70) in order to prevent the latter from cooperating with the second portion of the leap cam (25) when a first and a second feelers (81, 82) of the second rocker (80) are on a portion of the cam corresponding respectively to a multiple of ten years of the tens cam (33) and at a multiple of a hundred years from the hundreds cam (45).
Description
La présente invention concerne un module séculaire pour un mécanisme de quantième perpétuel pour mouvement horloger. Le module séculaire est destiné à actionner un dispositif de correction pour gérer le passage de la fin du mois de février au 1er mars en fonction des années bissextiles tout en tenant compte de l'absence des années bissextiles tous les cent ans et optionnellement en maintenant les années bissextiles tous les 400 ans.The present invention relates to a secular module for a perpetual calendar mechanism for a watch movement. The secular module is intended to activate a correction device to manage the transition from the end of February to March 1st according to leap years while taking into account the absence of leap years every hundred years and optionally maintaining leap years every 400 years.
Il existe différents mécanismes pour indiquer une information relative à la date. Ces mécanismes sont de construction relativement simple pour l'affichage de la date sans correction, de type à quantième annuel capable de gérer le passage des mois à 30 et 31 jours au 1er du mois suivant, et du type à quantième perpétuel qui comporte une mémoire mécanique, pour ainsi dire, permettant non seulement de gérer le passage des mois à 30 et 31 jours au 1er du mois suivant, mais aussi le passage de la fin du mois de février au 1er mars en prenant en compte les années bissextiles. Les quantièmes perpétuels conventionnels ne tiennent toutefois pas compte de l'absence des années bissextiles tous les cent ans.There are different mechanisms for indicating date information. These mechanisms are of relatively simple construction for displaying the date without correction, of the annual calendar type capable of managing the transition from months with 30 and 31 days to the 1st of the following month, and of the perpetual calendar type which includes a mechanical memory, so to speak, allowing not only to manage the transition from months with 30 and 31 days to the 1st of the following month, but also the transition from the end of February to March 1st by taking into account leap years . However, conventional perpetual calendars do not take into account the absence of leap years every hundred years.
Différents mécanismes à quantième séculaire ont déjà été décrits. L'un des enjeux reste cependant de maintenir une compacité acceptable. Un autre aspect est de pouvoir facilement intégrer un module séculaire apte à actionner un dispositif de correction pour gérer le passage de la fin du mois de février au 1er mars en fonction des années bissextiles en tenant compte de l'absence des années bissextiles tous les cent ans et éventuellement en maintenant les années bissextiles tous les 400 ans.Different secular calendar mechanisms have already been described. One of the challenges, however, remains maintaining acceptable compactness. Another aspect is to be able to easily integrate a secular module capable of activating a correction device to manage the transition from the end of February to March 1 depending on leap years, taking into account the absence of leap years every hundred years and possibly maintaining leap years every 400 years.
Un but de la présente invention est par conséquent de proposer un module séculaire apte à actionner un dispositif de correction pour gérer le passage à la fin du mois de février au 1er mars en fonction des années bissextiles en tenant compte de l'absence des années bissextiles tous les cent ans.An aim of the present invention is therefore to propose a secular module capable of operating a correction device to manage the transition from the end of February to March 1 as a function of leap years taking into account the absence of years leaps every hundred years.
Un autre but de la présente invention est de proposer un module séculaire qui soit facile à modifier pour actionner le dispositif de correction en tenant compte également des années bissextiles tous les 400 ans.Another aim of the present invention is to propose a secular module which is easy to modify to operate the correction device while also taking into account leap years every 400 years.
Un autre but de la présente invention est de proposer un module séculaire réversible pour permettre une correction aisée de l'affichage de l'année dans les deux sens, à savoir aussi bien dans le sens d'une incrémentation que dans celui d'une décrémentation.Another aim of the present invention is to propose a reversible secular module to allow easy correction of the display of the year in both directions, namely both in the direction of an increment and in that of a decrement. .
Un but additionnel est de proposer un quantième perpétuel séculaire intégrant le module séculaire.An additional goal is to propose a secular perpetual calendar integrating the secular module.
Ces buts sont atteints notamment par un module séculaire pour mécanisme de quantième perpétuel, comportant trois mobiles montés en série dont un est agencé pour être entraîné par un mobile des mois. Le premier mobile comporte de préférence un organe menant, une came dite bissextile, un organe mené agencé pour être entraîné en rotation par un doigt du mobile des mois. La came bissextile et l'organe menant du premier mobile sont solidaires de l'organe mené. Le deuxième mobile comporte un organe mené agencé pour être entraîné en rotation par l'organe menant du premier mobile, une came dite des dizaines et un organe d'entrainement comportant typiquement un doigt. La came des dizaines et l'organe d'entrainement du deuxième mobile sont solidaires de l'organe mené. Le troisième mobile comporte un organe rotatif agencé pour être entraîné par le doigt que comporte l'organe d'entrainement du deuxième mobile et une came dite des centaines solidaire de l'organe rotatif.These goals are achieved in particular by a secular module for a perpetual calendar mechanism, comprising three mobiles mounted in series, one of which is arranged to be driven by a months mobile. The first mobile preferably comprises a driving member, a so-called leap cam, a driven member arranged to be rotated by a finger of the months mobile. The leap cam and the driving member of the first mobile are integral with the driven member. The second mobile comprises a driven member arranged to be rotated by the driving member of the first mobile, a so-called tens cam and a drive member typically comprising a finger. The tens cam and the drive member of the second mobile are integral with the driven member. The third mobile comprises a rotating member arranged to be driven by the finger that the drive member of the second mobile includes and a so-called hundreds cam secured to the rotating member.
Le module séculaire comporte en outre une première et une seconde bascule. La première bascule comporte un palpeur agencé pour coopérer avec la came bissextile du premier mobile pour amener la première bascule dans une première ou une seconde position. La première bascule se trouve dans la première position lorsque le palpeur coopère avec une première portion de la came bissextile correspondant à une année non-bissextile. La première bascule se trouve dans une seconde position lorsque le palpeur coopère avec une seconde portion de la came bissextile correspondant à une année bissextile afin d'actionner un dispositif de correction pour prendre en compte le 29ème jour du mois de février d'une année bissextile.The secular module further comprises a first and a second flip-flop. The first rocker comprises a feeler arranged to cooperate with the leap cam of the first mobile to bring the first rocker into a first or a second position. The first rocker is in the first position when the probe cooperates with a first portion of the leap cam corresponding to a non-leap year. The first rocker is in a second position when the probe cooperates with a second portion of the leap cam corresponding to a leap year in order to activate a correction device to take into account the 29th day of the month of February of a year leap year.
La seconde bascule comporte un premier et un second palpeur agencés pour coopérer avec respectivement la came des dizaines du deuxième mobile et la came des centaines du troisième mobile. La seconde bascule est agencée pour maintenir la première bascule dans la première position lorsque les premier et second palpeurs se trouvent sur une portion de la came correspondant respectivement à un multiple de dix ans de la came des dizaines et à un multiple de cent ans de la came des centaines.The second rocker comprises a first and a second feeler arranged to cooperate with respectively the tens cam of the second mobile and the hundreds cam of the third mobile. The second rocker is arranged to maintain the first rocker in the first position when the first and second feelers are on a portion of the cam corresponding respectively to a multiple of ten years of the tens cam and to a multiple of one hundred years of the came hundreds.
Selon une forme de réalisation, le module séculaire comporte en outre un doigt solidaire de l'organe rotatif du troisième mobile, un quatrième mobile ainsi qu'une troisième bascule. Le quatrième mobile comporte un organe rotatif agencé pour être entraîné par le passage du doigt du troisième mobile et une came dite des 400 solidaire de l'organe rotatif de ce quatrième mobile. La troisième bascule comporte un palpeur pour coopérer avec la came des 400. La troisième bascule est agencée pour basculer la deuxième bascule pour que celle-ci n'agisse pas sur la première bascule lorsque le palpeur de la troisième bascule coopère avec une portion de la came des 400 correspondant à un multiple de 400 ans.According to one embodiment, the secular module further comprises a finger secured to the rotating member of the third mobile, a fourth mobile as well as a third rocker. The fourth mobile comprises a rotating member arranged to be driven by the passage of the finger of the third mobile and a so-called 400 cam secured to the rotating member of this fourth mobile. The third rocker includes a feeler to cooperate with the cam of 400. The third rocker is arranged to tilt the second rocker so that it does not act on the first rocker when the feeler of the third rocker cooperates with a portion of the cam of 400 corresponding to a multiple of 400 years.
Selon une forme de réalisation, la came des 400 comporte deux renfoncements diamétralement opposés.According to one embodiment, the cam of the 400 has two diametrically opposed recesses.
Selon une forme de réalisation, l'organe rotatif du troisième mobile et l'organe mené du premier mobile se présentent chacun sous la forme d'un pignon comportant plusieurs paires de dents. Celles-ci sont réparties régulièrement autour de la circonférence du pignon et sont espacées les unes des autres pour définir des dégagements.According to one embodiment, the rotating member of the third mobile and the driven member of the first mobile are each in the form of a pinion comprising several pairs of teeth. These are distributed evenly around the circumference of the gable and are spaced from each other to define clearances.
Selon une forme de réalisation, l'organe d'entrainement du deuxième mobile et l'organe d'entrainement du mobile des mois comportent chacun un bord circulaire, un doigt dont l'extrémité libre fait saillie du bord circulaire et deux rainures agencées de part et d'autre du doigt. Cela permet à chacun de ces doigts de venir se loger dans l'espace formé par une paire de dents du pignon respectif du premier et troisième mobile alors que l'une et l'autre dent de cette paire de dents peuvent venir se loger à tour de rôle respectivement dans la première rainure en aval du doigt par rapport à son sens de rotation et dans la seconde rainure agencée en amont dudit doigt.According to one embodiment, the drive member of the second mobile and the drive member of the months mobile each comprise a circular edge, a finger whose free end projects from the circular edge and two grooves arranged on either side and the other with the finger. This allows each of these fingers to be accommodated in the space formed by a pair of teeth of the respective pinion of the first and third mobile while one and the other tooth of this pair of teeth can be accommodated in turn role respectively in the first groove downstream of the finger relative to its direction of rotation and in the second groove arranged upstream of said finger.
Selon une forme de réalisation, deux paires de dents adjacentes du pignon respectif sont agencées pour que l'une des dents de chacune des paires de dents adjacentes vienne buter contre les bords circulaires de l'organe d'entrainement du mobile des mois et de l'organe d'entrainement du deuxième mobile permettant ainsi de limiter le débattement angulaire des pignons respectifs du premier et troisième mobile. Ces derniers sont donc immobilisés dans une position relativement stable après chaque passage du doigt entrainant une paire de dents jusqu'au prochain passage du doigt engageant une paire de dents adjacente. Cet agencement permet d'éviter toute rotation inopinée des organes menés par le premier mobile et le troisième mobile dans le cas où l'un d'entre eux venait à se déplacer dans un sens ou dans l'autre, par exemple en cas de chocs.According to one embodiment, two pairs of adjacent teeth of the respective pinion are arranged so that one of the teeth of each of the pairs of adjacent teeth abuts against the circular edges of the drive member of the month mobile and the the drive member of the second mobile thus making it possible to limit the angular movement of the respective pinions of the first and third mobile. The latter are therefore immobilized in a relatively stable position after each passage of the finger engaging a pair of teeth until the next passage of the finger engaging an adjacent pair of teeth. This arrangement makes it possible to avoid any unexpected rotation of the members driven by the first mobile and the third mobile in the event that one of them were to move in one direction or the other, for example in the event of shocks. .
Selon une forme de réalisation, le module séculaire comporte en outre un sautoir agencé pour venir en appui contre une zone d'appui de l'un des dégagements du pignon du troisième mobile afin d'amener le pignon dans une position angulaire indexée.According to one embodiment, the secular module further comprises a jumper arranged to come to bear against a support zone of one of the clearances of the pinion of the third mobile in order to bring the pinion into an indexed angular position.
Selon une forme de réalisation, les paires de dents des pignons respectivement des premier et troisièmes mobiles sont obtenues à partir d'un pignon dont une dent sur trois a été tronquée.According to one embodiment, the pairs of teeth of the pinions respectively of the first and third mobiles are obtained from a pinion of which one tooth out of three has been truncated.
Selon une forme de réalisation, le premier mobile est agencé pour être entraîné par le doigt du mobile des mois à raison d'un tour tous les multiples de quatre ans, de préférence un tour tous les huit ou douze ans. Le deuxième mobile est agencé pour être entraîné par l'organe menant du premier mobile à raison d'un tour tous les dix ans. L'organe rotatif du troisième mobile est agencé pour être entraîné par le doigt du deuxième mobile à raison d'un tour tous les cent ans.According to one embodiment, the first mobile is arranged to be driven by the finger of the month mobile at the rate of one revolution every multiple of four years, preferably one revolution every eight or twelve years. The second mobile is arranged to be driven by the driving member of the first mobile at a rate of one revolution every ten years. The rotating member of the third mobile is arranged to be driven by the finger of the second mobile at a rate of one revolution every hundred years.
Selon une forme de réalisation, la came bissextile du premier mobile comporte deux renfoncements diamétralement opposés ou trois renfoncements séparés les uns par rapport aux autres de 120°. Les cames des dizaines et des centaines comportent chacune un renfoncement unique.According to one embodiment, the leap cam of the first mobile has two diametrically opposed recesses or three recesses separated from each other by 120°. The tens and hundreds cams each have a unique recess.
Selon une forme de réalisation, le module séculaire comporte en outre une étoile d'indexation solidaire du premier mobile et un sautoir d'indexation coopérant avec l'étoile d'indexation afin d'amener le premier mobile dans une position indexée après chaque passage du doigt du mobile des mois.According to one embodiment, the secular module further comprises an indexing star secured to the first mobile and an indexing jumper cooperating with the indexing star in order to bring the first mobile in an indexed position after each passage of the finger from the month mobile.
Selon une forme de réalisation, la première bascule comporte en outre un râteau agencé pour être en prise avec une denture du dispositif de correction.According to one embodiment, the first rocker further comprises a rake arranged to engage with teeth of the correction device.
Un autre aspect de l'invention porte sur un module d'affichage pour l'affichage des années, comportant le module séculaire susvisé selon l'un quelconque de ses modes de réalisation, dans lequel le troisième mobile comporte en outre un second organe rotatif agencé pour être entraîné par l'organe mené du deuxième mobile à raison d'un tour tous les dix ans. Le troisième mobile comporte par ailleurs un axe solidaire du second organe rotatif et un canon agencé autour de l'axe et solidaire du premier organe rotatif. Le module d'affichage comportant en outre un anneau des unités monté solidaire à l'axe et un anneau des dizaines agencé de manière concentrique à l'extérieur de l'anneau des unités et solidaire du canon.Another aspect of the invention relates to a display module for displaying the years, comprising the aforementioned secular module according to any of its embodiments, in which the third mobile further comprises a second rotating member arranged to be driven by the driven member of the second mobile at the rate of one revolution every ten years. The third mobile also comprises an axis secured to the second rotating member and a barrel arranged around the axis and secured to the first rotating member. The display module further comprising a units ring mounted integrally with the axis and a tens ring arranged concentrically outside the units ring and secured to the barrel.
Un autre aspect de l'invention porte sur un mécanisme de quantième perpétuel. Ce mécanisme comporte notamment une came des mois comprenant au moins une encoche dont la profondeur correspond au mois de février d'une année non-bissextile ainsi qu'un dispositif de correction afin de limiter la profondeur de ladite au moins une encoche pour qu'elle corresponde au mois de février d'une année bissextile. Le mécanisme comporte en outre le module séculaire susvisé, selon l'un quelconque de ses modes de réalisation, afin que le pivotement de la première bascule dans la seconde position actionne le dispositif de correction pour limiter la profondeur de ladite au moins une encoche.Another aspect of the invention relates to a perpetual calendar mechanism. This mechanism includes in particular a month cam comprising at least one notch whose depth corresponds to the month of February of a non-leap year as well as a correction device in order to limit the depth of said at least one notch so that it corresponds to the month of February in a leap year. The mechanism further comprises the aforementioned secular module, according to any of its embodiments, so that the pivoting of the first rocker in the second position activates the correction device to limit the depth of said at least one notch.
Un autre aspect de l'invention porte sur une pièce d'horlogerie comportant le module d'affichage ou le mécanisme de quantième perpétuel susvisés.Another aspect of the invention relates to a timepiece comprising the display module or the perpetual calendar mechanism mentioned above.
Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
- la
figure 1 illustre une vue en perspective d'un module séculaire agencé pour être entraîné par un mobile des mois d'un mécanisme horloger, selon une forme de réalisation ; - la
figure 2 illustre une vue en perspective du module séculaire de lafigure 1 selon une autre orientation ; - les
figures 3a 3b illustrent des vues du module séculaire desfigures 1 et 2 avec une coupe transversale au niveau des cames selon deux séquences opérationnelles du module ; - la
figure 4 illustre une vue de dessus d'un affichage des années comportant le module séculaire de lafigure 1 , et - la
figure 5 illustré une vue simplifiée éclatée d'un module séculaire selon une autre forme de réalisation.
- there
figure 1 illustrates a perspective view of a secular module arranged to be driven by a mobile of the months of a watch mechanism, according to one embodiment; - there
figure 2 illustrates a perspective view of the secular module of thefigure 1 according to another orientation; - THE
figures 3a 3b illustrate views of the secular module offigures 1 and 2 with a cross section at the level of the cams according to two operational sequences of the module; - there
Figure 4 illustrates a top view of a years display featuring the secular module of thefigure 1 , And - there
figure 5 illustrated a simplified exploded view of a secular module according to another embodiment.
Selon une forme de réalisation et en référence notamment aux
En effet, on sait qu'une année bissextile est une année qui compte 366 jours au lieu de 365 avec un jour supplémentaire au mois de février. Les années sont en général bissextiles si elles sont multiples de quatre, toutefois elles ne le sont pas si elles sont multiples de cent à l'exception des années multiples de quatre cents qui sont elles bissextiles. C'est ainsi que les années 2020, 2024 et 2028 sont bissextiles, que les années 2000 et 2400 le sont aussi, mais pas les années 1900, 2100, 2200 et 2300.Indeed, we know that a leap year is a year which has 366 days instead of 365 with an extra day in the month of February. Years are generally leap years if they are multiples of four, however they are not if they are multiples of one hundred with the exception of years multiples of four hundred which are leap years. This is how the years 2020, 2024 and 2028 are leap years, the years 2000 and 2400 are also leap years, but not the years 1900, 2100, 2200 and 2300.
Ce genre d'année existe pour compenser la différence de temps entre l'année calendaire commune de 365 jours et l'année solaire qui est le temps nécessaire à la Terre pour effectuer une révolution complète autour du Soleil, qui est de 365,242 jours. Un jour surnuméraire doit donc être ajouté régulièrement pour que la moyenne de la durée des années calendaires soit la plus proche possible de l'année solaire en apportant une correction selon la règle susvisée.This kind of year exists to compensate for the time difference between the common calendar year of 365 days and the solar year which is the time required for the Earth to complete one revolution around the Sun, which is 365.242 days. A supernumerary day must therefore be added regularly so that the average length of the calendar years is as close as possible to the solar year by making a correction according to the aforementioned rule.
Afin de prendre en compte l'absence des années bissextiles tous les cent ans, le module séculaire 10 illustré par les
Le mobile des mois 100 comporte typiquement un pignon 102 à douze dents, un sautoir 108 en prise avec le pignon 102 ainsi qu'un organe d'entrainement 104 solidaire du pignon 102 et comportant un doigt 105. Le pignon 102 est agencé pour être entraîné par le mouvement horloger afin d'effectuer un tour de 360° tous les douze mois, de préférence par sauts successifs de 30°. Pour ce faire, à la fin du mois de décembre typiquement, le pignon 102 imprime, sous l'effet du sautoir 108, une rotation quasi-instantanée au doigt 105 afin d'entrainer le premier mobile 20 d'un pas angulaire prédéterminé de manière quasi-instantanée.The month mobile 100 typically comprises a
Le premier mobile 20 comporte un organe menant 27, par exemple une roue, sur lequel sont superposés de manière coaxiale une came dite bissextile 25, un organe mené 21 et de préférence une étoile d'indexation 24. La roue menante 27, la came bissextile 25, l'étoile d'indexation 24 et l'organe mené 21 sont fixés ensemble afin de former un bloc unitaire. L'organe mené 21 est agencé pour être entraîné en rotation par le doigt 105 du mobile des mois 100 afin que tous les éléments du premier mobile 20 puissent effectuer ensemble une rotation de 360° tous les multiples de quatre ans, en particulier tous les huit ans selon le mode de réalisation préféré. La came bissextile 25 effectue donc une rotation de 360° tous les huit ans.The first mobile 20 comprises a driving
Le deuxième mobile 30 comporte un organe mené 37, par exemple une roue ou un pignon, sur lequel sont superposés de manière coaxiale une came 35 dite des dizaines et un organe d'entrainement 31 comprenant un doigt 32. La roue menée 37, la came des dizaines 35 et l'organe d'entrainement 31 sont fixés ensemble afin de former un bloc unitaire, à l'instar du premier mobile 20. La roue menée 37 du deuxième mobile 30 est en prise avec la roue menante 27 du premier mobile 20. Le rapport d'engrenage entre ces deux roues 27, 37 est dans cet exemple de 8 :10 afin que tous les éléments du deuxième mobile 30 puissent effectuer ensemble une rotation de 360° tous les dix ans. La came des dizaines 35 effectue donc une rotation de 360° tous les dix ans.The second mobile 30 comprises a driven
Le troisième mobile 40 comporte un premier organe rotatif 41 agencé pour être entraîné par le doigt 32 de l'organe d'entrainement 31 du deuxième mobile 30, une came 45 dite des centaines solidaire du premier organe rotatif 41 et un second organe rotatif 47 en prise avec la roue menée 37 du deuxième mobile 30. Le premier organe rotatif 41 est ainsi entraîné par le doigt 32 de l'organe d'entrainement 31 du deuxième mobile 30 pour effectuer une rotation de 360° tous les cent ans. La came des centaines 45 effectue donc une rotation de 360° tous les cent ans. Le rapport d'engrenage entre la roue menée 37 du deuxième mobile 30 et le second organe rotatif 47 est de 1 :1 afin que ce dernier puisse effectuer également un tour de 360° tous les dix ans.The third mobile 40 comprises a first rotating
Le mobile des mois 100 et les trois mobiles 20, 30, 40 du module séculaire 10 sont par conséquent montés en série. La transmission entre ces différents mobiles peut se faire de différentes manières. Par exemple, selon la
Plus particulièrement, le pignon 21 du premier mobile 20 peut par exemple comporter huit paires de dents 22 et des dégagements 23 agencés entre les paires de dents 22. Cette denture singulière est obtenue à partir d'un pignon de vingt-quatre dents dont une dent sur trois a été tronquée. L'organe d'entrainement 104 du mobile des mois 100 comporte une forme spécifique pour entraîner le pignon 21. Cet organe d'entrainement comporte un disque 106 avec un bord circulaire sur la quasi-totalité de sa circonférence, un doigt 105 dont l'extrémité libre fait saillie du bord circulaire du disque 106 ainsi qu'une première et une seconde rainure 107a, 107b agencées de part et d'autre du doigt 105. Chaque rainure 107a, 107b s'étend le long d'une direction parallèle à l'axe de rotation du mobile des mois 100 sur l'épaisseur du disque 106.More particularly, the
Ainsi, à la fin de chaque année, le doigt 105 du mobile des mois 100 vient se loger dans l'espace formé par une paire de dents 22 du pignon 21 du premier mobile 20 alors que les première et seconde dents de cette paire de dents viennent se loger à tour de rôle respectivement dans la première rainure 107a en aval du doigt 105 par rapport à son sens de rotation et dans la seconde rainure 107b agencée en amont du doigt 105. Ainsi, après le passage du doigt 105, le pignon 21 continue temporairement à être entraîné sous l'action de la seconde rainure 107b contre la seconde dent de la paire de dents 22.Thus, at the end of each year, the
L'étoile d'indexation 24 est agencée pour coopérer avec un sautoir d'indexation 28. Dans l'exemple illustré, l'étoile 24 comporte huit dents, c'est-à-dire le nombre de dents de l'étoile 24 correspond au nombre de paires de dents 22 du pignon 21. La fonction de l'étoile d'indexation 24 sera décrite ultérieurement.The
A l'instar du premier mobile 20, les premier et second organes rotatifs 41, 47 du troisième mobile 40 peuvent tous deux être sous la forme de pignons dotés de dix paires de dents 42 espacées régulièrement sur 360° pour définir des dégagements 43 agencés entre les paires de dents 42. Cette denture est obtenue à partir d'un pignon de trente dents dont une dent sur trois a été tronquée. De préférence, un premier et un second sautoir 53, 54 sont agencés pour que leur tête respective 53a, 54a vienne contre sur une surface d'appui d'un dégagement 43 respectivement des premier et second pignons 41, 47 afin d'amener les deux pignons 41, 47 dans une position angulaire indexée.Like the first mobile 20, the first and second
Lorsque le doigt 105 de l'organe d'entrainement 104 du mobile des mois 100 engage, typiquement à la fin du mois de décembre de chaque année, une paire de dents 22 du pignon 21 du premier mobile 20, celui-ci pivote d'un certain angle. L'étoile d'indexation 24 est par conséquent entraînée en rotation sous l'action du doigt 105, ce qui soulève le sautoir d'indexation 28 jusqu'à ce celui-ci imprime un saut au premier mobile 20 pour l'amener dans une position angulaire indexée. L'étoile et le sautoir d'indexation permettent de remplir deux fonctions.When the
La première fonction consiste à ajouter un couple suffisant au premier mobile 20, lequel couple va s'additionner au couple exercé par le sautoir 108 sur le pignon 102 du mobile des mois 100, afin que ce pignon 102 ait un couple suffisant pour entraîner les sautoirs 53 et 54 ainsi que les bascules 70 et 80, et puisse ainsi sauter d'un pas. La seconde fonction consiste à terminer la rotation du premier mobile 20 pour que celui-ci puisse faire un saut de 45° à la fin de chaque année. Chaque saut du premier mobile 20 permet d'actionner le troisième mobile 40, par l'intermédiaire du deuxième mobile 30, afin que le premier pignon 41 et le second pignon 47 du troisième mobile puisse faire un saut de 36° à la fin respectivement de chaque dizaine d'années et de chaque année. Selon le mode de réalisation préféré, ce saut permet également d'assurer que les têtes 53a, 54a des deux sautoirs 53, 54 agissent correctement contre une surface d'appui de l'un des dégagements des deux pignons 41, 47 du troisième mobile 40, et non pas sur une paire de dents 42, afin de verrouiller le troisième mobile 40 dans une position indexée après chaque saut.The first function consists of adding sufficient torque to the first mobile 20, which torque will be added to the torque exerted by the
Il est à noter que l'étoile d'indexation 24 et le sautoir d'indexation 28 ne sont pas essentiels au bon fonctionnement du module séculaire. On pourrait en effet diminuer la rigidité du sautoir du mobile des mois 100 de sorte que le couple transmis à ce mobile soit suffisant pour actionner le saut et entraîner le premier mobile 20 du module séculaire 10.It should be noted that the
Par ailleurs, la forme singulière de l'organe d'entrainement 104 du mobile des mois et du pignon 21 du premier mobile 20 permet de limiter le débattement angulaire du pignon 21 pendant l'année en cours entre deux passages du doigt 105. Cela est rendu possible par deux paires de dents adjacentes du pignon 21 qui sont agencées pour que l'une des dents de chaque paire vienne buter contre le bord du disque 106 dans le cas où le premier mobile 20 venait à se déplacer dans un sens ou dans l'autre à la suite d'un choc par exemple.Furthermore, the unique shape of the
De manière similaire, les premier et second sautoirs 53, 54 agissant sur le troisième mobile 40 ne sont pas essentiels au bon fonctionnement du module séculaire, car la position angulaire plus ou moins stable des premier et second pignons 41, 47 est assurée grâce à la forme singulière de l'organe d'entrainement 31 du deuxième mobile 30 et à celle des premier et second pignons 41, 47 du troisième mobile 40 selon l'explication susvisée pour l'entrainement du premier mobile 20.Similarly, the first and
Les formes singulières des organes d'entrainement 104, 31 des premier et troisième mobiles 20, 40 et des pignons respectifs 21, 41 qu'elles entrainent permettent, de manière avantageuse, la réversibilité du module séculaire. On entend par réversibilité la possibilité d'entrainer le premier mobile 20 dans un sens ou dans l'autre par le module des mois 100 afin de permettre une correction de manière aisée d'un affichage des années qui sera décrit ultérieurement.The unique shapes of the
Il est toutefois important de noter que la forme singulière des organes d'entrainement 104, 31 et celle des pignons respectifs 21, 41 ne sont pas indispensables au bon fonctionnement du module séculaire. Des pignons à denture continue ainsi que des doigts adaptés pour les entraîner pourraient en effet être utilisés avec des sautoirs adéquats pour assurer l'indexation des mobiles et leur réversibilité.It is, however, important to note that the unique shape of the
Par ailleurs, le rapport d'engrenage entre la roue menante 27 du premier mobile 20 et la roue menée 37 du deuxième mobile 30 ainsi que la forme du pignon 21 du premier mobile pourraient être différents. Par exemple, ce rapport d'engrenage pourrait être de 12:10 et le pignon 21 pourrait comporter douze paires de dents, à la place de huit, afin que tous les éléments du premier mobile 20 puissent effectuer ensemble une rotation de 360° tous les 12 ans. Dans ce cas, la came bissextile comporterait trois renfoncements agencés à 120° les uns par rapport aux autres, du fait que chaque renfoncement représente une année bissextile selon un cycle de quatre ans.Furthermore, the gear ratio between the
Au vu notamment des
La seconde bascule 80 est agencée pour coopérer avec la came des dizaines 35 du deuxième mobile 30 et avec la came des centaines 45 du troisième mobile 40. La seconde bascule 80 est disposée de sorte à déplacer la première bascule 70 en fonction de la position angulaire de la came des dizaines 35 et de celle de la came des centaines 45.The
Plus particulièrement, la première bascule 70 comporte un palpeur 72 et un ressort de bascule 78 agencé pour contraindre le palpeur 72 à venir en appui contre le contour de la came bissextile 25 du premier mobile 20. Le profil de cette came comporte dans cet exemple deux renfoncements 26a, 26b diamétralement opposés et deux portions circulaires 26d, 26e. La seconde bascule 80 comporte un premier palpeur 81 et un second palpeur 82. Le premier palpeur 81 est agencé pour palper le contour de la came des dizaines 35 du deuxième mobile 30. Le profil de cette came comporte dans cet exemple un renfoncement 36 ainsi qu'une portion circulaire 36a qui s'entend typiquement sur plus de 300°. Le second palpeur 82 est agencé pour palper le contour de la came des centaines 45 du troisième mobile 40. Le profil de cette came comporte dans cet exemple un renfoncement 46 ainsi qu'une portion circulaire qui, de préférence, s'étend sur plus de 300°.More particularly, the
La seconde bascule 80 comporte par ailleurs un ressort de bascule 86 visant à contraindre les premier et second palpeurs 81, 82 contre le profil des cames respectives des deuxième et troisième mobiles 30, 40. Cette seconde bascule 80 comporte également un bras d'actionnement 83 dont une extrémité libre 84 est destinée à venir agir sur une partie actionnable 76 de la première bascule 70.The
La considération cumulée des positions angulaires de la came des dizaines 35 et de la came des centaines 45 permet de déterminer si l'année en cours est un multiple de 100 ans, auquel cas il ne s'agit pas d'une année bissextile. Etant donné que la came des dizaines 35 effectue un tour complet tous les dix ans alors que la came des centaines 45 effectue un tour complet tous les cent ans, leur renfoncement respectif 36, 46 se trouvent dans la même position angulaire à chaque multiple de 100 ans. En d'autres termes, en effectuant un tour tous les dix ans, la came des dizaines 35 peut être considérée comme un indicateur des unités de l'année en cours. De manière similaire, en effectuant un tour tous les cent ans, la came des centaines 45 peut être considérée comme un indicateur des dizaines de l'année en cours. Ainsi, lorsque les unités et les dizaines de l'année en cours sont égales à zéro, ce qui correspond à une direction ou à une position angulaire commune des renfoncements 36, 46 de ces cames par rapport à leur axe de rotation, on se trouve dans un cas où l'année en cours correspond à un multiple de cent.The cumulative consideration of the angular positions of the
Le fonctionnement du module séculaire 100 sera mieux compris par la description des deux séquences opérationnelles illustrées par les
Selon la
Selon la
Le troisième mobile 40 peut, selon une forme de réalisation avantageuse illustrée à la
L'anneau des unités 210 comporte en son centre un élément de fixation 212 comprenant un moyeu 213 fixé sur l'axe 50 du second organe rotatif 47 (
Selon une autre forme de réalisation schématisée à la
A cet effet, le module séculaire comporte trois mobiles et deux bascules identiques ou similaires aux trois mobiles 20, 30, 40 et aux deux bascule 70, 80 tels que décrits précédemment pour la forme de réalisation illustrée aux
Le quatrième mobile 60 comporte un organe rotatif 62 agencé pour être entraîné par le passage du doigt 51 du troisième mobile. L'organe rotatif peut par exemple être sous la forme d'un pignon 62 doté de huit paires de dents, à l'instar du pignon 21 du premier mobile 20 de la
La troisième bascule 90 comporte un palpeur 92, un ressort de bascule (non-illustré) pour contraindre le palpeur 92 à suivre le profil de la came des 400, ainsi qu'un bras d'actionnement 94. Celui-ci comporte une extrémité libre 95 destinée à agir sur une partie actionnable 85 de la deuxième bascule 80 pour que celle-ci n'agisse pas sur la première bascule 70 lorsque le palpeur 92 de la troisième bascule 90 coopère avec l'un ou l'autre des deux renfoncements 65a, 65b de la came des 400 correspondant à un multiple de 400. La première bascule 70 peut ainsi pivoter, sous l'action de son ressort de bascule, et ainsi contraindre son palpeur 72 à venir jusqu'au fond d'un renfoncement 26c de la came bissextile 25.The
A noter que la came bissextile 25 comporte dans cet exemple trois renfoncements 26a, 26b, 26c agencés à 120° les uns par rapport aux autres et que la roue menante 27 du premier mobile et la roue menée 37 du deuxième mobile présentent un rapport d'engrenage de 12: 10 afin pour que le deuxième mobile comportant la came des dizaine 35 puisse effectuer un tour complet tous les dix ans lorsque le premier mobile effectue un tour complet tous les douze ans.Note that the
Le module séculaire 10 selon l'une des formes de réalisation susvisées est destiné à être incorporé à un mécanisme de quantième perpétuel préférentiellement équipé d'une came des mois (non illustrée) de trente-six encoches ou moins, contrairement à la plupart des quantièmes perpétuels conventionnels qui sont équipés d'une came des mois à quarante-huit encoches, communément dénommée came de 48, afin de couvrir un cycle de quatre ans comprenant une année bissextile.The
Les trente-six encoches de la came des mois s'étendent vers le centre de la came et possèdent trois profondeurs différentes. Ces encoches sont disposées en respectent successivement la longueur des mois ordonnés de janvier à décembre. Les encoches qui ont la plus faible profondeur correspondent aux mois de 31 jours, les encoches qui ont la plus grande profondeur correspondent aux mois de 28 jours et les encoches intermédiaires correspondent aux mois de 30 jours.The thirty-six notches of the month cam extend toward the center of the cam and have three different depths. These notches are arranged successively respecting the length of the months ordered from January to December. The notches with the smallest depth correspond to 31-day months, the notches with the greatest depth correspond to 28-day months, and the intermediate notches correspond to 30-day months.
Cette came des mois présente l'avantage d'avoir un encombrement moindre, par rapport à une came de 48, tout en préservant des encoches de même largeur. La came ne représente par conséquent qu'un cycle de trois années consécutives avec trois encoches agencées à 120° les unes par rapport aux autres pour la correction à la fin du mois de février des années non-bissextiles.This months cam has the advantage of having a smaller footprint, compared to a 48 cam, while preserving notches of the same width. The cam therefore only represents a cycle of three consecutive years with three notches arranged at 120° to each other for correction at the end of February for non-leap years.
Afin de réduire encore l'encombrement de la came des mois, celle-ci pourrait ne comporter, selon d'autres variantes d'exécution, que vingt-quatre encoches, voire douze encoches tout en préservant par exemple des encoches de même largeur qu'une came de 48.In order to further reduce the bulk of the month cam, it could only have, according to other execution variants, twenty-four notches, or even twelve notches while preserving, for example, notches of the same width as a 48 cam.
Quel que soit le nombre d'encoches prévues pour la came des mois (12, 24, 36, voire 48 encoches), les mois de février d'une telle came seraient représentés par des encoches ayant une profondeur représentative de 28 jours. La came des mois ne comporte par conséquent aucune encoche dédiée à la correction nécessaire pour un mois de février d'une année bissextile.Whatever the number of notches provided for the month cam (12, 24, 36, or even 48 notches), the months of February of such a cam would be represented by notches having a representative depth of 28 days. The month cam therefore does not have any notch dedicated to the correction necessary for a month of February in a leap year.
Afin de réaliser cette correction, le mécanisme de quantième perpétuelle comporte un dispositif de correction destiné à limiter la profondeur de l'encoche du mois de février au cours d'une année bissextile pour que la profondeur corresponde à un mois de 29 jours.In order to achieve this correction, the perpetual calendar mechanism includes a correction device intended to limit the depth of the notch for the month of February during a leap year so that the depth corresponds to a month of 29 days.
Le dispositif de correction comporte à cet effet un organe rotatif sous la forme d'un disque monté coaxialement à la came des mois par exemple dans le même plan que celle-ci. Le disque comporte sur son contour une portion circulaire, une fente radiale ainsi qu'une denture. Le râteau 74 de la première bascule 70 du module séculaire est en prise avec la denture du disque de sorte à pivoter le disque pour que sa fente radiale soit alignée avec l'encoche du mois de février de la came des mois lors d'une année normale, et qu'au contraire cette fente radiale ne soit pas alignée avec l'encoche du mois de février lors d'une année bissextile.For this purpose, the correction device comprises a rotating member in the form of a disc mounted coaxially with the month cam, for example in the same plane as the latter. The disc has on its contour a circular portion, a radial slot and teeth. The
-
Modulaire séculaire 10
- Premier mobile 20
- Organe mené 21 (e.g. pignon)
- Paire de dents 22
- Dégagement 23
- Etoile d'indexation 24
- Came bissextile 25
- Renfoncements 26a, 26b ; 26a, 26b, 26c
- Portions circulaires 26d, 26e
- Organe menant 27
- Organe mené 21 (e.g. pignon)
- Sautoir d'indexation 28
- Deuxième mobile 30
- Organe d'entrainement 31
- doigt 32
- Bord de profile circulaire 33
- Rainure 34
- Came des dizaines 35
- Renfoncement 36
- Profil circulaire 36a
- Organe mené 37
- Organe d'entrainement 31
- Troisième mobile 40
- Premier organe rotatif 41 (e.g. pignon)
- Paire de dents 42
- Dégagement 43
- Canon 44
- Came des centaines 45
- Renfoncement 46
- Profil circulaire 46a
- Second organe rotatif 47 (e.g. pignon)
- Paire de dents 48
- Dégagement 49
- Axe 50
- Organe d'entrainement 51
Doigt 52
- Premier organe rotatif 41 (e.g. pignon)
- Premier et second sautoirs 53, 54
Têtes 53a, 54a - Quatrième mobile 60 (e.g. pignon)
- Organe rotatif 62
- Came des 400 64
Renfoncement 65a, 65b
- Première bascule 70
- Palpeur 72
- Râteau 74
- Partie actionnable 76
- Lame ressort 78
- Seconde bascule 80
- Premier palpeur 81
- Second palpeur 82
- Bras d'actionnement 83
Extrémité libre 84 - Partie actionnable 85
- Ressort de bascule 86
- Troisième bascule 90
- Palpeur 92
- Bras d'actionnement 94
Extrémité libre 95 - Ressort de bascule 96
- Deuxième mobile 30
- First mobile 20
- Driven member 21 (eg pinion)
- Pair of
teeth 22 -
Clearance 23
- Pair of
-
Index star 24 -
Leap cam 25-
26a, 26b; 26a, 26b, 26cRecesses -
26d, 26eCircular portions
-
- Leading
organ 27
- Driven member 21 (eg pinion)
-
Indexing jumper 28- Second mobile 30
-
Drive member 31-
finger 32 -
Circular profile edge 33 -
Groove 34
-
- Cam of
tens 35-
Recess 36 -
Circular profile 36a
-
- Led
organ 37
-
- Third mobile 40
- First rotating member 41 (eg pinion)
- Pair of
teeth 42 -
Clearance 43 -
Canon 44
- Pair of
-
Hundreds cam 45-
Recess 46 -
Circular profile 46a
-
- Second rotating member 47 (eg pinion)
- Pair of teeth 48
- Clearance 49
-
Axis 50
-
Drive member 51
Finger 52
- First rotating member 41 (eg pinion)
- First and
53, 54second saltires
53a, 54aHeads - Fourth mobile 60 (eg pinion)
- Rotating
member 62 - Cam of the 400 64
65a, 65bRecess
- Rotating
-
First rocker 70-
Feeler 72 -
Rake 74 -
Actionable part 76 -
Blade spring 78
-
-
Second rocker 80-
First probe 81 -
Second probe 82 -
Actuator arm 83
Free end 84 -
Actionable part 85 -
Rocker spring 86
-
-
Third rocker 90-
Feeler 92 -
Actuator arm 94
Free end 95 - Rocker spring 96
-
- Second mobile 30
- Premier mobile 20
-
Mobile des mois 100
- Pignon des mois 102
- Organe d'entrainement 104
- Doigt 105
- Bord de profil circulaire106
- Rainures 107a, 107b
- Sautoir 108
- Pinion of
months 102 -
Drive member 104-
Finger 105 - Circular profile edge106
-
Grooves 107a, 107b
-
-
Necklace 108
-
Module d'affichage 200
- Anneau des unités 210
Elément de fixation 212- Moyeu 213
- Bras de fixation 214
- Anneau des dizaines 220
Bras de fixation 222
Display module 200- Ring of
Units 210
Fixingelement 212-
Hub 213 - Fixing
arm 214
-
- Ring of
tens 220
Fixingarm 222
- Anneau des unités 210
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23153711.9A EP4407384A1 (en) | 2023-01-27 | 2023-01-27 | Monocular module for perpetual calendar mechanism of a clock movement |
PCT/IB2024/050340 WO2024157108A1 (en) | 2023-01-27 | 2024-01-12 | Secular module for a perpetual calendar mechanism of a clock movement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23153711.9A EP4407384A1 (en) | 2023-01-27 | 2023-01-27 | Monocular module for perpetual calendar mechanism of a clock movement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4407384A1 true EP4407384A1 (en) | 2024-07-31 |
Family
ID=85132881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23153711.9A Pending EP4407384A1 (en) | 2023-01-27 | 2023-01-27 | Monocular module for perpetual calendar mechanism of a clock movement |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4407384A1 (en) |
WO (1) | WO2024157108A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH653841GA3 (en) * | 1983-10-07 | 1986-01-31 | Clockwork movement provided with a perpetual calendar mechanism | |
EP3339973B1 (en) * | 2016-12-21 | 2019-07-24 | Blancpain SA | Date mechanism |
-
2023
- 2023-01-27 EP EP23153711.9A patent/EP4407384A1/en active Pending
-
2024
- 2024-01-12 WO PCT/IB2024/050340 patent/WO2024157108A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH653841GA3 (en) * | 1983-10-07 | 1986-01-31 | Clockwork movement provided with a perpetual calendar mechanism | |
EP3339973B1 (en) * | 2016-12-21 | 2019-07-24 | Blancpain SA | Date mechanism |
Also Published As
Publication number | Publication date |
---|---|
WO2024157108A1 (en) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1596261B1 (en) | Annual calendar for a watch movement | |
EP2490084B1 (en) | Calendar mechanism | |
EP1316858B1 (en) | Date mechanism for timepiece | |
EP3374830B1 (en) | Calendar mechanism for a timepiece | |
EP3477402B1 (en) | Device for displaying the phases of the moon | |
EP3008523B1 (en) | Calendar mechanism for a clock movement | |
EP3690556B1 (en) | Timepiece comprising a display with variable pitch | |
EP3904964B1 (en) | Device for displaying a time or time-derived indication and device for indexing | |
EP3629102B1 (en) | Display mechanism with single window | |
EP3460588B1 (en) | Date mechanism | |
EP4407384A1 (en) | Monocular module for perpetual calendar mechanism of a clock movement | |
EP1925996A1 (en) | Device for correction of a display mechanism for a timepiece | |
EP4033306B1 (en) | Annual or perpetual date mechanism | |
EP3629101B1 (en) | Timepiece display mechanism | |
EP3904962B1 (en) | Device for indexing and device for displaying a time or time-derived indication | |
WO2024038348A1 (en) | Perpetual calendar mechanism with concentric cams | |
EP4348358A1 (en) | Perpetual date display system with secular year correction | |
EP3845973A1 (en) | Timepiece mechanism intended to be driven according to a variable number of pitches | |
EP4254079A1 (en) | Mechanism for displaying the phases of the moon for a timepiece | |
CH717502A1 (en) | Calendar system for a timepiece. | |
CH720214A2 (en) | Date control mechanism of a watch movement | |
CH719613B1 (en) | Control unit for a watch display device, corresponding display device and watch movement. | |
CH715152B1 (en) | Large date type date display mechanism. | |
CH715471A1 (en) | Clock mechanism for perpetual calendar. | |
CH720210A2 (en) | Watch movement including a date control mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |