EP4363520A1 - Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique - Google Patents

Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique

Info

Publication number
EP4363520A1
EP4363520A1 EP22750852.0A EP22750852A EP4363520A1 EP 4363520 A1 EP4363520 A1 EP 4363520A1 EP 22750852 A EP22750852 A EP 22750852A EP 4363520 A1 EP4363520 A1 EP 4363520A1
Authority
EP
European Patent Office
Prior art keywords
layer
ligands
light
nanoparticle
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22750852.0A
Other languages
German (de)
English (en)
Inventor
Eleonora GARONI
Christophe LINCHENEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aledia
Original Assignee
Aledia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aledia filed Critical Aledia
Publication of EP4363520A1 publication Critical patent/EP4363520A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • TITLE Light-emitting and shielded nanoparticle, its manufacturing process and its application for optoelectronic device radiation converters
  • the invention relates to the protection against external agents (water, oxygen and free radicals resulting from polymerization reactions of photo- and heat-sensitive resins) of light-emitting nanoparticles, in particular quantum dots (also known under the English name “quantum dot”), which are used in optoelectronic devices (e.g. display screens and image projection systems).
  • quantum dots also known under the English name “quantum dot”
  • optical device in the context of the present invention a device suitable for performing the conversion of an electrical signal into electromagnetic radiation to be emitted (in particular light).
  • optoelectronic devices comprising a matrix of light-emitting diodes (hereinafter referred to as "LED” which is the English acronym for “light Emitting Diode”) having an emission surface through which the light radiation is transmitted emitted by the LEDs.
  • LED light-emitting diodes
  • Such optoelectronic devices are used in the construction of display screens or image projection systems, in which the matrix of LEDs defines a matrix of "image elements” (also called “pixels”) which emit each of the light, so the image on the screen can be controlled by individually turning each pixel on or off.
  • Each pixel comprises several sub-pixels.
  • Each sub-pixel is configured to emit a specific color, so that the color emitted by the pixel can be modified by controlling the sub-pixels to be activated or by modifying the electric current applied to each sub-pixel in order to modify the relative emission intensity of each sub-pixel.
  • Each sub-pixel itself contains at least one LED. In fact, a sub-pixel can contain a plurality of LEDs. [0007] Each pixel conventionally comprises:
  • the LEDs have the form of a stack of semiconductor layers. Light is emitted when an electric current flows through the stack.
  • a suitable color converter in other words a radiation converter
  • a radiation converter can be placed on the LED in order to convert the light emitted by the LED into light having a wavelength different from that of the light originally emitted by said LED.
  • sub-pixels can be obtained by placing radiation converters on specific areas of the LED, so that by selectively supplying electric current to the area under each converter, the light emitted by the LED is converted into light of a specific color.
  • a radiation converter is in the form of a matrix in which is incorporated a set of particles made of the conversion material.
  • these particles are quantum dots.
  • Quantum dots are three-dimensional semiconductor nanoparticles of crystalline structure, exhibiting quantum confinement properties in the three dimensions of space. They have different physical properties, namely magnetic, electrical and optical, depending on their dimensions and the materials of which they are made. The dimensions of quantum dots are usually between 1 and 100 nm.
  • Quantum dots have the very interesting property of being photoluminescent. This means that when illuminated by a light source, they absorb photons from the light source and then re-emit light in response to this photo-excitation. While the absorption wavelength band (i.e. the illumination wavelength band in which a quantum dot absorbs photons) can be relatively wide, the emission wavelength band (i.e. the band of wavelengths in which the quantum dot re-emits light) is generally very narrow, for example with a width at half maximum of less than 50 nm. Moreover, the central wavelength of the emission band can be fine tuned by optimizing the dimensions of the quantum box.
  • the absorption wavelength band i.e. the illumination wavelength band in which a quantum dot absorbs photons
  • the emission wavelength band i.e. the band of wavelengths in which the quantum dot re-emits light
  • the central wavelength of the emission band can be fine tuned by optimizing the dimensions of the quantum box.
  • quantum dots are nanoparticles of choice in the constitution of radiation converters that include optoelectronic devices.
  • the matrix in which the quantum dots are incorporated is generally a photo- or heat-sensitive resin which is commonly used in the field of electronics to define patterns on a semiconductor surface, and this by solidifying and removing specific areas of said resin.
  • the zones to be removed or to be solidified are defined by exposure using a wavelength to which the resin is sensitive.
  • the quantum dots which are initially in the form of a powder are dispersed in a solvent, for example 2-methoxy-1-methylethyl acetate (hereinafter abbreviated to “PGMEA”).
  • PGMEA 2-methoxy-1-methylethyl acetate
  • the solution thus obtained is then mixed with the photo- or heat-sensitive resin so that the quantum dots are incorporated therein as homogeneously as possible (namely in the absence of the formation of aggregates).
  • quantum dots are very fragile materials which are sensitive to oxidation and in particular to external agents such as water, oxygen and radicals. free from polymerization reactions of the photo- or heat-sensitive resin. Moreover, the stability of quantum dots can be low (of the order of a few hours) when they are subjected to a flux of heat and/or light, which is the case in optoelectronic devices.
  • quantum dots maintain their optical properties over time (namely their very narrow band of emission wavelengths and their conversion efficiency) so that they retain all their interest in the construction of radiation converters.
  • ALD atomic layer deposition
  • the ALD makes it possible to obtain a dense and reliable deposit which follows the topography of the surface of the sub-pixels and whose thickness can be controlled at the nanometric scale.
  • Various oxides can be used as the material of the metal oxide layer, among which mention may be made of Al2O3, T1O2, ZrO3 ⁇ 4 ZnO and S1O2, and mixtures thereof.
  • the thickness of this deposit can be between 20 nm and 500 nm, preferably between 50 nm and 100 nm.
  • ALD has several advantages compared to other processes allowing the coating of particles by one or more layers, such as for example the sol-gel process.
  • the sol-gel process goes through a liquid phase, which is not the case with ALD.
  • a disadvantage linked to the fact of passing through a liquid phase is that less pure layers are obtained, in particular when the core is initially surrounded by ligands: in fact, these ligands remain in solution and the liquid phase entails the risk that these ligands residuals are encapsulated in the layer.
  • these ligands are vaporized and therefore disappear. Consequently, the ALD allows a better control of the thickness of the layers as well as a better control of the purity of the materials constituting the layers.
  • ALD also makes it possible to deposit a greater variety of layer materials than in the case of a sol-gel process, due to the greater versatility in the case of ALD.
  • the inventors of the present invention have overcome these difficulties of protecting quantum boxes for radiation converters and have developed new light-emitting and protected nanoparticles (in particular protected quantum boxes), as well as their manufacturing method. .
  • the present invention is described with specific reference to quantum dots, without this limiting its scope. Indeed, the present invention can be applied to any light-emitting nanoparticle which needs to be protected against oxidation and in particular from external agents chosen from water, oxygen and free radicals resulting from polymerization reactions of photo- or heat-sensitive resin.
  • the first object of the invention is thus a light-emitting and protected nanoparticle which is composed of a light-emitting nanoparticle in the form of a light-emitting core optionally completely or partially coated with a layer of first ligands bonded to the surface of said core, said core, where appropriate said layer of first ligands, being coated with at least one protective layer against oxidation, said light-emitting and protected nanoparticle is characterized in that it further comprises a layer formed of second ligands which are grafted to the surface of said protective layer against oxidation.
  • the light-emitting core can be chosen from quantum dots, metallic nanoparticles (for example gold, silver or nickel nanoparticles), metallic oxide nanoparticles (for example zinc oxide nanoparticles) , silicon nanoparticles, germanium nanoparticles, nanophosphors (for example YAG), rare earth nanoparticles and carbon boxes (also known as "carbon dots").
  • metallic nanoparticles for example gold, silver or nickel nanoparticles
  • metallic oxide nanoparticles for example zinc oxide nanoparticles
  • silicon nanoparticles for example germanium nanoparticles
  • nanophosphors for example YAG
  • rare earth nanoparticles for example YAG
  • carbon boxes also known as "carbon dots”
  • the light-emitting core is a quantum box.
  • the quantum dot may comprise at least one semiconductor nanocrystal chosen from group II-VI, group III-V or group IV-VI semiconductor nanocrystals, taken alone or as a mixture thereof.
  • the group II-VI semiconductor nanocrystal can be chosen from: CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe and HgSTe.
  • the group III-V semiconductor nanocrystal can be chosen from: GaN, GaP,
  • the group IV-VI semiconductor nanocrystal can be chosen from: SbTe, PbSe, GaSe, PbS, PbSe, PbTe, SnS, SnTe and PbSnTe.
  • the quantum box can comprise at least one semiconductor nanocrystal chosen from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe , ZnSTe, HgSeS, HgSeTe, HgSTe, GaN, GaP, GaAs, GaSb, AIN, AIP, AIS, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GaNAs, GaPAs, AINP, Al N As, AlPAs , InAIPAs, S
  • the core of the nanoparticle is totally or partially coated with a layer of first ligands which are bonded to the surface of said core.
  • the first ligands are capable of interacting, weakly or strongly, with the core of the nanoparticle thanks to covalent, ionic or van der Waals bonds.
  • said first ligands are compounds of chemical formula (I) below:
  • - n can be equal to 1, 2 or 3,
  • - X is a group capable of interacting with the light-emitting core through covalent, ionic or Van der Waals type interactions
  • - R is a non-hydrolyzable organic group.
  • R is a non-hydrolyzable alkyl chain comprising between 3 and 20 carbon atoms.
  • X can be an amine, a phosphine, a carboxylic acid or a thiol.
  • the first ligands which are bound to the surface of the core can be chosen from octadecylamine, dodecanthiol, trioctylphosphine, lipoic acid, trioctylphosphine oxide, oyelamine, 9-octadecenoic acid and oleic acid.
  • X can be an amine or a thiol.
  • X can be a silane
  • Light-emitting nanoparticles the light-emitting core of which is completely or partially coated with a layer of first ligands, are marketed in particular by the company Sigma-Aldrich. For example, it could be:
  • the protective layer against oxidation may be a metal oxide layer.
  • it comprises at least one oxide chosen from Al 2 O 3 , S1O 2 , T1O 2 , ZrO 2 , ZnO, B 2 O 3 , C0 2 O 3 , Cr 2O 3 , CuO, Fe 2 0 3 , Ga 2 0 3 , Hf0 2 , Ih 2 q 3 , MgO, Nb 2 0s, NiO, Sn ⁇ 2 , Ta2 ⁇ 5 and Hf02, taken alone or as a mixture thereof.
  • the oxide is chosen from: Al 2 O 3 , S1O 2 , T1O 2 , ZnO and ZrÜ2.
  • the protection layer against oxidation can also be a layer of metal nitride (for example BN, AlN, GaN, InN and Zr3N4, taken alone or as a mixture thereof) or of oxynitride (for example SiON ).
  • the protective layer against oxidation may thus be a layer of metal oxide, metal nitride or oxynitride, taken alone or as a mixture thereof.
  • said layer is a layer of metallic oxide.
  • the deposition of metal nitride or oxynitride requires a higher temperature and is less easy to implement than the deposition of metal oxide.
  • the thickness of the protective layer against oxidation can be between 1 nm and 400 nm, preferably between 1 nm and 100 nm, more preferably between 20 nm and 70 nm.
  • the protection layer against oxidation comprises a plurality of layers superimposed on each other.
  • the plurality of layers is advantageous, because if defects are present on some of the layers, the risk is low that they are located in the same places so as to create an access point for external agents (water, oxygen and free radicals) to the core of the nanoparticle to be protected.
  • external agents water, oxygen and free radicals
  • the protective layer against oxidation can comprise between 1 and 100 layers, preferably between 2 and 20 layers, more preferably between 6 and 10 layers, superimposed on each other.
  • the thickness of each layer can be between 1 nm and 100 nm, preferably between 2 nm and 20 nm, more preferably between 3 nm and 10 nm.
  • the protection layer against oxidation comprises a plurality of layers of metal oxides superimposed on each other
  • the outer layer namely the layer farthest from the core of the nanoparticle
  • the outer layer is preferably devoid of Al2O3 which is sensitive to water vapour.
  • the protective layer against oxidation may comprise the following two layers:
  • a 1st layer with a thickness of between 2 nm and 100 nm, preferably between 5 and 50 nm, comprising Al2O3,
  • the protection layer against oxidation may comprise an alternation of the following two layers which are superimposed on each other:
  • a 2nd layer superimposed on the 1st layer and with a thickness of between 1 nm and 10 nm, comprising T1O2, ZrÜ2, S1O2 or ZnO, taken alone or as a mixture thereof, the total thickness of the layer of protection being between 30 nm and 100 nm and the external layer (namely the layer furthest from the core of the nanoparticle) not being a 1st layer comprising Al2O3.
  • the protection layer against oxidation is a single layer with a thickness of 50 nm which comprises Al2O3, T1O2, ZrÜ2, S1O2 or ZnO, taken alone or in mixture of these.
  • the protective layer against oxidation comprises the following two layers:
  • the protective layer against oxidation comprises the following two layers:
  • the protection layer against oxidation comprises an alternation of the following two layers which are superimposed on each other:
  • the protective layer being between 30 nm and 100 nm and the outer layer (namely the layer furthest from the core of the nanoparticle) not being a 1st layer comprising Al2O3.
  • the second ligands of the layer formed from second ligands which are grafted to the surface of the protective layer against oxidation can advantageously be silanes, preferably silanes of the following chemical formula (II):
  • - n is equal to 1, 2 or 3
  • - Y is a hydrolyzable group, preferably an alkoxy, halide or amine group,
  • - R is a non-hydrolyzable organic group.
  • the second ligands are silanes of the following chemical formula (III):
  • - n is equal to 1, 2 or 3
  • - R is a non-hydrolyzable organic group
  • R' is an aliphatic organic group.
  • R′ is chosen from methyl, ethyl and isopropryl groups.
  • the silanes can be chosen from n-propyltrimethoxysilane, allyltrimethoxysilane, n-propyltriethoxysilane, trimethoxy(7-octen-1-yl)silane, trimethoxy(octadecyl)silane, n-octyltrimethoxysilane, n-octyltriethoxysilane, methoxy( triethyleneoxy)propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, phenyltrimethoxysilane, dimethoxy(methyl)octylsilane, 3- mercaptopropyltrimethoxysilane, 3-(methacryloyloxy)- propyltrimethoxysilane, 3- isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 2-
  • the surface of the protective layer against oxidation which may be a layer of metal oxide, metal nitride, oxynitride or a mixture thereof, is very advantageous, since it is reactive and allows the attachment (in other words the grafting) of the second ligands to its surface.
  • the Si—R group of these second silane ligands is grafted to the surface of the protective layer against oxidation.
  • hydroxyl groups are naturally present on the surface of the protective layer against oxidation.
  • a surface activation process consisting in the exposure of said surface of the protective layer against oxidation to ultraviolet radiation with a wavelength of between 185 nm and 254 nm which generate reactive ozone in-situ, new hydroxyl groups can be easily created.
  • the second ligands are silanes of chemical formula (II) or (III)
  • they when they are brought into contact with the hydroxylated surface of the protective layer against oxidation, they condense with the hydroxyl groups present on the surface of the protection layer against oxidation in such a way that the silicon of the Si-R groups binds covalently to the oxygen of said hydroxyl groups.
  • the surface of the protective layer against oxidation is thus functionalized with the second ligands, preferably silanes.
  • non-hydrolysable organic R groups of the second silane ligands will allow the dispersion of said light-emitting and protected nanoparticles within the solvent, then within the photo- or heat-sensitive resin without them forming aggregates.
  • the R groups of the second silane ligands are advantageously chosen according to the chemical affinity with the solvent and the photo- or heat-sensitive resin in which the light-emitting and protected nanoparticles according to the invention are dispersed.
  • the light-emitting and protected nanoparticles according to the invention have the advantage of comprising a protective layer against oxidation which perfectly protects their sensitive core from external agents (water, air and free radicals), said core not having to absolutely not be altered at the risk of reducing the optical properties of said nanoparticles.
  • the protection layer against oxidation constitutes an excellent means for grafting second ligands (preferably silanes as described above) whose non-hydrolyzable organic groups can easily be modulated, by choosing them appropriately by chemical affinity with the photo- and heat-sensitive solvents and resins in which it is desired to incorporate said nanoparticles, and this without said protected nanoparticles forming of aggregates, which would also be prohibitive for their use in the constitution of radiation converters.
  • second ligands preferably silanes as described above
  • the protected nanoparticles according to the invention have a heart that is perfectly protected from the aforementioned external agents and can be easily incorporated in a solvent and a photo- or heat-sensitive resin without forming aggregates.
  • the light-emitting and protected nanoparticles in which the light-emitting core is a quantum box and the second ligands are silanes are particularly advantageous and original with respect to the state of the art of light-emitting nanoparticles for the reasons that are detailed below.
  • the silanes ensure homogeneous dispersion of these nanoparticles within the photo- or heat-sensitive resin.
  • the silanes are grafted around the quantum dots by means of the protective layer against oxidation which can naturally comprise, due to its chemical composition, attachment sites (or in other words grafting sites such as than the aforementioned hydroxyl groups) of the second ligands or, as explained above, these attachment sites can be created by activating the surface of the protective layer against oxidation.
  • the light-emitting and protected nanoparticles according to the invention have the advantage of overcoming the known problem of the state of the art according to which the surface of the quantum dots which are devoid of oxides does not allow the attachment of silanes.
  • silanes constitute a particularly suitable means for being able to disperse quantum dots within a photo- or heat-sensitive resin.
  • the protective layer against oxidation of the nanoparticles according to the invention also allows the grafting of silanes around the quantum boxes and thus their homogeneous dispersion within a photo- or heat-sensitive resin.
  • the protection layer against oxidation allows the grafting of a wide range of second ligands, preferably silanes, and therefore consequently the dispersion of the nanoparticles according to the invention in a wide range of photo-resins. or heat sensitive.
  • silanes are easily accessible and commercially available chemical compounds. Their grafting on a surface having oxides such as the surface of the protective layer against oxidation is easy to implement.
  • the surface of the oxidation protection layer can be readily functionalized with a variety of second ligands, preferably with a variety of silanes, which can be appropriately selected such that they are chemically compatible with photoresists. - or heat-sensitive (in particular radiation converter resins) in which it is desired to incorporate the nanoparticles according to the invention, the light-emitting core of which is preferably a quantum box.
  • the nanoparticles according to the invention also have the advantage of flexibility in the choice of the photo- or heat-sensitive resin in which they are incorporated.
  • the invention also relates to a dispersion of light-emitting and protected nanoparticles according to the invention as described above in an organic or inorganic non-aqueous solvent.
  • the solvent in which said nanoparticles according to the invention are dispersed can be an aliphatic or aromatic solvent.
  • the solvent is chosen from chloroform, toluene, hexane, PGMEA, ethyl acetate, acetonitrile and ethanol.
  • the concentration of said emitting nanoparticles according to the invention can be between 1 mg/mL and 900 mg/mL, preferably between 100 mg/mL and 500 mg/mL.
  • a subject of the invention is also a resin composition which comprises light-emitting and protected nanoparticles according to the invention as described above.
  • the resin is a photo- or heat-sensitive resin. It can be chosen from vinyl ester, epoxy acrylate, polyimide and unsaturated polyester resins. It may for example be a resin of the SU-8 type (namely a resin composed of epoxy resin, propylene carbonate, the triaryl-sulfonium initiator and a solvent chosen from cyclopentanone or gamma-butyrolactone, depending on the formulation).
  • the nanoparticles according to the invention can be dispersed in a photosensitive acrylate resin
  • the nanoparticles according to the invention can be dispersed in an epoxy photosensitive resin
  • the nanoparticles according to the invention can be dispersed in a photosensitive polyimide resin
  • the nanoparticles according to the invention can be dispersed in a photosensitive polyester resin
  • the nanoparticles according to the invention can be dispersed in a solvent chosen from PGMEA or ethyl acetate;
  • the nanoparticles according to the invention can be dispersed in a solvent chosen from toluene or chloroform.
  • the resin composition may comprise, in mass percentages expressed relative to the mass of said composition:
  • the invention also relates to an optoelectronic device comprising a plurality of pixels which each comprise a plurality of sub-pixels, each sub-pixel being configured to emit a specific color and comprises at least one light emitter emitting radiation light of a given color, said optoelectronic device comprises at least one radiation converter which is arranged close to the at least one light emitter and is characterized in that the radiation converter comprises the resin composition according to the invention which has been described above.
  • the light emitter is an LED.
  • the term “the radiation converter is placed close to the at least one light emitter” means that the radiation converter is placed on or around the light emitter, and this without necessarily direct contact between the light emitter and the radiation converter.
  • the radiation converter can be an element attached to the optoelectronic device.
  • There may be a transparent support layer (for example in S1O2) or a layer of glue which is interposed between the light emitter and the radiation converter.
  • an optical device for focusing or ensuring directivity of the radiation can also be interposed between the light emitter and the radiation converter.
  • the radiation converter is arranged on the light emitter.
  • the radiation converter is in contact with the light emitter.
  • the radiation converter may consist of a layer of the resin composition according to the invention. This layer can have a thickness of between 500 nm and 10 ⁇ m.
  • the layer of the resin composition can be applied to the light emitter (preferably an LED) by spin coating ("spin coating" being the English name for this technique) so as to obtain the radiation converter .
  • the invention also relates to the use of a resin composition according to the invention as described above as a radiation converter of an optoelectronic device.
  • the invention also relates to a process for the manufacture of light-emitting and protected nanoparticles according to the invention as described above, which comprises at least the following steps: a) light-emitting nanoparticles are placed under the form of light-emitting cores which are optionally totally or partially coated with a layer of first ligands which are bonded to the surface of said cores; b) the cores, where appropriate the layer of first ligands of these cores, are coated with a protective layer against oxidation by ALD, so as to obtain nanoparticles whose core is protected, where appropriate whose core totally or partially coated with a layer of first ligands is protected; c) the nanoparticles obtained at the end of step b) are dispersed in a solution of second ligands so that the second ligands are grafted onto the surface of the protective layer against oxidation by forming a layer of second ligands on the surface of said protection layer against oxidation.
  • the core of the light-emitting nanoparticles does not have a layer of first ligands which are bonded to its surface.
  • This has the advantage in step b) of the process according to the invention, of facilitating the deposition of the protective layer against oxidation and of improving its quality (namely good homogeneity around the core and flawless).
  • the protection layer against oxidation thus ensures better protection of the core of the nanoparticle.
  • light-emitting nanoparticles can initially be provided in the form of light-emitting cores which are totally or partially coated with a layer of first ligands.
  • This layer of first ligands can be totally or partially removed by an appropriate thermochemical treatment before implementing step b) of the method according to the invention.
  • the manufacturing method according to the invention may comprise an additional step which is carried out before step b) and which consists of a thermochemical treatment intended to remove all or part of said first ligands.
  • This thermochemical treatment is perfectly within the reach of those skilled in the art.
  • the thermochemical treatment may consist of one of the following treatments:
  • the 1st treatment consists in drying the light-emitting nanoparticles, then in bringing them into contact with ammonium sulphide in methanol. Then, washing in an organic medium (hexane/methanol extraction), followed by drying in an autoclave, makes it possible to obtain light-emitting nanoparticles from which the first ligands have been totally or partially removed.
  • the 2nd treatment consists of drying the light-emitting nanoparticles, then subjecting them to ultraviolet radiation at a wavelength of between 120 nm and 250 nm. This allows the percolation of said nanoparticles and thus the withdrawal of the first ligands totally or in part.
  • the 3rd treatment consists in bringing the light-emitting nanoparticles into contact with disulfur in N,N-dimethylformamide so that the first ligands are replaced by sulfur atoms and therefore totally or partially removed from said nanoparticles. . This treatment is followed by slow drying in an autoclave.
  • Step b) implementing deposition by ALD can be carried out in a reactor at a temperature between room temperature and 400°C.
  • ALD deposition can be thermal or plasma assisted.
  • the deposition of step b) is carried out by plasma-assisted ALD in a fluidized bed reactor.
  • the manufacturing method according to the invention may comprise an additional step consisting in exposing the surface of the protective layer against oxidation to radiation in the ultra -violet with a wavelength between 185 nm and 254 nm.
  • this process of surface activation generating reactive ozone in-situ creates new hydroxyl groups on the surface of the protective layer against oxidation on which will be able to bind, covalently, the second ligands from the solution of second ligands during step c).
  • step c) the nanoparticles obtained at the end of step b) are dispersed in a solution of second ligands.
  • the second ligands can be chosen from those which have been described above in the description of the light-emitting and protected nanoparticles according to the invention.
  • the solution of second ligands comprises at least one solvent which can be chosen from non-aqueous inorganic or organic solvents. It may for example be chloroform, toluene, hexane, ethanol, acetonitrile, ethyl acetate or PGMEA.
  • the solvent is chemically compatible with the second ligands.
  • the mass percentage of the nanoparticles which are dispersed in the solution of second ligands relative to the mass of said solution of second ligands can be between 10% and 70%.
  • the concentration of second ligands in said solution of second ligands can be between 10 and 100,000 times the concentration of the nanoparticles obtained at the end of step b) which are dispersed in said solution of second ligands.
  • the dispersion of the nanoparticles can be carried out at room temperature, preferably under an inert atmosphere and with stirring at a speed of between 200 and 2500 revolutions/minute.
  • the solution of second ligands in which the light-emitting and protected nanoparticles are dispersed is mixed with a photoresist - Or heat-sensitive, for example a photo- or heat-sensitive resin as described above.
  • the light-emitting and protected nanoparticles are extracted from the solution of second ligands by carrying out at least one step chosen from extraction, precipitation and centrifugation steps.
  • the nanoparticles obtained at the end of step c) are successively subjected to an extraction, precipitation and centrifugation step.
  • the nanoparticles thus extracted can then be dispersed in a solvent, for example a solvent chosen from those described above so as to obtain a dispersion of said nanoparticles as described above.
  • a solvent for example a solvent chosen from those described above so as to obtain a dispersion of said nanoparticles as described above.
  • This dispersion can then be incorporated into a photo- or heat-sensitive resin, for example a photo- or heat-sensitive resin as described above.
  • the solvent of the solution of second ligands can be the same as that in which the light-emitting nanoparticles of step a) were dispersed.
  • the second ligands of the solution of second ligands of step c) preferably have a chemical affinity:
  • the choice of the photo- or heat-sensitive resin in which it is desired to incorporate the light-emitting and protected nanoparticles according to the invention can direct the choice of the second ligands of the solution of second ligands. And these second ligands can for their part direct the choice of the solvent of the solution of second ligands.
  • the manufacturing method can be carried out as follows: a) light-emitting nanoparticles (preferably quantum dots) are provided in the form of light-emitting cores; b) the light-emitting cores are coated by ALD at a temperature of 150° C.
  • step b) the nanoparticles obtained at the end of step b) are dispersed in a solution of PGMEA which contains 3-(trimethoxysilyl)propyl methacrylate (namely second ligands), the mass percentage of the nanoparticles with respect to the mass of said solution of second ligands is 40% and the concentration of second ligands is 10,000 times greater than the concentration of the nanoparticles in said solution which is maintained for 12 hours under an inert atmosphere and stirring at a speed of 1000 revolutions/minute.
  • PGMEA which contains 3-(trimethoxysilyl)propyl methacrylate
  • the nanoparticles are extracted in a hexane/methanol mixture with volume ratios of between 50/50 and 80/20. Then, the nanoparticles collected in methanol are precipitated using methanol or ethanol. The precipitate thus obtained is then centrifuged so as to recover the light-emitting and protected nanoparticles according to the invention in the solid state. These extraction/precipitation/centrifugation steps can be repeated until obtaining nanoparticles of sufficient purity.
  • Each layer of protection against oxidation tested was produced by ALD on a polyimide support with a thickness of 125 ⁇ m so as to constitute a sample.
  • the protection layers against oxidation as described above in the 1 st , 2 nd , 3 rd and 4 th embodiments of the protection layer against oxidation are particularly suitable for protecting the light-emitting core of the nanoparticle according to the invention against external agents (water, oxygen and free radicals resulting from photo- or heat-sensitive resin polymerization reactions).
  • the protective layer being between 30 nm and 100 nm and the outer layer (namely the layer farthest from the core of the nanoparticle) not being a 1st layer of A Os.
  • FIG. 1 is a schematic view of a first implementation of the process for manufacturing light-emitting and protected nanoparticles according to the invention, the core of which is not coated with a layer of first ligands.
  • FIG. 2 is a schematic view of a 2 nd implementation of the process for manufacturing light-emitting and protected nanoparticles according to the invention, the core of which is coated with a layer of first ligands.
  • FIG. 1 is shown a first embodiment of the manufacture of a light-emitting and protected nanoparticle 5a according to the invention.
  • a light-emitting nanoparticle 8a was available in the form of a heart 1.
  • the heart 1 was a quantum box composed of InP/ZnSe/ZnS.
  • the core 1 was coated by ALD with a protective layer against oxidation 3 composed of a first layer of AI2O3 with a thickness of 25 nm and a 2nd T1O2 layer with a thickness of 25 nm which was superimposed on the 1st layer of AI2O3.
  • a nanoparticle 9a was thus obtained, the core 1 of which was protected.
  • the nanoparticle 9a was dispersed in step c) of the manufacturing process according to the invention in a solution of second ligands 6 containing 3-(trimethoxysilyl)propyl methacrylate (namely second ligands) and PGMEA as solvent, the concentration of the ligands being 10,000 times greater than that of the nanoparticles 9a, and this at ambient temperature and under an inert atmosphere so as to obtain a light-emitting and protected nanoparticle 5a according to the invention. More specifically, during step c), the second ligands 6 are grafted onto the surface of the protective layer against oxidation 3 so as to form a layer 4 of second ligands 6.
  • second ligands 6 are grafted onto the surface of the protective layer against oxidation 3 so as to form a layer 4 of second ligands 6.
  • FIG. 2 is shown a 2nd embodiment of the manufacture of a light-emitting and protected nanoparticle 5b according to the invention which differs from the nanoparticle 5a only in that the heart 1 is completely coated with a layer 2 of first ligands 7 consisting of 9-octadecenoic acid and which are bonded to the surface said core 1.
  • first ligands 7 consisting of 9-octadecenoic acid
  • Steps b) and c) of the manufacturing method according to the invention have been implemented to obtain the nanoparticle 5b in the same way as for the nanoparticle 5a. More specifically, at the end of step b), a light-emitting nanoparticle 9b was obtained, the core 1 of which, coated with a layer 2 of first ligands 7, was protected by the protective layer 3 against oxidation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

L'invention concerne une nanoparticule émettrice de lumière et protégée (5a) qui est composée d'une nanoparticule émettrice de lumière (8a) sous la forme d'un cœur (1) émetteur de lumière, ledit cœur (1) étant revêtu d'au moins une couche de protection contre l'oxydation (3), ladite nanoparticule (5a) comprenant en outre une couche (4) formée de deuxièmes ligands (6) qui sont greffés à la surface de ladite couche de protection contre l'oxydation (3). L'invention concerne aussi un procédé de fabrication de cette nanoparticule (5a) et son application pour les convertisseurs de rayonnement de dispositif optoélectronique.

Description

DESCRIPTION
TITRE : Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique
[0001] L'invention concerne la protection contre les agents externes (eau, oxygène et radicaux libres issus de réactions de polymérisation de résines photo- et thermosensibles) de nanoparticules émettrices de lumière, en particulier de boîtes quantiques (aussi connues sous la dénomination anglophone « quantum dot »), qui sont utilisées dans les dispositifs optoélectroniques (par exemple les écrans d'affichage et les systèmes de projection d'images).
[0002] Par « dispositif optoélectronique », on entend dans le cadre de la présente invention un dispositif adapté à effectuer la conversion d'un signal électrique en un rayonnement électromagnétique à émettre (notamment de la lumière).
[0003] Il existe des dispositifs optoélectroniques comportant une matrice de diodes électroluminescentes (ci-après dénommées « LED » qui est l'acronyme anglophone pour « light Emitting Diode ») présentant une surface d'émission au travers de laquelle est transmis le rayonnement lumineux émis par les LEDs. De tels dispositifs optoélectroniques sont utilisés dans la constitution d'écrans d'affichages ou de systèmes de projection d'images, dans lesquels la matrice de LEDs définit une matrice « d'éléments d'image » (aussi dénommés « pixels ») qui émettent chacun de la lumière, de sorte que l'image sur l'écran peut être commandée en activant ou en désactivant individuellement chaque pixel.
[0004] Chaque pixel comprend plusieurs sous-pixels.
[0005] Chaque sous-pixel est configuré pour émettre une couleur spécifique, de sorte que la couleur émise par le pixel peut être modifiée en commandant les sous-pixels à activer ou en modifiant le courant électrique appliqué à chaque sous-pixel afin de modifier l'intensité d'émission relative de chaque sous-pixel.
[0006] Chaque sous-pixel contient lui-même au moins une LED. En fait, un sous-pixel peut contenir une pluralité de LEDS. [0007] Chaque pixel comprend classiquement :
- au moins un sous-pixel formé d'au moins une LED apte à générer directement, ou à transmettre par l'intermédiaire d'un convertisseur de couleur adapté, de la lumière bleue,
- au moins un sous-pixel formé d'au moins une LED apte à générer directement, ou à transmettre par l'intermédiaire d'un convertisseur de couleur adapté, de la lumière verte,
- au moins un sous-pixel formé d'au moins une LED apte à générer directement, ou à transmettre par l'intermédiaire d'un convertisseur de couleur adapté, de la lumière rouge.
[0008] Plus précisément, les LEDs présentent la forme d'un empilement de couches semi- conductrices. La lumière est émise lorsqu'un courant électrique circule à travers l'empilement.
[0009] Cependant, bien que certaines technologies et certains matériaux utilisés dans la fabrication de LED permettent une bonne efficacité d'émission sur une partie spécifique du spectre visible, par exemple dans la gamme bleue, les mêmes technologies conduisent généralement à des efficacités beaucoup plus faibles lorsqu'elles sont utilisées pour fabriquer une LED émettant sur une autre partie du spectre de lumière.
[0010] C'est pourquoi, un convertisseur de couleur adapté (autrement dit un convertisseur de rayonnement) peut être placé sur la LED afin de convertir la lumière émise par la LED en une lumière présentant une longueur d'onde différente de celle de la lumière émise à l'origine par ladite LED.
[0011] Ainsi, des sous-pixels peuvent être obtenus en plaçant sur des zones spécifiques de la LED des convertisseurs de rayonnement, de sorte qu'en alimentant sélectivement en courant électrique la zone sous chaque convertisseur, la lumière émise par la LED est convertie en une lumière présentant une couleur spécifique.
[0012] Il existe différentes formes de réalisation de convertisseurs de rayonnement.
[0013] Généralement, un convertisseur de rayonnement se présente sous la forme d'une matrice dans laquelle est incorporé un ensemble de particules réalisées en le matériau de conversion. De manière préférée, ces particules sont des boîtes quantiques.
[0014] Les boîtes quantiques sont des nanoparticules semi-conductrices tridimensionnelles de structure cristalline, présentant des propriétés de confinement quantique dans les trois dimensions de l'espace. Elles présentent différentes propriétés physiques, à savoir magnétiques, électriques et optiques, selon leurs dimensions et les matériaux qui les constituent. Les dimensions des boîtes quantiques sont habituellement comprises entre 1 et 100 nm.
[0015] Les boîtes quantiques ont pour propriété très intéressante d'être photoluminescentes. Cela signifie que lorsqu'elles sont éclairées par une source lumineuse, elles absorbent des photons en provenance de la source lumineuse, puis réémettent de la lumière en réponse à cette photo-excitation. Alors que la bande de longueurs d'onde d'absorption (à savoir la bande de longueurs d'ondes d'éclairement dans laquelle une boîte quantique absorbe des photons) peut être relativement large, la bande de longueurs d'ondes d'émission (à savoir la bande de longueurs d'ondes dans laquelle la boîte quantique réémet de la lumière) est généralement très étroite, par exemple de largeur à mi-hauteur inférieure à 50 nm. De plus, la longueur d'onde centrale de la bande d'émission peut être ajustée finement en optimisant les dimensions de la boîte quantique.
[0016] C'est pourquoi, les boîtes quantiques sont des nanoparticules de choix dans la constitution des convertisseurs de rayonnement que comprennent les dispositifs optoélectroniques.
[0017] La matrice dans laquelle sont incorporées les boîtes quantiques est généralement une résine photo- ou thermosensible qui est couramment utilisée dans le domaine de l'électronique pour définir des motifs sur une surface semi-conductrice, et ce en solidifiant et en supprimant des zones spécifiques de ladite résine. Les zones à supprimer ou à solidifier (autrement dit à polymériser) sont définies par insolation à l'aide d'une longueur d'onde à laquelle la résine est sensible.
[0018] Les boîtes quantiques qui se présentent initialement sous la forme d'une poudre sont dispersées dans un solvant, par exemple de l'acétate de 2-méthoxy-l-méthyléthyle (ci- après abrégé « PGMEA »). La solution ainsi obtenue est ensuite mélangée à la résine photo- ou thermosensible afin que les boîtes quantiques y soient incorporées de la manière la plus homogène possible (à savoir en l'absence de la formation d'agrégats).
[0019] Cependant, les boîtes quantiques sont des matériaux très fragiles qui sont sensibles à l'oxydation et en particulier aux agents externes que sont l'eau, l'oxygène et les radicaux libres issus des réactions de polymérisation de la résine photo- ou thermosensible. De plus, la stabilité des boîtes quantiques peut être faible (de l'ordre de quelques heures) lorsqu'elles sont soumises à un flux de chaleur et/ou de lumière, ce qui est le cas dans les dispositifs optoélectroniques.
[0020] Or, il est essentiel que les boîtes quantiques maintiennent au cours du temps leurs propriétés optiques (à savoir leur bande de longueurs d'ondes d'émission très étroite et leur rendement de conversion) pour qu'elles conservent tout leur intérêt dans la constitution des convertisseurs de rayonnement.
[0021] Il est actuellement connu d'encapsuler les sous-pixels de manière à protéger les boîtes quantiques des agents externes précités. Les sous-pixels sont encapsulés avec une couche d'oxyde métallique d'épaisseur variable entre 20 nm et 100 nm, déposée par une technique de dépôt de couche atomique (communément appelée « ALD » qui est l'acronyme anglophone pour « Atomic Layer Déposition »).
[0022] L'ALD permet d'obtenir un dépôt dense et fiable qui suit la topographie de la surface des sous-pixels et dont l'épaisseur peut être contrôlée à l'échelle nanométrique. Différents oxydes peuvent être utilisés en tant que matériau de la couche d'oxyde métallique parmi lesquels on peut citer AI2O3, T1O2, ZrO¾ ZnO et S1O2, et les mélanges de ceux-ci. L'épaisseur de ce dépôt peut être comprise entre 20 nm et 500 nm, de préférence entre 50 nm et 100 nm. L'ALD présente plusieurs avantages par rapport à d'autres procédés permettant le revêtement de particules par une ou plusieurs couches, comme par exemple le procédé sol-gel. Le procédé sol-gel passe par une phase liquide, ce qui n'est pas le cas de l'ALD. Un inconvénient lié au fait de passer par une phase liquide est que l'on obtient des couches moins pures, notamment lorsque le cœur est initialement entouré de ligands : en effet, ces ligands restent en solution et la phase liquide entraîne le risque que ces ligands résiduels soient encapsulés dans la couche. Au contraire, avec le procédé ALD, ces ligands sont vaporisés et donc disparaissent. Par conséquent, l'ALD permet un meilleur contrôle de l'épaisseur des couches ainsi qu'un meilleur contrôle de la pureté des matériaux constituant les couches. L'ALD permet également de déposer une plus grande variété de matériaux de couches que dans le cas d'un procédé sol-gel, du fait d'une versatilité plus importante dans le cas de l'ALD. [0023] Cependant, cette solution d'encapsulation des sous-pixels n'est pas totalement satisfaisante, car les boîtes quantiques ne sont pas protégées individuellement, et sont ainsi toujours susceptibles d'être en contact avec les agents externes précités qui vont les dégrader, et notamment lorsque les agents précités sont présents dans la résine photo- ou thermosensible.
[0024] C'est pourquoi, on est à la recherche de moyens de protection fiables des boîtes quantiques de manière individualisée et qui soient en outre efficaces pour leur dispersion homogène au sein du solvant, puis de la résine photo- ou thermosensible.
[0025] Les inventeurs de la présente invention ont surmonté ces difficultés de protection des boîtes quantiques pour des convertisseurs de rayonnement et ont mis au point de nouvelles nanoparticules émettrices de lumière et protégées (notamment des boîtes quantiques protégées), ainsi que leur procédé de fabrication.
[0026] La présente invention est décrite en faisant référence précisément aux boîtes quantiques, sans que cela ne limite pour autant sa portée. En effet, la présente invention peut être appliquée à toute nanoparticule émettrice de lumière qui nécessite d'être protégée contre l'oxydation et notamment d'agents externes choisis parmi l'eau, l'oxygène et les radicaux libres issus de réactions de polymérisation de résine photo- ou thermosensible.
[0027] L'invention a ainsi pour premier objet une nanoparticule émettrice de lumière et protégée qui est composée d'une nanoparticule émettrice de lumière sous la forme d'un cœur émetteur de lumière optionnellement revêtu totalement ou en partie d'une couche de premiers ligands liés à la surface dudit cœur, ledit cœur, le cas échéant ladite couche de premiers ligands, étant revêtu(e) d'au moins une couche de protection contre l'oxydation, ladite nanoparticule émettrice de lumière et protégée se caractérise en ce qu'elle comprend en outre une couche formée de deuxièmes ligands qui sont greffés à la surface de ladite couche de protection contre l'oxydation.
[0028] Le cœur émetteur de lumière peut être choisi parmi les boîtes quantiques, les nanoparticules métalliques (par exemple les nanoparticules d'or, argent ou nickel), les nanoparticules d'oxyde métallique (par exemple les nanoparticules d'oxyde de zinc), les nanoparticules de silicium, les nanoparticules de germanium, les nanophosphores (par exemple YAG), les nanoparticules de terres rares et les boîtes de carbone (aussi connus sous la dénomination anglophone de « carbon dots »).
[0029] De préférence, le cœur émetteur de lumière est une boîte quantique.
[0030] Dans ce mode de réalisation de l'invention, la boîte quantique peut comprendre au moins un nanocristal semi-conducteur choisi parmi les nanocristaux semi-conducteurs du groupe ll-VI, du groupe lll-V ou du groupe IV-VI, pris seul ou en mélange de ceux-ci.
[0031] Le nanocristal semi-conducteur du groupe ll-VI peut être choisi parmi : CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe et HgSTe. [0032] Le nanocristal semi-conducteur du groupe lll-V peut être choisi parmi : GaN, GaP,
GaAs, GaSb, AIN, AIP, AIS, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GaNAs, GaPAs, Al N P, Al N As, Al P As et In Al P As.
[0033] Le nanocristal semi-conducteur du groupe IV-VI peut être choisi parmi : SbTe, PbSe, GaSe, PbS, PbSe, PbTe, SnS, SnTe et PbSnTe. [0034] En d'autres termes, la boîte quantique peut comprendre au moins un nanocristal semi-conducteur choisi parmi CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, GaN, GaP, GaAs, GaSb, AIN, AIP, AIS, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GaNAs, GaPAs, AINP, Al N As, AlPAs, InAIPAs, SbTe, PbSe, GaSe, PbS, PbSe, PbTe, SnS, SnTe et PbSnTe. [0035] Dans un mode de réalisation de l'invention, le cœur de la nanoparticule est revêtu totalement ou en partie d'une couche de premiers ligands qui sont liés à la surface dudit cœur. Les premiers ligands sont capables d'interagir, de manière faible ou forte, avec le cœur de la nanoparticule grâce des liaisons de type covalente, ionique ou de van der Waals. [0036] De préférence, lesdits premiers ligands sont des composés de formule chimique (I) suivante :
[Chem I]
¾ ί dans laquelle :
- n peut être égal à 1, 2 ou 3,
- X est un groupe capable d'interagir avec le cœur émetteur de lumière grâce à des interactions de type covalente, ionique ou de Van der Waals,
- R est un groupe organique non hydrolysable.
[0037] De manière avantageuse, R est une chaîne alkyle non-hydrolysable comprenant entre 3 et 20 atomes de carbone.
[0038] Par exemple, si le cœur émetteur de lumière est une boîte quantique, X peut être une amine, une phosphine, un acide carboxylique ou un thiol.
[0039] Dans ce mode de réalisation de l'invention dans lequel le cœur émetteur de lumière est une boîte quantique, les premiers ligands qui sont liés à la surface du cœur peuvent être choisis parmi l'octadecylamine, le dodecanthiol, la trioctylphosphine, l'acide lipoïque, le trioctylphosphine oxyde, l'oyelamine, l'acide 9-octadécénoïque et l'acide oléique.
[0040] Si le cœur émetteur de lumière est une nanoparticule métallique, X peut être une amine ou un thiol.
[0041] Si le cœur émetteur de lumière est une nanoparticule de silicium, X peut être un silane.
[0042] Des nanoparticules émettrices de lumière dont le cœur émetteur de lumière est revêtu totalement ou en partie d'une couche de premiers ligands sont notamment commercialisées par la société Sigma-Aldrich. Par exemple, il peut s'agir :
- de nanoparticules dont le cœur émetteur de lumière est CdSe/ZnS et est revêtu d'une couche de premiers ligands liés à sa surface qui sont l'octadecylamine ;
- de nanoparticules dont le cœur émetteur de lumière est CdS/ZnS et est revêtu d'une couche de premiers ligands liés à sa surface qui sont l'acide oléique.
[0043] La couche de protection contre l'oxydation peut être une couche d'oxyde métallique. De manière préférée, elle comprend au moins un oxyde choisi parmi AI2O3, S1O2, T1O2, ZrÛ2, ZnO, B2O3, C02O3, Cr2Û3, CuO, Fe203, Ga203, Hf02, Ih2q3, MgO, Nb20s, NiO, SnÛ2, Ta2Û5 et Hf02, pris seul ou en mélange de ceux-ci.
[0044] De manière tout à fait préférée, l'oxyde est choisi parmi : AI2O3, S1O2, T1O2, ZnO et ZrÜ2. [0045] La couche de protection contre l'oxydation peut également être une couche de nitrure métallique (par exemple BN, AIN, GaN, InN et Zr3N4, pris seul ou en mélange de ceux-ci) ou d'oxynitrure (par exemple SiON).
[0046] La couche de protection contre l'oxydation peut ainsi être une couche d'oxyde métallique, de nitrure métallique ou d'oxynitrure, pris seul ou en mélange de ceux-ci.
[0047] De manière avantageuse, pour des raisons de facilité et de maîtrise du procédé de dépôt de la couche de protection contre l'oxydation sur le cœur ou, le cas échéant, la couche de premiers ligands, ladite couche est une couche d'oxyde métallique. En effet, le dépôt de nitrure métallique ou d'oxynitrure requiert une plus haute température et est moins facile à mettre en œuvre que le dépôt d'oxyde métallique.
[0048] L'épaisseur de la couche de protection contre l'oxydation peut être comprise entre 1 nm et 400 nm, de préférence entre 1 nm et 100 nm, plus préférentiellement entre 20 nm et 70 nm.
[0049] De préférence, la couche de protection contre l'oxydation comprend une pluralité de couches superposées les unes sur les autres.
[0050] La pluralité de couches est avantageuse, car si des défauts sont présents sur certaines des couches, le risque est faible qu'ils se situent aux mêmes endroits de manière à créer un point d'accès pour les agents externes (eau, oxygène et radicaux libres) jusqu'au cœur de la nanoparticule à protéger. En d'autres termes, avec une couche de protection contre l'oxydation se décomposant en une pluralité de couches, le cœur fragile de la nanoparticule est mieux protégé des agents externes précités.
[0051] La couche de protection contre l'oxydation peut comprendre entre 1 et 100 couches, de préférence entre 2 et 20 couches, plus préférentiellement entre 6 et 10 couches, superposées les unes sur les autres. [0052] L'épaisseur de chaque couche peut être comprise entre 1 nm et 100 nm, de préférence entre 2 nm et 20 nm, plus préférentiellement entre 3 nm et 10 nm.
[0053] Si la couche de protection contre l'oxydation comprend une pluralité de couches d'oxydes métalliques superposées les unes sur les autres, la couche externe (à savoir la couche la plus éloignée du cœur de la nanoparticule) est de préférence dépourvue de AI2O3 qui est sensible à la vapeur d'eau.
[0054] Dans un mode de réalisation de l'invention, la couche de protection contre l'oxydation peut comprendre les deux couches suivantes :
- une lère couche d'épaisseur comprise entre 2 nm et 100 nm, de préférence entre 5 et 50 nm, comprenant AI2O3,
- une 2ème couche dite « externe » superposée à la lère couche et d'épaisseur comprise entre 5 nm et 50 nm, comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci.
[0055] Dans un autre mode de réalisation de l'invention, la couche de protection contre l'oxydation peut comprendre une alternance des deux couches suivantes qui sont superposées les unes sur les autres :
- une lère couche d'épaisseur comprise entre 1 nm et 10 nm, comprenant AI2O3,
- une 2ème couche superposée à la lère couche et d'épaisseur comprise entre 1 nm et 10 nm, comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci, l'épaisseur totale de la couche de protection étant comprise entre 30 nm et 100 nm et la couche externe (à savoir la couche la plus éloignée du cœur de la nanoparticule) n'étant pas une lère couche comprenant AI2O3.
[0056] Des exemples préférés de réalisation de couche de protection contre l'oxydation comprenant des oxydes métalliques sont détaillés ci-dessous.
[0057] Selon un 1er mode de réalisation de l'invention, la couche de protection contre l'oxydation est une unique couche d'une épaisseur de 50 nm qui comprend AI2O3, T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci.
[0058] Selon un 2ème mode de réalisation de l'invention, la couche de protection contre l'oxydation comprend les deux couches suivantes :
- une lère couche d'épaisseur de 25 nm comprenant AI2O3,
- une 2ème couche dite « externe » superposée à la lère couche et d'épaisseur de 25 nm comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci. [0059] Selon un 3ème mode de réalisation de l'invention, la couche de protection contre l'oxydation comprend les deux couches suivantes :
- une lère couche d'épaisseur de 40 nm comprenant AI2O3,
- une 2ème couche dite « externe » superposée à la lère couche et d'épaisseur de 10 nm comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci.
[0060] Selon un 4ème mode de réalisation de l'invention, la couche de protection contre l'oxydation comprend une alternance des deux couches suivantes qui sont superposées les unes sur les autres :
- une lère couche d'épaisseur de 5 nm comprenant AI2O3,
- une 2ème couche superposée à la lère couche et d'épaisseur de 5 nm comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci, l'épaisseur totale de la couche de protection étant comprise entre 30 nm et 100 nm et la couche externe (à savoir la couche la plus éloignée du cœur de la nanoparticule) n'étant pas une lère couche comprenant AI2O3.
[0061] Les deuxièmes ligands de la couche formée de deuxièmes ligands qui sont greffés à la surface de la couche de protection contre l'oxydation peuvent être avantageusement des silanes, de préférence des silanes de formule chimique (II) suivante :
[Chem II]
RaSÎYi-®
(H) dans laquelle :
- n est égal à 1, 2 ou 3,
- Y est un groupe hydrolysable, de préférence un groupe alcoxy, halogénure ou amine,
- R est un groupe organique non hydrolysable.
[0062] De manière tout à fait préférée, les deuxièmes ligands sont des silanes de formule chimique (III) suivante :
[Chem III] m dans laquelle :
- n est égal à 1, 2 ou 3,
- R est un groupe organique non hydrolysable,
- R' est un groupe organique aliphatique.
[0063] De manière tout à fait préférée, R' est choisi parmi les groupes méthyl, éthyl et isopropryl.
[0064] Par exemple, les silanes peuvent être choisis parmi n-propyltriméthoxysilane, allyltriméthoxysilane, n-propyltriéthoxysilane, triméthoxy(7-octen-l-yl)silane, triméthoxy(octadecyl)silane, n-octyltriméthoxysilane, n-octyltriéthoxysilane, methoxy(triéthylèneoxy)propyltriméthoxysilane, 3-aminopropyltriméthoxysilane, phényltriméthoxysilane, diméthoxy(méthyl)octylsilane, 3- mercaptopropyltriméthoxysilane, 3-(methacryloyloxy)- propyltriméthoxysilane, 3- isocyanatopropyltriéthoxysilane, 3-isocyanatopropyltriméthoxysilane, 2-
[methoxy(polyéthylèneoxy) 6-9propyl]triméthoxysilane, 3- glycidoxypropyltriméthoxysilane, N- (3-acryloxy-2-hydroxypropyl)-3- aminopropyltriéthoxysilane, bis[3-(triethoxysilyl)propyl]uree, 3-(triméthoxysilyl)propryl acrylate, 3-(triméthoxysilyl)propyl méthacrylate et [3-(2,3-époxypropoxy)-propyl]- triméthoxysilane.
[0065] La surface de la couche de protection contre l'oxydation qui peut être une couche d'oxyde métallique, de nitrure métallique, d'oxynitrure ou un mélange de ceux-ci, est très avantageuse, car elle est réactive et permet l'accroche (autrement dit le greffage) des deuxièmes ligands à sa surface.
[0066] Par exemple, lorsque les deuxièmes ligands sont des silanes de formule chimique (II) ou (III), le groupe Si-R de ces deuxièmes ligands silanes est greffé à la surface de la couche de protection contre l'oxydation. En effet, des groupes hydroxyles sont naturellement présents à la surface de la couche de protection contre l'oxydation. En outre, par un processus d'activation de surface consistant en l'exposition de ladite surface de la couche de protection contre l'oxydation à des radiations dans l'ultra-violet de longueur d'onde comprise entre 185 nm et 254 nm qui génèrent de l'ozone réactif in-situ, de nouveaux groupes hydroxyles peuvent être aisément créés. [0067] Ainsi, dans le cas où les deuxièmes ligands sont des silanes de formule chimique (II) ou (III), lors de leur mise en contact avec la surface hydroxylée de la couche de protection contre l'oxydation, ils se condensent avec les groupes hydroxyles présents à la surface de la couche de protection contre l'oxydation de telle sorte que le silicium des groupes Si-R se lie de manière covalente à l'oxygène desdits groupes hydroxyles.
[0068] La surface de la couche de protection contre l'oxydation est ainsi fonctionnalisée avec les deuxièmes ligands, de préférence des silanes.
[0069] Par ailleurs, les groupes R organiques non hydrolysables des deuxièmes ligands silanes vont permettre la dispersion desdites nanoparticules émettrices de lumière et protégées au sein du solvant, puis de la résine photo- ou thermosensible sans qu'elles ne forment d'agrégats.
[0070] Les groupes R des deuxièmes ligands silanes sont avantageusement choisis en fonction de l'affinité chimique avec le solvant et la résine photo- ou thermosensible dans lesquels sont dispersées les nanoparticules émettrices de lumière et protégées selon l'invention.
[0071] Les nanoparticules émettrices de lumière et protégées selon l'invention présentent l'avantage de comporter une couche de protection contre l'oxydation qui protège parfaitement leur cœur sensible des agents externes (eau, air et radicaux libres), ledit cœur ne devant absolument pas être altéré sous peine d'amoindrir les propriétés optiques desdites nanoparticules.
[0072] En outre, grâce aux oxydes métalliques, aux nitrures métalliques et aux oxynitrures ou un mélange de ceux-ci, la couche de protection contre l'oxydation constitue un excellent moyen de greffage des deuxièmes ligands (de préférence des silanes tels que décrits ci- dessus) dont on peut aisément moduler les groupes organiques non hydrolysables, en les choisissant de manière appropriée par affinité chimique avec les solvants et résines photo- et thermosensibles dans lesquels on souhaite incorporer lesdites nanoparticules, et ce sans que lesdites nanoparticules protégées ne forment d'agrégats, ce qui serait également rédhibitoire pour leur utilisation dans la constitution de convertisseurs de rayonnement.
[0073] En d'autres termes, les nanoparticules protégées selon l'invention ont un cœur parfaitement protégé des agents externes précités et peuvent être aisément incorporées dans un solvant et une résine photo- ou thermosensible sans qu'elles ne forment d'agrégats.
[0074] Dans le cadre de la présente invention, les nanoparticules émettrices de lumière et protégées dans lesquelles le cœur émetteur de lumière est une boîte quantique et les deuxièmes ligands sont des silanes sont particulièrement avantageuses et originales par rapport à l'état de l'art des nanoparticules émettrices de lumière pour les raisons qui sont détaillées ci-dessous.
[0075] Les silanes assurent une dispersion homogène de ces nanoparticules au sein de la résine photo- ou thermosensible.
[0076] Les silanes se greffent autour des boîtes quantiques par l'intermédiaire de la couche de protection contre l'oxydation qui peut comporter naturellement, du fait de sa composition chimique, des sites d'accroche (ou autrement dit des sites de greffage tels que les groupes hydroxyles précités) des deuxièmes ligands ou bien, comme cela a été expliqué ci-dessus, ces sites d'accroche peuvent être créés par activation de la surface de la couche de protection contre l'oxydation.
[0077] En d'autres termes, grâce à la couche de protection contre l'oxydation dont elles sont pourvues, les nanoparticules émettrices de lumière et protégées selon l'invention présentent l'avantage de surmonter le problème connu de l'état de l'art selon lequel la surface des boîtes quantiques qui sont dépourvues d'oxydes ne permet pas l'accroche de silanes. Or, comme expliqué ci-dessus, les silanes constituent un moyen particulièrement approprié pour pouvoir disperser des boîtes quantiques au sein d'une résine photo- ou thermosensible.
[0078] Ainsi, outre sa fonction de protection du cœur émetteur de lumière qui a été mentionnée ci-dessus, la couche de protection contre l'oxydation des nanoparticules selon l'invention permet aussi le greffage de silanes autour des boîtes quantiques et ainsi leur dispersion de manière homogène au sein d'une résine photo- ou thermosensible.
[0079] Enfin, la couche de protection contre l'oxydation permet le greffage d'une large gamme de deuxièmes ligands, de préférence des silanes, et donc par conséquent la dispersion des nanoparticules selon l'invention dans une large gamme de résines photo- ou thermosensibles. [0080] En effet, les silanes sont des composés chimiques aisément accessibles et disponibles d'un point de vue commercial. Leur greffage sur une surface présentant des oxydes telle que la surface de la couche de protection contre l'oxydation est aisé à mettre en œuvre. La surface de la couche de protection contre l'oxydation peut être facilement fonctionnalisée avec une diversité de deuxièmes ligands, de préférence avec une diversité de silanes, qui peuvent être choisis de manière appropriée de telle sorte qu'ils soient chimiquement compatibles avec les résines photo- ou thermosensibles (notamment des résines de convertisseur de rayonnement) dans lesquelles on souhaite incorporer les nanoparticules selon l'invention dont le cœur émetteur de lumière est de préférence une boîte quantique.
[0081] Ainsi, les nanoparticules selon l'invention dont le cœur émetteur de lumière est une boîte quantique et les deuxièmes ligands des silanes pouvant être choisis dans une large gamme de silanes, présentent aussi l'avantage d'une flexibilité dans le choix de la résine photo- ou thermosensible dans laquelle elles sont incorporées.
[0082] L'invention a aussi pour objet une dispersion de nanoparticules émettrices de lumière et protégées selon l'invention telles que décrites ci-dessus dans un solvant non aqueux organique ou inorganique.
[0083] Le solvant dans lequel sont dispersées lesdites nanoparticules selon l'invention peut être un solvant aliphatique ou aromatique. Par exemple, le solvant est choisi parmi le chloroforme, le toluène, l'hexane, le PGMEA, l'acétate d'éthyle, l'acétonitrile et l'éthanol.
[0084] Dans ladite dispersion, la concentration en lesdites nanoparticules émettrices selon l'invention peut être comprise entre 1 mg/mL et 900 mg/mL, de préférence entre 100 mg/mL et 500 mg/mL.
[0085] L'invention a aussi pour objet une composition de résine qui comprend des nanoparticules émettrices de lumière et protégées selon l'invention telles que décrites ci- dessus.
[0086] De préférence, la résine est une résine photo- ou thermosensible. Elle peut être choisie parmi les résines vinylester, acrylate époxyde, polyimide et polyesters insaturés. Il peut par exemple s'agir d'une résine de type SU-8 (à savoir une résine composée de résine époxyde, de carbonate de propylène, de l'amorceur triaryl-sulfonium et d'un solvant organique choisi parmi le cyclopentanone ou le gamma-butyrolactone, selon la formulation).
[0087] Par exemple, dans le cas où les deuxièmes ligands sont des silanes de formule chimique (II) ou (III), si le groupe R est :
- un groupe acrylate, les nanoparticules selon l'invention peuvent être dispersées dans une résine photosensible acrylate ;
- un groupe époxy, les nanoparticules selon l'invention peuvent être dispersées dans une résine photosensible époxyde ;
- un groupe imide, les nanoparticules selon l'invention peuvent être dispersées dans une résine photosensible polyimide ;
- un groupe ester, les nanoparticules selon l'invention peuvent être dispersées dans une résine photosensible polyester ;
- un groupe propylacrylate, les nanoparticules selon l'invention peuvent être dispersées dans un solvant choisi parmi le PGMEA ou l'acétate d'éthyle ;
- un groupe chaîne aliphatique saturée ou insaturée (par exemple octyl ou (7-octen-l-yl)), les nanoparticules selon l'invention peuvent être dispersées dans un solvant choisi parmi le toluène ou le chloroforme.
[0088] La composition de résine peut comprendre, en pourcentages massiques exprimés par rapport à la masse de ladite composition :
- entre 20 % et 40 % desdites nanoparticules ;
- entre 60 % et 80 % de résine.
[0089] L'invention a aussi pour objet un dispositif optoélectronique comprenant une pluralité de pixels qui comprennent chacun une pluralité de sous-pixels, chaque sous-pixel étant configuré pour émettre une couleur spécifique et comprend au moins un émetteur de lumière émettant un rayonnement lumineux d'une couleur donnée, ledit dispositif optoélectronique comprend au moins un convertisseur de rayonnement qui est disposé à proximité de l'au moins un émetteur de lumière et se caractérise en ce que le convertisseur de rayonnement comprend la composition de résine selon l'invention qui a été décrite ci-dessus.
[0090] De préférence, l'émetteur de lumière est une LED. [0091] Dans le cadre de la présente invention, on entend par « le convertisseur de rayonnement est disposé à proximité de l'au moins un émetteur de lumière » que le convertisseur de rayonnement est disposé sur ou autour de l'émetteur de lumière, et ce sans forcément un contact direct entre l'émetteur de lumière et le convertisseur de rayonnement. En effet, le convertisseur de rayonnement peut être un élément rapporté au dispositif optoélectronique. Il peut y avoir une couche transparente de support (par exemple en S1O2) ou une couche de colle qui est intercalée entre l'émetteur de lumière et le convertisseur de rayonnement. Dans d'autres modes de réalisation envisageables de l'invention, un dispositif optique de focalisation ou assurant une directivité du rayonnement peut également être intercalé entre l'émetteur de lumière et le convertisseur de rayonnement.
[0092] De préférence, le convertisseur de rayonnement est disposé sur l'émetteur de lumière. En d'autres termes, dans ce mode de réalisation de l'invention, le convertisseur de rayonnement est en contact avec l'émetteur de lumière.
[0093] Le convertisseur de rayonnement peut consister en une couche de la composition de résine selon l'invention. Cette couche peut avoir une épaisseur comprise entre 500 nm et 10 pm.
[0094] La couche de la composition de résine peut être appliquée sur l'émetteur de lumière (de préférence une LED) par revêtement par centrifugation (« spin coating » étant la dénomination anglophone de cette technique) de manière à obtenir le convertisseur de rayonnement.
[0095] L'invention a aussi pour objet l'utilisation d'une composition de résine selon l'invention telle que décrite ci-dessus en tant que convertisseur de rayonnement d'un dispositif optoélectronique.
[0096] L'invention a aussi pour objet un procédé de fabrication des nanoparticules émettrices de lumière et protégées selon l'invention telles que décrites ci-dessus qui comprend au moins les étapes suivantes : a ) on dispose de nanoparticules émettrices de lumière sous la forme de cœurs émetteurs de lumière qui sont optionnellement revêtus totalement ou en partie d'une couche de premiers ligands qui sont liés à la surface desdits cœurs ; b) on revêt les cœurs, le cas échéant la couche de premiers ligands de ces cœurs, d'une couche de protection contre l'oxydation par ALD, de manière à obtenir des nanoparticules dont le cœur est protégé, le cas échéant dont le cœur revêtu totalement ou en partie d'une couche de premiers ligands est protégé ; c) on disperse les nanoparticules obtenues à l'issue de l'étape b) dans une solution de deuxièmes ligands de manière à ce que les deuxièmes ligands se greffent à la surface de la couche de protection contre l'oxydation en formant une couche de deuxièmes ligands à la surface de ladite couche de protection contre l'oxydation.
[0097] Les caractéristiques techniques du cœur, de la couche optionnelle de premiers ligands revêtant totalement ou en partie le cœur, ainsi que de la couche de protection contre l'oxydation ont été décrites ci-dessus.
[0098] De préférence, le cœur des nanoparticules émettrices de lumière est dépourvu d'une couche de premiers ligands qui sont liés à sa surface. Cela présente l'avantage à l'étape b) du procédé selon l'invention, de faciliter la réalisation du dépôt de la couche de protection contre l'oxydation et d'en améliorer sa qualité (à savoir une bonne homogénéité autour du cœur et sans défauts). La couche de protection contre l'oxydation assure ainsi une meilleure protection du cœur de la nanoparticule.
[0099] Dans un mode de réalisation de l'invention, on peut disposer initialement de nanoparticules émettrices de lumière sous la forme de cœurs émetteurs de lumière qui sont revêtus totalement ou en partie d'une couche de premiers ligands. Cette couche de premiers ligands peut être retirée totalement ou en partie par un traitement thermochimique approprié avant la mise en œuvre de l'étape b) du procédé selon l'invention.
[0100] En d'autres termes, si les cœurs émetteurs de lumière sont revêtus totalement ou en partie d'une couche de premiers ligands liés à la surface desdits cœurs, le procédé de fabrication selon l'invention peut comprendre une étape supplémentaire qui est réalisée avant l'étape b) et qui consiste en un traitement thermochimique destiné à retirer tout ou partie desdits premiers ligands. Ce traitement thermochimique est parfaitement à la portée de l'homme du métier. [0101] A titre d'exemple, le traitement thermochimique peut consister en l'un des traitements suivants :
[0102] Le 1er traitement consiste à sécher les nanoparticules émettrices de lumière, puis à les mettre en contact avec du sulfure d'ammonium dans du méthanol. Ensuite, un lavage en milieu organique (extraction hexane/méthanol), suivi d'un séchage en autoclave permet d'obtenir des nanoparticules émettrices de lumière dont les premiers ligands ont été retirés totalement ou en partie.
[0103] Le 2ème traitement consiste à sécher les nanoparticules émettrices de lumière, puis à les soumettre à un rayonnement ultra-violet à une longueur d'onde comprise entre 120 nm et 250 nm. Cela permet la percolation desdites nanoparticules et ainsi le retrait des premiers ligands totalement ou en partie.
[0104] Le 3ème traitement consiste à mettre en contact les nanoparticules émettrices de lumière avec du disoufre dans du N,N-diméthylformamide de telle sorte que les premiers ligands soient remplacés par des atomes de soufre et donc retirés totalement ou en partie desdites nanoparticules. Ce traitement est suivi d'un séchage lent en autoclave.
[0105] L'étape b) mettant en œuvre un dépôt par ALD peut être réalisée dans un réacteur à une température comprise entre la température ambiante et 400°C. Le dépôt par ALD peut être thermique ou assisté par plasma. De manière avantageuse, le dépôt de l'étape b) est réalisé par ALD assisté par plasma dans un réacteur à lit fluidisé. [0106] Avant la réalisation de l'étape c), le procédé de fabrication selon l'invention peut comprendre une étape supplémentaire consistant en l'exposition de la surface de la couche de protection contre l'oxydation à des radiations dans l'ultra -violet de longueur d'onde comprise entre 185 nm et 254 nm. Comme cela a été expliqué ci-dessus, ce processus d'activation de surface générant de l'ozone réactif in-situ, crée de nouveaux groupes hydroxyles à la surface de la couche de protection contre l'oxydation sur lesquels vont pouvoir se lier, de manière covalente, les deuxièmes ligands de la solution de deuxièmes ligands lors de l'étape c).
[0107] Au cours de l'étape c), les nanoparticules obtenues à l'issue de l'étape b) sont dispersées dans une solution de deuxièmes ligands. Les deuxièmes ligands peuvent être choisis parmi ceux qui ont été décrits ci-dessus dans la description des nanoparticules émettrices de lumière et protégées selon l'invention.
[0108] La solution de deuxièmes ligands comprend au moins un solvant qui peut être choisi parmi les solvants non aqueux inorganiques ou organiques. Il peut par exemple s'agir du chloroforme, toluène, hexane, éthanol, acétonitrile, acétate d'éthyle ou PGMEA. Le solvant est compatible chimiquement avec les deuxièmes ligands.
[0109] Le pourcentage massique des nanoparticules qui sont dispersées dans la solution de deuxièmes ligands par rapport à la masse de ladite solution de deuxièmes ligands peut être compris entre 10 % et 70 %. [0110] La concentration en deuxièmes ligands dans ladite solution de deuxièmes ligands peut être comprise entre 10 et 100 000 fois la concentration des nanoparticules obtenues à l'issue de l'étape b) qui sont dispersées dans ladite solution de deuxièmes ligands.
[0111] La dispersion des nanoparticules peut être réalisée à température ambiante, de préférence sous atmosphère inerte et sous agitation à une vitesse comprise entre 200 et 2500 tours/minute.
[0112] Dans un mode de réalisation de l'invention, à l'issue de l'étape c) du procédé de fabrication, la solution de deuxièmes ligands dans laquelle sont dispersées les nanoparticules émettrices de lumière et protégées est mélangée à une résine photo- ou thermosensible, par exemple une résine photo- ou thermosensible telle que décrite ci- dessus.
[0113] Dans d'autres modes de réalisation de l'invention, à l'issue de l'étape c), les nanoparticules émettrices de lumière et protégées sont extraites de la solution de deuxièmes ligands en effectuant au moins une étape choisie parmi les étapes d'extraction, précipitation et centrifugation. [0114] Dans un mode de réalisation de l'invention, les nanoparticules obtenues à l'issue de l'étape c) sont soumises successivement à une étape d'extraction, précipitation et centrifugation.
[0115] Les nanoparticules ainsi extraites peuvent ensuite être dispersées dans un solvant, par exemple un solvant choisi parmi ceux décrits ci-dessus de manière à obtenir une dispersion desdites nanoparticules telle que décrite ci-dessus. Cette dispersion peut ensuite être incorporée dans une résine photo- ou thermosensible, par exemple une résine photo- ou thermosensible telle que décrite ci-dessus.
[0116] Le solvant de la solution de deuxièmes ligands peut être le même que celui dans lequel étaient dispersées les nanoparticules émettrices de lumière de l'étape a).
[0117] En outre, comme cela a été expliqué ci-dessus, les deuxièmes ligands de la solution de deuxièmes ligands de l'étape c) présentent de préférence une affinité chimique :
- d'une part avec la résine dans laquelle on souhaite disperser les nanoparticules émettrices de lumière et protégées selon l'invention ;
- d'autre part avec le solvant de la solution de deuxièmes ligands.
[0118] En d'autres termes, le choix de la résine photo- ou thermosensible dans laquelle on souhaite incorporer les nanoparticules émettrices de lumière et protégées selon l'invention peut orienter le choix des deuxièmes ligands de la solution de deuxièmes ligands. Et ces deuxièmes ligands peuvent quant à eux orienter le choix du solvant de la solution de deuxièmes ligands.
[0119] Dans un mode de réalisation de l'invention, le procédé de fabrication peut être réalisé de la manière suivante : a) on dispose de nanoparticules émettrices de lumières (de préférence des boîtes quantiques) sous la forme de cœurs émetteurs de lumière ; b) les cœurs émetteurs de lumière sont revêtus par ALD à une température de 150°C d'une couche de S1O2 d'une épaisseur de 50 nm ; c) les nanoparticules obtenues à l'issue de l'étape b) sont dispersées dans une solution de PGMEA qui contient du 3-(triméthoxysilyl)propyl méthacrylate (à savoir des deuxièmes ligands), le pourcentage massique des nanoparticules par rapport à la masse de ladite solution de deuxièmes ligands est de 40% et la concentration des deuxièmes ligands est 10 000 fois supérieure à la concentration des nanoparticules dans ladite solution qui est maintenue pendant 12 heures sous atmosphère inerte et agitation à une vitesse de 1000 tours/minute.
[0120] A l'issue de l'étape c), les nanoparticules sont extraites dans un mélange hexane/méthanol avec des ratios volumiques compris entre 50/50 et 80/20. Puis, les nanoparticules collectées dans le méthanol sont précipitées à l'aide de méthanol ou d'éthanol. Le précipité ainsi obtenu est ensuite centrifugé de manière à récupérer les nanoparticules émettrices de lumière et protégées selon l'invention à l'état solide. Ces étapes d'extraction/précipitation/centrifugation peuvent être répétées jusqu'à ce que l'obtention de nanoparticules de pureté suffisante.
[0121] PARTIE EXPERIMENTALE :
[0122] Des expérimentations ont été réalisées sur des couches de protection contre l'oxydation correspondant aux 1er, 2ème, 3ème et 4ème modes de réalisation de couche de protection contre l'oxydation qui ont été décrits ci-dessus. [0123] Ces expérimentations ont consisté à déterminer la perméabilité à l'hélium des couches de protection contre l'oxydation de manière à évaluer les propriétés barrière desdites couches. Plus la perméabilité à l'hélium de la couche de protection contre l'oxydation était faible, meilleur était l'effet barrière de ladite couche ou en d'autres termes meilleure était sa fonction de protection du cœur émetteur de lumière. [0124] Le protocole expérimental a été le suivant :
[0125] Chaque couche de protection contre l'oxydation testée a été réalisée par ALD sur un support en polyimide d'une épaisseur de 125 pm de manière à constituer un échantillon.
[0126] Les échantillons ainsi obtenus pour chacune des couches de protection contre l'oxydation testées ont été insérés dans un perméamètre, à savoir un dispositif de mesure qui combine une chambre sous vide à un spectromètre de masse. Cela a permis de mesurer la quantité d'hélium diffusé à travers chacun de ces échantillons (ou autrement dit la perméabilité à l'hélium de chacun de ces échantillons).
[0127] En outre, la perméabilité à l'hélium d'un échantillon dit de « référence » qui consistait uniquement en le support de polyimide (donc dépourvu de toute couche de protection contre l'oxydation) a été mesurée.
[0128] Une diminution de la perméabilité à l'hélium de 2 ordres de grandeur a été observée avec ces couches de protection contre l'oxydation par rapport à la perméabilité à l'hélium de l'échantillon de référence. [0129] Cela signifie que les couches de protection contre l'oxydation telles que décrites ci- dessus dans les 1er, 2ème, 3ème et 4ème modes de réalisation de couche de protection contre l'oxydation sont particulièrement appropriées pour protéger le cœur émetteur de lumière de la nanoparticule selon l'invention contre les agents externes (eau, oxygène et radicaux libres issus de réactions de polymérisation de résine photo- ou thermosensible).
[0130] En outre, il a été constaté au cours de ces expérimentations que la perméabilité à l'hélium des échantillons des 2ème, 3ème et 4ème modes de réalisation (à savoir les échantillons multi-couches) était plus faible que celle des échantillons du 1er mode de réalisation (à savoir les échantillons mono-couche). Ces résultats expérimentaux ont ainsi confirmé qu'une couche de protection contre l'oxydation se décomposant en plusieurs couches avait un meilleur effet barrière qu'une couche de protection contre l'oxydation sous la forme d'une seule couche. Cette couche de protection contre l'oxydation sous la forme d'une multi-couches est ainsi plus efficace pour protéger le cœur émetteur de lumière des agents externes précités.
[0131] Enfin, parmi tous les échantillons testés, la plus faible perméabilité à l'hélium a été obtenue avec des échantillons selon le 4ème mode de réalisation, à savoir des échantillons dont la couche de protection contre l'oxydation comprenait une alternance des deux couches suivantes qui étaient superposées les unes sur les autres :
- une lère couche d'épaisseur de 5 nm comprenant AI2O3,
- une 2ème couche superposée à la lère couche et d'épaisseur de 5 nm comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci, l'épaisseur totale de la couche de protection étant comprise entre 30 nm et 100 nm et la couche externe (à savoir la couche la plus éloignée du cœur de la nanoparticule) n'étant pas une lère couche d'A Os.
[0132] Ces résultats expérimentaux ont ainsi confirmé que plus le nombre de couches de la couche de protection contre l'oxydation était élevé, meilleur était l'effet barrière de cette couche et donc meilleure était son aptitude à protéger le cœur émetteur des agents externes précités.
[0133] L'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci- dessous en référence au dessin annexé représentant, à titre d'exemple non limitatif, deux mises en œuvre du procédé de fabrication de nanoparticules émettrices de lumière et protégées selon l'invention.
[0134] [Fig. 1] La figure 1 est une vue schématique d'une lère mise en œuvre du procédé de fabrication de nanoparticules émettrices de lumière et protégées selon l'invention dont le cœur n'est pas revêtu d'une couche de premiers ligands.
[0135] [Fig. 2] La figure 2 est une vue schématique d'une 2ème mise en œuvre du procédé de fabrication de nanoparticules émettrices de lumière et protégées selon l'invention dont le cœur est revêtu d'une couche de premiers ligands.
[0136] Sur la figure 1 est représentée une lère forme de réalisation de la fabrication d'une nanoparticule émettrice de lumière et protégée 5a selon l'invention. Initialement, on disposait d'une nanoparticule émettrice de lumière 8a sous la forme d'un cœur 1. Le cœur 1 était une boîte quantique composé de InP/ZnSe/ZnS.
[0137] Au cours de l'étape b) du procédé de fabrication selon l'invention de ladite nanoparticule 5a, le cœur 1 a été revêtu par ALD d'une couche de protection contre l'oxydation 3 composée d'une lère couche de AI2O3 d'épaisseur 25 nm et d'une 2ème couche T1O2 d'épaisseur 25 nm qui était superposée sur la lère couche de AI2O3. On a ainsi obtenu une nanoparticule 9a dont le cœur 1 était protégé.
[0138] Ensuite, la nanoparticule 9a a été dispersée à l'étape c) du procédé de fabrication selon l'invention dans une solution de deuxièmes ligands 6 contenant 3- (triméthoxysilyl)propyl méthacrylate (à savoir des deuxièmes ligands) et du PGMEA comme solvant, la concentration des ligands étant 10 000 fois supérieure à celle des nanoparticules 9a, et ce à température ambiante et sous atmosphère inerte de manière à obtenir une nanoparticule émettrice de lumière et protégée 5a selon l'invention. Plus précisément, au cours de l'étape c), les deuxièmes ligands 6 se sont greffés à la surface de la couche de protection contre l'oxydation 3 de manière à former une couche 4 de deuxièmes ligands 6.
[0139] Sur la figure 2 est représentée une 2ème forme de réalisation de la fabrication d'une nanoparticule émettrice de lumière et protégée 5b selon l'invention qui se distingue de la nanoparticule 5a uniquement en ce que le cœur 1 est revêtu totalement d'une couche 2 de premiers ligands 7 consistant en l'acide 9-octadécénoïque et qui sont liés à la surface dudit cœur 1. En d'autres termes, on disposait initialement d'une nanoparticule émettrice de lumière 8b dont le cœur 1 était revêtu totalement d'une couche 2 de premiers ligands 7. Les étapes b) et c) du procédé de fabrication selon l'invention ont été mises en œuvre pour l'obtention de la nanoparticule 5b de la même manière que pour la nanoparticule 5a. Plus précisément, à l'issue de l'étape b), on a obtenu une nanoparticule émettrice de lumière 9b dont le cœur 1 revêtu d'une couche 2 de premiers ligands 7 était protégé par la couche de protection contre l'oxydation 3.

Claims

REVENDICATIONS
[Revendication 1] Nanoparticule émettrice de lumière et protégée (5a, 5b) qui est composée d'une nanoparticule émettrice de lumière (8a, 8b) sous la forme d'un cœur (1) émetteur de lumière optionnellement revêtu totalement ou en partie d'une couche (2) de premiers ligands (7) liés à la surface dudit cœur (1), ledit cœur (1), le cas échéant ladite couche (2) de premiers ligands (7), étant revêtu(e) d'au moins une couche de protection contre l'oxydation (3), caractérisée en ce que ladite nanoparticule (5a, 5b) comprend en outre une couche (4) formée de deuxièmes ligands (6) qui sont greffés à la surface de ladite couche de protection contre l'oxydation (3).
[Revendication 2] Nanoparticule (5a, 5b) selon la revendication 1, caractérisée en ce que le cœur (1) est choisi parmi les boîtes quantiques, les nanoparticules métalliques, les nanoparticules d'oxyde métallique, les nanoparticules de silicium, les nanoparticules de germanium, les nanophosphores, les nanoparticules de terres rares et les boîtes de carbone.
[Revendication 3] Nanoparticule (5a, 5b) selon la revendication 2, caractérisée en ce que le cœur (1) est une boîte quantique.
[Revendication 4] Nanoparticule (5a, 5b) selon la revendication 3, caractérisée en ce que la boîte quantique comprend au moins un nanocristal semi-conducteur choisi parmi CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS,
ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, GaN, GaP, G a As, GaSb, AIN, AIP, AIS, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GaNAs, GaPAs, AINP, Al N As, AlPAs, InAIPAs, SbTe, PbSe, GaSe, PbS, PbSe, PbTe, SnS, SnTe et PbSnTe.
[Revendication 5] Nanoparticule (5b) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le cœur (1) est revêtu totalement ou en partie d'une couche (2) de premiers ligands (7) qui sont liés à la surface dudit cœur (1) et en ce que lesdits premiers ligands (7) sont des composés de formule chimique (I) suivante :
[Chem I] ί dans laquelle :
- n peut être égal à 1, 2 ou 3,
- X est un groupe capable d'interagir avec le cœur (1) émetteur de lumière grâce à des interactions de type covalente, ionique ou de Van der Waals,
- R est un groupe organique non hydrolysable.
[Revendication 6] Nanoparticule (5b) selon la revendication 5, caractérisée en ce que le cœur (1) est une boîte quantique et en ce que les premiers ligands (7) qui sont liés à la surface dudit cœur (1) sont choisis parmi l'octadecylamine, le dodecanthiol, la trioctylphosphine, l'acide lipoïque, le trioctylphosphine oxyde, l'oyelamine, l'acide 9- octadécénoïque et l'acide oléique.
[Revendication 7] Nanoparticule (5a, 5b) selon l'une quelconque des revendications 1 à 6, caractérisée en ce que l'épaisseur de la couche de protection contre l'oxydation (3) est comprise entre 1 nm et 400 nm.
[Revendication 8] Nanoparticule (5a, 5b) selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la couche de protection contre l'oxydation (3) comprend une pluralité de couches superposées les unes sur les autres, de préférence entre 1 et 100 couches.
[Revendication 9] Nanoparticule (5a, 5b) selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la couche de protection contre l'oxydation (3) est une couche d'oxyde métallique, de nitrure métallique ou d'oxynitrure, pris seul ou en mélange de ceux-ci.
[Revendication 10] Nanoparticule (5a, 5b) selon la revendication 9, caractérisée en ce que la couche de protection contre l'oxydation (3) comprend au moins un oxyde métallique choisi parmi AI2O3, S1O2, T1O2, ZrÜ2, ZnO, B2O3, C02O3, Cr2Û3, CuO, Fe2Û3, Ga2Û3, Hf02, ln2Û3, MgO, Nb2Û5, NiO, SnÜ2, Ta20set Hf02, pris seul ou en mélange de ceux-ci.
[Revendication 11] Nanoparticule (5a, 5b) selon la revendication 10, caractérisée en ce que la couche de protection contre l'oxydation (3) comprend les deux couches suivantes :
- une lère couche d'épaisseur comprise entre 2 nm et 100 nm, de préférence entre 5 nm et 50 nm, comprenant AI2O3,
- une 2ème couche dite « externe » superposée à la lère couche et d'épaisseur comprise entre 5 nm et 50 nm, comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci.
[Revendication 12] Nanoparticule (5a, 5b) selon la revendication 10, caractérisée en ce que la couche de protection contre l'oxydation (3) comprend une alternance des deux couches suivantes qui sont superposées les unes sur les autres :
- une lère couche d'épaisseur comprise entre 1 nm et 10 nm, comprenant AI2O3,
- une 2ème couche superposée à la lère couche et d'épaisseur comprise entre 1 nm et 10 nm, comprenant T1O2, ZrÜ2, S1O2 ou ZnO, pris seul ou en mélange de ceux-ci, l'épaisseur totale de la couche de protection (3) étant comprise entre 30 et 100 nm et la couche externe (à savoir la couche la plus éloignée du cœur (1) de la nanoparticule (5a, 5b)) n'étant pas une lère couche comprenant AI2O3.
[Revendication 13] Nanoparticule (5a, 5b) selon l'une quelconque des revendications 1 à 12, caractérisée en ce que les deuxièmes ligands (6) de la couche (4) formée de deuxièmes ligands (6) qui sont greffés à la surface de la couche de protection contre l'oxydation (3) sont des silanes, de préférence des silanes de formule chimique (II) suivante :
[Chem II] dans laquelle :
- n est égal à 1, 2 ou 3,
- Y est un groupe hydrolysable, de préférence un groupe alcoxy, halogénure ou amine,
- R est un groupe organique non hydrolysable.
[Revendication 14] Nanoparticule (5a, 5b) selon la revendication 13, caractérisée en ce que lesdits deuxièmes ligands (6) sont des silanes de formule chimique (III) suivante : [Chem III] SS:iJ G R }·$-!! dans laquelle :
- n est égal à 1, 2 ou 3, - R est un groupe organique non hydrolysable,
- R' est un groupe organique aliphatique.
[Revendication 15] Dispersion de nanoparticules émettrices de lumière et protégées (5a, 5b) selon l'une quelconque des revendications 1 à 14 dans un solvant non aqueux organique ou inorganique.
[Revendication 16] Dispersion selon la revendication 15, caractérisée en ce que le solvant est choisi parmi le chloroforme, le toluène, l'hexane, l'acétate de 2-méthoxy-l- méthyléthyle (abrégé PGMEA), l'acétate d'éthyle, l'acétonitrile et l'éthanol.
[Revendication 17] Dispersion selon la revendication 15 ou 16, caractérisée en ce que la concentration en lesdites nanoparticules (5a, 5b) dans ladite dispersion est comprise entre 1 mg/mL et 900 mg/mL, de préférence entre 100 mg/mL et 500 mg/mL.
[Revendication 18] Composition de résine, caractérisée en ce qu'elle comprend des nanoparticules émettrices de lumière et protégées (5a, 5b) selon l'une quelconque des revendications 1 à 14.
[Revendication 19] Composition de résine selon la revendication 18, caractérisée en ce que la résine est une résine photo- ou thermosensible, de préférence une résine choisie parmi les résines vinylester, acrylate époxyde, polyimide et polyesters insaturés.
[Revendication 20] Composition de résine selon la revendication 18 ou 19, caractérisée en ce qu'elle comprend, en pourcentages massiques exprimés par rapport à la masse de ladite composition :
- entre 20 % et 40 % desdites nanoparticules (5a, 5b) ;
- entre 60 % et 80 % de résine.
[Revendication 21] Dispositif optoélectronique comprenant une pluralité de pixels qui comprennent chacun une pluralité de sous-pixels, chaque sous-pixel étant configuré pour émettre une couleur spécifique et comprend au moins un émetteur de lumière émettant un rayonnement lumineux d'une couleur donnée, ledit dispositif optoélectronique comprend au moins un convertisseur de rayonnement qui est disposé à proximité de l'au moins un émetteur de lumière, caractérisé en ce que le convertisseur de rayonnement comprend la composition de résine selon l'une quelconque des revendications 18 à 20.
[Revendication 22] Dispositif optoélectronique selon la revendication 21, caractérisé en ce que l'émetteur de lumière est une diode électroluminescente.
[Revendication 23] Procédé de fabrication de nanoparticules émettrices de lumière et protégées (5a, 5b) selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprends au moins les étapes suivantes : a ) on dispose de nanoparticules émettrices de lumière (8a, 8b) sous la forme de cœurs émetteurs de lumière (1) qui sont optionnellement revêtus totalement ou en partie d'une couche (2) de premiers ligands (7) qui sont liés à la surface desdits cœurs (1) ; b) on revêt les cœurs (1), le cas échéant la couche (2) de premiers ligands (7) de ces cœurs (1), d'une couche de protection contre l'oxydation (3) par dépôt de couche atomique (communément appelée « ALD » qui est l'acronyme anglophone pour « Atomic Layer Déposition »), de manière à obtenir des nanoparticules (9a, 9b) dont le cœur (1) est protégé, le cas échéant dont le cœur (1) revêtu totalement ou en partie d'une couche (2) de premiers ligands (7) est protégé ; c) on disperse les nanoparticules (9a, 9b) obtenues à l'issue de l'étape b) dans une solution de deuxièmes ligands (6) de manière à ce que les deuxièmes ligands (6) se greffent à la surface de la couche de protection contre l'oxydation (3) en formant une couche (4) de deuxièmes ligands (6) à la surface de ladite couche de protection contre l'oxydation (3).
[Revendication 24] Procédé de fabrication selon la revendication 23, caractérisé en ce que les cœurs (1) émetteurs de lumière sont revêtus totalement ou en partie d'une couche (2) de premiers ligands (7) liés à la surface desdits cœurs (1) et en ce que ledit procédé de fabrication comprend une étape supplémentaire qui est réalisée avant l'étape b) et qui consiste en un traitement thermochimique destiné à retirer tout ou partie desdits premiers ligands (7).
[Revendication 25] Procédé de fabrication selon la revendication 23 ou 24, caractérisé en qu'avant la réalisation de l'étape c), ledit procédé de fabrication comprend une étape supplémentaire consistant en l'exposition de la surface de la couche de protection contre l'oxydation (3) à des radiations dans l'ultra-violet de longueur d'onde comprise entre 185 nm et 254 nm. [Revendication 26] Utilisation d'une composition de résine selon l'une quelconque des revendications 18 à 20 en tant que convertisseur de rayonnement d'un dispositif optoélectronique.
EP22750852.0A 2021-06-30 2022-06-30 Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique Pending EP4363520A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107021A FR3124799A1 (fr) 2021-06-30 2021-06-30 Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique
PCT/FR2022/051307 WO2023275498A1 (fr) 2021-06-30 2022-06-30 Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique

Publications (1)

Publication Number Publication Date
EP4363520A1 true EP4363520A1 (fr) 2024-05-08

Family

ID=77821857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22750852.0A Pending EP4363520A1 (fr) 2021-06-30 2022-06-30 Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique

Country Status (4)

Country Link
EP (1) EP4363520A1 (fr)
CN (1) CN117597413A (fr)
FR (1) FR3124799A1 (fr)
WO (1) WO2023275498A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867180B1 (fr) * 2004-03-02 2006-06-16 Univ Claude Bernard Lyon Nanoparticules hybrides comprenant un coeur de ln203 porteuses de ligands biologiques et leur procede de preparation
GB201116517D0 (en) * 2011-09-23 2011-11-09 Nanoco Technologies Ltd Semiconductor nanoparticle based light emitting materials
US9567514B2 (en) * 2015-05-13 2017-02-14 Pacific Light Technologies Corp. Composition of, and method for forming, a semiconductor structure with multiple insulator coatings
US11884854B2 (en) * 2019-03-28 2024-01-30 Ecole Polytechnique Federale De Lausanne (Epfl) Method for producing an oxide shell around nanocrystals

Also Published As

Publication number Publication date
CN117597413A (zh) 2024-02-23
FR3124799A1 (fr) 2023-01-06
WO2023275498A1 (fr) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6507284B2 (ja) 多孔質粒子内の封止量子ドット
US9909738B2 (en) Highly stable QDS-composites for solid state lighting and the method of making them through initiator-free polymerization
US20170306221A1 (en) Encapsulated materials in porous particles
JP2016172829A (ja) 被覆半導体ナノ粒子およびその製造方法。
KR101880596B1 (ko) 양자점 또는 염료를 함유하는 대면적 필름 및 이의 제조 방법
KR101823662B1 (ko) 나노구조 재료 방법 및 디바이스
JP6652053B2 (ja) 半導体ナノ粒子集積体およびその製造方法
JPWO2014208356A1 (ja) 光学フィルム及び発光デバイス
US11608470B2 (en) Thermally and chemically stable quantum dots encapsulated with functional polymeric ligands, method for preparing the encapsulated quantum dots and thermally stable quantum dot optical film using the encapsulated quantum dots
EP4363520A1 (fr) Nanoparticule émettrice de lumière et protégée, son procédé de fabrication et son application pour les convertisseurs de rayonnement de dispositif optoélectronique
EP3815141B1 (fr) Dispositifs émetteurs, écran d'affichage associé et procédés de fabrication d'un dispositif émetteur
FR3125632A1 (fr) Empilement de matériaux à effet d’antenne et dispositif optoélectronique comprenant un tel empilement
KR102564054B1 (ko) 양자점, 이를 포함하는 양자점 발광다이오드, 양자점 필름, 광 변환 수지 조성물, 상기 광 변환 수지 조성물을 이용하여 형성되는 컬러필터, 광 변환 적층기재 및 상기 컬러필터 또는 상기 광 변환 적층기재를 포함하는 화상표시장치
KR102488238B1 (ko) 양자점, 이를 포함하는 양자점 발광다이오드, 양자점 필름, 광 변환 수지 조성물, 상기 광 변환 수지 조성물을 이용하여 형성되는 컬러필터, 광 변환 적층기재 및 상기 컬러필터 또는 상기 광 변환 적층기재를 포함하는 화상표시장치
TW201925417A (zh) 量子產率之恢復

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR