EP4363477A1 - Production de mousses de pu à l'aide de polyols recyclés - Google Patents
Production de mousses de pu à l'aide de polyols recyclésInfo
- Publication number
- EP4363477A1 EP4363477A1 EP22738451.8A EP22738451A EP4363477A1 EP 4363477 A1 EP4363477 A1 EP 4363477A1 EP 22738451 A EP22738451 A EP 22738451A EP 4363477 A1 EP4363477 A1 EP 4363477A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- foam
- carbon atoms
- polyol
- radicals
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005862 polyol Polymers 0.000 title claims abstract description 219
- 150000003077 polyols Chemical class 0.000 title claims abstract description 214
- 239000006260 foam Substances 0.000 title claims abstract description 183
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 229920005830 Polyurethane Foam Polymers 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims abstract description 52
- 239000003054 catalyst Substances 0.000 claims abstract description 41
- 239000012948 isocyanate Substances 0.000 claims abstract description 36
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 36
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000126 substance Substances 0.000 claims abstract description 28
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 claims abstract description 26
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 claims abstract description 22
- OHKOAJUTRVTYSW-UHFFFAOYSA-N 2-[(2-aminophenyl)methyl]aniline Chemical compound NC1=CC=CC=C1CC1=CC=CC=C1N OHKOAJUTRVTYSW-UHFFFAOYSA-N 0.000 claims abstract description 21
- UTNMPUFESIRPQP-UHFFFAOYSA-N 2-[(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1CC1=CC=CC=C1N UTNMPUFESIRPQP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000003381 stabilizer Substances 0.000 claims abstract description 13
- 238000005829 trimerization reaction Methods 0.000 claims abstract description 4
- COPLXRFZXQINJM-UHFFFAOYSA-N isocyanic acid;hydrate Chemical compound O.N=C=O COPLXRFZXQINJM-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004814 polyurethane Substances 0.000 claims description 114
- 229920002635 polyurethane Polymers 0.000 claims description 98
- 238000004064 recycling Methods 0.000 claims description 79
- 125000004432 carbon atom Chemical group C* 0.000 claims description 77
- -1 cell openers Substances 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 43
- 239000011496 polyurethane foam Substances 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 33
- 239000001257 hydrogen Substances 0.000 claims description 32
- 229910052739 hydrogen Inorganic materials 0.000 claims description 32
- 150000003254 radicals Chemical class 0.000 claims description 32
- 239000000654 additive Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 150000005840 aryl radicals Chemical class 0.000 claims description 26
- 229920006395 saturated elastomer Polymers 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 229920000570 polyether Polymers 0.000 claims description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 20
- 150000001412 amines Chemical class 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 20
- 230000007062 hydrolysis Effects 0.000 claims description 20
- 238000006460 hydrolysis reaction Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000002585 base Substances 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 150000002431 hydrogen Chemical class 0.000 claims description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- 150000002148 esters Chemical class 0.000 claims description 12
- 125000005843 halogen group Chemical group 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 10
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 10
- 125000002947 alkylene group Chemical group 0.000 claims description 9
- 125000002524 organometallic group Chemical group 0.000 claims description 9
- 239000004971 Cross linker Substances 0.000 claims description 8
- 125000001033 ether group Chemical group 0.000 claims description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 239000003063 flame retardant Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 claims description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 6
- 150000002902 organometallic compounds Chemical class 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical group C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 claims description 6
- KPPVNWGJXFMGAM-UUILKARUSA-N (e)-2-methyl-1-(6-methyl-3,4-dihydro-2h-quinolin-1-yl)but-2-en-1-one Chemical compound CC1=CC=C2N(C(=O)C(/C)=C/C)CCCC2=C1 KPPVNWGJXFMGAM-UUILKARUSA-N 0.000 claims description 5
- 239000004970 Chain extender Substances 0.000 claims description 5
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 150000003377 silicon compounds Chemical class 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 239000003139 biocide Substances 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 4
- 239000000975 dye Substances 0.000 claims description 4
- 239000003205 fragrance Substances 0.000 claims description 4
- 150000002924 oxiranes Chemical class 0.000 claims description 4
- 239000000049 pigment Substances 0.000 claims description 4
- 150000003871 sulfonates Chemical class 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000002318 adhesion promoter Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000003995 emulsifying agent Substances 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- 150000002736 metal compounds Chemical class 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 238000010525 oxidative degradation reaction Methods 0.000 claims description 3
- 239000004014 plasticizer Substances 0.000 claims description 3
- 239000004848 polyfunctional curative Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- FCQPNTOQFPJCMF-UHFFFAOYSA-N 1,3-bis[3-(dimethylamino)propyl]urea Chemical compound CN(C)CCCNC(=O)NCCCN(C)C FCQPNTOQFPJCMF-UHFFFAOYSA-N 0.000 claims description 2
- MPJZCYUPWINKPK-UHFFFAOYSA-N 1,4-diazabicyclo[2.2.2]octan-3-ylmethanol Chemical compound C1CN2C(CO)CN1CC2 MPJZCYUPWINKPK-UHFFFAOYSA-N 0.000 claims description 2
- NCUPDIHWMQEDPR-UHFFFAOYSA-N 2-[2-[2-(dimethylamino)ethoxy]ethyl-methylamino]ethanol Chemical compound CN(C)CCOCCN(C)CCO NCUPDIHWMQEDPR-UHFFFAOYSA-N 0.000 claims description 2
- IIVBUJGYWCCLNG-UHFFFAOYSA-N 3-(dimethylamino)propylurea Chemical compound CN(C)CCCNC(N)=O IIVBUJGYWCCLNG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000000306 component Substances 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- DNRUQHYIUPKPOQ-UHFFFAOYSA-N n'-[2-[2-(dimethylamino)ethoxy]ethyl]-n'-methylpropane-1,3-diamine Chemical compound CN(C)CCOCCN(C)CCCN DNRUQHYIUPKPOQ-UHFFFAOYSA-N 0.000 claims description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 239000000565 sealant Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000011493 spray foam Substances 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims description 2
- XOUUBIIWXXBSJN-UHFFFAOYSA-N 1-[3-[bis[3-(dimethylamino)propyl]amino]propyl-(2-hydroxypropyl)amino]propan-2-ol Chemical compound CC(O)CN(CC(C)O)CCCN(CCCN(C)C)CCCN(C)C XOUUBIIWXXBSJN-UHFFFAOYSA-N 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 claims 1
- 239000003963 antioxidant agent Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 230000002265 prevention Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 21
- 239000004721 Polyphenylene oxide Substances 0.000 description 20
- 239000011541 reaction mixture Substances 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 16
- 238000009472 formulation Methods 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000005187 foaming Methods 0.000 description 13
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 12
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000012855 volatile organic compound Substances 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000002390 rotary evaporation Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- IPILPUZVTYHGIL-UHFFFAOYSA-M tributyl(methyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](C)(CCCC)CCCC IPILPUZVTYHGIL-UHFFFAOYSA-M 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 238000007664 blowing Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000005056 polyisocyanate Substances 0.000 description 5
- 229920001228 polyisocyanate Polymers 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 239000013518 molded foam Substances 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 3
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 3
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 3
- 229920002396 Polyurea Polymers 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 150000004982 aromatic amines Chemical class 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 3
- 235000019838 diammonium phosphate Nutrition 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000012972 dimethylethanolamine Substances 0.000 description 3
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004872 foam stabilizing agent Substances 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 150000003142 primary aromatic amines Chemical class 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- YGOFNNAZFZYNIX-UHFFFAOYSA-N 3-N-phenylbenzene-1,2,3-triamine Chemical compound NC=1C(=C(C=CC1)NC1=CC=CC=C1)N YGOFNNAZFZYNIX-UHFFFAOYSA-N 0.000 description 2
- YPIFGDQKSSMYHQ-UHFFFAOYSA-M 7,7-dimethyloctanoate Chemical compound CC(C)(C)CCCCCC([O-])=O YPIFGDQKSSMYHQ-UHFFFAOYSA-M 0.000 description 2
- XZOYHFBNQHPJRQ-UHFFFAOYSA-N 7-methyloctanoic acid Chemical compound CC(C)CCCCCC(O)=O XZOYHFBNQHPJRQ-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004114 Ammonium polyphosphate Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 2
- 229920001276 ammonium polyphosphate Polymers 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000012973 diazabicyclooctane Substances 0.000 description 2
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 2
- ATLPLEZDTSBZQG-UHFFFAOYSA-L dioxido-oxo-propan-2-yl-$l^{5}-phosphane Chemical compound CC(C)P([O-])([O-])=O ATLPLEZDTSBZQG-UHFFFAOYSA-L 0.000 description 2
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 150000004820 halides Chemical group 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 229920005903 polyol mixture Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 2
- 229940066675 ricinoleate Drugs 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000012974 tin catalyst Substances 0.000 description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 2
- ASLWPAWFJZFCKF-UHFFFAOYSA-N tris(1,3-dichloropropan-2-yl) phosphate Chemical compound ClCC(CCl)OP(=O)(OC(CCl)CCl)OC(CCl)CCl ASLWPAWFJZFCKF-UHFFFAOYSA-N 0.000 description 2
- KVMPUXDNESXNOH-UHFFFAOYSA-N tris(1-chloropropan-2-yl) phosphate Chemical compound ClCC(C)OP(=O)(OC(C)CCl)OC(C)CCl KVMPUXDNESXNOH-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- FRCHKSNAZZFGCA-UHFFFAOYSA-N 1,1-dichloro-1-fluoroethane Chemical compound CC(F)(Cl)Cl FRCHKSNAZZFGCA-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 1
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical class CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- IUVGGESEBFJHPK-UHFFFAOYSA-N 2-ethoxy-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical class CCOP1(=O)OCCO1 IUVGGESEBFJHPK-UHFFFAOYSA-N 0.000 description 1
- BOZRCGLDOHDZBP-UHFFFAOYSA-N 2-ethylhexanoic acid;tin Chemical compound [Sn].CCCCC(CC)C(O)=O BOZRCGLDOHDZBP-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- ACZGCWSMSTYWDQ-UHFFFAOYSA-N 3h-1-benzofuran-2-one Chemical class C1=CC=C2OC(=O)CC2=C1 ACZGCWSMSTYWDQ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FJNCXZZQNBKEJT-UHFFFAOYSA-N 8beta-hydroxymarrubiin Natural products O1C(=O)C2(C)CCCC3(C)C2C1CC(C)(O)C3(O)CCC=1C=COC=1 FJNCXZZQNBKEJT-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical compound N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000079 Memory foam Polymers 0.000 description 1
- KOOHVFDDZPUZIL-UHFFFAOYSA-N P(O)(O)=O.CC(C)(C)C Chemical compound P(O)(O)=O.CC(C)(C)C KOOHVFDDZPUZIL-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241001425800 Pipa Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 208000001848 dysentery Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ILEDWLMCKZNDJK-UHFFFAOYSA-N esculetin Chemical compound C1=CC(=O)OC2=C1C=C(O)C(O)=C2 ILEDWLMCKZNDJK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000013038 hand mixing Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000008210 memory foam Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- ZUZLIXGTXQBUDC-UHFFFAOYSA-N methyltrioctylammonium Chemical compound CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC ZUZLIXGTXQBUDC-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003797 solvolysis reaction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical class [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/161—Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
- C08G18/163—Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
- C08G18/165—Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22 covered by C08G18/18 and C08G18/24
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1825—Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/282—Alkanols, cycloalkanols or arylalkanols including terpenealcohols
- C08G18/2825—Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7614—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
- C08G18/7621—Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/28—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/14—Applications used for foams
Definitions
- the invention is in the field of polyurethanes and relates to the production of PU foams using recycled polyols.
- polyurethanes Due to their excellent mechanical and physical properties, polyurethanes are used in a wide variety of areas.
- the area of PU foams represents a particularly important market for the most diverse types of polyurethanes.
- polyurethanes are understood to mean all reaction products starting from isocyanates, in particular from polyisocyanates, and corresponding isocyanate-reactive molecules, in particular polyols. This also includes, inter alia, polyisocyanurates, polyureas and isocyanate or polyisocyanate reaction products containing allophanate, biuret, uretdione, uretimine or carbodiimide.
- Polyurethanes are now so widespread around the world that recycling these materials is becoming increasingly important. In the prior art, therefore, there are already different recycling processes for the utilization of polyurethane waste.
- the well-known chemical recycling processes such as hydrolysis, e.g. described in US Pat can be used.
- These polyol mixtures are generally referred to as recycled polyols.
- the subject of the invention is a process for the production of PU foams by reaction
- the recycled polyol used being 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4 '-Diaminodiphenylmethane contains, in a total amount of 0.00001% to 0.4% by weight, preferably 0.00002% to 0.2% by weight, particularly preferably 0.00005% to 0.1% by weight. -% based on total recycled polyol.
- the percentage by weight of 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4'-diaminodiphenylmethane in the recycling polyol is determined by analyzing 25 pL of a Sample for the preparation of which 25 mg
- the subject of the invention makes it possible to provide polyurethane foams using larger amounts of recycled polyol, which correspond to the quality of conventional polyurethane foams, but which have been produced in the same way with conventional polyols.
- the subject of the invention enables a significant increase in the total proportion of recycled raw materials in the polyurethane foams produced according to the invention compared to foams made from conventional or predominantly conventionally produced polyols, which is an important advance in terms of the recyclability of polyurethane foams.
- a property of recycling polyols in general which are obtained by processes of the prior art, is that they always have a proportion of primary aromatic amines, which are formed during the depolymerization of PU and can only be separated by complex large-scale separation methods such as distillation and/or or extraction and/or washing processes can be removed from the recycling polyols.
- these methods are often resource-intensive and result in high costs and waste.
- diaminodiphenylmethane totaling >0.4% by weight can lead to instability, even to the point of collapsing of the rising foam, so that satisfactory PU foams would then not be obtained.
- diaminodiphenylmethane totaling >0.4% by weight can lead to instability, even to the point of collapsing of the rising foam, so that satisfactory PU foams would then not be obtained.
- polyols with residual contents of 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4'-diaminodiphenylmethane with a total of >0.4% by weight significant flow disturbances occur due to their rapid reaction with isocyanates and the resulting accelerated polymer build-up.
- recycling polyols with the abovementioned content of 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4'-diaminodiphenylmethane are used , In foams with an index between 75 and 130, preferably between 85 and 125, more preferably between 90 and 120 and in particular between 95 and 115.
- the invention also makes it possible to use large amounts of the appropriate recycling polyol, with no or only an insignificant reduction in foam quality or in a few cases even an improvement in foam quality compared to a foam made from conventionally produced polyol. It therefore corresponds to a preferred embodiment of the invention if more than 30% by weight, preferably more than 50% by weight, preferably more than 70% by weight, based on the total polyol component used, is more preferred in the process according to the invention more than 80% by weight, in particular more than 95 wt.
- the recycling polyol used is a polyol that results in particular from the recycling of polyurethane waste.
- Polyurethane waste includes all those polyurethanes, especially PU foams, which are no longer used but are intended for disposal. It therefore corresponds to a preferred embodiment of the invention if the recycling polyol used is a recycling polyol produced from polyurethane waste and/or recycling
- Polymer polyol is preferably obtained from the depolymerization of PU foam, in particular of PU hot flexible foam (PU standard foam), viscoelastic PU foam and/or HR PU foam, the recycling polyol and/or recycling polymer polyol being separated by solvolysis , preferably by hydrolysis, aminolysis, acidolysis or glycolysis, in particular by hydrolysis, e.g. as described in the as yet unpublished European
- recycling polyol also includes recycling polymer polyol.
- a residual content of primary aromatic amines in the resulting polyol is to be expected in all of the recycling processes mentioned for PU foams that were produced with TDI and/or MDI, since these are released in the depolymerization step.
- the process used for recovery and purification after depolymerization e.g. removal of aromatic amines and secondary components by distillation
- the recycling polyol can be freed from other recycling products, in particular the primary aromatic amines that also occur and the reagents added for the respective depolymerization process, using conventional separation methods.
- Some exemplary methods for the purification and recovery of the recycling polyol from the recycling raw product mixture that is present after the respective depolymerization step are mentioned below.
- One way to separate water from the raw recycle product mixture is to remove it by distillation.
- 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and / or 4, 4'-diaminodiphenylmethane can by distillation, by extraction with aromatic solvents or by washing with acidic washing water or be removed from the recycling raw product mixture by other methods from the respective recycling polyol, but the complete removal is technically difficult and at high cost.
- the recycling polyol used can be obtained from the hydrolysis of polyurethane, comprising reacting the polyurethane with water in the presence of a base-catalyst combination (I) or (II), where (I) comprises a base having a pKb value of at 25 °C from 1 to 10 °C, and a catalyst selected from the group consisting of quaternary ammonium salts containing an ammonium cation comprising 6 to 30 carbon atoms and organic sulfonates containing at least 7 carbon atoms °C, or wherein (II ) includes a base with a pKb value at 25 ° C of ⁇ 1, and a catalyst from the group of quaternary ammonium salts containing an ammonium cation with 6 to 14 carbon atoms, provided the ammonium cation does not include a benzyl radical, or containing an ammonium cation having 6 to 12 carbon atoms provided the ammonium cation comprises
- recycle polyols obtained from the described hydrolysis process which allows a very simple provision of recycle polyol containing 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4'-diaminodiphenylmethane in the sum of 0.00001% to 0.4% by weight, preferably 0.00002% to 0.2% by weight, particularly preferably 0.00005% to 0.1% % by weight based on the total recycling polyol corresponds to a particularly preferred embodiment of the invention.
- a particularly preferred variant, referred to here as preferred variant 1, of depolymerization by hydrolysis is described below.
- a catalyst selected from the group consisting of (i) quaternary ammonium salts containing an ammonium cation containing from 6 to 30 carbon atoms and (ii) organic sulfonate containing at least 7 carbon atoms.
- Preferred bases include an alkali metal cation and/or an ammonium cation.
- Preferred bases here are alkali metal phosphates, alkali metal hydrogen phosphates, alkali metal carbonates, Alkali metal silicates, alkali metal hydrogen carbonates, alkali metal acetates, alkali metal sulphites, ammonium hydroxides or mixtures of the aforementioned.
- Preferred alkali metals are Na, K or Li or mixtures of the aforementioned, in particular Na or K or mixtures thereof; preferred ammonium cation is NhV.
- Particularly preferred bases are K2CO3, Na2SiC>3, NH4OH, K3PO4, or KOAc.
- the base is preferably used as a saturated alkaline solution in water, the weight ratio of saturated alkaline solution to PU being in the range of preferably 0.5 to 25, preferably 0.5 to 15, more preferably 1 to 10, in particular 2 to 7.
- Preferred quaternary ammonium salts have the general structure: R 1 R 2 R 3 R 4 NX with R 1 .R 2 .R 3 , and R 4 are the same or different hydrocarbon groups selected from alkyl, aryl and/or arylalkyl, where R 1 to R 4 are preferably selected such that the sum of the carbon atoms of the quaternary ammonium cation is 6-14, preferably 7-14, more preferably 8-13.
- X is selected from halide, preferably chloride and/or bromide, hydrogen sulfate,
- Alkyl sulfate preferably methyl sulfate or ethyl sulfate, carbonate, bicarbonate or carboxylate, preferably acetate or hydroxide.
- Very particularly preferred quaternary ammonium salts are tributylmethylammonium chloride, tetrabutylammonium hydrogen sulfate, benzyltrimethylammonium chloride, tributylmethylammonium chloride and/or trioctylmethylammonium methyl sulfate.
- the organic sulfonate containing at least 7 carbon atoms which can also be used as a catalyst preferably includes alkylaryl sulfonates, alpha-olefin sulfonates, petroleum sulfonates and/or naphthalene sulfonates.
- Preferred temperatures for the depolymerization are 80°C to 200°C, preferably 90°C to 180°C, more preferably 95°C to 170°C and in particular 100°C to 160°C.
- Preferred reaction times for the depolymerization are 1 minute to 14 hours, preferably 10 minutes to 12 hours, preferably 20 minutes to 11 hours and in particular 30 minutes to 10 hours.
- a preferred weight ratio of base to polyurethane is in the range from 0.01 to 50, preferably from 0.1 to 25, in particular from 0.5 to 20.
- a catalyst from the group of quaternary ammonium salts containing an ammonium cation with 6 to 14 carbon atoms if the ammonium cation does not contain a benzyl radical, or containing an ammonium cation with 6 to 12 carbon atoms if the ammonium cation contains a benzyl radical includes, takes place, there is a further preferred embodiment of the invention.
- Preferred bases here are alkali metal hydroxides, alkali metal oxides, alkaline earth metal hydroxides, alkali metal oxides or mixtures thereof.
- Preferred alkali metals are Na, K or Li or mixtures of the aforementioned, in particular Na or K or mixtures thereof;
- preferred alkaline earth metals are Be, Mg, Ca, Sr or Ba or mixtures thereof, preferably Mg or Ca or mixtures thereof.
- a very particularly preferred base is NaOH.
- Preferred quaternary ammonium salts have the general structure: R 1 R 2 R 3 R 4 NX where R 1 , R 2 , R 3 and R 4 are the same or different hydrocarbyl groups selected from alkyl, aryl and arylalkyl.
- X is selected from halide, preferably chloride and/or bromide, bisulfate, alkyl sulfate, preferably methyl sulfate or ethyl sulfate, carbonate, bicarbonate, carboxylate, preferably acetate or hydroxide.
- Particularly preferred quaternary ammonium salts are benzyltrimethylammonium chloride or tributylmethylammonium chloride.
- Preferred temperatures for the depolymerization are 80°C to 200°C, preferably 90°C to 180°C, more preferably 95°C to 170°C and in particular 100°C to 160°C.
- Preferred reaction times for the depolymerization are 1 minute to 14 hours, preferably 10 minutes to 12 hours, preferably 20 minutes to 11 hours and in particular 30 minutes to 10 hours.
- a preferred weight ratio of base to polyurethane is in the range from 0.01 to 25, preferably 0.1 to 15, preferably 0.2 to 10, in particular 0.5 to 5.
- An alkaline solution is preferably used, comprising base and water, the concentration of the base preferably being greater than 5% by weight, preferably 5 to 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight %, more preferably 15 to 40 % by weight, in particular 20 to 40, based on the weight of the alkaline solution. This concerned the preferred variant 2 of the depolymerization.
- the PU to be used in the PU depolymerization process can be any PU product, in particular it comprises a polyurethane foam, preferably PU rigid foam, PU flexible foam, PU hot flexible foam (standard foam), viscoelastic PU foam, HR PU foam, PU -Hypersoft foam, semi-rigid PU foam, thermoformable PU foam and/or integral PU foam.
- a polyurethane foam preferably PU rigid foam, PU flexible foam, PU hot flexible foam (standard foam), viscoelastic PU foam, HR PU foam, PU -Hypersoft foam, semi-rigid PU foam, thermoformable PU foam and/or integral PU foam.
- Recycling polyols which are preferred for the purposes of the invention preferably have a functionality (groups per molecule which are reactive towards isocyanate) of 2 to 8.
- the recycling polyols preferably contain 2-8 OH groups.
- the number average molecular weight of the recycle polyol is preferably in the range of 500 to 15000 g/mol.
- the OH number of the recycling polyols is preferably from 10 to 1200 mg KOH/g. The OH number can be determined in particular on the basis of DIN 53240:1971-12.
- a preferred embodiment of the invention is when the recycled polyol employed is structurally a polyether polyol, such recycled polyol preferably being obtainable from the recycling of PU waste, particularly PU foams, originally derived from conventional polyether Polyols or polyether polyols that have already been recycled once or several times were obtained.
- polyether-polyols can be prepared by known processes, e.g.
- alkylene oxides by anionic polymerization of alkylene oxides in the presence of alkali metal hydroxides, alkali metal alcoholates or amines as catalysts and with the addition of at least one starter molecule that preferably contains 2 to 8 reactive hydrogen atoms or by cationic polymerization of alkylene oxides in the presence of Lewis acids such as antimony pentachloride or boron trifluoride etherate or by polymerization of alkylene oxides via double metal cyanide catalysis.
- Suitable alkylene oxides contain 2 to 4 carbon atoms in the alkylene radical.
- Examples are tetrahydrofuran, ethylene oxide, 1,3-propylene oxide, 1,2-propylene oxide, 1,2- or 2,3-butylene oxide; ethylene oxide and 1,2-propylene oxide are preferably used.
- the alkylene oxides can be used individually, cumulatively, in blocks, alternately one after the other, or as mixtures.
- Dihydric, trihydric or tetrahydric alcohols such as ethylene glycol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, pentaerythritol, castor oil, higher polyfunctional polyols, in particular sugar compounds such as glucose, are preferred as starter molecules. Sorbitol, mannitol and sucrose, polyvalent phenols, resols are used.
- di- or trifunctional polyether polyols can be used Proportion of end groups (PO end groups) arising from propoxylation of preferably over 50%, more preferably over 80%, in particular those with a propylene oxide block or random propylene and ethylene oxide block at the chain end or those based only on propylene oxide blocks.
- PO end groups Proportion of end groups
- Such polyether polyols preferably have a functionality of 2 to 8, particularly preferably 2 to 4, number-average molecular weights in the range from 500 to 8000, preferably 800 to 5000, particularly preferably 2500 to 4500 g/mol and usually OH numbers in the range of 10 to 100, preferably 20 to 60 mg KOH/g.
- difunctional and/or trifunctional polyether polyols with preferably at least 50%, more preferably at least 80%, primary hydroxyl groups can be used.
- polyether polyols with an ethylene oxide endblock -CH2-CH2-0-H can be used.
- Polyols for polyurethane cold foams can be part of this category if the average number-average molar mass simultaneously is preferably above 4000 g/mol.
- polyether polyols which consist largely of ethylene oxide, preferably those with ethylene oxide blocks of more than 70%, more preferably of more than 90%
- Hypersoft polyols can be used. All polyether polyols described in the context of this preferred embodiment preferably have a functionality of 2 to 8 hydroxy groups, preferably 2 to 5 hydroxy groups per molecule, preferably a number average molecular weight of 500 to 8000 g/mol, preferably 800 to 7000 g/mol, and preferably OH numbers in the range from 5 to 100 mg KOH/g, preferably from 20 to 60 mg KOH/g.
- polyols with primary hydroxyl functions are preferably used not alone, but preferably together with polyols with secondary hydroxyl groups.
- polyfunctional polyether polyols preference is given to using mixtures of different, preferably two to three, polyfunctional polyether polyols.
- the polyol combinations used consist preferably of a crosslinker polyol with a high functionality (>3) and a low molecular weight, preferably with an OH number of 100 to 400 mg KOH/g and/or a conventional flexible block foam polyol and/or or an HR polyol and/or a "hypersoft" polyether polyol, preferably with an OH number between 20 and 40 mg KOH/g with a high proportion of ethylene oxide and cell-opening properties.
- HR polyols are used within a viscoelastic foam formulation, their proportion in the polyol mixture is preferably always less than 50%.
- other polyols can also be used within the scope of the present invention, in particular optional conventional polyols can be used.
- Conventional polyols are polyols that do not come from recycling processes.
- the total polyol component used comprises both recycling polyol according to the invention and additionally one or more further polyols.
- the process according to the invention makes it possible to provide all known types of PU foam.
- the resulting PU foam is a PU rigid foam, PU flexible foam, a PU hot flexible foam (standard foam), a viscoelastic PU foam, an HR PU foam, a PU hypersoft foam , a semi-rigid PU foam, a thermoformable PU foam or a PU integral foam, preferably a PU hot flexible foam, HR PU foam, PU hypersoft foam or viscoelastic PU foam.
- PU hot flexible foams are most preferred.
- the PU foams can be produced in the usual manner and as described in the prior art. It is well known to those skilled in the art. A basic overview can be found e.g. B. in G. Oertel, Polyurethane Handbook, 2nd Edition, Hanser/Gardner Publications Inc., Cincinnati, Ohio, 1994, pp. 177-247. Further information on the starting materials, catalysts and auxiliaries and additives that can be used can be found, for example, in the Plastics Handbook, Volume 7, Polyurethane, Carl-Hanser-Verlag Kunststoff, 1st edition 1966, 2nd edition, 1983 and 3rd edition, 1993.
- the reaction is carried out using f) water, g) one or more organic solvents, h) one or more further stabilizers against oxidative degradation, i) one or more flame retardants, and/or j ) one or more other additives, preferably selected from the group of surfactants, biocides, dyes, pigments, fillers, antistatic additives, crosslinkers,
- Chain extenders cell openers, fragrances, cell coarseners, plasticizers, hardeners, aldehyde scavengers, additives for resistance of PU foams to hydrolysis, compatibilizers (emulsifiers), adhesion promoters, hydrophobing additives, flame lamination additives, additives for preventing cold flow, additives to reduce compression set , additives for adjusting the glass transition temperature, temperature-controlling additives and/or odor reducers, a further preferred embodiment of the invention is present.
- Another object of the present invention is a composition suitable for the production of polyurethane foam, comprising at least one polyol component, at least at least one isocyanate component, catalyst, foam stabilizer, blowing agent, optional auxiliary, the polyol component being recycling polyol containing 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or or 4,4'-diaminodiphenylmethane, from a total of 0.00001% to 0.4% by weight, preferably 0.00002% to 0.2% by weight, particularly preferably 0.00005% to 0.1% by weight % based on total recycle polyol.
- the composition of the invention is characterized in that, based on the total polyol component, more than 30% by weight, preferably more than 50% by weight, preferably more than 70% by weight, more preferably more than 80 wt /or 4,4'-diaminodiphenylmethane, in the sum of 0.00001% to 0.4% by weight, preferably 0.00002% to 0.2% by weight, particularly preferably 0.00005% to 0, 1% by weight based on the total recycled polyol.
- Preferred PU foams for the purposes of this invention are flexible PU foams and rigid PU foams.
- PU flexible foams and PU rigid foams are established technical terms.
- the well-known and fundamental difference between flexible foams and rigid foams is that flexible foam shows elastic behavior and the deformation is therefore reversible.
- the hard foam on the other hand, is permanently deformed.
- foams that are preferred within the scope of the invention are described in more detail below, within the scope of this invention, for the sake of simplicity, the term “foam” is used synonymously for that of “foam”.
- rigid polyurethane foam is understood to mean, in particular, a foam according to DIN 7726:1982-05, which has a compressive strength according to DIN 53421:1984-06 of advantageously >20 kPa, preferably >80 kPa, preferably >100 kPa, more preferably > 150 kPa, particularly preferably >180 kPa.
- the rigid polyurethane foam advantageously has a closed cell content of more than 50%, preferably more than 80% and particularly preferably more than 90%.
- PU rigid foams are mostly used for insulation purposes.
- PU flexible foams are elastic, reversibly deformable and usually mostly open cells. This allows the air to escape easily when compressed.
- PU flexible foam includes in particular the following types of foam known to those skilled in the art, namely PU hot flexible foam (standard foam), PU cold foam (also highly elastic or high resilience foam), hypersoft PU foam, viscoelastic PU flexible foam and PU ester foams ( from polyester polyols).
- PU hot flexible foam standard foam
- PU cold foam also highly elastic or high resilience foam
- hypersoft PU foam viscoelastic PU flexible foam
- PU ester foams from polyester polyols
- PU hot flexible foam The crucial difference between a PU hot flexible foam and a PU cold flexible foam is the different mechanical properties.
- the differentiation between PU hot flexible foams and PU cold flexible foams can be made in particular by the rebound elasticity, also known as "ball rebound” (BR) or "resilience".
- BR rebound elasticity
- a method for determining the rebound resilience is described, for example, in DIN EN ISO 8307:2008-03.
- a steel ball with a specified mass is dropped onto the specimen from a certain height and the height of the rebound is then measured as a percentage of the dropping height.
- PU hot flexible foams have rebound values of preferably 1% to a maximum of 50%. In the case of PU cold flexible foams, the level of rebound is preferably in the range
- PU hot flexible foams have a comfort factor of preferably ⁇ 2.5.
- the comfort factor is preferably > 2.5.
- polyether polyols which are particularly reactive towards isocyanates and have a high proportion of primary hydroxyl groups and number-average molar masses >4000 g/mol are used.
- hypersoft PU foams which represent a subcategory of flexible PU foams.
- Hypersoft PU foams have compressive stresses determined according to DIN EN ISO 3386-1:1997 + A1:2010 of preferably ⁇ 2.0 kPa and have an indentation hardness determined according to DIN EN ISO 2439:2009-05 of preferably ⁇ 80 N.
- Hypersoft PU foams can be manufactured using a variety of known methods: by using a so-called hypersoft polyol in combination with so-called standard polyols and/or by using a special manufacturing method in which carbon dioxide is metered in during the foaming process.
- Hypersoft PU foams Due to a pronounced open cell structure, Hypersoft PU foams have a high level of air permeability, promote the transport of moisture in application products and help to prevent heat build-up.
- the Hypersoft polyols used to produce Hypersoft PU foams are characterized in particular by a very high proportion of primary OH groups of more than 60%.
- a special class of flexible PU foams is that of viscoelastic PU foams (PU viscose foams), which are likewise preferred according to the invention. These are also known under the name of memory foam and are characterized both by a low rebound resilience according to DIN EN ISO 8307:2008-03 of preferably ⁇ 15% and by a slow, gradual recovery a completed compression (recovery time preferably 2-13 s).
- PU viscose foams viscose foams
- these are also known under the name of memory foam and are characterized both by a low rebound resilience according to DIN EN ISO 8307:2008-03 of preferably ⁇ 15% and by a slow, gradual recovery a completed compression (recovery time preferably 2-13 s).
- the glass transition temperature for viscoelastic PU foams is preferably shifted to a range from -20 to +15°C.
- a pneumatic effect must be distinguished from such "structural viscoelasticity" in open-cell viscoelastic PU foams, which is essentially based on the glass transition temperature of the polymer (also known as chemical viscoelastic foams). In the latter case, there is a relatively closed cell structure (low porosity). Due to the low air permeability, the air only flows back in slowly after compression, which results in a slower recovery (also called pneumatic visco-foams). In many cases, both effects are combined in one visco-foam. PU visco-foams are used because of their energy - and sound-absorbing properties.
- a class of PU foams that is particularly important for applications in the automotive sector and that can be classified between those of rigid and flexible foams in terms of properties consists of semi-rigid (semi-flexible) PU foams. These are also preferred according to the invention. Like most PU foam systems, semi-flexible foam systems also use the diisocyanate/water reaction and the resulting CO2 as a foaming agent. The rebound resilience is generally lower than that of classic flexible foams, especially cold foams. Semi-flexible foams are harder than conventional flexible foams. A characteristic feature of semi-flexible foams is their high number of open cells (preferably >90% of the cells). The densities of semi-flexible foams can be significantly higher than those of flexible and rigid foams.
- polyols which have two or more OH groups are preferably used as polyol components.
- the polyol component according to the invention must contain recycled polyol containing 2,4-toluenediamine, 2,6-toluenediamine, 2,2'- Diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4'-diaminodiphenylmethane, totaling 0.00001% to 0.4% by weight, preferably 0.00002% to 0.2% by weight, especially preferably 0.00005% to 0.1% by weight based on total recycle polyol.
- further polyols can optionally be used.
- Preferred additional polyols that can optionally be used are all of the polyether polyols and polyester polyols customarily used for the production of polyurethane systems, in particular polyurethane foams.
- Polyether polyols can, for. B. be obtained by reacting polyhydric alcohols or amines with alkylene oxides.
- Polyester polyols are preferably based on esters of polybasic carboxylic acids with polyhydric alcohols (mostly glycols).
- the polybasic carboxylic acids can be either aliphatic (e.g. adipic acid) or aromatic (e.g. phthalic acid or terephthalic acid).
- NOPs natural oil-based polyols
- PU foams in view of the long-term limited availability of fossil resources, namely oil, coal and gas, and against the background of rising crude oil prices and have already been described many times in the production of polyurethane foams (WO 2005/033167 US 2006/0293400, WO 2006/094227, WO 2004/096882, US 2002/0103091, WO 2006/116456 and EP 1678232).
- polyols from various manufacturers are now available on the market (WO 2004/020497, US 2006/0229375, WO 2009/058367).
- basic raw material e.g. soybean oil, palm oil or castor oil
- polyols with different properties result.
- the production of polyurethane foams from recycled polyols together with NOPs represents a preferred application of the invention.
- a further class of polyols which can optionally be used are those which are obtained as prepolymers by reacting polyol with isocyanate in a molar ratio of 100:1 to 5:1, preferably 50:1 to 10:1.
- filler polyols represent yet another class of optionally usable polyols. These are characterized in that they contain solid organic fillers up to a solids content of 40% by weight or more in disperse distribution.
- SAN polyols These are highly reactive polyols containing a dispersed styrene/acrylonitrile (SAN)-based copolymer.
- PHD Polyols These are highly reactive polyols containing polyurea particles in a dispersed form.
- PIPA Polyols These are highly reactive polyols containing polyurethane particles in dispersed form, prepared, for example, by the in situ reaction of an isocyanate with an alkanolamine in a conventional polyol.
- the proportion of solids in the optional filler polyols which depending on the application can preferably be between 5 and >40% by weight, based on the polyol, is responsible for improved cell opening, so that the polyol can be foamed in a controlled manner, especially with TDI, and the foams do not shrink occurs.
- the solid thus acts as an essential process aid.
- Another function is to control the hardness via the solids content, since higher solids content causes the foam to be harder.
- formulations with polyols containing solids are significantly less inherently stable and therefore require physical stabilization in addition to chemical stabilization through the crosslinking reaction.
- polyols that can optionally be used are the so-called cell opener polyols. These are polyether polyols with a high ethylene oxide content, preferably at least 40% by weight, in particular from 50 to 100% by weight, based on the alkylene oxide content.
- a preferred ratio of isocyanate component to polyol component within the scope of this invention, expressed as an index, is in the range from 10 to 1000, preferably 40 to 350. This index describes the ratio of the amount of isocyanate actually used to the amount of isocyanate theoretically required, corresponding to a stoichiometric ratio of isocyanate - Groups to isocyanate-reactive groups (e.g. OH groups, NH groups), multiplied by 100.
- An index of 100 represents a molar ratio of the reactive groups of 1 to 1.
- isocyanates which have two or more isocyanate functions are preferably used as isocyanate components. All isocyanates, in particular the known aliphatic, cycloaliphatic, araliphatic and preferably aromatic polyfunctional isocyanates, can be used as the isocyanate component in the process according to the invention. Suitable isocyanates for the purposes of this invention have two or more isocyanate functions.
- Suitable isocyanates for the purposes of this invention are preferably all polyfunctional organic isocyanates, such as diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), hexamethylene diisocyanate (HMDI) and isophorone diisocyanate (IPDI).
- MDI diphenylmethane diisocyanate
- TDI toluene diisocyanate
- HMDI hexamethylene diisocyanate
- IPDI isophorone diisocyanate
- the mixture of MDI and higher-condensed analogues with an average functionality of 2 to 4, known as “polymeric MDI” (“crude MDI” or polyphenylpolymethylene polyisocyanate), can also preferably be used.
- 2,4'-diphenylmethane diisocyanate 2,2'-diphenylmethane diisocyanate and/or polyphenylpolymethylene polyisocyanate (crude MDI), 2,4-toluene diisocyanate and/or 2,6-toluene diisocyanate or mixtures of these.
- MDI prepolymers are also particularly suitable.
- examples of particularly suitable isocyanates are listed, for example, in EP 1712578, EP 1161474, WO 00/58383, US 2007/0072951, EP 1678232 and WO 2005/085310, to which reference is made here in its entirety.
- the isocyanates used preferably diphenylmethane diisocyanate (MDI) and toluene diisocyanate (TDI), preferably consist of at least 20%, more preferably at least 40%, particularly preferably at least 60% recycled isocyanates.
- MDI diphenylmethane diisocyanate
- TDI toluene diisocyanate
- the recycling isocyanates from the reaction of aromatic amine mixtures comprising 2,4-toluenediamine, 2,6-toluenediamine, 2,2'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane and/or 4,4' -Diaminodiphenylmethane are prepared, the amine mixtures preferably at least 20%, more preferably at least 35%, particularly preferably at least 50% from the recycling of polyurethanes, preferably polyurethane foams were obtained.
- Suitable catalysts which can be used in the process according to the invention for producing PU foam are preferably substances which catalyze the gel reaction (isocyanate-polyol), the blowing reaction (isocyanate-water) or the dimerization or trimerization of the isocyanate. It corresponds to a preferred embodiment of the invention when the catalyst used is selected from
- X includes oxygen, nitrogen, hydroxyl, amines of structure (NR m or NR m R lv ) or urea groups (N(R V )C(O)N(R VI ) or N(R V ")C(O)NR VI RV ”)
- Y includes amines NR VIII R IX or ethers
- OR lx R UI include identical or different linear or cyclic, aliphatic or aromatic hydrocarbons with 1-8 carbon atoms which are optionally functionalized with an OH group; and/or comprise hydrogen
- R x includes identical or different radicals consisting of hydrogen and/or linear, branched or cyclic aliphatic or aromatic hydrocarbons having 1-18 carbon atoms, which can be substituted with 0-1 hydroxyl groups and/or 0-1 NH 2 groups.
- Z includes oxygen, NR x or Ch .
- Suitable catalysts which can preferably be used in the process according to the invention for the production of PU foam, are metal compounds of the metals Sn, Bi, Zn, Al or K, especially Sn, Zn or Bi Subgroups of the organometallic compounds, organometallic salts, organic metal salts and inorganic metal salts, which are explained below.
- organometallic or organometallic compounds includes, in particular, the use of metal-containing compounds that have a direct carbon-metal bond, here also as organometallic compounds (eg organyl tin) or organometallic or organometallic compounds (eg organotin compounds ) designated.
- organometallic or organometallic salts includes in particular the use of organometallic or organometallic compounds with a salt character, i.e. ionic compounds in which either the anion or cation is of an organometallic nature (e.g. organotin oxides, organotin chlorides or organotin -carboxylates).
- organic metal salts includes, in particular, the use of metal-containing compounds that do not have a direct carbon-metal bond and are also metal salts in which either the anion or the cation is an organic Compound is (e.g. tin(II) carboxylates).
- organic metal salts includes in particular the use of metal-containing compounds or metal salts in which neither anion nor cation is an organic compound, eg metal chlorides (eg tin(II) chloride).
- Suitable organic and organometallic metal salts that can be used preferably contain alcoholate, mercaptate or carboxylate anions such as, for example, acetate, 2-ethylhexanoate, octanoate, isononanoate, decanoate, neodecanoate, ricinoleate, laurate and/or oleate, particularly preferably 2-ethylhexanoate, ricinoleate , neodecanoate or isononanoate.
- Suitable metal-containing catalysts that can be used are generally preferably selected such that they have no objectionable intrinsic odor, are essentially toxicologically harmless and that the resulting polyurethane systems, in particular polyurethane foams, have the lowest possible catalyst-related emissions.
- Suitable water contents in the process according to the invention depend on whether or not physical blowing agents are used in addition to the water. In the case of purely water-blown foams, the values are preferably from 1 to 20 pphp, but if other blowing agents are also used, the amount used is usually reduced to, for example, 0 or, for example, 0.1 to 5 pphp. In order to achieve high foam density, preferably neither water nor other blowing agents are used.
- Suitable physical blowing agents that can optionally be used in the context of this invention are gases, for example liquefied CO2, and volatile liquids, for example hydrocarbons with 4 or 5 carbon atoms, preferably cyclo-, iso- and n-pentane, fluorocarbons, preferably HFC 245fa, HFC 134a and HFC 365mfc, but also olefinic fluorocarbons such as HHO 1233zd or HH01336mzzZ, chlorofluorocarbons, preferably HCFC 141b, oxygen-containing compounds such as methyl formate and dimethoxymethane, or chlorinated hydrocarbons, preferably dichloromethane and 1,2-dichloroethane.
- ketones e.g. acetone
- aldehydes e.g. methylal
- compositions of the invention may contain one or more stabilizers.
- stabilizers are in particular silicon compounds having carbon atoms, preferably selected from the polysiloxanes, polydimethylsiloxanes, organomodified polysiloxanes, polyether-modified polysiloxanes and polyether-polysiloxane copolymers.
- R 5 independently the same or different alkyl radicals consisting of 1 to 16 carbon atoms, aryl radicals having 6 to 16 carbon atoms or hydrogen, preferably from the group of alkyl radicals having 1 to 6 carbon atoms or aryl radicals having 6 to 10 carbon atoms, particularly preferably methyl or hydrogen .
- R 1 identical or different radicals selected from the group of saturated or unsaturated alkyl radicals having 1 to 16 carbon atoms or aryl radicals having 6 to 16 carbon atoms or hydrogen or -OR 6 , preferably methyl, ethyl, octyl, phenyl or hydrogen, particularly preferably methyl - or phenyl-
- R 2 independently identical or different polyethers obtainable by the polymerization of ethylene oxide and/or propylene oxide and/or other alkylene oxides such as butylene oxide and styrene oxide with the general formula (2) or an organic radical corresponding to the formula (3)
- Aryl radical optionally substituted with -OR 6 more preferably a divalent organic radical of the type CpF p.
- R 3 identical or different radicals selected from the group of saturated or unsaturated alkyl radicals potentially substituted with heteroatoms, preferably identical or different radicals selected from the group of saturated or unsaturated alkyl radicals having 1 to 16 carbon atoms or aryl radicals having 6 to 16
- Carbon atoms potentially substituted with halogen atoms more preferably methyl, vinyl, chloropropyl or phenyl
- R 6 identical or different radicals selected from the group of saturated or unsaturated alkyl radicals having 1 to 16 carbon atoms or aryl radicals having 6 to 16 carbon atoms or hydrogen, preferably saturated or unsaturated alkyl radicals having 1 to 8 carbon atoms or hydrogen, methyl, ethyl, isopropyl or hydrogen.
- R 8 identical or different radicals selected from the group of alkyl radicals with 1 to 18 carbon atoms, potentially substituted with ether functions and potentially substituted with heteroatoms such as halogen atoms, aryl radicals with 6 to 18
- Carbon atoms potentially substituted with ether functions or hydrogen, preferably alkyl radicals having 1 to 12 carbon atoms potentially substituted with ether functions and potentially substituted with heteroatoms such as halogen atoms, aryl radicals having 6 to 12 carbon atoms potentially substituted with ether functions, or hydrogen, particularly preferably methyl, ethyl , benzyl or hydrogen.
- R 9 same or different radicals selected from the group hydrogen, alkyl, -C(0)-R 11 , -C(0)0-R 11 or -C(0)NHR 11 , saturated or unsaturated, optionally substituted with Heteroatoms, preferably hydrogen or alkyl radicals having 1 to 8 carbon atoms or acetyl, particularly preferably hydrogen, acetyl, methyl or butyl.
- R 10 identical or different radicals selected from the group of saturated or unsaturated alkyl radicals or aryl radicals potentially substituted with OH, ether, epoxide, ester, amine and/or halogen substituents, preferably saturated or unsaturated alkyl radicals having 1 to 18 carbon atoms or aryl radicals 6 - 18 carbon atoms optionally substituted with OH, ether, epoxide, ester, amine and/or halogen substituents, particularly preferably saturated or unsaturated alkyl radicals having 1 to 18 carbon atoms or aryl radicals having 6 to 18 carbon atoms substituted with at least one OH, ether, Epoxy, ester, amine and/or halogen substituents.
- R 11 identical or different radicals selected from the group of saturated or unsaturated alkyl radicals having 1 to 16 carbon atoms or aryl radicals having 6 to 16 carbon atoms, preferably saturated or unsaturated alkyl radicals having 1 to 8 Carbon atoms or aryl radicals having 6 to 16 carbon atoms, particularly preferably methyl, ethyl, butyl or phenyl
- the foam stabilizers of the formula (1c) can be used in PU systems, preferably mixed in organic solvents such as, for example, dipropylene glycol, polyether alcohols or polyether diols.
- a compatibilizer can preferably also be used. This can be selected from the group of aliphatic or aromatic hydrocarbons, particularly preferably aliphatic polyethers or polyesters.
- the substances mentioned in the prior art can preferably be used as silicon compounds having one or more carbon atoms. Those Si compounds which are particularly suitable for the particular type of foam are preferably used.
- Suitable siloxanes are described, for example, in the following documents: EP 0839852, EP 1544235, DE 102004001408, WO 2005/118668, US 2007/0072951, DE 2533074, EP 1537159 EP 533202, US 3933695, EP 0724239, DE 0724239, DE 429044 867465.
- foam stabilizers in particular silicon compounds
- Crosslinkers that can be used as an option and chain extenders that can be used as an option are low molecular weight, polyfunctional compounds that are reactive toward isocyanates. Suitable substances are, for example, hydroxyl- or amine-terminated substances such as glycerol, neopentyl glycol, 2-methyl-1,3-propanediol, dipropylene glycol, triethanolamine (TEOA), diethanolamine (DEOA) and trimethylolpropane and sugar compounds.
- Crosslinkers that can also be used are polyethoxylated and/or polypropoxylated glycerol or sugar compounds, provided their number-average molecular weight is below 1500 g/mol.
- the optional use concentration is preferably between 0.1 and 5 parts, based on 100 parts of polyol, but can also deviate from this depending on the formulation.
- crude MDI for foam molding, this also takes on a crosslinking function.
- the content of low-molecular crosslinkers can therefore be correspondingly reduced as the amount of crude MDI increases.
- Suitable optional additional stabilizers against oxidative degradation are preferably all common free-radical scavengers, peroxide scavengers, UV absorbers, light stabilizers, complexing agents for metal ion impurities (metal deactivators).
- Compounds which can preferably be used are the following substance classes or substance classes containing the following functional groups: 2-hydroxybenzophenones, benzoic acids and benzoates, phenols, in particular containing tert-butyl and/or methyl substituents on the aromatic compound, benzofuranones, diarylamines, triazines, 2,2,6,6-tetramethylpiperidines , hydroxylamines, alkyl and aryl phosphites, sulfides, zinc carboxylates, diketones.
- Suitable optional flame retardants for the purposes of this invention are all substances which are considered suitable according to the prior art.
- Preferred flame retardants are, for example, liquid organic phosphorus compounds, such as halogen-free organic phosphates, e.g. triethyl phosphate (TEP), halogenated phosphates, e.g. tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloroisopropyl) phosphate ( TDCPP) and tris(2-chloroethyl) phosphate (TCEP) and organic phosphonates, e.g.
- TEP triethyl phosphate
- TDP triethyl phosphate
- TCPP tris(1-chloro-2-propyl) phosphate
- TDCPP tris(1,3-dichloroisopropyl) phosphate
- TCEP tris(2-chloroethyl) phosphat
- DMMP dimethyl methane phosphonate
- DMPP dimethyl propane phosphonate
- oligomers ethyl ethylene phosphates or solids such as ammonium polyphosphate (APP) and red phosphorus.
- halogenated compounds for example halogenated polyols, and solids such as expandable graphite and melamine are also suitable as flame retardants.
- polyurethane foams with particularly high proportions of recycling polyols.
- polyurethane is to be understood in particular as a generic term for a polymer made from di- or polyisocyanates and polyols or other species that are reactive towards isocyanate, such as amines, for example, where the urethane bond does not have to be the exclusive or predominant type of bond.
- polyisocyanurates and polyureas are also expressly included.
- polyurethane foams according to the invention can be carried out by any method familiar to the person skilled in the art, for example by hand mixing or preferably with the aid of high-pressure or low-pressure foaming machines.
- the process according to the invention can be carried out continuously or batchwise.
- a discontinuous implementation of the method is preferred in the production of molded foams, refrigerators, shoe soles or panels.
- a continuous procedure is preferred in the production of insulating panels, metal composite elements, blocks or spray processes.
- Another object of the present invention is a polyurethane foam, preferably PU rigid foam, PU flexible foam, PU hot flexible foam (standard foam), viscoelastic PU foam, HR PU foam, PU hypersoft foam, semi-rigid PU foam, thermoformable PU foam or PU integral foam, preferably PU hot flexible foam, HR PU foam, PU hypersoft foam or viscoelastic PU foam, produced according to an inventive
- a very particularly preferred flexible polyurethane foam for the purposes of this invention has the following composition in particular:
- Tin catalyst 0 to 5, preferably 0.001 to 2
- the polyurethane foams according to the invention can, for. B. as refrigerator insulation, insulating board, sandwich element, pipe insulation, spray foam, 1 & 1.5 component can foam (a 1.5 component can foam is a foam that is produced by destroying a container in the can), imitation wood, model foam , packaging foam, mattress, furniture pad, automotive seat pad, headrest, instrument panel, automotive interior trim, automotive headliner, sound absorbing material, steering wheel, shoe sole, carpet backing foam, filter foam, sealing foam, sealant, adhesive, binder, paint or as a coating or to manufacture related products be used. This corresponds to a further object of the invention.
- TDA toluenediamine
- the mass fraction of toluenediamine from the sum of the 2,4- and the 2,6-isomer is determined by means of HPLC.
- 2,4- and 2,6-toluenediamine are separated based on their different polarity.
- the mass fraction of diaminodiphenylamine (sum of the isomers 2,4'-MDA, 2,2'-MDA, 4,4'-MDA) is determined in the context of the present invention by means of HPLC.
- Diaminodiphenylamine (methylenediphenyldiamine) is separated from the matrix due to the different polarity.
- the recycled Pqlyql 1 according to the invention was obtained by the hydrolysis of polyurethane in the presence of a saturated K 2 CO 3 solution and tetrabutylammonium hydrogen sulfate as catalyst:
- a Parr reactor (Parr Instrumental Company) equipped with a PTFE inner vessel and a mechanical stirrer was used filled with 25 g compressed foam pieces (approx. 1 cm x 1 cm).
- the polyurethane foam used was prepared according to Formulation 1 using the conventional polycarbonate Arccl® 1104. Then 75 g of saturated K 2 CC>3 solution (pKb value 3.67 at 25 °C) were added.
- the catalyst tetrabutylammonium hydrogen sulfate was then added at 5% by weight based on the mass of the reaction mixture.
- the reactor was sealed and the reaction mixture was heated to an internal temperature of 150°C for 14 hours. Upon completion of the 14 hours, heating was discontinued and the reaction mixture was cooled to room temperature. After opening the reactor, the reaction mixture was transferred to a round bottom flask. The water was removed via rotary evaporation and the remaining reaction mixture was extracted with cyclohexane. The cyclohexane solution was washed with 1N aqueous HCl solution and then dried over magnesium sulfate.
- recycle polyol 1 with a content of 0.0389% by weight of toluenediamine (TDA, sum of the 2,4- and the 2,6-isomer) was obtained.
- TDA toluenediamine
- the recycling polyol 2 according to the invention was obtained by the hydrolysis of polyurethane in the presence of a 30% sodium silicate solution and tributylmethylammonium chloride as a catalyst:
- a Parr reactor (Parr Instrumental Company) equipped with a PTFE inner vessel and a mechanical stirrer was charged with 25 g of compressed foam pieces (ca. 1 cm ⁇ 1 cm).
- the polyurethane foam used was prepared according to Formulation 1 in which the conventional polyol Arcol® 1104 was used. Then 75 g of sodium silicate solution (30% by weight in water) were added.
- the catalyst tributylmethylammonium chloride was then added at 2.5% by weight based on the mass of the reaction mixture.
- the reactor was sealed and the reaction mixture was heated to an internal temperature of 150°C for 10 hours. Upon completion of the 10 hours, heating was discontinued and the reaction mixture was cooled to room temperature. After opening the reactor, the reaction mixture was transferred to a round bottom flask. The water was removed via rotary evaporation and the remaining reaction mixture was extracted with cyclohexane. The cyclohexane phase was washed with 1N aqueous HCl solution and then dried over magnesium sulfate.
- the non-inventive recycling polyol 3 (prior art) was obtained by the hydrolysis of polyurethane in the presence of a 20% by weight NaOH solution and tetrabutylammonium hydrogen sulfate as a catalyst:
- a Parr reactor (Parr Instrumental Company) equipped with a PTFE inner vessel and a mechanical stirrer was charged with 25 g of compressed foam pieces (ca. 1 cm ⁇ 1 cm).
- the polyurethane foam used was prepared according to Formulation 1 in which the conventional polyol Arcol® 1104 was used. Then 75 g of sodium hydroxide solution (20% by weight in water) were added. The catalyst tetrabutylammonium hydrogen sulfate was then added at 5% by weight, based on the mass of the reaction mixture.
- the reactor was sealed and the reaction mixture was heated to an internal temperature of 130°C for 14 hours. Upon completion of the 14 hours, heating was discontinued and the reaction mixture was cooled to room temperature.
- reaction mixture was transferred to a round bottom flask.
- the water was removed via rotary evaporation and the remaining reaction mixture was extracted with cyclohexane.
- the cyclohexane solution was washed with a little 1N aqueous HCl solution and then dried over magnesium sulfate.
- recycle polyol 3 with a content of 0.7260% by weight of toluenediamine (TDA, sum of the 2,4- and the 2,6-isomer) was obtained.
- TDA toluenediamine
- the recycling Pqlyql 4 according to the invention was obtained by the hydrolysis of polyurethane in the presence of a 20% sodium hydroxide solution and tributylmethylammonium chloride as catalyst:
- a Parr reactor (Parr Instrumental Company) equipped with a PTFE inner container and a mechanical stirrer was charged with 25 g of compressed foam pieces (ca. 1 cm ⁇ 1 cm).
- the polyurethane foam used was prepared according to Formulation 1 using the conventional polycarbonate Arccl® 1104. Then 75 g of sodium hydroxide solution (20% by weight in water) were added.
- the catalyst tributylmethylammonium chloride was then added at 2.5% by weight based on the mass of the reaction mixture.
- the reactor was sealed and that The reaction mixture was heated to an internal temperature of 130°C for 14 hours. Upon completion of the 14 hours, heating was discontinued and the reaction mixture was cooled to room temperature. After opening the reactor, the reaction mixture was transferred to a round bottom flask. The water was removed via rotary evaporation and the remaining reaction mixture was extracted with cyclohexane. The cyclohexane phase was washed with 1N aqueous HCl solution and then dried over magnesium sulfate.
- the recycling polyol 4 containing 0.0002% by weight of toluenediamine (TDA, sum of the 2,4- and the 2,6-isomer) was obtained and used for foaming experiments.
- TDA toluenediamine
- 1.0 part (1.0 pphp) of a component means 1 g of this substance per 100 g of polyol.
- Table 1 Formulation for the production of PU hot-cure flexible foams.
- Polyol standard polyether polyol Arcol® 1104 available from Covestro, this is a glycerol-based polyether polyol with an OH number of 56 mg KOH/g and an average molar mass of 3000 g/mol or recycling according to the invention Polyols or recycled polyol not according to the invention. The recycled polyols are processed via a chemical
- Recycling process made from PU hot flexible foams The respective recycling processes for producing the recycling polyols according to the invention and those not according to the invention are described above.
- KOSMOS® T9 available from Evonik Industries: tin(II) salt of 2-ethylhexanoic acid.
- DABCO® DMEA dimethylethanolamine, available from Evonik Industries. Amine catalyst for the production of polyurethane foams
- the polyurethane foams were produced in the laboratory as so-called hand foams.
- the foams were produced according to the following information at 22° C. and 762 mm Hg air pressure.
- 150 g and 300 g of polyol were used in each case.
- the other formulation components were converted accordingly.
- 1.0 part (1.0 pphp) of a component meant 1 g of this substance per 100 g of polyol.
- the tin catalyst tin(II) 2-ethylhexanoate, polyol, the water, the amine catalysts and the respective foam stabilizer were placed in a paper cup and mixed for 60 s with a disc stirrer at 1000 rpm. After the first stirring, the isocyanate was added and mixed in with the same stirrer for 7 s at 2500 rpm and immediately poured into a paper-lined box (for foams made from 300 g polyol: 30 cm x 30 cm base area and 30 cm height, for Foams of 150 g polyol: 18 cm x 18 cm base area and 18 cm height). After pouring, the foam rose in the foaming box. Ideally, the foam blew off when the maximum rise height was reached and then sagged back slightly. The cell membranes of the foam bubbles opened up and an open-pored cell structure of the foam was obtained.
- Foam height is the height of the free-rising foam formed after 3 minutes. Foam height is reported in centimeters (cm). c) rise time
- the air permeability of the foam was determined based on DIN EN ISO 4638:1993-07 by measuring the dynamic pressure on the foam.
- the back pressure measured was given in mm of water column, with the lower back pressure values then characterizing the more open foam. The values were measured in the range from 0 to 300 mm water column.
- the dynamic pressure was measured using an apparatus comprising a nitrogen source, reducing valve with manometer, flow control screw, washing bottle, flow meter, T-piece, support nozzle and a scaled glass tube filled with water.
- the support nozzle has an edge length of 100 ⁇ 100 mm, a weight of 800 g, a clear width of the outlet opening of 5 mm, a clear width of the lower support ring of 20 mm and an outer diameter of the lower support ring of 30 mm.
- the measurement is carried out by setting the nitrogen pre-pressure to 1 bar using the reducing valve and adjusting the flow rate to 480 l/h.
- the amount of water is set in the graduated glass tube in such a way that no pressure difference can be built up and read.
- the contact nozzle is placed on the corners of the test specimen with the edges congruent and once on the ( estimated) center of the test specimen (each on the side with the largest surface). It is read when a constant back pressure has been established.
- the evaluation is carried out by averaging over the five measured values obtained.
- the materials are characterized with regard to the type and quantity of the organic substances that can be outgassed from them.
- two semi-quantitative cumulative values are determined, which enable the emission of volatile organic compounds (VOC value) and the proportion of condensable substances (fog value) to be estimated.
- individual substances of the emission are determined.
- the samples are extracted thermally, the emissions are separated by gas chromatography and detected by mass spectrometry.
- the total concentrations thus obtained for the VOC portion are calculated in toluene equivalents and give the VOC value as the result, the FOG portion is presented in hexadecane equivalents and gives the FOG value.
- the analysis method is used to determine emissions from non-metallic materials that are used for molded parts in motor vehicles, including foams.
- TDS thermal desorption analysis
- small amounts of material are heated up in a desorption tube in a defined manner, and the volatile substances emitted are cryofocused with the aid of a stream of inert gas in a cold trap of a temperature-programmable evaporator. After the heating phase has ended, the cold trap is quickly heated to 280 °C.
- the focused substances evaporate. They are then separated in the gas chromatographic separation column and detected by mass spectrometry. By calibrating with reference substances, a semi-quantitative estimation of the emission, expressed in "pg/g", is possible.
- Toluene for the VOC analysis (VOC value) and n-hexadecane for the fog value are used as quantitative reference substances. Signal peaks can be assigned to substances on the basis of their mass spectra and retention indices.
- the PU foams After the PU foams have been produced, they are stored for 24 hours at 21 °C and approx. 50% relative humidity. Test specimens are then distributed evenly across the width of the PU specimen taken from suitable and representative locations. The foams are then wrapped in aluminum foil and sealed in a polyethylene bag.
- the amount of foam samples introduced into the desorption tube is 10-15 mg each. Conducting the test: VOC/FOG thermal desorption
- the samples are sent for direct determination.
- the samples are weighed on the analytical balance to within 0.1 mg and the corresponding amount of foam is placed in the middle of the desorption tube.
- a stream of helium is passed over the sample and it is heated to 90 °C for 30 minutes. All volatile substances are trapped in a cold trap cooled with liquid nitrogen. After 30 minutes, the cold trap is heated to 280 °C.
- the evaporating substances are separated from one another using the gas chromatographic column described and then analyzed by mass spectroscopy.
- Carrier gas helium
- Table 2 Foaming results for the PU hot flexible foams produced according to formulation 1, Table 1 with 150 g polyol using recycling polyols 1, 2 and 3 and the conventional polyol Arcol® 1104.
- Total VOC values and fog values of the isomers 2,4-toluenediamine and 2,6-toluenediamine are integers 2,4-toluenediamine and 2,6-toluenediamine.
- Table 3 Foaming results for the PU hot flexible foams, produced according to formulation 1, Table 1, each with 300 g polyol component using the recycling polyols 2 and 4 and the conventional polyol Arcol® 1104
- the results in Table 3 compare the foaming of the recycling polyols 2 and 4 according to the invention.
- the comparison of the properties of foams #5 and #6 shows that with the recycling polyols 4 according to the invention a foam comparable to reference foam #5 from Arcol® 1104 is obtained will.
- the use of 70 pphp of Recycled Polyol 2 together with 30 pphp of the reference polyol Arcol® 1104 allows the production of Foam #7 with properties essentially the same as Foams #5 and #6.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
L'invention concerne un procédé de production de mousses de PU en faisant réagir (a) au moins un constituant polyol qui contient un polyol recyclé avec (b) au moins un constituant isocyanate en présence de (c) un ou plusieurs catalyseurs qui catalysent les réactions d'isocyanate-polyol et/ou d'isocyanate-eau et/ou la réaction de trimérisation d'isocyanate, (d) au moins un stabilisant de mousse et (e) éventuellement un ou plusieurs agents de gonflement chimique ou physique, et le polyol recyclé contenant la 2,4-toluènediamine, la 2,6-toluènediamine, le 2,2'-diaminodiphénylméthane, le 2,4'-diaminodiphénylméthane et/ou le 4,4'-diaminodiphénylméthane en une proportion totale de 0,00001 % à 0,4 % en poids, de préférence de 0,00002 % à 0,2 % en poids, de manière particulièrement préférée de 0,00005 % à 0,1 % en poids par rapport au total du polyol recyclé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21183446 | 2021-07-02 | ||
PCT/EP2022/067701 WO2023275033A1 (fr) | 2021-07-02 | 2022-06-28 | Production de mousses de pu à l'aide de polyols recyclés |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4363477A1 true EP4363477A1 (fr) | 2024-05-08 |
Family
ID=76764913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22738451.8A Pending EP4363477A1 (fr) | 2021-07-02 | 2022-06-28 | Production de mousses de pu à l'aide de polyols recyclés |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240309207A1 (fr) |
EP (1) | EP4363477A1 (fr) |
CN (1) | CN117580884A (fr) |
CA (1) | CA3224253A1 (fr) |
MX (1) | MX2024000124A (fr) |
WO (1) | WO2023275033A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2624040A (en) * | 2022-11-07 | 2024-05-08 | Vita International Ltd | Process for producing flexible polyurethane foam |
WO2024132619A1 (fr) | 2022-12-21 | 2024-06-27 | Evonik Operations Gmbh | Polyols recyclés |
EP4403588A1 (fr) * | 2023-01-17 | 2024-07-24 | Hanno-Werk GmbH & Co. KG | Produit comprenant une mousse de polyuréthane |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933695A (en) | 1972-12-29 | 1976-01-20 | Union Carbide Corporation | Hydroxyalkenylsiloxane rigid poly urethane foam stabilizers |
US4147847A (en) | 1973-11-14 | 1979-04-03 | Dow Corning Corporation | Method of preparing flexible flame retardant polyether based one-shot polyurethane foams and compositions therefore |
CH586723A5 (fr) | 1974-04-08 | 1977-04-15 | Goldschmidt Ag Th | |
CH597270A5 (fr) | 1974-08-30 | 1978-03-31 | Goldschmidt Ag Th | |
US4855379A (en) | 1988-03-08 | 1989-08-08 | Union Carbide Corporation | Silicone surfactants containing cyclic siloxane pendants |
US5145879A (en) | 1990-12-31 | 1992-09-08 | Union Carbide Chemicals & Plastics Technology Corporation | Surfactants for manufacture of urethane foams |
CA2078580A1 (fr) | 1991-09-20 | 1993-03-21 | Kenrick M. Lewis | Utilisation d'agents tensio-actifs bloques pour la production de mousses rigides de polyurethane soufflees avec des hydrocarbures |
US5208379A (en) | 1992-05-14 | 1993-05-04 | Arco Chemical Technology, L.P. | Hydrolysis of polyurethanes |
DE4229402A1 (de) | 1992-09-03 | 1994-03-10 | Goldschmidt Ag Th | Polysiloxan-Polyoxyalkylen-Blockmischpolymerisat mit unterschiedlichen Polyoxyalkylenblöcken im durchschnittlichen Molekül |
DE4234335A1 (de) * | 1992-10-12 | 1994-04-14 | Basf Schwarzheide Gmbh | Verfahren zur Herstellung von Recyclatpolyolen und deren Verwendung bei der Herstellung von Polyurethanen |
DE4239054A1 (de) | 1992-11-20 | 1994-05-26 | Goldschmidt Ag Th | Polysiloxan-Polyoxyalkylen-Blockmischpolymerisat mit unterschiedlichen Polyoxyalkylenblöcken im durchschnittlichen Molekül |
DE69624206T2 (de) | 1995-12-22 | 2003-04-17 | Air Products And Chemicals, Inc. | Ein Verfahren zur Herstellung von weichen Polyurethanschäumen |
US6071977A (en) | 1996-10-31 | 2000-06-06 | Ck Witco Corporation | Hydrosilation in high boiling natural vegetable oils |
US5844010A (en) | 1997-03-29 | 1998-12-01 | Th. Goldschmidt Ag | Method of preparing polyurethane foam utilizing block copolymers having linked siloxane blocks |
DE19905989A1 (de) | 1999-02-13 | 2000-08-17 | Bayer Ag | Feinzellige, wassergetriebene Polyurethanhartschaumstoffe |
US6133329A (en) | 1999-03-31 | 2000-10-17 | Oxid L.P. | Aromatic polyester polyols made from a natural oil |
US20020103091A1 (en) | 2001-01-29 | 2002-08-01 | Kodali Dharma R. | Reactive oil compositions and uses thereof |
DE10240186A1 (de) | 2002-08-28 | 2004-03-11 | Basf Ag | Verfahren zur Herstellung von emissionsarmen Polyurethan-Weichschaumstoffen |
US8133930B2 (en) | 2003-04-25 | 2012-03-13 | Dow Global Technologies Llc | Polyurethane foams made from hydroxymethyl-containing polyester polyols |
MXPA05011487A (es) | 2003-04-25 | 2005-12-15 | Dow Global Technologies Inc | Polioles a base de aceite vegetal, y poliuretanos preparados a partir de ellos. |
US8293808B2 (en) | 2003-09-30 | 2012-10-23 | Cargill, Incorporated | Flexible polyurethane foams prepared using modified vegetable oil-based polyols |
US7183330B2 (en) | 2003-12-15 | 2007-02-27 | Air Products And Chemicals, Inc. | Silicone surfactants for rigid polyurethane foam made with hydrocarbon blowing agents |
DE102004001408A1 (de) | 2004-01-09 | 2005-07-28 | Goldschmidt Ag | Verwendung blockweise aufgebauter Polyethersiloxane als Stabilisatoren in Polyurethanschäumen |
DE102004011559A1 (de) | 2004-03-08 | 2005-09-29 | Rathor Ag | Phasenstabile Polyurethanprepolymere |
ES2635839T3 (es) | 2004-05-25 | 2017-10-05 | Momentive Performance Materials Inc. | Procedimiento para preparar espumas de poliuretano que tienen emisiones reducidas de COV |
CA2599983A1 (fr) | 2005-03-03 | 2006-09-08 | South Dakota Soybean Processors, Llc | Nouveaux polyols issus d'une huile vegetale au moyen d'un procede d'oxydation |
US20060229375A1 (en) | 2005-04-06 | 2006-10-12 | Yu-Ling Hsiao | Polyurethane foams made with alkoxylated vegetable oil hydroxylate |
US20060235100A1 (en) | 2005-04-13 | 2006-10-19 | Kaushiva Bryan D | Polyurethane foams made with vegetable oil hydroxylate, polymer polyol and aliphatic polyhydroxy alcohol |
EP1888666B1 (fr) | 2005-04-25 | 2017-06-21 | Cargill, Incorporated | Mousses de polyurethane comprenant des polyols oligomeriques |
US9856355B2 (en) | 2005-09-27 | 2018-01-02 | Evonik Degussa Gmbh | Silanol-functionalized compounds for the preparation of polyurethane foams |
WO2009058367A1 (fr) | 2007-11-01 | 2009-05-07 | Cargill, Incorporated | Polyols de polyester dérivés d'huile naturelle et polyuréthanes obtenus à partir de ceux-ci |
DE102009029089A1 (de) | 2009-09-02 | 2011-03-03 | Evonik Goldschmidt Gmbh | Phosphorarme Laminieradditive mit geringer Emission, verbesserter Anfangshaftung und verbesserter Hydrolysestabilität |
US8609740B2 (en) * | 2011-06-28 | 2013-12-17 | International Automotive Components Group North America, Inc. | Closed-loop recycled polyurethane foam, methods of manufacture and products therefrom |
CN104245767B (zh) | 2012-03-30 | 2018-01-16 | 气体产品与化学公司 | 聚氨酯泡沫生产方法、预混料、制剂和产品 |
DE102013207117A1 (de) | 2013-04-19 | 2014-10-23 | Evonik Industries Ag | PUR-Schaum mit vergröberter Zellstruktur |
DE102014218635A1 (de) | 2014-09-17 | 2016-03-17 | Evonik Degussa Gmbh | Herstellung von viskoelastischen Polyurethansystemen unter Einsatz von Blockpolymeren mit verknüpften Siloxanblöcken als Zellöffner |
DK3133097T3 (da) | 2015-08-17 | 2022-12-19 | Evonik Operations Gmbh | Fremstilling af blødt polyurethanskum med forbedret hårdhed |
JP7554813B2 (ja) | 2019-07-24 | 2024-09-20 | エボニック オペレーションズ ゲーエムベーハー | ポリウレタン系の製造 |
-
2022
- 2022-06-28 CN CN202280046704.5A patent/CN117580884A/zh active Pending
- 2022-06-28 CA CA3224253A patent/CA3224253A1/fr active Pending
- 2022-06-28 US US18/575,876 patent/US20240309207A1/en active Pending
- 2022-06-28 WO PCT/EP2022/067701 patent/WO2023275033A1/fr active Application Filing
- 2022-06-28 EP EP22738451.8A patent/EP4363477A1/fr active Pending
- 2022-06-28 MX MX2024000124A patent/MX2024000124A/es unknown
Also Published As
Publication number | Publication date |
---|---|
MX2024000124A (es) | 2024-01-22 |
CN117580884A (zh) | 2024-02-20 |
US20240309207A1 (en) | 2024-09-19 |
WO2023275033A1 (fr) | 2023-01-05 |
CA3224253A1 (fr) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3177658B1 (fr) | Composés azotés adaptés à une utilisation dans la fabrication de polyuréthanes | |
EP2998333B1 (fr) | Fabrication de systemes polyurethanes viscoelastiques faisant appel a des polymeres sequences dotes de sequences de siloxane reticulees en tant qu'agent d'ouverture d'alveoles | |
EP3177660B1 (fr) | Composés azotés adaptés à une utilisation dans la fabrication de polyuréthanes | |
EP3744745A1 (fr) | Fabrication de mousses de polyuréthane | |
EP3865527A1 (fr) | Fabrication de mousses de polyuréthane | |
WO2023275033A1 (fr) | Production de mousses de pu à l'aide de polyols recyclés | |
DE102013223441B4 (de) | Verwendung von Pentaethylenhexamin bei der Herstellung von Polyurethansystemen | |
EP3280754B1 (fr) | Fabrication de polyuréthane à faible émission | |
EP3067343B1 (fr) | Antioxydants destinés à fabriquer des systèmes PUR à faible émission | |
EP3219738B1 (fr) | Fabrication de systèmes polyuréthanes viscoélastiques faisant appel à des polymères séquences dotés de séquences de siloxane réticulées en tant qu'agent d'ouverture d'alveoles | |
EP3320012B1 (fr) | Fabrication de mousse de polyurethane | |
DE102014215380B4 (de) | Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen | |
DE102014215387B4 (de) | Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen | |
EP3819323A1 (fr) | Ensemble de compression | |
DE102014215383B4 (de) | Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen | |
DE102014215381B4 (de) | Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen | |
WO2023275031A1 (fr) | Production de mousses de pu à l'aide de polyols recyclés | |
EP3908617A1 (fr) | Production d'une mousse rigide de polyuréthane | |
EP3766909A1 (fr) | Corps formé en mousse pu | |
WO2014009086A1 (fr) | Procédé de fabrication de mousses de polyuréthane molles à faible rejet | |
EP3688058A1 (fr) | Production d'une mousse de polyuréthane | |
WO2023275029A1 (fr) | Production de mousses de pu à l'aide de polyols recyclés | |
WO2023275036A1 (fr) | Récupération de dipolyisocyanates et/ou de polyisocyanates à partir de procédés de dépolymérisation de polyuréthanes (pu) | |
EP4363478A1 (fr) | Production de mousses de pu à l'aide de polyols recyclés | |
EP3940012A1 (fr) | Additifs réticulés sans nitrogène et pauvre en nitrogène pour mousse souple de blocage à froid présentant des propriétés de compression et de vieillissement améliorées |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |