EP4347226A1 - Effector for dynamic welding of parts made of composite material - Google Patents

Effector for dynamic welding of parts made of composite material

Info

Publication number
EP4347226A1
EP4347226A1 EP22728637.4A EP22728637A EP4347226A1 EP 4347226 A1 EP4347226 A1 EP 4347226A1 EP 22728637 A EP22728637 A EP 22728637A EP 4347226 A1 EP4347226 A1 EP 4347226A1
Authority
EP
European Patent Office
Prior art keywords
temperature
parts
effector
zone
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22728637.4A
Other languages
German (de)
French (fr)
Inventor
Damien SIREUDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Recherche Technologique Jules Verne
Original Assignee
Institut de Recherche Technologique Jules Verne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut de Recherche Technologique Jules Verne filed Critical Institut de Recherche Technologique Jules Verne
Publication of EP4347226A1 publication Critical patent/EP4347226A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0344Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • B29C66/73772General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous the to-be-joined areas of both parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • B29C66/8362Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • B29C66/91423Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools using joining tools having different temperature zones or using several joining tools with different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • B29C66/91445Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams

Definitions

  • the present invention relates to the field of welding two parts made of composite material with a thermoplastic polymer matrix, in particular without adding material.
  • the invention proposes a dynamic welding effector of at least two parts made of composite material with a thermoplastic polymer matrix.
  • the invention also relates to a process for the dynamic welding of two parts made of composite material with a thermoplastic polymer matrix using such an effector.
  • the welding can be done under a vacuum bag or a press, which makes it possible to limit deformations due to swelling.
  • a vacuum bag or a press which makes it possible to limit deformations due to swelling.
  • such techniques are difficult to apply to large parts.
  • a mobile assembly for large parts, it is known to use a mobile assembly 1, as seen in Figure 1, combining a heating device 2, for example induction, and a pressing element 3.
  • a heating device 2 for example induction
  • a pressing element 3 is configured to exert pressure on the parts P after heating by the heating device 2.
  • the welded parts cool freely after the moving assembly has passed.
  • the cooling rate is very fast, of the order of 200 to 300° C./min.
  • the heat applied to the interface between the parts to raise the temperature of the thermoplastic polymer matrix above the melting temperature is very quickly dissipated by conduction in composite parts, and in parts in contact, such as tools, for example.
  • This cooling rate is not compatible with the crystallization kinetics of the polymer so that the crystallinity of the polymer after welding is affected and remains lower than the initial crystallinity rate (of the order of 50% compared to the state initial).
  • JP2005028784 describes a laser welding method using several laser beams.
  • an effector for dynamic welding of at least two parts made of composite material comprising a thermoplastic polymer matrix comprising: at least one device for welding, so as to heat at least one zone of at least one of the parts to a temperature greater than or equal to the melting temperature of the said thermoplastic polymer matrix in order to weld the said at least two parts together at the level of the said at least one zone, at least one post-heating device configured to heat said at least one zone to provide heat to said zone without the temperature thereof exceeding the crystallization onset temperature of said thermoplastic polymer matrix.
  • dynamic welding we mean that the welding is carried out progressively during the movement of the effector relative to the parts.
  • the welding is preferably carried out without addition of material.
  • crystallization onset temperature is meant the temperature from which a growth of the crystalline structure of the thermoplastic polymer occurs in said thermoplastic polymer matrix during its cooling from the molten state. The determination of this temperature for a given material is carried out by analyzing the enthalpy of crystallization by anisothermal differential scanning calorimetry. During the cooling phase from the molten state, the crystallization onset temperature corresponds to the onset of the peak of the enthalpy of crystallization. This crystallization onset temperature is between the melting temperature Tf and the crystallization temperature Ts, generally between 30° C. below the melting temperature Tf and 15° C. above the crystallization temperature Ts.
  • This crystallization temperature Ts is characterized by a maximum rate of growth of the crystalline structure of the thermoplastic polymer.
  • the crystallization temperature Ts is lower than the melting temperature Tf, generally between 60°C below the melting temperature Tf and 20°C below the melting temperature Tf.
  • thermoplastic polymer matrix allows the latter to pass into a state of melting.
  • an interpenetration of the polymer chains of said at least two parts can occur, allowing welding at said zone.
  • Said at least one post-heating device can be configured to heat said at least one of the parts to a temperature below the crystallization start temperature and above the temperature of the ambient air which is for example 25° C., such a temperature possibly being for example between 230° C. and 260° C. for a part with a PEKK matrix.
  • Said at least one post-heating device is preferably arranged downstream of said at least one welding device relative to the direction of movement of the effector.
  • Said at least one post-heating device is preferably disposed at a distance between approximately 3 and 30 mm from said at least one welding device within the effector.
  • the distance is preferably determined as a function of the speed of movement of the effector, of the thermoplastic polymer matrix of said at least two parts and of the speed of cooling in the open air of said parts. This speed of cooling in the open air depends on the heat exchange conditions at the interfaces between said parts.
  • Said at least one post-heating device is preferably configured to slow down the cooling rate of said at least one part.
  • cooling rate of said at least one part is meant the temporal variation of the temperature of said at least one part heated with said at least one welding device.
  • slowing down the cooling rate it is meant that the cooling rate of said at least one part heated with said at least one welding device is lower than the cooling rate in the open air. This slowing down can lead to an increase, or not, transient, of the temperature of said at least one part heated with said at least one welding device.
  • Said at least one post-heating device can make it possible to heat said at least one zone to a temperature T comprised within a range of predetermined temperature values extending, for example between approximately 90° C. below the crystallization temperature and the crystallization start temperature is Ts-90°C ⁇ T ⁇ Tc, better between approximately 75°C below the crystallization temperature and the crystallization start temperature is Ts-75°C ⁇ T ⁇ Tc, even better between approximately 40° C. below the crystallization temperature and the crystallization start temperature, ie Ts-40° C. ⁇ T ⁇ Tc.
  • the post-heating device can make it possible to maintain the outer surface of at least one of the parts in a range of temperature values comprised between approximately 230° C. and approximately 260° C.
  • Said at least one welding device and/or said at least one post-heating device can be configured and/or be controlled, in particular by an effector control system, to heat the two or more parts if there is has more than two parts by heating each zone successively passing under the welding device and the post-heating device.
  • Said at least one welding device and/or said at least one post-heating device can be configured and/or controlled to make it possible to heat all the parts to be welded.
  • Said at least one welding device and said at least one post-heating device can heat at least the welding interface of the part or parts concerned by this heating, not necessarily the entire part or parts.
  • said at least two parts comprise a semi-crystalline thermoplastic polymer matrix.
  • thermoplastic material is meant a thermoplastic polymer having crystalline zones and amorphous zones. Such a polymer can comprise lamellae consisting of cubic, orthorhombic or hexagonal meshes. The degree of crystallinity can vary between 20% to 30% approximately. Semi-crystalline thermoplastic polymer materials are high performance materials with high stiffness and good creep resistance.
  • thermoplastic material of said at least two parts can alternatively be amorphous.
  • the effector advantageously comprises at least one pressing device.
  • This pressure device allows the application of pressure on the previously heated area.
  • the application of pressure to the area previously heated by the welding device makes it possible to limit deformations during subsequent cooling and consolidation and to reduce the risk of separation of the parts after pressing.
  • said at least one pressing device is advantageously arranged between said at least one welding device and said at least one post-heating device.
  • Said at least one post-heating device can also be part of such a pressing device, then ensuring the two functions of post-heating and pressing.
  • Said at least one pressing device can also be a fixed tool relative to said at least two parts, as for example in application NL1030304.
  • said at least one welding device comprises a heating system by induction, by ultrasound, by thermal conduction and/or by infrared, preferably by induction. It is possible, for example, to use a welding device comprising an induction heating system associated with the use of a sucker.
  • the succeptor is a magnetic and electrically conductive element located at the interface between said at least two parts, making it possible to inject more power into the interface.
  • the post-heating device advantageously comprises a heating system by induction or by infrared radiation.
  • the post-heating device may comprise at least one temperature sensor, in particular a pyrometer, so as to measure the temperature of the outer surface of at least one of the parts.
  • the post-heating device preferably comprises a servo system for maintaining the outer surface of at least one of the parts within a range of predetermined temperature values for a predetermined duration, for example substantially 30 s.
  • the post-heating device can thus adapt its heating power according to the characteristics of said parts, in particular their material and/or their dimensions, the support on which the weld is made or even ambient conditions such as the rate of humidity, temperature or air pressure for example.
  • Such a servo system can, for example, adapt its heating power as a function of the difference between at least one temperature from the range of predetermined temperature values and at least one temperature measured by said at least one temperature sensor and/or or an average of temperatures measured by said at least one temperature sensor.
  • the post-heating device can operate between a minimum heating power, or even zero, and a maximum heating power.
  • the post-heating device can also operate at at least one intermediate heating power between the minimum heating power and the maximum heating power.
  • the effector is preferably mobile while the parts to be welded are fixed. Alternatively, the parts are moved under the effector, which remains fixed or is also movable.
  • Another subject of the invention is a process for dynamically welding at least two parts made of composite material comprising a thermoplastic polymer matrix, using an effector dynamic welding as described above, comprising the following steps: i) at least partially superimposing said at least two parts to be welded together, ii) positioning the effector on the side of at least one outer surface of at least one of said parts, iii) moving the effector relative to the parts, in a direction of movement, such that said at least one device post-heating device is arranged downstream of said at least one welding device, iv) heating with the welding device at least one zone of at least one of the two parts passing under the welding device, v) heating said at least one zone with the post-heating device when the latter passes under the post-heating device, to provide heat to said zone without the temperature thereof exceeding the crystallization start temperature Te of said thermoplastic polymer matrix of said parts P.
  • the cooling of said zone previously heated by the welding device and passing under the post-heating device can be controlled, independently of the characteristics of said parts, in particular of their material and/or their dimensions, of the support on which the welding is carried out or ambient conditions such as humidity, temperature or air pressure for example.
  • Controlling the cooling rate can make it possible to obtain the desired properties of the weld, for example by promoting the crystallization of the thermoplastic polymer matrix if necessary, and thus improving the quality of the weld.
  • the post-heating of at least one zone of said at least one part during the displacement of the effector is preferably carried out after the heating of said at least one zone after a time comprised between approximately 5 and 10 seconds.
  • the post-heating of at least one zone of said at least one part during the movement of the effector lasts preferably between 20 and 30 seconds approximately.
  • the heating of said parts can result in local deconsolidation of said parts, which produces local swelling.
  • the method comprises a step consisting in bringing at least one presser device of the effector into contact with said outer surface of at least one of the parts in the zone passing under the pressing device. This makes it possible to constrain the constituent material of the parts after heating to improve consolidation during cooling and to limit the deformations induced by local swelling.
  • the method may comprise a step consisting in exerting pressure on the outer surface of said zone with said at least one presser device.
  • the pressing device can promote adhesion between the parts by ensuring contact between them and allowing the interpenetration of the polymer chains. The risk of separation of the parts after the passage of the effector is thus limited.
  • Step v) is advantageously implemented so that said at least one post-heating device maintains in said zone a temperature comprised within a range of predetermined temperature values, for example between 90° C. below the crystallization temperature and the crystallization start temperature, better still between 75°C below the crystallization temperature and the crystallization start temperature, even better between 40°C below the crystallization temperature and the crystallization start temperature crystallization.
  • a range of predetermined temperature values for example between 90° C. below the crystallization temperature and the crystallization start temperature, better still between 75°C below the crystallization temperature and the crystallization start temperature, even better between 40°C below the crystallization temperature and the crystallization start temperature crystallization.
  • This post-heating temperature can make it possible to promote the transformation kinetics of the thermoplastic polymer matrix of said parts.
  • maintaining a temperature of approximately 80° C. below the melting temperature can allow rapid formation of crystalline zones.
  • step v) of post-heating advantageously makes it possible to maintain a temperature of 250° C. approximately in said zone.
  • the post-heating step v) advantageously makes it possible to obtain a cooling rate in said zone which is less than 50° C./min.
  • a cooling rate which is slower than the cooling rate in the open air, can contribute to favoring the transformation kinetics of the thermoplastic polymer matrix of said parts.
  • step v) is preferably implemented so that the crystallinity rate in said zone, after passage of said at least one device post-heating, is substantially the same as the degree of crystallinity in said zone, before the passage of said at least one welding device, in particular by adapting the post-heating temperature range and the post-heating time.
  • the mechanical characteristics of said at least one part after cooling are substantially homogeneous throughout said at least one part.
  • the weld at the weld interface does not constitute an area of weakness in the final part.
  • the welding takes place without adding an additional material to the interface between the effector and at least one of said parts, nor between the parts, nor between said at least one pressing device and at least one of said parts if applicable.
  • Said at least one welding device in fact advantageously makes it possible to heat each zone of at least one of said at least two parts which passes under the welding device to a temperature greater than or equal to the melting temperature of said parts, which then allows an interpenetration between the parts at their interface, thus creating the weld between them.
  • the effector is preferably mobile while the parts to be welded are fixed. Alternatively, the parts are moved under the effector, which remains fixed or is also movable.
  • Said at least two parts advantageously comprise a fibrous reinforcement consisting of carbon fibers.
  • thermoplastic polymer matrix chosen from the group consisting of polyaryletherketones (PAEK), in particular polyetheretherketone (PEEK) or polyetherketoneketone (PEKK).
  • PAEK polyaryletherketones
  • PEEK polyetheretherketone
  • PEKK polyetherketoneketone
  • thermoplastic polymer matrices of said at least two parts can comprise the same thermoplastic polymer matrix or different thermoplastic polymer matrices.
  • a post-heating device intended to equip a dynamic welding effector with at least two parts made of composite material comprising a thermoplastic polymer matrix , in particular an effector as defined above, configured for, after heating at least one zone of the weld interface of said at least two parts to a temperature above the melting temperature, supplying heat to said zone without the temperature thereof exceeding the temperature of start of crystallization of said thermoplastic polymer matrix.
  • this post-heating device it is possible to control the cooling of said at least two parts during welding, independently of the effector used and of the characteristics of said parts, in particular of their material and/or their dimensions, of the support on which the weld is made or ambient conditions such as humidity, temperature or air pressure for example.
  • the post-heating device can be as defined above.
  • Figure 1 schematically shows, in side view, a dynamic welding effector according to the prior art comprising a pressing element
  • Figure 2 shows, schematically, in side view, a dynamic welding effector according to the invention
  • FIG 3 represents, in the form of a block diagram, the steps of an example of a dynamic welding process according to the invention
  • FIG 4 illustrates, using a schematic graph, the evolution of the temperature as a function of time during the displacement of the effector of figure 3,
  • FIG 5 illustrates using a schematic graph the evolution of the temperature as a function of time during the displacement of the effector of figure 1
  • FIG 6 represents in isolation , schematically, in side view, a post-heating device according to the invention.
  • FIG. 2 There is illustrated in Figure 2 a dynamic welding effector 10 according to the invention.
  • the effector 10 is provided for carrying out the welding, in this example of two parts P, superimposed at least partially on each other, without adding material.
  • Parts P, numbered PI and P2 are made of composite material comprising a semi-crystalline thermoplastic polymer matrix, in this example PEKK, and a fibrous reinforcement, in this example carbon fibers.
  • the effector 10 is able to move relative to the parts according to a direction of movement illustrated by the arrow 13 in order to form a final part Pf, formed by the welding of the parts PI and P2.
  • the effector 10 is positioned on the side of an outer surface S of at least one of the parts P, in this example the outer surface of the part P1.
  • the effector 10 comprises a welding device 11, in this example comprises an induction heating system.
  • the welding device 11 makes it possible, in this example, to heat the parts P, or at least one of them, in particular the part P1, in a zone 12 passing under the welding device 11 to a temperature greater than or equal to at the melting temperature Tm of said thermoplastic polymer matrix and thus perform the welding between the two parts P1 and P2 at the interface between them without adding material.
  • the effector 10 also comprises a post-heating device 15 configured to heat said zone 12 of the parts P, when it passes under the post-heating device 15, to provide heat to the zone 12 without the temperature T of this does not exceed the crystallization onset temperature Te of said thermoplastic polymer matrix.
  • a post-heating device 15 configured to heat said zone 12 of the parts P, when it passes under the post-heating device 15, to provide heat to the zone 12 without the temperature T of this does not exceed the crystallization onset temperature Te of said thermoplastic polymer matrix.
  • the post-heating device 15 is, in this example, placed at a distance di of approximately 15 mm from said at least one welding device within the effector.
  • the effector 10 also comprises two pressing devices 20 placed upstream (pressing device 20a) and downstream (pressing device 20b) of the welding device 11 relative to the direction of movement 13, allowing the application of a pressure on zone 12 heated.
  • Zone 12 is the zone of the parts P which passes under the various components of the effector 10 at a given moment, during the movement of the effector.
  • Zone 12 comprises at least part of the weld interface between the parts, which corresponds to the contact zone between the parts which is to be welded. It passes first under the welding device 11, then, in this example, under the pressing device 20b, then under the post-heating device 15. All the zones to be welded of the parts P thus pass under the effector 10 .
  • a first step 30 the parts P1 and P2 of composite material are superimposed at least partially.
  • the effector 10 is positioned on the side of the outer surface S of the part P1.
  • a third step 32 the effector 10 is set in motion in a direction of movement 13, such that the post-heating device 15 is downstream of the welding device 11.
  • the welding device 11 heats, by an induction phenomenon, the zone 12 of the parts P passing under the welding device 11.
  • the post-heating device 15 makes it possible to heat, for example by induction, the zone 12 of the parts P which passes under the post-heating device 15, to provide heat to the zone 12 without the temperature thereof does not exceed the crystallization onset temperature Te of said thermoplastic polymer matrix of the parts P.
  • the pressing device 20a is brought into contact with the outer surface S of the part P1 so as to constrain the constituent material of the parts P before passing under the welding device 11.
  • the method also includes a step, not illustrated, consisting in exerting pressure on the outer surface S of said zone 12, implemented between steps 33 and 34 using the pressing device 20b.
  • the effector 10 moves at a speed of the order of 5 mm/s.
  • Figure 4 the evolution of the temperature of the zone 12 as a function of time, during the implementation of the method according to the invention with the effector 10 illustrated in Figure 2, for parts PI and P2 featuring PEKK and carbon fibers.
  • a temperature T1 in this example equal to 350° C., greater than the melting point Tm of the thermoplastic polymer matrix of the parts P, in this example equal to 330°C.
  • zone 12 cools freely at a free air cooling rate of 250°C/min.
  • a third phase C the zone 12 is heated again by the post-heating device 15. This makes it possible to maintain a temperature T of between approximately 40° C. below the crystallization temperature Ts, Ts being in this example equal at approximately 235° C., and the crystallization onset temperature Te, Te being in this example equal to approximately 250° C., and to reduce the cooling rate to a cooling rate equal to 50° C./min.
  • the crystallinity rate in zone 12 after the passage of the post-heating device 15 is the same as the crystallinity rate in zone 12 before the passage of the welding device 11, namely between 25 % and 30% approximately.
  • the welding takes place without adding any additional material to the interface between the effector 10 and the part P1 or between the parts P1 and P2.
  • zone 12 cools freely in air at a rapid cooling rate of 250°C/min.
  • FIG. 5 The evolution of the temperature as a function of time during the welding of two parts with the welding effector of the prior art illustrated in FIG. 1 without a post-heating device is visible in FIG. 5.
  • the heated zone 5 cools freely in contact with the ambient air and by conduction in the parts P.
  • the heat supplied during the heating step 6, to obtain a temperature in the parts P higher than the melting temperature Tf of the thermoplastic polymer matrix of the parts P, is very rapidly dissipated during cooling 7, for example with a cooling rate of approximately 250° C./min.
  • the post-heating device 15 can equip the effector 10 of Figure 2.
  • the post-heating device 15 comprises a system 39 of induction heating.
  • the post-heating device 15 comprises two pyrometers 40 making it possible to measure the temperature of the outer surface S of at least one of the parts P upstream and downstream of the post-heating device 15 with respect to the direction displacement 13.
  • the pyrometers 40 measure, in this example, the temperature of the outer surface S of at least one of the parts P continuously.
  • the heating power of the heating system 39 of the post-heating device 15 is controlled to maintain the outer surface S of at least one of the parts P passing under the post-heating device 15 within a range of predetermined temperature values. , in this example between 230° C. and 260° C., and for a predetermined time, in this example 30 s.
  • control is achieved by comparing a predetermined target temperature, in this example 250°C, and the temperatures measured by the pyrometers.
  • the post-heating device 15 can operate between a minimum heating power, or even zero, a maximum heating power and at least one intermediate heating power comprised between the minimum and maximum power.
  • the operation of the post-heating device can be adapted according to the composite material of the parts PI and P2, in particular by adapting the heating power of the heating system 39 and/or by modifying the parameters of the servo-control, in particular the target temperature .
  • the post-heating device 15 can equip other types of dynamic welding effector with at least two parts P made of composite material comprising a thermoplastic polymer matrix without departing from the scope of the invention.
  • the parts can be moved if the effector is fixed or mobile relative to them.
  • the post-heating device 15 may comprise another type of heating system, in particular an infrared heating system.
  • the pyrometers 40 may not measure the temperature of the outer surface S of at least one of the parts P continuously.
  • the pyrometers 40 can measure the temperature of the outer surface S of at least one of the parts P at a predetermined frequency, for example a frequency of 10 Hz or 100 Hz.
  • the post-heating device 15 can comprise another sensor, in particular another temperature sensor.
  • the post-heating device 15 can operate in all or nothing.
  • the post-heating device can be arranged before the downstream pressing device, or be part of such a pressing device, thus ensuring the two functions of post-heating and pressing.

Abstract

The invention relates to an effector for dynamic welding of at least two parts made of composite material comprising a thermoplastic polymer matrix, the effector comprising: - at least one welding device, for heating at least one zone of at least one of the parts to a temperature greater than or equal to the melting temperature of said thermoplastic polymer matrix in order to weld said at least two parts together at said at least one zone; and - at least one post-heating device configured to heat said at least one zone in order to supply heat to said zone without the temperature thereof exceeding the crystallisation onset temperature of said thermoplastic polymer matrix.

Description

Description Description
Titre : Effecteur de soudage dynamique de pièces en matériau composite Domaine technique Title: Dynamic welding effector for composite material parts Technical field
La présente invention concerne le domaine du soudage de deux pièces en matériau composite à matrice polymère thermoplastique, notamment sans apport de matière. En particulier, l’invention propose un effecteur de soudage dynamique d’au moins deux pièces en matériau composite à matrice polymère thermoplastique. L’invention concerne encore un procédé de soudage dynamique de deux pièces en matériau composite à matrice polymère thermoplastique mettant en œuvre un tel effecteur. The present invention relates to the field of welding two parts made of composite material with a thermoplastic polymer matrix, in particular without adding material. In particular, the invention proposes a dynamic welding effector of at least two parts made of composite material with a thermoplastic polymer matrix. The invention also relates to a process for the dynamic welding of two parts made of composite material with a thermoplastic polymer matrix using such an effector.
Technique antérieure Prior technique
Pour réaliser la soudure de deux pièces en matériau composite à matrice polymère thermoplastique, il est connu de chauffer les deux pièces en contact l’une avec l’autre pour que le matériau polymère des pièces ramollisse ou fonde, ce qui permet de souder les pièces entre elles à leur interface. Lors de ce chauffage, une déconsolidation de la matrice des pièces se produit avant la fusion et a pour conséquence un gonflement local. Il est ainsi connu d’appliquer, en plus du chauffage, une pression sur la zone chauffée afin d’assurer un bon contact à l’interface entre les deux pièces et de limiter les déformations lors du refroidissement et de la consolidation ultérieurs pour réduire les risques de séparation des pièces après le pressage. To weld two parts made of composite material with a thermoplastic polymer matrix, it is known to heat the two parts in contact with each other so that the polymer material of the parts softens or melts, which makes it possible to weld the parts between them at their interface. During this heating, deconsolidation of the matrix of the parts occurs before melting and results in local swelling. It is thus known to apply, in addition to heating, pressure to the heated zone in order to ensure good contact at the interface between the two parts and to limit deformations during subsequent cooling and consolidation to reduce the risk of parts separating after pressing.
Pour des pièces de petite taille, la soudure peut se faire sous une poche à vide ou une presse ce qui permet de limiter les déformations dues aux gonflements. De telles techniques sont cependant difficilement applicables à des pièces de grande taille. For small parts, the welding can be done under a vacuum bag or a press, which makes it possible to limit deformations due to swelling. However, such techniques are difficult to apply to large parts.
Pour les pièces de grande taille, il est connu d’utiliser un ensemble mobile 1, comme visible sur la figure 1, combinant un dispositif de chauffage 2, par exemple à induction, et un élément presseur 3. Un tel ensemble mobile 1 permet de réaliser la soudure des pièces P progressivement lors de son déplacement. L’élément presseur 3 est configuré pour exercer une pression sur les pièces P après chauffage par le dispositif de chauffage 2. For large parts, it is known to use a mobile assembly 1, as seen in Figure 1, combining a heating device 2, for example induction, and a pressing element 3. Such a mobile assembly 1 allows carry out the welding of the parts P gradually during its displacement. The pressing element 3 is configured to exert pressure on the parts P after heating by the heating device 2.
Dans l’état de l’art du soudage dynamique, les pièces soudées refroidissent librement après le passage de l’ensemble mobile. Or, on constate expérimentalement que dans ce cas de figure, la vitesse de refroidissement est très rapide, de l’ordre de 200 à 300°C/min. La chaleur apportée à l’interface entre les pièces pour élever la température de la matrice polymère thermoplastique au-dessus de la température de fusion, est très rapidement dissipée par conduction dans les pièces composites, et dans les pièces au contact, comme par exemple l’outillage. Cette vitesse de refroidissement n’est pas compatible avec les cinétiques de cristallisation du polymère de telle sorte que la cristallinité du polymère après soudage est affectée et reste inférieure au taux de cristallinité initial (de l’ordre de 50% par rapport à l’état initial). In the state of the art of dynamic welding, the welded parts cool freely after the moving assembly has passed. However, it is found experimentally that in this case, the cooling rate is very fast, of the order of 200 to 300° C./min. The heat applied to the interface between the parts to raise the temperature of the thermoplastic polymer matrix above the melting temperature, is very quickly dissipated by conduction in composite parts, and in parts in contact, such as tools, for example. This cooling rate is not compatible with the crystallization kinetics of the polymer so that the crystallinity of the polymer after welding is affected and remains lower than the initial crystallinity rate (of the order of 50% compared to the state initial).
JP2005028784 décrit une méthode de soudage au laser par plusieurs faisceaux laser. JP2005028784 describes a laser welding method using several laser beams.
P existe encore un besoin d’améliorer la qualité de la soudure entre deux pièces réalisée par un effecteur de soudage dynamique de deux pièces en matériau composite à matrice polymère thermoplastique. There is still a need to improve the quality of the weld between two parts made by a dynamic welding effector of two parts made of composite material with a thermoplastic polymer matrix.
Exposé de l’invention Disclosure of Invention
Effecteur de soudage dynamique Dynamic welding effector
La présente invention y parvient en tout ou partie grâce à, selon l’un de ses aspects, un effecteur de soudage dynamique d’au moins deux pièces en matériau composite comportant une matrice polymère thermoplastique, l’effecteur comportant : au moins un dispositif de soudage, de manière à chauffer au moins une zone d’au moins une des pièces à une température supérieure ou égale à la température de fusion de ladite matrice polymère thermoplastique afin de souder lesdites au moins deux pièces entre elles au niveau de ladite au moins une zone, au moins un dispositif de post-chauffage configuré pour chauffer ladite au moins une zone pour apporter de la chaleur à ladite zone sans que la température de celle-ci n’excède la température de début de cristallisation de ladite matrice polymère thermoplastique. The present invention achieves this in whole or in part thanks to, according to one of its aspects, an effector for dynamic welding of at least two parts made of composite material comprising a thermoplastic polymer matrix, the effector comprising: at least one device for welding, so as to heat at least one zone of at least one of the parts to a temperature greater than or equal to the melting temperature of the said thermoplastic polymer matrix in order to weld the said at least two parts together at the level of the said at least one zone, at least one post-heating device configured to heat said at least one zone to provide heat to said zone without the temperature thereof exceeding the crystallization onset temperature of said thermoplastic polymer matrix.
Par « soudage dynamique », on entend que la soudure est réalisée progressivement lors du déplacement de l’effecteur relativement aux pièces. Le soudage est effectué de préférence sans apport de matière. By “dynamic welding”, we mean that the welding is carried out progressively during the movement of the effector relative to the parts. The welding is preferably carried out without addition of material.
Par « température de début de cristallisation », on entend la température à partir de laquelle une croissance de la structure cristalline du polymère thermoplastique se produit dans ladite matrice polymère thermoplastique lors de son refroidissement depuis l’état fondu. La détermination de cette température pour un matériau donné est réalisée en analysant l’enthalpie de cristallisation par calorimétrie différentielle à balayage anisotherme. Lors de la phase de refroidissement à partir de l’état fondu, la température de début de cristallisation correspond au début du pic de l’enthalpie de cristallisation. Cette température de début de cristallisation est comprise entre la température de fusion Tf et la température de cristallisation Ts, généralement comprise entre 30°C en dessous de la température de fusion Tf et 15°C au-dessus de la température de cristallisation Ts. Cette température de cristallisation Ts est caractérisée par une vitesse de croissance de la structure cristalline du polymère thermoplastique maximale. La température de cristallisation Ts est inférieure à la température de fusion Tf, généralement comprise entre 60°C en dessous de la température de fusion Tf et 20°C en dessous de la température de fusion Tf. By “crystallization onset temperature”, is meant the temperature from which a growth of the crystalline structure of the thermoplastic polymer occurs in said thermoplastic polymer matrix during its cooling from the molten state. The determination of this temperature for a given material is carried out by analyzing the enthalpy of crystallization by anisothermal differential scanning calorimetry. During the cooling phase from the molten state, the crystallization onset temperature corresponds to the onset of the peak of the enthalpy of crystallization. This crystallization onset temperature is between the melting temperature Tf and the crystallization temperature Ts, generally between 30° C. below the melting temperature Tf and 15° C. above the crystallization temperature Ts. This crystallization temperature Ts is characterized by a maximum rate of growth of the crystalline structure of the thermoplastic polymer. The crystallization temperature Ts is lower than the melting temperature Tf, generally between 60°C below the melting temperature Tf and 20°C below the melting temperature Tf.
Grâce à l’invention, il est possible d’obtenir un refroidissement maîtrisé de la ou des pièces, indépendamment des caractéristiques desdites pièces, notamment de leur matériau et/ou de leurs dimensions, indépendamment du support sur lequel la soudure est réalisée ou encore indépendamment des conditions ambiantes telles que le taux d’humidité, la température ou la pression de l’air par exemple. Thanks to the invention, it is possible to obtain controlled cooling of the part or parts, independently of the characteristics of said parts, in particular of their material and/or their dimensions, independently of the support on which the welding is carried out or even independently ambient conditions such as humidity, temperature or air pressure, for example.
Le chauffage de ladite au moins une zone, avec ledit au moins un dispositif de soudage, à une température supérieure ou égale à la température de fusion de ladite matrice polymère thermoplastique permet à ce dernier de passer dans un état de fusion. Ainsi, une interpénétration des chaînes polymères desdites au moins deux pièces peut se produire, permettant la soudure au niveau de ladite zone. The heating of said at least one zone, with said at least one welding device, to a temperature greater than or equal to the melting temperature of said thermoplastic polymer matrix allows the latter to pass into a state of melting. Thus, an interpenetration of the polymer chains of said at least two parts can occur, allowing welding at said zone.
Ledit au moins un dispositif de post-chauffage peut être configuré pour chauffer ladite au moins une des pièces à une température inférieure à la température de début de cristallisation et supérieure à la température de l’air ambiant qui est par exemple de 25°C, une telle température pouvant être par exemple comprise entre 230°C et 260°C pour une pièce avec une matrice en PEKK. Said at least one post-heating device can be configured to heat said at least one of the parts to a temperature below the crystallization start temperature and above the temperature of the ambient air which is for example 25° C., such a temperature possibly being for example between 230° C. and 260° C. for a part with a PEKK matrix.
Ledit au moins un dispositif de post-chauffage est, de préférence, disposé en aval dudit au moins un dispositif de soudage relativement au sens de déplacement de l’effecteur. Said at least one post-heating device is preferably arranged downstream of said at least one welding device relative to the direction of movement of the effector.
Ledit au moins un dispositif de post-chauffage est, de préférence, disposé à une distance comprise entre 3 et 30 mm environ dudit au moins un dispositif de soudage au sein de l’effecteur. La distance est, de préférence, déterminée en fonction de la vitesse de déplacement de l’effecteur, de la matrice polymère thermoplastique desdites au moins deux pièces et de la vitesse de refroidissement à l’air libre desdites pièces. Cette vitesse de refroidissement à l’air libre dépend des conditions d’échanges thermiques aux interfaces entre lesdites pièces. Said at least one post-heating device is preferably disposed at a distance between approximately 3 and 30 mm from said at least one welding device within the effector. The distance is preferably determined as a function of the speed of movement of the effector, of the thermoplastic polymer matrix of said at least two parts and of the speed of cooling in the open air of said parts. This speed of cooling in the open air depends on the heat exchange conditions at the interfaces between said parts.
Ledit au moins un dispositif de post-chauffage est, de préférence, configuré pour ralentir la vitesse de refroidissement de ladite au moins une pièce. Said at least one post-heating device is preferably configured to slow down the cooling rate of said at least one part.
Par « vitesse de refroidissement de ladite au moins une pièce », on entend la variation temporelle de la température de ladite au moins une pièce chauffée avec ledit au moins un dispositif de soudage. By “cooling rate of said at least one part”, is meant the temporal variation of the temperature of said at least one part heated with said at least one welding device.
Par « ralentir la vitesse de refroidissement », on entend que la vitesse de refroidissement de ladite au moins une pièce chauffée avec ledit au moins un dispositif de soudage est inférieure à la vitesse de refroidissement à l’air libre. Ce ralentissement peut conduire à une augmentation, ou non, transitoire, de la température de ladite au moins une pièce chauffée avec ledit au moins un dispositif de soudage. By “slowing down the cooling rate”, it is meant that the cooling rate of said at least one part heated with said at least one welding device is lower than the cooling rate in the open air. This slowing down can lead to an increase, or not, transient, of the temperature of said at least one part heated with said at least one welding device.
Ledit au moins un dispositif de post-chauffage peut permettre de chauffer ladite au moins une zone à une température T comprise dans une plage de valeurs de températures prédéterminée s’étendant, par exemple entre 90°C environ en dessous de la température de cristallisation et la température de début de cristallisation soit Ts-90°C<T<Tc, mieux entre 75°C environ en dessous de la température de cristallisation et la température de début de cristallisation soit Ts-75°C<T<Tc, encore mieux entre 40°C environ en dessous de la température de cristallisation et la température de début de cristallisation soit Ts- 40°C<T<Tc. Said at least one post-heating device can make it possible to heat said at least one zone to a temperature T comprised within a range of predetermined temperature values extending, for example between approximately 90° C. below the crystallization temperature and the crystallization start temperature is Ts-90°C<T<Tc, better between approximately 75°C below the crystallization temperature and the crystallization start temperature is Ts-75°C<T<Tc, even better between approximately 40° C. below the crystallization temperature and the crystallization start temperature, ie Ts-40° C.<T<Tc.
Par exemple, pour au moins deux pièces en matériau composite comportant une polyéthercétonecétone (PEKK) avec une température de fusion de 340°C environ, le dispositif de post-chauffage peut permettre de maintenir la surface extérieure d’au moins l’une des pièces dans une plage de valeurs de températures comprise entre 230°C environ et 260°C environ. For example, for at least two parts made of composite material comprising a polyetherketoneketone (PEKK) with a melting temperature of approximately 340° C., the post-heating device can make it possible to maintain the outer surface of at least one of the parts in a range of temperature values comprised between approximately 230° C. and approximately 260° C.
Ledit au moins un dispositif de soudage et/ou ledit au moins un dispositif de post-chauffage peuvent être configurés et/ou être commandés, notamment par un système de contrôle de l’effecteur, pour chauffer les deux pièces ou plus s’il y a plus de deux pièces en chauffant chaque zone passant successivement sous le dispositif de soudage et le dispositif de post-chauffage. Ledit au moins un dispositif de soudage et/ou ledit au moins un dispositif de post-chauffage peuvent être configurés et/ou commandés pour permettre de chauffer toutes les pièces à souder. Ledit au moins un dispositif de soudage et ledit au moins un dispositif de post chauffage peuvent chauffer au moins l’interface de soudure de la ou des pièces concernées par ce chauffage, pas nécessairement la ou les pièces tout entières. Said at least one welding device and/or said at least one post-heating device can be configured and/or be controlled, in particular by an effector control system, to heat the two or more parts if there is has more than two parts by heating each zone successively passing under the welding device and the post-heating device. Said at least one welding device and/or said at least one post-heating device can be configured and/or controlled to make it possible to heat all the parts to be welded. Said at least one welding device and said at least one post-heating device can heat at least the welding interface of the part or parts concerned by this heating, not necessarily the entire part or parts.
De préférence, lesdites au moins deux pièces comportent une matrice polymère thermoplastique semi-cristallin. Preferably, said at least two parts comprise a semi-crystalline thermoplastic polymer matrix.
Par « matériau thermoplastique semi-cristallin », on entend un polymère thermoplastique possédant des zones cristallines et des zones amorphes. Un tel polymère peut comporter des lamelles constituées de mailles cubiques, orthorhombiques ou hexagonales. Le taux de cristallinité peut varier entre 20% à 30% environ. Les matériaux polymères thermoplastiques semi-cristallins sont des matériaux hautes performances possédant une rigidité importante et une bonne résistance au fluage. By “semi-crystalline thermoplastic material”, is meant a thermoplastic polymer having crystalline zones and amorphous zones. Such a polymer can comprise lamellae consisting of cubic, orthorhombic or hexagonal meshes. The degree of crystallinity can vary between 20% to 30% approximately. Semi-crystalline thermoplastic polymer materials are high performance materials with high stiffness and good creep resistance.
Le matériau thermoplastique desdites au moins deux pièces peut en variante être amorphe. The thermoplastic material of said at least two parts can alternatively be amorphous.
L’effecteur comporte avantageusement au moins un dispositif presseur. Ce dispositif presseur permet l’application d’une pression sur la zone préalablement chauffée. L’application d’une pression sur la zone préalablement chauffée par le dispositif de soudage permet de limiter les déformations lors du refroidissement et de la consolidation ultérieurs et de réduire les risques de séparation des pièces après le pressage. The effector advantageously comprises at least one pressing device. This pressure device allows the application of pressure on the previously heated area. The application of pressure to the area previously heated by the welding device makes it possible to limit deformations during subsequent cooling and consolidation and to reduce the risk of separation of the parts after pressing.
Dans ce cas, ledit au moins dispositif presseur est avantageusement disposé entre ledit au moins un dispositif de soudage et ledit au moins un dispositif de post-chauffage. Ledit au moins un dispositif de post-chauffage peut également faire partie d’un tel dispositif presseur, assurant alors les deux fonctions de post-chauffage et de pressage. In this case, said at least one pressing device is advantageously arranged between said at least one welding device and said at least one post-heating device. Said at least one post-heating device can also be part of such a pressing device, then ensuring the two functions of post-heating and pressing.
Ledit au moins un dispositif presseur peut également être un outillage fixe relativement auxdites au moins deux pièces, comme par exemple dans la demande NL1030304. Said at least one pressing device can also be a fixed tool relative to said at least two parts, as for example in application NL1030304.
De préférence, ledit au moins un dispositif de soudage comporte un système de chauffage par induction, par ultrason, par conduction thermique et/ou par infrarouge, de préférence par induction. On peut, par exemple, utiliser un dispositif de soudage comportant un système de chauffage par induction associé à G utilisation d’un succepteur. Le succepteur est un élément magnétique et conducteur électrique localisé à l’interface entre lesdites au moins deux pièces, permettant d’injecter davantage de puissance dans l’interface. Le dispositif de post-chauffage comporte avantageusement un système de chauffage par induction ou par rayonnement infrarouge. Preferably, said at least one welding device comprises a heating system by induction, by ultrasound, by thermal conduction and/or by infrared, preferably by induction. It is possible, for example, to use a welding device comprising an induction heating system associated with the use of a sucker. The succeptor is a magnetic and electrically conductive element located at the interface between said at least two parts, making it possible to inject more power into the interface. The post-heating device advantageously comprises a heating system by induction or by infrared radiation.
Le dispositif de post-chauffage peut comporter au moins un capteur de température, notamment un pyromètre, de manière à mesurer la température de la surface extérieure d’au moins l’une des pièces. The post-heating device may comprise at least one temperature sensor, in particular a pyrometer, so as to measure the temperature of the outer surface of at least one of the parts.
Le dispositif de post-chauffage comporte, de préférence, un système d’asservissement pour maintenir la surface extérieure d’au moins l’une des pièces dans une plage de valeurs de températures prédéterminée pendant une durée prédéterminée, par exemple de sensiblement 30 s. Le dispositif de post-chauffage peut ainsi adapter sa puissance de chauffage en fonction des caractéristiques desdites pièces, notamment de leur matériau et/ou de leurs dimensions, du support sur lequel la soudure est réalisée ou encore des conditions ambiantes telles que le taux d’humidité, la température ou la pression de l’air par exemple. The post-heating device preferably comprises a servo system for maintaining the outer surface of at least one of the parts within a range of predetermined temperature values for a predetermined duration, for example substantially 30 s. The post-heating device can thus adapt its heating power according to the characteristics of said parts, in particular their material and/or their dimensions, the support on which the weld is made or even ambient conditions such as the rate of humidity, temperature or air pressure for example.
Un tel système d’asservissement peut, par exemple, adapter sa puissance de chauffage en fonction de la différence entre au moins une température de la plage de valeurs de températures prédéterminée et au moins une température mesurée par ledit au moins un capteur de température et/ou une moyenne de températures mesurées par ledit au moins un capteur de température. Such a servo system can, for example, adapt its heating power as a function of the difference between at least one temperature from the range of predetermined temperature values and at least one temperature measured by said at least one temperature sensor and/or or an average of temperatures measured by said at least one temperature sensor.
Le dispositif de post-chauffage peut fonctionner entre une puissance de chauffage minimale, voire nulle, et une puissance de chauffage maximale. Le dispositif de post-chauffage peut encore fonctionner à au moins une puissance de chauffage intermédiaire comprise entre la puissance de chauffage minimale et la puissance de chauffage maximale. The post-heating device can operate between a minimum heating power, or even zero, and a maximum heating power. The post-heating device can also operate at at least one intermediate heating power between the minimum heating power and the maximum heating power.
L’effecteur est de préférence mobile tandis que les pièces à souder sont fixes. En variante, les pièces sont déplacées sous l’effecteur, lequel reste fixe ou est également mobile. The effector is preferably mobile while the parts to be welded are fixed. Alternatively, the parts are moved under the effector, which remains fixed or is also movable.
Procédé de soudage dynamique Dynamic welding process
L’invention a encore pour objet, selon un autre de ses aspects, en combinaison avec ce qui précède, un procédé de soudage dynamique d’au moins deux pièces en matériau composite comportant une matrice polymère thermoplastique, à l’aide d’un effecteur de soudage dynamique tel que décrit plus haut, comportant les étapes suivantes : i) superposer au moins partiellement lesdites au moins deux pièces à souder entre elles, ii) positionner l’effecteur du côté d’au moins une surface extérieure d’au moins l’une desdites pièces, iii) mettre en mouvement l’effecteur relativement aux pièces, dans un sens de déplacement, tel que ledit au moins un dispositif de post-chauffage soit disposé en aval dudit au moins un dispositif de soudage, iv) chauffer avec le dispositif de soudage au moins une zone d’au moins une des deux pièces passant sous le dispositif de soudage, v) réaliser un chauffage de ladite au moins une zone avec le dispositif de post-chauffage lorsque celle-ci passe sous le dispositif de post-chauffage, pour apporter de la chaleur à ladite zone sans que la température de celle-ci n’excède la température de début de cristallisation Te de ladite matrice polymère thermoplastique desdites pièces P. Another subject of the invention, according to another of its aspects, in combination with the foregoing, is a process for dynamically welding at least two parts made of composite material comprising a thermoplastic polymer matrix, using an effector dynamic welding as described above, comprising the following steps: i) at least partially superimposing said at least two parts to be welded together, ii) positioning the effector on the side of at least one outer surface of at least one of said parts, iii) moving the effector relative to the parts, in a direction of movement, such that said at least one device post-heating device is arranged downstream of said at least one welding device, iv) heating with the welding device at least one zone of at least one of the two parts passing under the welding device, v) heating said at least one zone with the post-heating device when the latter passes under the post-heating device, to provide heat to said zone without the temperature thereof exceeding the crystallization start temperature Te of said thermoplastic polymer matrix of said parts P.
Grâce à ce procédé, le refroidissement de ladite zone préalablement chauffée par le dispositif de soudage et passant sous le dispositif de post-chauffage peut être maîtrisé, indépendamment des caractéristiques desdites pièces, notamment de leur matériau et/ou de leurs dimensions, du support sur lequel la soudure est réalisée ou encore des conditions ambiantes telles que le taux d’humidité, la température ou la pression de l’air par exemple. Thanks to this method, the cooling of said zone previously heated by the welding device and passing under the post-heating device can be controlled, independently of the characteristics of said parts, in particular of their material and/or their dimensions, of the support on which the welding is carried out or ambient conditions such as humidity, temperature or air pressure for example.
La maîtrise de la vitesse de refroidissement peut permettre d’obtenir des propriétés souhaitées à la soudure, par exemple en favorisant la cristallisation de la matrice polymère thermoplastique le cas échéant, et ainsi améliorer la qualité de la soudure. Controlling the cooling rate can make it possible to obtain the desired properties of the weld, for example by promoting the crystallization of the thermoplastic polymer matrix if necessary, and thus improving the quality of the weld.
Le post-chauffage d’au moins une zone de ladite au moins une pièce lors du déplacement de l’effecteur est, de préférence, réalisé après le chauffage de ladite au moins une zone après un temps compris entre 5 et 10 secondes environ. The post-heating of at least one zone of said at least one part during the displacement of the effector is preferably carried out after the heating of said at least one zone after a time comprised between approximately 5 and 10 seconds.
Le post-chauffage d’au moins une zone de ladite au moins une pièce lors du déplacement de l’effecteur a une durée de préférence comprise entre 20 et 30 secondes environ. The post-heating of at least one zone of said at least one part during the movement of the effector lasts preferably between 20 and 30 seconds approximately.
Le chauffage desdites pièces peut avoir pour conséquence une déconsolidation locale desdites pièces, ce qui produit un gonflement local. De préférence, le procédé comporte une étape consistant à amener au moins un dispositif presseur de l’effecteur en contact avec ladite surface extérieure d’au moins l’une des pièces dans la zone passant sous le dispositif presseur. Cela permet de contraindre la matière constitutive des pièces après le chauffage pour améliorer la consolidation lors du refroidissement et limiter les déformations induites par le gonflement local. The heating of said parts can result in local deconsolidation of said parts, which produces local swelling. Preferably, the method comprises a step consisting in bringing at least one presser device of the effector into contact with said outer surface of at least one of the parts in the zone passing under the pressing device. This makes it possible to constrain the constituent material of the parts after heating to improve consolidation during cooling and to limit the deformations induced by local swelling.
Dans ce cas, entre les étapes iv) et v), simultanément à l’étape v) ou après l’étape v), de préférence entre les étapes iv) et v), le procédé peut comporter une étape consistant à exercer une pression sur la surface extérieure de ladite zone avec ledit au moins un dispositif presseur. Le dispositif presseur peut favoriser l’adhésion entre les pièces en assurant le contact entre elles et en permettant l’interpénétration des chaînes de polymère. Le risque de séparation des pièces après le passage de l’effecteur est ainsi limité. In this case, between steps iv) and v), simultaneously with step v) or after step v), preferably between steps iv) and v), the method may comprise a step consisting in exerting pressure on the outer surface of said zone with said at least one presser device. The pressing device can promote adhesion between the parts by ensuring contact between them and allowing the interpenetration of the polymer chains. The risk of separation of the parts after the passage of the effector is thus limited.
L’étape v) est avantageusement mise en œuvre de manière à ce que ledit au moins un dispositif de post-chauffage maintienne dans ladite zone une température comprise dans une plage de valeurs de températures prédéterminée, par exemple entre 90°C en dessous de la température de cristallisation et la température de début de cristallisation, mieux entre 75°C en dessous de la température de cristallisation et la température de début de cristallisation, encore mieux entre 40°C en dessous de la température de cristallisation et la température de début de cristallisation. Step v) is advantageously implemented so that said at least one post-heating device maintains in said zone a temperature comprised within a range of predetermined temperature values, for example between 90° C. below the crystallization temperature and the crystallization start temperature, better still between 75°C below the crystallization temperature and the crystallization start temperature, even better between 40°C below the crystallization temperature and the crystallization start temperature crystallization.
Cette température de post-chauffage peut permettre de favoriser la cinétique de transformation de la matrice polymère thermoplastique desdites pièces. En particulier, pour des matériaux polymères thermoplastiques semi-cristallins, maintenir une température de 80°C environ en dessous de la température de fusion peut permettre une formation rapide des zones cristallines. This post-heating temperature can make it possible to promote the transformation kinetics of the thermoplastic polymer matrix of said parts. In particular, for semi-crystalline thermoplastic polymer materials, maintaining a temperature of approximately 80° C. below the melting temperature can allow rapid formation of crystalline zones.
Par exemple, pour la soudure entre elles d’au moins deux pièces en matériau composite comportant une polyéthercétonecétone (PEKK) avec une température de fusion de sensiblement 340°C, l’étape v) de post-chauffage permet avantageusement de maintenir une température de 250°C environ dans ladite zone. For example, for the welding together of at least two parts made of composite material comprising a polyetherketoneketone (PEKK) with a melting temperature of substantially 340° C., step v) of post-heating advantageously makes it possible to maintain a temperature of 250° C. approximately in said zone.
L’étape v) de post-chauffage permet avantageusement d’obtenir une vitesse de refroidissement dans ladite zone qui soit inférieure à 50°C/min. Une telle vitesse de refroidissement plus lente que la vitesse de refroidissement à l’air libre, peut contribuer à favoriser la cinétique de transformation de la matrice polymère thermoplastique desdites pièces. The post-heating step v) advantageously makes it possible to obtain a cooling rate in said zone which is less than 50° C./min. Such a cooling rate, which is slower than the cooling rate in the open air, can contribute to favoring the transformation kinetics of the thermoplastic polymer matrix of said parts.
Avantageusement, au cours des étapes iv) et v), l’effecteur se déplace à une vitesse comprise entre 3 et 30 mm/s environ de préférence égale à 5 mm/s environ. Lorsque lesdites au moins deux pièces en matériau composite comportent une matrice polymère thermoplastique semi-cristallin, l’étape v) est de préférence mise en œuvre de manière à ce que le taux de cristallinité dans ladite zone, après le passage dudit au moins un dispositif de post-chauffage, soit sensiblement le même que le taux de cristallinité dans ladite zone, avant le passage dudit au moins un dispositif de soudage, notamment en adaptant la plage de températures de post-chauffage et le temps de post-chauffage. Advantageously, during steps iv) and v), the effector moves at a speed of between 3 and 30 mm/s approximately, preferably equal to 5 mm/s approximately. When said at least two composite material parts comprise a semi-crystalline thermoplastic polymer matrix, step v) is preferably implemented so that the crystallinity rate in said zone, after passage of said at least one device post-heating, is substantially the same as the degree of crystallinity in said zone, before the passage of said at least one welding device, in particular by adapting the post-heating temperature range and the post-heating time.
Ainsi, les caractéristiques mécaniques de ladite au moins une pièce après refroidissement sont sensiblement homogènes dans toute ladite au moins une pièce. De cette façon, la soudure au niveau de l’interface de soudure ne constitue pas une zone de faiblesse de la pièce finale. Thus, the mechanical characteristics of said at least one part after cooling are substantially homogeneous throughout said at least one part. In this way, the weld at the weld interface does not constitute an area of weakness in the final part.
De préférence, la soudure a lieu sans ajout d’un matériau additionnel à l’interface entre l’effecteur et au moins l’une desdites pièces ni entre les pièces, ni entre ledit au moins un dispositif presseur et au moins l’une desdites pièces le cas échéant. Ledit au moins un dispositif de soudage permet en effet avantageusement de chauffer chaque zone d’au moins une desdites au moins deux pièces qui passe sous le dispositif de soudage à une température supérieure ou égale à la température de fusion desdites pièces, ce qui permet ensuite une interpénétration entre les pièces à leur interface, créant ainsi la soudure entre elles. Preferably, the welding takes place without adding an additional material to the interface between the effector and at least one of said parts, nor between the parts, nor between said at least one pressing device and at least one of said parts if applicable. Said at least one welding device in fact advantageously makes it possible to heat each zone of at least one of said at least two parts which passes under the welding device to a temperature greater than or equal to the melting temperature of said parts, which then allows an interpenetration between the parts at their interface, thus creating the weld between them.
L’effecteur est de préférence mobile tandis que les pièces à souder sont fixes. En variante, les pièces sont déplacées sous l’effecteur, lequel reste fixe ou est également mobile. The effector is preferably mobile while the parts to be welded are fixed. Alternatively, the parts are moved under the effector, which remains fixed or is also movable.
Lesdites au moins deux pièces comportent avantageusement un renfort fibreux constitué de fibres de carbone. Said at least two parts advantageously comprise a fibrous reinforcement consisting of carbon fibers.
Lesdites au moins deux pièces comportent une matrice polymère thermoplastique choisie dans le groupe constitué par les polyaryléthercétones (PAEK), notamment le polyétheréthercétone (PEEK) ou le polyéthercétonecétone (PEKK). Said at least two parts comprise a thermoplastic polymer matrix chosen from the group consisting of polyaryletherketones (PAEK), in particular polyetheretherketone (PEEK) or polyetherketoneketone (PEKK).
Les matrices polymères thermoplastiques desdites au moins deux pièces peuvent comporter la même matrice polymère thermoplastique ou des matrices polymères thermoplastiques différentes. The thermoplastic polymer matrices of said at least two parts can comprise the same thermoplastic polymer matrix or different thermoplastic polymer matrices.
Dispositif de post-soudage Post-welding device
L’invention a encore pour objet, selon un autre de ses aspects, en combinaison avec ce qui précède, un dispositif de post-chauffage destiné à équiper un effecteur de soudage dynamique d’au moins deux pièces en matériau composite comportant une matrice polymère thermoplastique, notamment un effecteur tel que défini plus haut, configuré pour, après chauffage d’au moins une zone de l’interface de soudure desdites au moins deux pièces à une température supérieure à la température de fusion, apporter de la chaleur à ladite zone sans que la température de celle-ci n’excède la température de début de cristallisation de ladite matrice polymère thermoplastique. Another subject of the invention, according to another of its aspects, in combination with the foregoing, is a post-heating device intended to equip a dynamic welding effector with at least two parts made of composite material comprising a thermoplastic polymer matrix , in particular an effector as defined above, configured for, after heating at least one zone of the weld interface of said at least two parts to a temperature above the melting temperature, supplying heat to said zone without the temperature thereof exceeding the temperature of start of crystallization of said thermoplastic polymer matrix.
Grâce à ce dispositif de post-chauffage, il est possible de maîtriser le refroidissement desdites au moins deux pièces lors du soudage, indépendamment de l’effecteur utilisé et des caractéristiques desdites pièces, notamment de leur matériau et/ou de leurs dimensions, du support sur lequel la soudure est réalisée ou encore des conditions ambiantes telles que le taux d’humidité, la température ou la pression de l’air par exemple. Le dispositif de post-chauffage peut être tel que défini plus haut. Thanks to this post-heating device, it is possible to control the cooling of said at least two parts during welding, independently of the effector used and of the characteristics of said parts, in particular of their material and/or their dimensions, of the support on which the weld is made or ambient conditions such as humidity, temperature or air pressure for example. The post-heating device can be as defined above.
Brève description des dessins Brief description of the drawings
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de mise en œuvre non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel The invention may be better understood on reading the detailed description which follows, non-limiting examples of implementation thereof, and on examining the appended drawing, on which
[Fig 1] la figure 1 représente, de manière schématique, en vue de côté, un effecteur de soudage dynamique selon l’art antérieur comportant un élément presseur, [Fig 1] Figure 1 schematically shows, in side view, a dynamic welding effector according to the prior art comprising a pressing element,
[Fig 2] la figure 2 représente, de manière schématique, en vue de côté, un effecteur de soudage dynamique selon l’invention, [Fig 2] Figure 2 shows, schematically, in side view, a dynamic welding effector according to the invention,
[Fig 3] la figure 3 représente, sous la forme d’un schéma bloc, les étapes d’un exemple de procédé de soudage dynamique selon l’invention, [Fig 3] figure 3 represents, in the form of a block diagram, the steps of an example of a dynamic welding process according to the invention,
[Fig 4] la figure 4 illustre, à l’aide d’un graphe schématique l’évolution de la température en fonction du temps au cours du déplacement de l’effecteur de la figure 3, [Fig 4] figure 4 illustrates, using a schematic graph, the evolution of the temperature as a function of time during the displacement of the effector of figure 3,
[Fig 5] la figure 5 illustre à l’aide d’un graphe schématique l’évolution de la température en fonction du temps au cours du déplacement de l’effecteur de la figure 1, et [Fig 6] la figure 6 représente isolément, de manière schématique, en vue de côté, un dispositif de post-chauffage selon l’invention. [Fig 5] figure 5 illustrates using a schematic graph the evolution of the temperature as a function of time during the displacement of the effector of figure 1, and [Fig 6] figure 6 represents in isolation , schematically, in side view, a post-heating device according to the invention.
Description détaillée detailed description
Dans la suite de la description, les éléments identiques ou de fonctions identiques portent le même signe de référence. A des fins de concision de la présente description, ils ne sont pas décrits en regard de chacune des figures, seules les différences entre les modes de réalisation étant décrites. Sur les figures, les proportions réelles n’ont pas été respectées, dans un souci de clarté. In the remainder of the description, identical elements or identical functions bear the same reference sign. For the purpose of conciseness of the present description, they are not described with regard to each of the figures, only the differences between the embodiments being described. In the figures, the actual proportions have not been respected, for the sake of clarity.
On a illustré sur la figure 2 un effecteur 10 de soudage dynamique selon l’invention. L’effecteur 10 est prévu pour réaliser la soudure, dans cet exemple de deux pièces P, superposées au moins partiellement entre elles, sans ajout de matière. Les pièces P, numérotées PI et P2, sont en matériau composite comportant une matrice polymère thermoplastique semi-cristallin, dans cet exemple du PEKK, et un renfort fibreux, dans cet exemple des fibres de carbone. L’effecteur 10 est apte à se déplacer relativement aux pièces selon un sens de déplacement illustré par la flèche 13 afin de former une pièce finale Pf, formée par la soudure des pièces PI et P2. There is illustrated in Figure 2 a dynamic welding effector 10 according to the invention. The effector 10 is provided for carrying out the welding, in this example of two parts P, superimposed at least partially on each other, without adding material. Parts P, numbered PI and P2, are made of composite material comprising a semi-crystalline thermoplastic polymer matrix, in this example PEKK, and a fibrous reinforcement, in this example carbon fibers. The effector 10 is able to move relative to the parts according to a direction of movement illustrated by the arrow 13 in order to form a final part Pf, formed by the welding of the parts PI and P2.
L’effecteur 10 est positionné du côté d’une surface extérieure S d’au moins une des pièces P, dans cet exemple la surface extérieure de la pièce Pl. The effector 10 is positioned on the side of an outer surface S of at least one of the parts P, in this example the outer surface of the part P1.
Comme visible, l’effecteur 10 comporte un dispositif de soudage 11, dans cet exemple comporte un système de chauffage par induction. Le dispositif de soudage 11 permet, dans cet exemple, de chauffer les pièces P, ou au moins l’une d’entre elles, notamment la pièce Pl, dans une zone 12 passant sous le dispositif de soudage 11 à une température supérieure ou égale à la température de fusion Tf de ladite matrice polymère thermoplastique et ainsi réaliser le soudage entre les deux pièces Pl et P2 à l’interface entre elles sans ajout de matière. As visible, the effector 10 comprises a welding device 11, in this example comprises an induction heating system. The welding device 11 makes it possible, in this example, to heat the parts P, or at least one of them, in particular the part P1, in a zone 12 passing under the welding device 11 to a temperature greater than or equal to at the melting temperature Tm of said thermoplastic polymer matrix and thus perform the welding between the two parts P1 and P2 at the interface between them without adding material.
L’effecteur 10 comporte également un dispositif de post-chauffage 15 configuré pour chauffer ladite zone 12 des pièces P, lorsqu’elle passe sous le dispositif de post chauffage 15, pour apporter de la chaleur à la zone 12 sans que la température T de celle-ci n’excède la température de début de cristallisation Te de ladite matrice polymère thermoplastique. Le fait de chauffer à nouveau la zone 12 après chauffage et soudage permet de ralentir la vitesse de refroidissement des pièces P par rapport à la vitesse de refroidissement à l’air libre, plus rapide. The effector 10 also comprises a post-heating device 15 configured to heat said zone 12 of the parts P, when it passes under the post-heating device 15, to provide heat to the zone 12 without the temperature T of this does not exceed the crystallization onset temperature Te of said thermoplastic polymer matrix. The fact of heating the zone 12 again after heating and welding makes it possible to slow down the cooling rate of the parts P compared to the speed of cooling in the open air, which is faster.
Le dispositif de post-chauffage 15 est, dans cet exemple, disposé à une distance di de 15 mm environ dudit au moins un dispositif de soudage au sein de l’effecteur. The post-heating device 15 is, in this example, placed at a distance di of approximately 15 mm from said at least one welding device within the effector.
Dans cet exemple, l’effecteur 10 comporte également deux dispositifs presseurs 20 placés en amont (dispositif presseur 20a) et en aval (dispositif presseur 20b) du dispositif de soudage 11 relativement au sens de déplacement 13, permettant l’application d’une pression sur la zone 12 chauffée. La zone 12 est la zone des pièces P qui passe sous les différents composants de l’effecteur 10 à un moment donné, lors du déplacement de l’effecteur. La zone 12 comporte au moins une partie de l’interface de soudure entre les pièces, laquelle correspond à la zone de contact entre les pièces qui est à souder. Elle passe d’abord sous le dispositif de soudage 11, puis, dans cet exemple, sous le dispositif presseur 20b, puis sous le dispositif de post chauffage 15. L’ensemble des zones à souder des pièces P défile ainsi sous l’effecteur 10. In this example, the effector 10 also comprises two pressing devices 20 placed upstream (pressing device 20a) and downstream (pressing device 20b) of the welding device 11 relative to the direction of movement 13, allowing the application of a pressure on zone 12 heated. Zone 12 is the zone of the parts P which passes under the various components of the effector 10 at a given moment, during the movement of the effector. Zone 12 comprises at least part of the weld interface between the parts, which corresponds to the contact zone between the parts which is to be welded. It passes first under the welding device 11, then, in this example, under the pressing device 20b, then under the post-heating device 15. All the zones to be welded of the parts P thus pass under the effector 10 .
Pour utiliser un effecteur 10 comme décrit précédemment, on peut mettre en œuvre les étapes illustrées sur la figure 3. To use an effector 10 as described previously, the steps illustrated in FIG. 3 can be implemented.
Dans une première étape 30, on superpose les pièces PI et P2 en matériau composite au moins partiellement. In a first step 30, the parts P1 and P2 of composite material are superimposed at least partially.
Dans une deuxième étape 31, l’effecteur 10 est positionné du côté de la surface extérieure S de la pièce Pl. In a second step 31, the effector 10 is positioned on the side of the outer surface S of the part P1.
Dans une troisième étape 32, l’effecteur 10 est mis en mouvement dans un sens de déplacement 13, de telle sorte que le dispositif de post-chauffage 15 soit en aval du dispositif de soudage 11. In a third step 32, the effector 10 is set in motion in a direction of movement 13, such that the post-heating device 15 is downstream of the welding device 11.
Dans une étape 33, l’effecteur 10 étant toujours en mouvement, le dispositif de soudage 11 chauffe, par un phénomène d’induction, la zone 12 des pièces P passant sous le dispositif de soudage 11. In a step 33, the effector 10 being still in motion, the welding device 11 heats, by an induction phenomenon, the zone 12 of the parts P passing under the welding device 11.
Dans une étape 34, le dispositif de post-chauffage 15 permet de chauffer, par exemple par induction, la zone 12 des pièces P qui passe sous le dispositif de post-chauffage 15, pour apporter de la chaleur à la zone 12 sans que la température de celle-ci n’excède la température de début de cristallisation Te de ladite matrice polymère thermoplastique des pièces P. In a step 34, the post-heating device 15 makes it possible to heat, for example by induction, the zone 12 of the parts P which passes under the post-heating device 15, to provide heat to the zone 12 without the temperature thereof does not exceed the crystallization onset temperature Te of said thermoplastic polymer matrix of the parts P.
Dans cet exemple, le dispositif presseur 20a est amené en contact avec la surface extérieure S de la pièce Pl de manière à contraindre la matière constitutive des pièces P avant passage sous le dispositif de soudage 11. In this example, the pressing device 20a is brought into contact with the outer surface S of the part P1 so as to constrain the constituent material of the parts P before passing under the welding device 11.
Dans cet exemple, le procédé comporte également une étape, non illustrée, consistant à exercer une pression sur la surface extérieure S de ladite zone 12, mise en œuvre entre les étapes 33 et 34 à l’aide du dispositif presseur 20b. In this example, the method also includes a step, not illustrated, consisting in exerting pressure on the outer surface S of said zone 12, implemented between steps 33 and 34 using the pressing device 20b.
Dans cet exemple, au cours des étapes 32 à 34, l’effecteur 10 se déplace à une vitesse de Tordre de 5 mm/s. On a représenté sur la figure 4 l’évolution de la température de la zone 12 en fonction du temps, lors de la mise en œuvre du procédé selon l’invention avec l’effecteur 10 illustré sur la figure 2, pour des pièces PI et P2 comportant du PEKK et des fibres de carbone. In this example, during steps 32 to 34, the effector 10 moves at a speed of the order of 5 mm/s. There is shown in Figure 4 the evolution of the temperature of the zone 12 as a function of time, during the implementation of the method according to the invention with the effector 10 illustrated in Figure 2, for parts PI and P2 featuring PEKK and carbon fibers.
Comme visible sur cette figure, dans une première phase A, la température de la zone 12 augmente, lorsqu’elle se trouve sous le dispositif de soudage 11, jusqu’à une température Tl, dans cet exemple égale à 350°C, supérieure à la température de fusion Tf de la matrice polymère thermoplastique des pièces P, dans cette exemple égale à 330°C. As visible in this figure, in a first phase A, the temperature of zone 12 increases, when it is under the welding device 11, up to a temperature T1, in this example equal to 350° C., greater than the melting point Tm of the thermoplastic polymer matrix of the parts P, in this example equal to 330°C.
Dans une deuxième phase B, la zone 12 refroidit librement à une vitesse de refroidissement à l’air libre de 250°C/min. In a second phase B, zone 12 cools freely at a free air cooling rate of 250°C/min.
Dans une troisième phase C, la zone 12 est chauffée à nouveau par le dispositif de post-chauffage 15. Cela permet de maintenir une température T comprise entre 40°C environ en dessous de la température de cristallisation Ts, Ts étant dans cet exemple égale à 235°C environ, et la température de début de cristallisation Te, Te étant dans cet exemple égale à 250°C environ, et de réduire la vitesse de refroidissement à une vitesse de refroidissement égale à 50°C/min. In a third phase C, the zone 12 is heated again by the post-heating device 15. This makes it possible to maintain a temperature T of between approximately 40° C. below the crystallization temperature Ts, Ts being in this example equal at approximately 235° C., and the crystallization onset temperature Te, Te being in this example equal to approximately 250° C., and to reduce the cooling rate to a cooling rate equal to 50° C./min.
De cette manière, le taux de cristallinité dans la zone 12, après le passage du dispositif de post-chauffage 15, est le même que le taux de cristallinité dans la zone 12 avant le passage du dispositif de soudage 11, à savoir compris entre 25% et 30% environ. In this way, the crystallinity rate in zone 12, after the passage of the post-heating device 15, is the same as the crystallinity rate in zone 12 before the passage of the welding device 11, namely between 25 % and 30% approximately.
Dans cet exemple, la soudure a lieu sans ajout d’un matériau additionnel à l’interface entre l’effecteur 10 et la pièce PI ni entre les pièces PI et P2. In this example, the welding takes place without adding any additional material to the interface between the effector 10 and the part P1 or between the parts P1 and P2.
Dans une quatrième phase D, la zone 12 refroidit librement à l’air à une vitesse de refroidissement rapide de 250°C/min. In a fourth phase D, zone 12 cools freely in air at a rapid cooling rate of 250°C/min.
L’évolution de la température en fonction du temps lors de la soudure de deux pièces avec l’effecteur de soudage de l’art antérieur illustré sur la figure 1 sans dispositif de post-chauffage est visible sur la figure 5. Comme visible, la zone 5 chauffée se refroidit librement au contact de l’air ambiant et par conduction dans les pièces P. La chaleur apportée lors de l’étape de chauffage 6, pour obtenir une température dans les pièces P supérieure à la température de fusion Tf de la matrice polymère thermoplastique des pièces P, est très rapidement dissipée lors du refroidissement 7, par exemple avec une vitesse de refroidissement de 250°C/min environ. The evolution of the temperature as a function of time during the welding of two parts with the welding effector of the prior art illustrated in FIG. 1 without a post-heating device is visible in FIG. 5. As visible, the heated zone 5 cools freely in contact with the ambient air and by conduction in the parts P. The heat supplied during the heating step 6, to obtain a temperature in the parts P higher than the melting temperature Tf of the thermoplastic polymer matrix of the parts P, is very rapidly dissipated during cooling 7, for example with a cooling rate of approximately 250° C./min.
Ce refroidissement rapide de la zone soudée altère la qualité de la pièce finale au niveau de la soudure. On a représenté isolément sur la figure 6, le dispositif de post-chauffage 15 pouvant équiper l’effecteur 10 de la figure 2. Le dispositif de post chauffage 15 comporte un système 39 de chauffage par induction. This rapid cooling of the welded area affects the quality of the final part at the weld level. Is shown in isolation in Figure 6, the post-heating device 15 can equip the effector 10 of Figure 2. The post-heating device 15 comprises a system 39 of induction heating.
Dans cet exemple, le dispositif de post-chauffage 15 comporte deux pyromètres 40 permettant de mesurer la température de la surface extérieure S d’au moins l’une des pièces P en amont et en aval du dispositif de post-chauffage 15 relativement au sens de déplacement 13. Les pyro mètres 40 mesurent, dans cet exemple, la température de la surface extérieure S d’au moins l’une des pièces P en continu. In this example, the post-heating device 15 comprises two pyrometers 40 making it possible to measure the temperature of the outer surface S of at least one of the parts P upstream and downstream of the post-heating device 15 with respect to the direction displacement 13. The pyrometers 40 measure, in this example, the temperature of the outer surface S of at least one of the parts P continuously.
La puissance de chauffage du système de chauffage 39 du dispositif de post chauffage 15 est asservi pour maintenir la surface extérieure S d’au moins l’une des pièces P passant sous le dispositif de post-chauffage 15 dans une plage de valeurs de température prédéterminées, dans cet exemple entre 230°C et 260°C, et pendant une durée prédéterminée, dans cet exemple de 30 s. The heating power of the heating system 39 of the post-heating device 15 is controlled to maintain the outer surface S of at least one of the parts P passing under the post-heating device 15 within a range of predetermined temperature values. , in this example between 230° C. and 260° C., and for a predetermined time, in this example 30 s.
Dans cet exemple, l’asservissement est réalisé en comparant une température cible prédéterminée, dans cet exemple de 250°C, et les températures mesurées par les pyromètres. In this example, the control is achieved by comparing a predetermined target temperature, in this example 250°C, and the temperatures measured by the pyrometers.
Dans cet exemple, le dispositif de post-chauffage 15 peut fonctionner entre une puissance de chauffage minimale, voire nulle, une puissance de chauffage maximale et au moins une puissance de chauffage intermédiaire comprise entre la puissance minimale et maximale. In this example, the post-heating device 15 can operate between a minimum heating power, or even zero, a maximum heating power and at least one intermediate heating power comprised between the minimum and maximum power.
Le fonctionnement du dispositif de post-chauffage peut être adapté en fonction du matériau composite des pièces PI et P2, notamment en adaptant la puissance de chauffage du système 39 de chauffage et/ou en modifiant les paramètres de l’asservissement, notamment la température cible. The operation of the post-heating device can be adapted according to the composite material of the parts PI and P2, in particular by adapting the heating power of the heating system 39 and/or by modifying the parameters of the servo-control, in particular the target temperature .
L’invention n’est pas limitée aux exemples qui viennent d’être décrits. The invention is not limited to the examples which have just been described.
Le dispositif de post-chauffage 15 peut équiper d’autres types d’effecteur de soudage dynamique d’au moins deux pièces P en matériau composite comportant une matrice polymère thermoplastique sans sortir du cadre de l’invention. The post-heating device 15 can equip other types of dynamic welding effector with at least two parts P made of composite material comprising a thermoplastic polymer matrix without departing from the scope of the invention.
Les pièces peuvent être déplacées si l’effecteur est fixe ou mobile relativement à celles-ci. The parts can be moved if the effector is fixed or mobile relative to them.
Le dispositif de post-chauffage 15 peut comporter un autre type de système de chauffage, notamment un système de chauffage par infrarouge. Les pyromètres 40 peuvent ne pas mesurer la température de la surface extérieure S d’au moins l’une des pièces P en continue. Par exemple les pyromètres 40 peuvent mesurer la température de la surface extérieure S d’au moins l’une des pièces P à une fréquence prédéterminée, par exemple une fréquence de 10 Hz ou de 100 Hz. Le dispositif de post-chauffage 15 peut comporter un autre capteur, notamment un autre capteur de température. The post-heating device 15 may comprise another type of heating system, in particular an infrared heating system. The pyrometers 40 may not measure the temperature of the outer surface S of at least one of the parts P continuously. For example, the pyrometers 40 can measure the temperature of the outer surface S of at least one of the parts P at a predetermined frequency, for example a frequency of 10 Hz or 100 Hz. The post-heating device 15 can comprise another sensor, in particular another temperature sensor.
Le dispositif de post-chauffage 15 peut fonctionner en tout ou rien. The post-heating device 15 can operate in all or nothing.
Le dispositif de post-chauffage peut être disposé avant le dispositif presseur aval, ou faire partie d’un tel dispositif presseur, assurant alors les deux fonctions de post-chauffage et de pressage. The post-heating device can be arranged before the downstream pressing device, or be part of such a pressing device, thus ensuring the two functions of post-heating and pressing.

Claims

Revendications Claims
1. Effecteur (10) de soudage dynamique d’au moins deux pièces (P) en matériau composite comportant une matrice polymère thermoplastique l’effecteur (10) comportant : au moins un dispositif de soudage (11), de manière à chauffer au moins une zone (12) d’au moins une des pièces (P) à une température (Tl) supérieure ou égale à la température de fusion (Tf) de ladite matrice polymère thermoplastique afin de souder lesdites au moins deux pièces (P) entre elles au niveau de ladite au moins une zone (12), au moins un dispositif de post-chauffage (15) configuré pour chauffer ladite au moins une zone (12) pour apporter de la chaleur à ladite zone (12) sans que la température de celle-ci n’excède la température de début de cristallisation (Te) de ladite matrice polymère thermoplastique. 1. Effector (10) for dynamic welding of at least two parts (P) made of composite material comprising a thermoplastic polymer matrix the effector (10) comprising: at least one welding device (11), so as to heat at least a zone (12) of at least one of the parts (P) at a temperature (Tl) greater than or equal to the melting temperature (Tf) of said thermoplastic polymer matrix in order to weld said at least two parts (P) together at said at least one zone (12), at least one post-heating device (15) configured to heat said at least one zone (12) to provide heat to said zone (12) without the temperature of this does not exceed the crystallization onset temperature (Te) of said thermoplastic polymer matrix.
2. Effecteur (10) selon la revendication 1, dans lequel ledit au moins un dispositif de post-chauffage (15) est disposé en aval dudit au moins un dispositif de soudage (11) relativement au sens de déplacement de l’effecteur (10). 2. Effector (10) according to claim 1, wherein said at least one post-heating device (15) is disposed downstream of said at least one welding device (11) relative to the direction of movement of the effector (10 ).
3. Effecteur (10) selon la revendication 1 ou 2, dans lequel le dispositif de post chauffage (15) comporte un système de chauffage (39) par induction ou par rayonnement infrarouge. 3. Effector (10) according to claim 1 or 2, wherein the post-heating device (15) comprises a heating system (39) by induction or by infrared radiation.
4. Effecteur (10) selon Tune quelconque des revendications précédentes, dans lequel le dispositif de post-chauffage (15) comporte au moins un capteur de température, notamment un pyromètre (40), de manière à mesurer la température de la surface extérieure (S) d’au moins Tune des pièces (P). 4. Effector (10) according to any one of the preceding claims, wherein the post-heating device (15) comprises at least one temperature sensor, in particular a pyrometer (40), so as to measure the temperature of the outer surface ( S) of at least one of the pieces (P).
5. Effecteur (10) selon Tune quelconque des revendications précédentes, dans lequel le dispositif de post-chauffage comporte un système d’asservissement pour maintenir la surface extérieure (S) d’au moins Tune des pièces (P) à une température comprise dans une plage de valeurs de températures prédéterminée pendant un durée prédéterminée. 5. Effector (10) according to any one of the preceding claims, in which the post-heating device comprises a servo system for maintaining the outer surface (S) of at least one of the parts (P) at a temperature comprised in a range of predetermined temperature values for a predetermined duration.
6. Effecteur (10) selon Tune quelconque des revendications précédentes, comportant au moins un dispositif presseur (20). 6. Effector (10) according to any one of the preceding claims, comprising at least one pressing device (20).
7. Effecteur selon Tune quelconque des revendications précédentes, dans lequel ledit au moins un dispositif de soudage (11) comporte un système de chauffage par induction, par ultrason, par conduction thermique et/ou par infrarouge, de préférence par induction. 7. Effector according to any one of the preceding claims, in which said at least one welding device (11) comprises a heating system by induction, by ultrasound, by thermal conduction and/or by infrared, preferably by induction.
8. Procédé de soudage dynamique d’au moins deux pièces (P) en matériau composite, comportant une matrice polymère thermoplastique, à l’aide d’un effecteur (10) de soudage dynamique selon l’une quelconque des revendications précédentes, le procédé comportant les étapes suivantes : i. superposer au moins partiellement lesdites au moins deux pièces (P) à souder entre elles, ii. positionner l’effecteur ( 10) du côté d’ au moins une surface extérieure (S) d’au moins l’une desdites pièces (P), iii. mettre en mouvement l’effecteur (10) relativement aux pièces (P), dans un sens de déplacement (13), tel que ledit au moins un dispositif de post-chauffage (15) soit disposé en aval dudit au moins un dispositif de soudage (11), iv. chauffer avec le dispositif de soudage (11) au moins une zone (12) d’au moins une des deux pièces (P) passant sous le dispositif de soudage (11), v. réaliser un chauffage de ladite au moins une zone (12) avec le au moins un dispositif de post-chauffage (15) lorsque celle-ci passe sous le dispositif de post-chauffage (15), pour apporter de la chaleur à ladite zone (12) sans que la température de celle-ci n’excède la température de début de cristallisation (Te) de ladite matrice polymère thermoplastique desdites pièces (P). 8. Process for dynamic welding of at least two parts (P) of composite material, comprising a thermoplastic polymer matrix, using a dynamic welding effector (10) according to any one of the preceding claims, the process comprising the following steps: i. at least partially overlapping said at least two parts (P) to be welded together, ii. positioning the effector (10) on the side of at least one outer surface (S) of at least one of said parts (P), iii. moving the effector (10) relative to the parts (P), in a direction of movement (13), such that said at least one post-heating device (15) is arranged downstream of said at least one welding device (11), iv. heating with the welding device (11) at least one zone (12) of at least one of the two parts (P) passing under the welding device (11), v. heating said at least one zone (12) with the at least one post-heating device (15) when the latter passes under the post-heating device (15), to provide heat to said zone ( 12) without its temperature exceeding the crystallization onset temperature (Te) of said thermoplastic polymer matrix of said parts (P).
9. Procédé selon la revendication 8, l’étape v) étant mise en œuvre de manière à ce que ledit au moins un dispositif de post-chauffage (15) maintienne dans ladite zone (12) une température (T) comprise dans une plage de valeurs de températures prédéterminée, notamment entre 90°C en dessous de la température de cristallisation et la température de début de cristallisation, mieux entre 75°C en dessous de la température de cristallisation et la température de début de cristallisation, encore mieux entre 40°C en dessous de la température de cristallisation et la température de début de cristallisation. 9. Method according to claim 8, step v) being implemented so that said at least one post-heating device (15) maintains in said zone (12) a temperature (T) comprised in a range of predetermined temperature values, in particular between 90° C. below the crystallization temperature and the crystallization start temperature, better still between 75° C. below the crystallization temperature and the crystallization start temperature, even better between 40 °C below the crystallization temperature and the crystallization start temperature.
10. Procédé selon la revendication 8 ou 9, l’étape v) de post-chauffage permettant d’obtenir une vitesse de refroidissement dans ladite zone (12) qui soit inférieure à 50°C/min. 10. Process according to claim 8 or 9, post-heating step v) making it possible to obtain a cooling rate in said zone (12) which is less than 50° C./min.
11. Procédé selon l’une quelconque des revendications 8 à 10, dans lequel, au cours des étapes iv) et v), l’effecteur (10) se déplace à une vitesse comprise entre 3 et 30 mm/s environ, notamment égale à 5 mm/s environ. 11. Method according to any one of claims 8 to 10, in which, during steps iv) and v), the effector (10) moves at a speed of between 3 and 30 mm/s approximately, in particular equal at around 5 mm/s.
12. Procédé selon l’une quelconque des revendications 8 à 11, l’étape v) étant mise en œuvre de manière à ce que le taux de cristallinité dans ladite zone (12), après le passage dudit au moins un dispositif de post-chauffage (15), soit sensiblement le même que le taux de cristallinité dans ladite zone (12), avant le passage dudit au moins un dispositif de soudage (11). 12. Method according to any one of claims 8 to 11, step v) being implemented so that the level of crystallinity in said zone (12), after the passage of said at least one post- heating (15), is substantially the same as the degree of crystallinity in said zone (12), before the passage of said at least one welding device (11).
13. Procédé selon l’une quelconque des revendications 8 à 12, comportant une étape consistant à amener au moins un dispositif presseur (20 ; 20a, 20b) de l’effecteur (10) en contact avec la surface extérieure (S) d’au moins l’une des pièces (P). 13. Method according to any one of claims 8 to 12, comprising a step consisting in bringing at least one pressing device (20; 20a, 20b) of the effector (10) into contact with the outer surface (S) of at least one of the pieces (P).
14. Procédé selon la revendication précédente, comportant, entre les étapes iv) et v), simultanément à l’étape v) ou après l’étape v), une étape consistant à exercer une pression sur la surface extérieure (S) de ladite zone (12) avec ledit au moins un dispositif presseur (20b). 14. Method according to the preceding claim, comprising, between steps iv) and v), simultaneously with step v) or after step v), a step consisting in exerting pressure on the outer surface (S) of said area (12) with said at least one pressing device (20b).
15. Dispositif de post-chauffage (15) destiné à équiper un effecteur (10) de soudage dynamique d’au moins deux pièces (P) en matériau composite comportant une matrice polymère thermoplastique, notamment un effecteur (10) tel que défini dans l’une quelconque des revendications 1 à 7, configuré pour, après chauffage d’au moins une zone (12) de l’interface de soudure desdites au moins deux pièces (P) à une température (Tl) supérieure à la température de fusion (Tf), apporter de la chaleur à ladite zone (12) sans que la température (T) de celle-ci n’excède la température de début de cristallisation (Te) de ladite matrice polymère thermoplastique. 15. Post-heating device (15) intended to equip an effector (10) for dynamic welding of at least two parts (P) made of composite material comprising a thermoplastic polymer matrix, in particular an effector (10) as defined in any one of claims 1 to 7, configured for, after heating at least one zone (12) of the weld interface of said at least two parts (P) to a temperature (Tl) above the melting temperature ( Tf), supplying heat to said zone (12) without the temperature (T) thereof exceeding the crystallization onset temperature (Te) of said thermoplastic polymer matrix.
EP22728637.4A 2021-05-25 2022-05-24 Effector for dynamic welding of parts made of composite material Pending EP4347226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105418A FR3123248B1 (en) 2021-05-25 2021-05-25 Dynamic welding effector for composite material parts
PCT/EP2022/063965 WO2022248430A1 (en) 2021-05-25 2022-05-24 Effector for dynamic welding of parts made of composite material

Publications (1)

Publication Number Publication Date
EP4347226A1 true EP4347226A1 (en) 2024-04-10

Family

ID=76730812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22728637.4A Pending EP4347226A1 (en) 2021-05-25 2022-05-24 Effector for dynamic welding of parts made of composite material

Country Status (3)

Country Link
EP (1) EP4347226A1 (en)
FR (1) FR3123248B1 (en)
WO (1) WO2022248430A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202853B2 (en) * 2003-07-07 2008-12-24 浜松ホトニクス株式会社 Laser welding method
NL1030304C2 (en) 2005-10-28 2007-05-03 Kok & Van Engelen Composite St Electromagnetic welding method for thermoplastic parts, comprises pressing parts against die while guiding inductor so that Foucault currents are induced in conductive component

Also Published As

Publication number Publication date
FR3123248B1 (en) 2023-12-22
FR3123248A1 (en) 2022-12-02
WO2022248430A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP2454081B1 (en) Machine for applying fibers, including a flexible compacting roller with a heat adjustment system
EP1630262B1 (en) Process for rebuilding a single crystal or directionally solidified metallic article
FR2948059A1 (en) FIBER APPLICATION MACHINE WITH TRANSPARENT COMPACTION ROLL ON THE RADIATION OF THE HEATING SYSTEM
EP2007544B1 (en) Friction stir welding process using a device with a retractable pin with retraction of the retractable pin at the end of the welded path
FR2742688A1 (en) REPAIR PROCESS FOR EXTENDING TURBINE BLADES
EP3096940A1 (en) Method and device for stamping a composite blank with non-consolidated thermoplastic matrix
FR3083733A1 (en) Method of induction welding of parts based on thermoplastic material
EP4347226A1 (en) Effector for dynamic welding of parts made of composite material
FR2905883A1 (en) METHOD FOR WELDING AN ORGAN ON A SUPPORT BY DELIVERING MATERIAL AND DEVICE FOR ARRANGING TWO ELEMENTS ON ONE ANOTHER
FR3005284A1 (en) POSE IN EMBOITEMENT.
WO2017089659A1 (en) Fibre application head with flexible roller provided with a metallic exterior layer
FR3083732A1 (en) Method for welding parts based on thermoplastic material
EP4025413B1 (en) Fibre application head with roller with rigid rings
EP3606735A1 (en) Method for producing composite material parts from needled preforms
EP2344321B1 (en) Device and method for thermally bonding a flexible coating to a support
EP3710239A1 (en) Fibre-application head having a flexible roller provided with a non-stick sleeve
WO2020234313A1 (en) Device and method for manufacturing a part from a composite material
FR2938782A1 (en) DOUBLE-SHOULDER WELDING DEVICE
EP2150972B1 (en) Method for assembling an electronic module comprising an element assembled onto a carrier by sintering a conducting powder
WO2001060588A1 (en) Method for making tubes by laser welding
EP3411220B1 (en) Method for producing three dimensional preforms by forming tensioned preforms
FR2739803A1 (en) Production of thermoplastic cored e.g. polypropylene honeycomb, sandwich panel
WO2015101748A1 (en) Method for injecting a tank wall comprising a localised reinforcing layer
EP1285747B1 (en) Multilayered structure, especially for the spinning of electrical cables
FR2924192A1 (en) PTFE sealing joint e.g. annular PTFE sealing joint, fabricating method, involves compressing agglomerate for joining agglomerated power grains together to obtain single PTFE piece, and collecting single PTFE piece for forming sealing joint

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR