EP4342047A1 - Electrical switching device, and associated method and switching system - Google Patents

Electrical switching device, and associated method and switching system

Info

Publication number
EP4342047A1
EP4342047A1 EP22731995.1A EP22731995A EP4342047A1 EP 4342047 A1 EP4342047 A1 EP 4342047A1 EP 22731995 A EP22731995 A EP 22731995A EP 4342047 A1 EP4342047 A1 EP 4342047A1
Authority
EP
European Patent Office
Prior art keywords
switching
current
transistors
contact
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22731995.1A
Other languages
German (de)
French (fr)
Inventor
Eric Domejean
Jerôme BRENGUIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP4342047A1 publication Critical patent/EP4342047A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K2017/6875Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors using self-conductive, depletion FETs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to an electrical switching device.
  • the present invention also relates to a switching system and a method for switching an associated current.
  • Switching devices such as circuit breakers are frequently used to detect electrical faults related to electrical current(s) and to interrupt the current(s) upon detection of a fault.
  • the circuit breakers are equipped with means for detecting an electrical fault, these means activating a switching device which cuts off the current when necessary.
  • the switching device is traditionally formed by an electrically conductive and movable contact between two positions, one in which it electrically connects two terminals between which it conducts the current, and the other in which the contact is at least one of the terminals.
  • Such devices also have the advantage of galvanically isolating their two terminals from each other when the contact is in the second position, and thus of offering a very high level of protection, especially since their actuation mechanism maintains them, by default, in the second position.
  • the mobile switching elements of the aforementioned type remain relatively slow, since breaking generally requires one to several milliseconds.
  • an electric arc generally appears between the moving contact and the terminal(s) from which it moves away during breaking.
  • Such an electric arc requires a specific configuration of the switching device to be extinguished safely, via a complex arcing chamber of large dimensions, and also generates wear on the elements between which it forms, which limits the duration life of the switching device.
  • the transistors used are necessarily of a "non-passing by default" type, that is to say of a type which requires a positive action (reception of a command on the gate of the transistor) to allow current to flow, and which blocks the flow of current in the absence of such action.
  • MOSFET transistors have been proposed for such use.
  • non-conducting transistors by default have a relatively high resistance to the passage of current, which is in particular troublesome, since it causes significant losses, when the intensity of the current is high. It is therefore necessary to provide a large number of transistors in parallel to limit the losses by dividing the current, so that the intensity of the current passing through each transistor is limited.
  • Such a configuration is complex and bulky.
  • an electrical switching device comprising an input, an output, a switching module and a control module, the switching module being able to conduct an electric current between the input and the output, the module control being configured to detect an electrical fault and to control the interruption of the current by the switching module in the event of detection of a fault.
  • This switching module comprises an electrical circuit configured to conduct the current between the input and the output, the circuit comprising, in series, at least two first JFET transistors normally on head to tail and at least one switching member comprising a first terminal and a second terminal, the member of being configured to switch between a first configuration and a second configuration, the switching member allowing current to flow between the first terminal and the second terminal when the switching member is in the first configuration, the switching element preventing the passage of current when the switching element is in the second configuration, the switching element being in the second configuration by default, the control module being configured to generate at least a first signal electric capable of maintaining the switching member in the first configuration, the control module being configured for, in in the event of detection of a fault, generating at least one second electrical cut-off signal intended for a first transistor, each second signal being capable of controlling the interruption of the current by the corresponding first transistor, the control module being configured to interrupting the first signal in response to the detection.
  • the current is cut off quickly by the JFETs in the event of detection of an electrical fault.
  • the switching device being in the second configuration and therefore non-conducting by default, maintains this protection even when the control module is not electrically powered and therefore cannot maintain the JFETs in their non-passing state.
  • the switching device since the JFETs cut the current very quickly, the switching device does not have to be sized in such a way as to allow this cut, but only the maintenance of the insulation. In particular, no electric arc appears even if the switching member is of the moving contact type, which limits its wear and therefore avoids the need for an interrupting chamber, while allowing the device 15 to be used in an explosive atmosphere.
  • the switching device can have a high electrical conductivity since it does not have to break high currents and therefore have to withstand a high overvoltage during breaking, this role being played by the JFETs, which have them naturally a very high conductivity.
  • the electrical resistance of the switching device is therefore low.
  • JFETs the fact that they are conductive by default, which is generally considered to disqualify them for use in an electrical switching device - is compensated for by the presence of the switching device without their advantages (their high conductivity) are offset by the electrical resistance of the switching device since the latter remains limited.
  • the switching device has one or more of the following characteristics, taken in isolation or in all technically possible combinations:
  • the switching member comprises a first actuator and a first electrically conductive contact, the first contact being movable between a first position and a second position, the first contact being in the first position when the switching member is in the first configuration and being in the second position when the switching member is in the second configuration, the first contact conducting current between the first terminal and the second terminal when the first contact is in the first position, the first contact being at least at least one of the first and second terminals when the first contact is in the second position, the first actuator being configured to maintain the first contact in the first position when the actuator is supplied with the first electrical signal.
  • the switching device comprises two second MOSFET transistors, of the non-conducting by default type, in head-to-tail series between the first terminal and the second terminal, each second transistor conducting the current when the second transistor is supplied by a respective first signal and preventing the flow of current in the absence of the first signal.
  • the circuit further comprises a disconnector connected in series with the first transistors and with the switching device, the disconnector comprising a third terminal, a fourth terminal, a second contact, a second actuator and a control device, the second contact being movable between a third position and a fourth position, the second contact conducting current between the third terminal (80) and the fourth terminal when the second contact is in the third position, the second contact being remote from at least one of the third and fourth terminals when the second contact is in the fourth position, the second actuator being configured to move the second contact between the third position and the fourth position when the control member is actuated by an operator.
  • a disconnector connected in series with the first transistors and with the switching device, the disconnector comprising a third terminal, a fourth terminal, a second contact, a second actuator and a control device, the second contact being movable between a third position and a fourth position, the second contact conducting current between the third terminal (80) and the fourth terminal when the second contact is in the third position, the second contact being remote from at least
  • control device is a rotary handle.
  • the device comprises a control member operable by an operator to control the cut-off, by the control module, of the first signal.
  • each first transistor comprises a source, a drain and a gate, the sources of two of the first transistors being interposed, along the current path, between the drains of said two first transistors.
  • the number of first transistors is greater than or equal to four, the first transistors being divided into pairs of groups of first transistors, each group containing at least one first transistor, the first transistors of each group being connected successively to each other in series in the same direction if the group comprises more than one first transistor, each first transistor of a group being in the different direction from the first transistor or transistors of the other group of the same pair, each group of a pair being connected in series to the other group of the pair, the pairs being connected in series to each other.
  • the first transistors are made of SiC or GaN.
  • the device comprises a single input and a plurality of outputs, each output being connected to a single point, the first transistors being interposed between the input and said single point, the switching module comprising, for each output, a switching member respective interposed between the output and said single point.
  • the device comprises a switching device and a control device, the switching device comprising the switching module, the control device comprising the control module, the switching device and the control device being remote each other and being configured to communicate with each other.
  • a switching system configured to transmit a plurality of currents between respective inputs and outputs, to detect an electrical fault according to measurements of parameters of at least one current, and to interrupt at least the corresponding current in case of detection of an electrical fault, comprising a plurality of switching devices as previously described.
  • a method for switching a current is also proposed, implemented by an electrical switching device comprising an input, an output, a switch and a control module, the switch module being adapted to conduct an electric current between the input and the output, the switch module comprising an electric circuit configured to conduct the current between the input and the output, the circuit comprising , in series, at least two first JFET transistors normally on head to tail and at least one switching element comprising a first terminal and a second terminal, the switching element being configured to switch between a first configuration and a second configuration, the switching member allowing the passage of current between the first terminal and the second terminal when the switching member is in the first configuration, the switching member preventing the flow of current when the switching member is in the second configuration , the switching member being in the second default configuration, the method comprising steps of:
  • FIG 1 is a schematic representation of an example of a switching system according to the invention comprising a first example of a switching device according to the invention
  • FIG 2 is a flowchart of a switching process implemented by the switching device of Figure 1,
  • FIG 3 is a schematic representation of a second example of a switching device according to the invention.
  • FIG. 4 is a schematic representation of a second example of a switching system according to the invention.
  • An example of a switching system 10 according to the invention is represented in FIG. 1.
  • a second example of a switching system 10 will be represented and described later.
  • the switching system 10 has at least one input 1, 3 and at least one output 2, 4.
  • the number of inputs 1, 3 is equal to the number of outputs 2, 4.
  • the number of inputs and outputs is equal to two, however this number is likely to vary.
  • the switching system 10 is configured to receive a current on each of its inputs 1, 3, and to transmit each current to a respective output 2, 4.
  • the switching system 10 also comprises a neutral input EN and one or more neutral output(s) SN, the switching system 10 being configured to conduct a current between the neutral input EN and the output(s) ( s) neutral SN and, in a manner known per se, to cut this current using a neutral switch S.
  • the switching system 10 is, moreover, configured to detect an electrical fault relating to at least one of the currents and to interrupt said current, or a plurality of the currents, in particular all the currents, in the event of detection of the fault.
  • the switching system 10 comprises at least one switching device 15, and in particular a switching device 15 for each pair formed by an input 1, 3 and an output 2.4.
  • the switching system 10 is a bipolar system, i.e. a system 10 with two poles, or with two electrical phases, without neutral.
  • a person skilled in the art can easily adapt such a switching system, for example, to mono-, bi-, tri- or quadri-polar installations, with or without neutral.
  • Each pole of the installation will be associated with a respective input 1, 3 and output 2, 4, with in particular a corresponding switching device 15, the neutral being associated with the corresponding input EN and output SN of the system 10.
  • the different switching devices 15 corresponding to the different poles of the system 10 are, for example, identical to each other.
  • Each switching device 15 comprises input 1, 3 and the corresponding output 2, 4 and is configured to conduct from input 1, 3 to output 2, 4 an electric current received at input 1, 3.
  • the current is, for example, a direct current, but is, in a variant, likely to be an alternating current.
  • the current is associated with an electrical voltage between input 1, 3 and output 2, 4.
  • Each switching device 15 is, moreover, configured to detect an electrical fault relating to the current that it conducts and to interrupt said current in the event of detection of the fault.
  • Each fault is, for example, excessive current intensity, short circuit, overvoltage, excessive temperature of an internal component, internal failure after circuit breaker self-test, undervoltage, abnormal shape of the voltage (non-sinusoidal for example on an AC network), or even an electric arc.
  • Each switching device 15 comprises, in addition to the input 1, 3 and the corresponding output 2, 4, a switching module 20 and a control module 25.
  • switching devices 15, in particular the control module 25, are likely, depending on the case, to be specific to a single switching device 15 or common to several switching devices 15.
  • Each input 1, 3 or output 2, 4 is configured to be connected to an electric current inlet or outlet conductor, for example to a conductive wire or cable, or else to an input or output terminal of another electrical device.
  • Switch module 20 has an electrical circuit connecting input 1, 3 to output 2, 4 and configured to conduct current between input 1, 3 and output 2, 4.
  • the electrical circuit comprises, connected in series, at least two first transistors 30 and 35 and a switching device 40.
  • the circuit further comprises a disconnector 45.
  • the switching module 20 further comprises a peak limiter 50.
  • Each first transistor 30, 35 is a JFET transistor.
  • JFET from the English "Junction Field-Effect Transistor” designates a field-effect transistor whose gate is directly in contact with the semiconductor channel connecting the source and the drain, the channel being interposed between two portions semiconductors having a type of doping different from that of the channel, so that the modification of the potential of the gate (connected to one of these two portions) tends to increase the size of the depletion zone which appears at the junction between the channel and said portions. Thus, if the voltage is sufficient, the channel is completely stripped and made electrically insulating.
  • Each first transistor 30, 35 is, in particular, an n-type channel JFET.
  • Each first transistor 30, 35 is on by default (or “normally on”). In other words, each first transistor 30, 35 is such that, in the absence of action on the gate of the first transistor 30, 35, the first transistor 30, 35 allows a current to flow between the source and the drain.
  • the first transistors 30, 35 are arranged head to tail in the electrical circuit, that is to say the current flows from the source to the drain in one of the first transistors 30, 35 and from the drain to the source in the other first transistor 30, 35.
  • head to tail designates first transistors 30, 35 connected in opposite directions.
  • each first transistor 30 is connected in a direction opposite to the direction of each first transistor 35.
  • the sources of the first two transistors 30, 35 are interposed between the drains of the first two transistors 30, 35 along the current path.
  • the sources of the first two transistors 30, 35 are connected to each other at a point 55.
  • the number of first transistors 30, 35 is different from two, for example equal to four, six or any even number.
  • the first transistors 30, 35 are divided into two groups of first transistors 30, 35, the transistors 30, 35 which belong to the same group being arranged in the same direction and successively connected in series to each other.
  • each pair comprising a group of first transistors 30 connected in series with each other and a group of first transistors 35 connected in series with each other, the two groups of the pair being connected in series to each other.
  • the different pairs of groups are connected in parallel to each other.
  • each pair comprises a single first transistor 30 and a single first transistor 35 connected in series, the pairs being connected in parallel with each other.
  • the electrical circuit comprises a plurality of groups of first transistors 30, 35, the groups being connected in series to each other.
  • Each group then comprises at least two first transistors 30 or at least two first transistors 35, the first transistors 30, 35 of the same group being connected in parallel to each other.
  • each group contains only first transistors 30, 35 oriented in the same direction, and there is at least one group of first transistors 30 oriented in one direction and at least one group of first transistors 35 oriented in the other direction. .
  • at least one of the groups of first transistors 30, 35 prevents the current from flowing.
  • the first transistors 30 of a group are all connected at one end to the same point as the first transistors 35 of a first neighboring group and optionally at the other end to the same point as the first transistors 30 or 35 d a second neighboring group.
  • Each first transistor 30, 35 is, for example, made of silicon carbide SiC.
  • at least one first transistor 30, 35, in particular each first transistor 30, 35 is made of another semiconductor material, for example of gallium nitride GaN or else of silicon. The material used depends in particular on the voltages and intensities of the currents that the switching device 15 is designed to withstand.
  • the switching device 40 comprises a first terminal 60 and a second terminal 65.
  • the first terminal 60 is, for example, connected to one of the first transistors 30, 35.
  • the switching device 40 is configured to switch between a first configuration and a second configuration.
  • the switching device 40 When the switching device 40 is in the first configuration, the switching device allows current to flow between the first terminal 60 and the second terminal 65.
  • the switching device 40 When the switching device 40 is in the second configuration, the switching device electrically isolates the first terminal from the second terminal 65.
  • the switching device 40 is configured to switch between the first and the second configuration upon receipt of a first control signal from the control module 25.
  • the switching device 40 configured to be, by default, in the second configuration. In other words, in the absence of a first control signal transmitted by the control module 25, the switching device 40 is in the second configuration.
  • the switching device 40 is a relay comprising a first contact 70 and a first actuator 75.
  • the switching device 40 is, in particular, not sized to interrupt on its own the current flowing between the input 1, 3 and the output 2, 4. In particular, the switching device 40 is not configured to extinguish any electric arc appearing between the first contact 70 and one or the other of the terminals 60, 65.
  • the switching member 40 is, for example, devoid of arcing chamber.
  • the switching device 40 is, for example, configured to prevent a current from flowing between the terminals 60, 65 if the voltage between the input 1, 3 and the output 2, 4 is applied between the terminals 60 and 65 . It should be noted that, according to possible variants, the switching device 40 is sized to extinguish the current on its own if necessary, for example by extinguishing any electric arc which would result therefrom.
  • the first contact 70 is electrically conductive and is movable between a first position and a second position, represented in FIG.
  • the switching member 40 When the switching member 40 is in the first configuration, the first contact 70 is in the first position. When the switching device 40 is in the second configuration, the first contact 70 is in the second position.
  • the first contact 70 When the first contact 70 is in the first position, the first contact 70 electrically connects the two terminals 60 and 65, for example by pressing against the two terminals 60 and 65.
  • the first contact 70 When the first contact 70 is in the second position, the first contact 70 is distant from at least one of the terminals 60 and 65. Thus, the first contact 70 does not allow current to flow between the terminals 60 and 65.
  • the relay 40 is a MEMS relay (from the English “Micro Electro-Mechanical System”, meaning “micro electromechanical system”).
  • a MEMS relay is a relay of which at least a part of microscopic dimensions is made from semiconductor materials. For example, a beam of microscopic dimensions deforming under the effect of an electric field plays the role of first contact 70. very quickly, their switching times being typically of the order of 10 microseconds.
  • the relay 40 is a relay of macroscopic dimensions of a known type.
  • the first actuator 75 is configured to move the first contact 70 between the first position and the second position following receipt of a first control signal, in particular a first electrical control signal, from the control module 25.
  • the first actuator 75 is configured to maintain the first contact 70 in the second position in the absence of a first control signal, and to move the first contact 70 into the first position and maintain it there when the first actuator 75 is supplied with the first control signal.
  • the first actuator 75 is of a known type comprising a spring and an electromagnet, the spring tending to move the first contact 70 towards its second position and the electromagnet being configured, when powered by the first control signal, to exert, directly or indirectly, on the first contact 70 a force tending to move the first contact 70 towards its first position.
  • first actuators 75 are likely to be considered. For example, if relay 40 is a MEMS relay, actuator 75 is an electrostatic actuator.
  • the disconnector 45 is interposed between the switching device 40 and the output 2, 4.
  • the disconnector 45 comprises a third terminal 80 connected to the switching device 40, a fourth terminal 85 connected to the output, a second contact 90, a second actuator 95 and a control device 100.
  • the second contact 90 is electrically conductive and is movable between a third position and a fourth position, represented in FIG.
  • the second contact 90 When the second contact 90 is in the third position (or “ON position"), the second contact 90 electrically connects the two terminals 80 and 85, for example by pressing against the two terminals 80 and 85.
  • the second contact 90 When the second contact 90 is in the fourth position (or "OFF position"), the second contact 90 is distant from at least one of the terminals 80 and 85. Thus, the second contact 90 does not allow the passage of current between the terminals 80 and 85.
  • Disconnector 45 is, in particular, configured to maintain insulation between terminals 80 and 85, even if the voltage between input 1, 3 and output 2, 4 is applied between terminals 80 and 85.
  • the distance between the second contact 90 and at least one of the terminals 80, 85, when the second contact 90 is in the fourth position, is such that an electric arc does not occur between the terminals 80 and 85 when the voltage is applied between these terminals.
  • This distance is, in particular, greater than or equal to 3 millimeters (mm), but is likely to vary from one embodiment to another, in particular according to the voltage imposed between the various elements of the installation.
  • the second actuator 95 is configured to move the second contact 90 between the third position and the fourth position following receipt of a second control signal, in particular a second electrical control signal, from the control module 25.
  • the second actuator 95 is configured to maintain the second contact 90 in the fourth position ("OFF") in the absence of a second control signal, and to move the second contact 90 to the third position ("ON") and hold it there when the second actuator 95 is supplied with the second control signal.
  • the second actuator 95 is of a known type comprising a spring and an electromagnet, the spring tending to move the second contact 90 towards its fourth position and the electromagnet being configured, when it is powered by the second control signal, to exert, directly or indirectly, on the second contact 90 a force tending to move the second contact 90 towards its third position.
  • many types of second actuator 95 are likely to be considered.
  • the second actuator 95 is also configured to open the neutral disconnector S at the same time as the disconnector 45.
  • the control member 100 is configured to be actuated by an operator so as to act on the second actuator 95 so that the second actuator 95 moves the second contact 90 between its third and fourth positions.
  • control member 100 is, for example, a rotary handle, or even a button, which can be moved by the operator between two positions to control the movement of the second contact 90.
  • control member 100 is furthermore configured so that, when it is moved by an operator so as to move the second contact 90 to its fourth position, to act on the control module 25 so that the control module 25 controls the interruption of the current by the first transistors 30, 35 and by the switching device 40.
  • control unit 100 is configured to control the movement of the second contact 90 via the control module 25, for example by sending a signal to the control module 25 which controls the second actuator 95 in response.
  • controller 110 is, for example, provided to receive from a sensor 102 information on the position of the control member 100.
  • control member 100 comprises a locking mechanism capable of maintaining the control member 100 in the position in which the control member 100 maintains the second contact 90 in the fourth position. Such a mechanism then allows the installation which is downstream of the device 10 to be locked out.
  • the sensor 102 is configured to detect a position of the control member 100, in particular to detect that the control member 100 reaches, during its movement, a position preceding the position in which the control member 100 drives the opening of the disconnector 45.
  • the sensor 102 is, for example, an optical sensor provided to detect the passage in front of the optical sensor of a part of the control member 100 when the control member 100 reaches the position preceding the position in which the control member 100 causes the opening of the disconnector 45.
  • the control module 25 is configured to detect the electrical fault and to control in response the interruption of the current by at least the first transistors 30, 35 and the switching device 40.
  • the control module 25 comprises at least one monitoring device 105, a controller 110, a main power supply 115 and, optionally, an auxiliary power supply 120.
  • a single controller 110, a single main power supply 115 and a single auxiliary power supply 120 are common to the different switching devices 15, however, as a variant, these elements of the different switching devices 15 are likely to be distinct from each other. According to another variant, several power supplies 115 and/or several power supplies 120 are likely to be present, to supply the controller 110 in a redundant manner and thus prevent the failure of one of them being sufficient to put the system out of service. 10.
  • Each monitoring device 105 is configured to monitor the current flowing in the switching device 15.
  • each monitoring device 105 is configured to measure current intensity values and to transmit these values to the controller 110, for example in the form of an electrical signal whose voltage or intensity is a function of the current intensity.
  • the monitoring member 105 is, for example, a torus, in particular a Rogowsky torus.
  • intensity sensors are likely to be used, for example Hall effect sensors, or even shunt sensors, among others.
  • the controller 110 is configured to detect the occurrence of an electrical current fault, for example from the measured values.
  • the criteria for detecting the various faults are known per se, and sometimes established by standards, and are not described here.
  • the controller 110 is further configured to control a switching of each first transistor 30, 35.
  • the controller 110 is configured to generate, in response to the detection of a fault, a third electrical signal intended for each first transistor 30, 35, the or each third signal being capable of causing the current to be interrupted by the first transistor or transistors 30, 35.
  • Each third signal is, for example, an electric voltage between the source and the gate of the first transistor 30, 35, the voltage being such that the conductive channel of the said first transistor 30, 35 is pinched and therefore interrupted by the two depletion zones between which the channel is interposed.
  • the controller 110 is electrically connected to each of the gates of the first transistors 30, 35 and to the point 55, so as to impose an electric voltage between the gates and the point 55, the potential of which is equal to the potential of the sources of the first transistors 30, 35.
  • each third signal is transmitted simultaneously at least to the transistors 30, 35 which are in the same direction, for example to all the transistors 30, 35.
  • the controller 110 is configured to generate the first control signal and to transmit it to the switching device 40 so as to maintain this switching device 40 in the first position.
  • the controller 110 is furthermore configured to control the switching of the switching device 40 from the first configuration to the second configuration in response to the detection of a fault, for example by interrupting the first signal.
  • the controller 110 is, moreover, optionally configured to control the switching of the disconnector 45 to its fourth position in the event of detection of a fault, for example by emitting or interrupting the second electrical signal.
  • the controller 110 controls the switching of the disconnector 45 to its fourth position by supplying electricity with the second signal to a conductive winding 125, so as to exert on the second actuator 95 a force causing the opening of the disconnector 45 by the second actuator 95.
  • the controller 110 is, for example, formed by a processor and a memory storing a set of software instructions, the software instructions leading to the implementation of an example of a switching method, described below, when they are put implemented on the processor.
  • the controller 110 is formed by a set of programmable logic components, by one or more dedicated circuits, in particular one or more integrated circuits, or by any set of electrical or electronic components.
  • the main power supply 115 is configured to electrically supply the controller 110 and, optionally, the monitoring device(s) 105, with one or more supply currents generated from the electrical current(s) passing through the switching device(s) 15.
  • the auxiliary power supply 120 is configured to electrically supply the controller 110 and, optionally, the monitoring device(s) 105, with one or more supply currents generated for example from a reserve of electrical energy A1 such as a battery or a capacitor, or received from a source A2 external to the system 10, for example from an electricity distribution network .
  • the limiter 50 is connected in parallel to the first two transistors 30, 35 and is configured to prevent an electric voltage between the extreme terminals, for example between the drains, of the first two transistors 30, 35 from exceeding a predetermined voltage threshold.
  • Clippers 50 of multiple types are known to those skilled in the art, using for example a varistor or even one or more Zener diode(s). Such circuits are sometimes called “TVS”, from the English “Transient-Voltage Suppressor”, which means “transient signal limiter”.
  • the method comprises an initial step 200, a step 210 of detecting a fault, a step 220 of controlling, a first step 230 of interrupting, a second step 240 of interrupting, a step 250 of switching and a step 260 of actuation.
  • the switching device 40 is in its first configuration and the movable contact 90 of the disconnector 45 in its third position. Further, controller 110 does not generate the third signal, and first transistors 30, 35 are therefore on.
  • an electric current flows between the input 1, 3 and the output 2, 4, allowing the generation of a power supply current by the main supply 115.
  • the controller 110 uses the supply current to generate the first electrical signal which maintains the switching member 40 in its first configuration.
  • the controller 110 detects the occurrence of a fault, for example from current intensity values measured by the monitoring device 105.
  • the controller 110 In response to the detection of the fault, the controller 110 generates, for each first transistor 30, 35, the corresponding third control signal, and transmits each third control signal to the first transistor 30, 35 for which it is intended, during the control step 220. For example, the controller 110 imposes a predefined voltage between the gate and the source of each first transistor 30, 35, and maintains this voltage as long as the power supply of the controller 110 allows it.
  • the controller 110 interrupts the first control signal.
  • the controller 110 also sends the second control signal to the second actuator 95 or, if applicable, to the winding 125.
  • the first control signal is interrupted after the expiry of a predetermined time delay, this time delay being measured from the emission of each third control signal.
  • the delay time is, for example, between 5 nanoseconds and 10 milliseconds, but is likely to vary from one mode of implementation to another.
  • the first control signal is interrupted by the controller 110 after the controller 110 has measured that the intensity of the current flowing between the input 1, 3 and the output 2, 4 is less than or equal to a threshold in value absolute, in particular equal to zero.
  • the transmission of the second control signal, provided to control the opening of the disconnector 45, is for example simultaneous with the interruption of the first control signal.
  • a command to cut the neutral disconnector S is sent during step 230.
  • the current is interrupted by at least one of the first transistors 30, 35.
  • the first two transistors 30, 35 are connected head to tail in the electrical circuit, at least one of the first transistors 30, 35 is effectively non-conducting under the effect of the corresponding third control signal whatever the direction. current, including if the current is alternating current.
  • the switching device 40 switches to its second configuration.
  • the movable contact 90 of the disconnector 45 switches to its fourth position.
  • the switch step 250 is implemented after the second interrupt step 240.
  • the movement of the movable contact 70 begins before the current is interrupted by the first transistors 30, 35, but this interruption occurs before the appearance of an electric arc between the contact 70 and the terminal 65.
  • the actuation step 260 is implemented after the switching step 250.
  • the controller 110 is not electrically powered and therefore does not transmit a third signal to the first transistors 30, 35 which are therefore on, nor a second signal to the switching device 40, which is therefore in the second configuration.
  • the neutral disconnector S is cut off during step 260, if such a neutral disconnector S is present.
  • the current is cut off quickly by the JFETs 30, 35 in the event of detection of an electrical fault.
  • the switching device 40 being in the second configuration and therefore non-conducting by default, ensures the maintenance of this protection even when the control module is not electrically powered and therefore cannot maintain the JFETs 30 , 35 in their non-conducting state, for example if an operator actuates the lever 100.
  • the electrical protection of the installation remains ensured even if the controller 110 n is not functional.
  • the switching device since the JFETs break the current very quickly, the switching device does not have to be dimensioned in such a way as to allow this cut, but only the maintenance of the insulation. In particular, no electric arc appears even if the switching device is of the moving contact type, which limits its wear and therefore avoids the need for an interrupting chamber. In general, the switching device can have a high electrical conductivity since it does not have to break high currents, this role being played by the JFETs, which naturally have a very high conductivity. The electrical resistance of the switching device is therefore low.
  • the JFETs 30, 35 tend to saturate and thus limit the intensity of the current flowing through them when this intensity is very high, for example in the event of a short-circuit, and therefore thus participate in the protection of the network even before their cut.
  • the switching member 40 is a relay comprising a movable contact 70, the switching member 40 reliably allows effective isolation even in the absence of electrical power supply from the control module 25.
  • disconnector 45 separate from the switching device 40 allows an operator to manually interrupt the current without, however, by a reverse movement, the operator being able to cause the current to flow at a time when the controller 110, non-functional because for example not electrically powered, could not monitor the presence of a fault and cut off the current via the first transistors 30, 35.
  • disconnector 45 provides galvanic isolation between input 1, 3 and output 2, 4.
  • a rotary handle 100 is an effective way to allow the operator to control the disconnector 45.
  • the controller 110 can simply control the switching of these two transistors 30, 35 by acting on the midpoint 55 and/or on the gate voltage of the transistors 30, 35, and therefore control the two transistors 30, 35 using a single signal.
  • SiC or GaN JFETs are suitable for safely conducting high currents.
  • the transistors 30, 35 of each group being connected in the same direction, several transistors necessarily participate at the same time in breaking the current, whatever the direction of the latter.
  • the constraints relating to the sizing of the transistors 30, 35 are more limited since each must only support part of the current breaking function and must only withstand part of the total voltage which appears during this cut.
  • FIG. 3 A second example of switching device 15 is shown in Figure 3 and will now be described. The elements identical to the first example of FIG. 1 are not described again. Only the differences are highlighted.
  • the switching device 40 has no moving contact 70, and instead comprises at least two second transistors 130 and 135, of a non-conducting type by default, connected in series between the two terminals 60 and 65.
  • the second transistors 130 and 135 are, for example, MOSFETs
  • MOSFETs according to the English acronym of "Metal Oxide Semiconductor Field Effect T ransistor", in French “transistor with field effect with metal-oxide-semiconductor structure or “transistor with field effect with insulated gate”, are unipolar transistors .
  • the non-passing MOSFETs by default are said to be "enhancement", and are designed so that the application of a predefined electric potential on the gate leads to the accumulation in the channel of charge carriers which then allow the channel to be conductive, whereas in the absence of this potential the channel is devoid of free charge carriers and is therefore insulating.
  • the two second transistors 130 and 135 are interposed between the two first transistors 30, 35 and connected to each other in series head to tail.
  • each second transistor 130, 135 is interposed between the source of a first transistor 30, 35 and point 55.
  • the drains of the two second transistors 130, 135 are connected to point 55 and the sources of these two second transistors 130, 135 are each connected to the source of a corresponding first transistor 30, 35 via a respective terminal 60, 65.
  • a diode 140 is connected in parallel between the source and the drain of each of the two second transistors 130, 135, the cathode of the diode being connected to the drain of the corresponding second transistor 130, 135 and the anode of the diode 140 connected to the source.
  • each second transistor 130, 135 is connected to the controller 110 so as to allow the controller 110 to turn on the second transistor 130, 135 by applying an electric voltage between point 55 (therefore the sources of the second transistors 130, 135) and the grille.
  • Point 55 is, for example, electrically connected to the drains of the two second transistors 130, 135 and to the gates of the two first transistors 30, 35, to allow the controller 110 to simultaneously control the two first transistors 30, 35 by the application of an electric voltage between point 55 and the gates of the first transistors 30, 35 before the switching off of the second transistors 130, 135.
  • point 55 is connected to a first point whose electric potential is fixed by controller 110 (for example fixed by the power supply of controller 110), while the gates of the second transistors 130, 135 are connected to a second point whose controller 110 is configured to modify the electric potential, the first point and the second point being connected by a predefined resistance.
  • the gates of the first transistors 30, 35 are connected to a third point whose controller 110 is configured to vary the electric potential.
  • the third point is also connected to the first point by a predefined resistor.
  • Such an assembly makes it possible to separately control the MOSFETs 130, 135 and the JFETs 30, 35.
  • it makes it possible to vary the voltage between the gate and the source of each of the JFETs 30, 35 without modifying the voltage between the gate and the source.
  • the source of the MOSFETs and thus to play on the conductivity of the JFETs 30, 35, in particular by imposing a slightly positive voltage (for example 2 V) between the gate and the source of the JFETs to increase their conductivity or by making the JFETs not -passages by imposing a negative voltage (for example -15V), without changing the behavior of the MOSFETs 130, 135.
  • the set of two second transistors 130, 135 and diodes 140 forms a switching device which is in its second configuration by default (in the absence of voltage imposed between the gate and the source of transistors 130, 135) but the application of a voltage causes each of the two transistors 130, 135 to switch to one of the two possible current flow directions, and therefore even if the current is alternating.
  • the operation of the second example is similar to the first example, the cutoff of the JFETs 30, 35 preceding the cutoff of the second transistors 130, 135, which therefore participate only in maintaining the cutoff and not in the interruption of a current in circulating, which therefore limits the stresses weighing on these second transistors 130, 135.
  • the switching device 40 has been described, in the second example, as being formed of two transistors 130, 135 successively connected between the first two transistors 30, 35, which makes it possible to simplify the control of the switching module 20, the positioning of transistors 130 and 135 in the electrical circuit is likely to vary.
  • a switching device 40 with transistors allows faster switching than a moving contact relay, while providing insulation even in the absence of a control signal (ie in the event of failure or non- controller power supply 110). Additionally, the MOSFETS are small in size, which reduces the size of the system 10 compared to a system 10 using a relay 40. In addition, the MOSFETs are inexpensive.
  • the role of switching device 40 is played by the disconnector 45.
  • the control means 100 do not act directly on the actuator 95, but act on the controller 110, which controls then the actuator 95 electrically.
  • the electrical supply signal of the actuator 95 is cut by the controller 110 following the actuation of the control means by the operator.
  • disconnector 45 is closed by the operator without the controller 110 being functional and not being able to ensure the breaking of the current if necessary via the transistors 30, 35.
  • member 40 has been described here as comprising either a relay or a set of MOSFETs, it is obvious that other types of member 40 are likely to be used.
  • the switching system 10 comprises a single switching device 15 comprising a single input 1 and a plurality of outputs 2, as well as a single electrical circuit comprising at least two transistors 30, 35 between input 1 and each output 2.
  • the two transistors 30, 35 or more are interposed between input 1 and a point 5 of the circuit to which all outputs 2 are connected.
  • a switching device 40 is interposed between each output 2 and point 5.
  • the controller 110 controls the cut-off of the current between input 1 and point 5, as well as the switching of each switching member 40 to its respective second configuration.
  • the controller 110 commands the transistors 30, 35 to again let the current flow between input 1 and point 5, and switches back each of the switching elements 40 which do not correspond to output 2 with which the fault is associated. in its first configuration.
  • the switching device 40 which corresponds to output 2 with which the fault is associated remains in its second configuration.
  • the breaking of the current in the event of a fault remains ensured despite the use of a single controller 110 and above all of a single set of transistors 30, 35, while the breaking of the currents associated with the outputs 2 which have not given rise to a fault is very short.
  • the structure of the switching system 10 is therefore simplified compared to cases where the current to be sent to the various outputs 2, 4 would be supplied to several inputs 1, 3 each associated with a separate switching device 15 comprising its own set of transistors 30, 35 and its own switching device 40.
  • Such an embodiment is particularly conducive to the use of MEMS relays as switching devices 40, allowing rapid switching and therefore very short interruption of currents 2 which have not been associated with faults.
  • the breaking of the current by the first transistors 30, 35 is controlled and effective before the switching device 40 and/or the disconnector 45 are each switched to their configuration in which they prevent the passage of current. This in particular avoids having to size these members 40, 45 to cut off the current, in particular to cut an electric arc which would occur if the members 40, 45 were operated to cut off the current while the current is flowing.
  • the controller 110 is configured to systematically cut off the first signal (which causes the switching device 40 to switch to its second configuration) at a time such that one of the first transistors 30, 35 at least, in particular the first two transistors 30, 35 have switched to their non-conducting state before the switching device 40 switches to its second position.
  • the first signal is interrupted after or at the latest at the same time instant when the current is cut by the first transistor or transistors 30, 35. This is the case for example if an external signal commands the controller 110 to cut off the current, for example if it is desired to cut off the current to work on a downstream installation.
  • the controller 110 controls the switching of the switching member 40 from its second configuration (in which it prevents the passage of current ) until its first configuration (allowing the passage of current). Once the switching device 40 is in its first configuration, for example after a predetermined time period sufficient to allow this switching has elapsed, then the controller 110 controls the passage of each first transistor 30, 35 to its state passing.
  • sensor 102 detects that member 100 is approaching the position in which member 100 causes disconnector 45 to open. This position is reached, the sensor 102 transmits to the controller 110 a signal which causes the emission of the third signals then, after a predetermined delay, cuts the first signal, so that the current is interrupted by the first transistors 30, 35 before the cut off the first signal.
  • the sensor 102 is configured so that the current break by the transistors 30, 35 takes place at a time when the moving contact 90 is in contact with the two terminals 80 and 85, and before the moving contact moves away from one of these two terminals 80, 85. Thus, the interruption of the current is carried out by the transistors 30, 35 and not by the disconnector 45.
  • the controller 110 commands the closing of the member 40 before commanding the switching of the transistors 30, 35 into their on state by cutting off the third electrical signal.
  • modules 20 and 25 are likely to be located in different parts and distant from one another. the other, but communicating with each other, of the switching device 15.
  • the switching device 15 comprises a first device comprising the switching module 20 and a second device comprising the control module 25.
  • the first device (or “switching device”) comprises for example a first housing and the second device (or “control device”) comprises a second box that is distinct and in particular remote from the first box.
  • the control device 25 is configured to transmit to the switching device 20 the various electrical signals, for example via an electrical conductor such as a cable.

Abstract

The invention relates to a switching device (15), a switching module (20) and a control module (25) configured to command the interruption of a current by way of the switching module (20) in the event of a fault. The switching module (20) comprises a circuit carrying the current and comprising, in series, two back-to-back depletion-mode JFETs (30, 35) and a switching component (40) that switches between two configurations, the switching component (40) allowing the current to flow in one configuration and preventing the current from flowing in the other configuration, which it is in by default, the control module (25) generating a first signal for keeping the switching component (40) in the first configuration, the control module (25) being configured, in the event of a fault, to generate a second signal for commanding the interruption of the current by way of a transistor (30, 35), and configured to interrupt the first signal in the event of a fault.

Description

Dispositif de commutation électrique, système de commutation et procédé associés Electrical switching device, switching system and associated method
La présente invention concerne un dispositif de commutation électrique. La présente invention concerne également un système de commutation et un procédé de commutation d’un courant associés. The present invention relates to an electrical switching device. The present invention also relates to a switching system and a method for switching an associated current.
Des dispositifs de commutation tels que des disjoncteurs sont fréquemment utilisés pour détecter des défauts électriques liés à un ou des courants électriques et pour interrompre le ou les courants en cas de détection d’un défaut. A cet effet, les disjoncteurs sont équipés de moyens de détection d’un défaut électrique, ces moyens actionnant un organe de commutation qui coupe le courant lorsque nécessaire. Switching devices such as circuit breakers are frequently used to detect electrical faults related to electrical current(s) and to interrupt the current(s) upon detection of a fault. To this end, the circuit breakers are equipped with means for detecting an electrical fault, these means activating a switching device which cuts off the current when necessary.
L’organe de commutation est traditionnellement formé par un contact électriquement conducteur et mobile entre deux positions, l’une dans laquelle il relie électriquement deux bornes entre lesquelles il conduit le courant, et l’autre dans laquelle le contact est distant d’au moins l’une des bornes. De tels organes présentent en outre l’intérêt d’isoler galvaniquement leurs deux bornes l’une de l’autre lorsque le contact est dans la deuxième position, et ainsi d’offrir un niveau de protection très élevé, d’autant plus que leur mécanisme d’actionnement les maintient, par défaut, dans la deuxième position. The switching device is traditionally formed by an electrically conductive and movable contact between two positions, one in which it electrically connects two terminals between which it conducts the current, and the other in which the contact is at least one of the terminals. Such devices also have the advantage of galvanically isolating their two terminals from each other when the contact is in the second position, and thus of offering a very high level of protection, especially since their actuation mechanism maintains them, by default, in the second position.
Cependant, les organes de commutation mobiles du type précité restent relativement lents, puisque la coupure requiert une à plusieurs millisecondes en général. En outre, un arc électrique apparaît en général entre le contact mobile et la ou les bornes dont il s’éloigne lors de la coupure. Un tel arc électrique requiert une configuration spécifique de l’organe de commutation pour être éteint en sécurité, via une chambre de coupure complexe et de grandes dimensions, et génère en outre une usure des éléments entre lesquels il se forme, ce qui limite la durée de vie du dispositif de commutation. However, the mobile switching elements of the aforementioned type remain relatively slow, since breaking generally requires one to several milliseconds. In addition, an electric arc generally appears between the moving contact and the terminal(s) from which it moves away during breaking. Such an electric arc requires a specific configuration of the switching device to be extinguished safely, via a complex arcing chamber of large dimensions, and also generates wear on the elements between which it forms, which limits the duration life of the switching device.
Il a donc été proposé d’utiliser, en lieu et place du contact mobile, un ou des transistors commandés électroniquement, qui permettent alors une coupure du courant plus rapide et sans apparition d’un arc électrique. Afin d’assurer une protection suffisante, les transistors utilisés sont nécessairement d’un type « non-passant par défaut », c’est-à-dire d’un type qui requiert une action positive (réception d’une commande sur la grille du transistor) pour laisser passer le courant, et qui bloque le passage du courant en l’absence d’une telle action. Par exemple, des transistors MOSFET ont été proposés pour un tel usage. It has therefore been proposed to use, instead of the moving contact, one or more electronically controlled transistors, which then allow faster current breaking without the appearance of an electric arc. In order to ensure sufficient protection, the transistors used are necessarily of a "non-passing by default" type, that is to say of a type which requires a positive action (reception of a command on the gate of the transistor) to allow current to flow, and which blocks the flow of current in the absence of such action. For example, MOSFET transistors have been proposed for such use.
Cependant, les transistors non-passants par défaut présentent une résistance relativement importante au passage du courant, qui est notamment gênante, car causant des pertes importantes, lorsque l’intensité du courant est élevée. Il est donc nécessaire de prévoir un grand nombre de transistors en parallèle pour limiter les pertes en divisant le courant, de manière à ce que l’intensité du courant traversant chaque transistor soit limitée. Une telle configuration est complexe et volumineuse. However, non-conducting transistors by default have a relatively high resistance to the passage of current, which is in particular troublesome, since it causes significant losses, when the intensity of the current is high. It is therefore necessary to provide a large number of transistors in parallel to limit the losses by dividing the current, so that the intensity of the current passing through each transistor is limited. Such a configuration is complex and bulky.
Il existe donc un besoin pour un dispositif de commutation d’un courant électrique qui présente de petites dimensions et une résistance électrique faible tout en permettant une coupure plus rapide du courant et en présentant une meilleure durée de vie que les dispositifs de commutations de l’état de la technique. There is therefore a need for a device for switching an electric current which has small dimensions and a low electric resistance while allowing faster breaking of the current and having a better lifespan than the switching devices of the state of the art.
A cet effet, il est proposé un dispositif de commutation électrique comportant une entrée, une sortie, un module de commutation et un module de commande, le module de commutation étant apte à conduire un courant électrique entre l’entrée et la sortie, le module de commande étant configuré pour détecter un défaut électrique et pour commander l’interruption du courant par le module de commutation en cas de détection d’un défaut. To this end, an electrical switching device is proposed comprising an input, an output, a switching module and a control module, the switching module being able to conduct an electric current between the input and the output, the module control being configured to detect an electrical fault and to control the interruption of the current by the switching module in the event of detection of a fault.
Ce module de commutation comporte un circuit électrique configuré pour conduire le courant entre l’entrée et la sortie , le circuit comportant, en série, au moins deux premiers transistors JFET normalement passants tête-bêche et au moins un organe de commutation comportant une première borne et une deuxième borne, l’organe de étant configuré pour commuter entre une première configuration et une deuxième configuration, l’organe de commutation permettant le passage du courant entre la première borne et la deuxième borne lorsque l’organe de commutation est dans la première configuration, l’organe de commutation empêchant le passage du courant lorsque l’organe de commutation est dans la deuxième configuration, l’organe de commutation étant dans la deuxième configuration par défaut, le module de commande étant configuré pour générer au moins un premier signal électrique propre à maintenir l’organe de commutation dans la première configuration, le module de commande étant configuré pour, en cas de détection d’un défaut, générer au moins un deuxième signal électrique de coupure à destination d’un premier transistor, chaque deuxième signal étant apte à commander l’interruption du courant par le premier transistor correspondant, le module de commande étant configuré pour interrompre le premier signal en réponse à la détection. This switching module comprises an electrical circuit configured to conduct the current between the input and the output, the circuit comprising, in series, at least two first JFET transistors normally on head to tail and at least one switching member comprising a first terminal and a second terminal, the member of being configured to switch between a first configuration and a second configuration, the switching member allowing current to flow between the first terminal and the second terminal when the switching member is in the first configuration, the switching element preventing the passage of current when the switching element is in the second configuration, the switching element being in the second configuration by default, the control module being configured to generate at least a first signal electric capable of maintaining the switching member in the first configuration, the control module being configured for, in in the event of detection of a fault, generating at least one second electrical cut-off signal intended for a first transistor, each second signal being capable of controlling the interruption of the current by the corresponding first transistor, the control module being configured to interrupting the first signal in response to the detection.
Grâce à l’invention, le courant est coupé rapidement par les JFET en cas de détection d’un défaut électrique. En outre, l’organe de commutation, étant dans la deuxième configuration et donc non-passant par défaut, assure le maintien de cette protection même lorsque le module de commande n’est pas alimenté électriquement et donc ne peut pas maintenir les JFET dans leur état non-passant. Thanks to the invention, the current is cut off quickly by the JFETs in the event of detection of an electrical fault. In addition, the switching device, being in the second configuration and therefore non-conducting by default, maintains this protection even when the control module is not electrically powered and therefore cannot maintain the JFETs in their non-passing state.
De plus, puisque les JFET coupent le courant très rapidement, l’organe de commutation n’a pas à être dimensionné de manière à permettre cette coupure, mais uniquement le maintien de l’isolation. En particulier, aucun arc électrique n’apparaît même si l’organe de commutation est du type à contact mobile, ce qui limite son usure et évite donc qu’une chambre de coupure soit requise, tout en permettant l’utilisation du dispositif 15 dans une atmosphère explosive. Moreover, since the JFETs cut the current very quickly, the switching device does not have to be sized in such a way as to allow this cut, but only the maintenance of the insulation. In particular, no electric arc appears even if the switching member is of the moving contact type, which limits its wear and therefore avoids the need for an interrupting chamber, while allowing the device 15 to be used in an explosive atmosphere.
De manière générale, l’organe de commutation peut présenter une conductivité électrique élevée puisqu’il n’a pas à couper des courants élevés et donc à supporter une surtension élevée lors de la coupure, ce rôle étant joué par les JFET, qui présentent eux naturellement une conductivité très élevée. La résistance électrique du dispositif de commutation est donc faible. In general, the switching device can have a high electrical conductivity since it does not have to break high currents and therefore have to withstand a high overvoltage during breaking, this role being played by the JFETs, which have them naturally a very high conductivity. The electrical resistance of the switching device is therefore low.
Ainsi, le principal défaut des JFET - le fait qu’ils soient par défaut passants, ce qui est généralement considéré comme les disqualifiant pour une utilisation dans un dispositif de commutation électrique - est compensé par la présence de l’organe de commutation sans que leurs avantages (leur forte conductivité) ne soient compensés par la résistance électrique de l’organe de commutation puisque cette dernière reste limitée. Thus, the main defect of JFETs - the fact that they are conductive by default, which is generally considered to disqualify them for use in an electrical switching device - is compensated for by the presence of the switching device without their advantages (their high conductivity) are offset by the electrical resistance of the switching device since the latter remains limited.
Selon des aspects avantageux mais non obligatoires de l’invention, le dispositif de commutation présente une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles : According to advantageous but not mandatory aspects of the invention, the switching device has one or more of the following characteristics, taken in isolation or in all technically possible combinations:
- l’organe de commutation comporte un premier actionneur et un premier contact électriquement conducteur, le premier contact étant mobile entre une première position et une deuxième position, le premier contact étant dans la première position lorsque l’organe de commutation est dans la première configuration et étant dans la deuxième position lorsque l’organe de commutation est dans la deuxième configuration, le premier contact conduisant le courant entre la première borne et la deuxième borne lorsque le premier contact est dans la première position, le premier contact étant distant d’au moins une des première et deuxième bornes lorsque le premier contact est dans la deuxième position, le premier actionneur étant configuré pour maintenir le premier contact dans la première position lorsque l’actionneur est alimenté avec le premier signal électrique. - the switching member comprises a first actuator and a first electrically conductive contact, the first contact being movable between a first position and a second position, the first contact being in the first position when the switching member is in the first configuration and being in the second position when the switching member is in the second configuration, the first contact conducting current between the first terminal and the second terminal when the first contact is in the first position, the first contact being at least at least one of the first and second terminals when the first contact is in the second position, the first actuator being configured to maintain the first contact in the first position when the actuator is supplied with the first electrical signal.
- le dispositif de commutation comporte deux deuxièmes transistors MOSFET, de type non-passant par défaut, en série tête-bêche entre la première borne et la deuxième borne, chaque deuxième transistor conduisant le courant lorsque le deuxième transistor est alimenté par un premier signal respectif et empêchant le passage du courant en l’absence de premier signal. - the switching device comprises two second MOSFET transistors, of the non-conducting by default type, in head-to-tail series between the first terminal and the second terminal, each second transistor conducting the current when the second transistor is supplied by a respective first signal and preventing the flow of current in the absence of the first signal.
- le circuit comporte, en outre, un sectionneur connecté en série avec les premiers transistors et avec l’organe de commutation, le sectionneur comportant une troisième borne, une quatrième borne, un deuxième contact, un deuxième actionneur et un organe de commande, le deuxième contact étant mobile entre une troisième position et une quatrième position, le deuxième contact conduisant le courant entre la troisième borne (80) et la quatrième borne lorsque le deuxième contact est dans la troisième position, le deuxième contact étant distant d’au moins une des troisième et quatrième bornes lorsque le deuxième contact est dans la quatrième position, le deuxième actionneur étant configuré pour déplacer le deuxième contact entre la troisième position et la quatrième position lorsque l’organe de commande est actionné par un opérateur. - the circuit further comprises a disconnector connected in series with the first transistors and with the switching device, the disconnector comprising a third terminal, a fourth terminal, a second contact, a second actuator and a control device, the second contact being movable between a third position and a fourth position, the second contact conducting current between the third terminal (80) and the fourth terminal when the second contact is in the third position, the second contact being remote from at least one of the third and fourth terminals when the second contact is in the fourth position, the second actuator being configured to move the second contact between the third position and the fourth position when the control member is actuated by an operator.
- l’organe de commande est une manette rotative. - the control device is a rotary handle.
- le dispositif comporte un organe de commande actionnable par un opérateur pour commander la coupure, par le module de commande, du premier signal. - The device comprises a control member operable by an operator to control the cut-off, by the control module, of the first signal.
- chaque premier transistor comporte une source, un drain et une grille, les sources de deux des premiers transistors étant interposées, le long du trajet du courant, entre les drains desdits deux premiers transistors. - each first transistor comprises a source, a drain and a gate, the sources of two of the first transistors being interposed, along the current path, between the drains of said two first transistors.
- le nombre de premiers transistors est supérieur ou égal à quatre, les premiers transistors étant répartis en paires de groupes de premiers transistors, chaque groupe contenant au moins un premier transistor les premiers transistors de chaque groupe étant connectés successivement les uns aux autres en série dans le même sens si le groupe comporte plus d’un premier transistor, chaque premier transistor d’un groupe étant dans le sens différent du ou des premiers transistors de l’autre groupe de la même paire, chaque groupe d’une paire étant connecté en série à l’autre groupe de la paire, les paires étant connectées en série les unes aux autres. - the number of first transistors is greater than or equal to four, the first transistors being divided into pairs of groups of first transistors, each group containing at least one first transistor, the first transistors of each group being connected successively to each other in series in the same direction if the group comprises more than one first transistor, each first transistor of a group being in the different direction from the first transistor or transistors of the other group of the same pair, each group of a pair being connected in series to the other group of the pair, the pairs being connected in series to each other.
- les premiers transistors sont réalisés en SiC ou en GaN. - the first transistors are made of SiC or GaN.
- le dispositif comporte une unique entrée et une pluralité de sorties, chaque sortie étant reliée à un unique point, les premiers transistors étant interposés entre l’entrée et ledit unique point, le module de commutation comportant, pour chaque sortie, un organe de commutation respectif interposé entre la sortie et ledit unique point. - the device comprises a single input and a plurality of outputs, each output being connected to a single point, the first transistors being interposed between the input and said single point, the switching module comprising, for each output, a switching member respective interposed between the output and said single point.
- le dispositif comporte un appareil de commutation et un appareil de commande, l’appareil de commutation comportant le module de commutation, l’appareil de commande comportant le module de commande, l’appareil de commutation et l’appareil de commande étant distants l’un de l’autre et étant configurés pour communiquer l’un avec l’autre. - the device comprises a switching device and a control device, the switching device comprising the switching module, the control device comprising the control module, the switching device and the control device being remote each other and being configured to communicate with each other.
Il est également proposé un système de commutation configuré pour transmettre une pluralité de courants entre des entrées et des sorties respectives, pour détecter un défaut électrique en fonction de mesures de paramètres d’au moins un courant, et pour interrompre au moins le courant correspondant en cas de détection d’un défaut électrique, comportant une pluralité de dispositifs de commutation tel que précédemment décrits. There is also proposed a switching system configured to transmit a plurality of currents between respective inputs and outputs, to detect an electrical fault according to measurements of parameters of at least one current, and to interrupt at least the corresponding current in case of detection of an electrical fault, comprising a plurality of switching devices as previously described.
Il est aussi proposé un procédé de commutation d’un courant, mis en œuvre par un dispositif de commutation électrique comportant une entrée, une sortie, un module de commutation et un module de commande, le module de commutation étant apte à conduire un courant électrique entre l’entrée et la sortie, le module de commutation comportant un circuit électrique configuré pour conduire le courant entre l’entrée et la sortie, le circuit comportant, en série, au moins deux premiers transistors JFET normalement passants tête-bêche et au moins un organe de commutation comportant une première borne et une deuxième borne, l’organe de commutation étant configuré pour commuter entre une première configuration et une deuxième configuration, l’organe de commutation permettant le passage du courant entre la première borne et la deuxième borne lorsque l’organe de commutation est dans la première configuration, l’organe de commutation empêchant le passage du courant lorsque l’organe de commutation est dans la deuxième configuration, l’organe de commutation étant dans la deuxième configuration par défaut, le procédé comportant des étapes de : A method for switching a current is also proposed, implemented by an electrical switching device comprising an input, an output, a switch and a control module, the switch module being adapted to conduct an electric current between the input and the output, the switch module comprising an electric circuit configured to conduct the current between the input and the output, the circuit comprising , in series, at least two first JFET transistors normally on head to tail and at least one switching element comprising a first terminal and a second terminal, the switching element being configured to switch between a first configuration and a second configuration, the switching member allowing the passage of current between the first terminal and the second terminal when the switching member is in the first configuration, the switching member preventing the flow of current when the switching member is in the second configuration , the switching member being in the second default configuration, the method comprising steps of:
- génération, par le module de commande, d’au moins un premier signal électrique propre à maintenir l’organe de commutation dans la première configuration, - generation, by the control module, of at least a first electrical signal capable of maintaining the switching device in the first configuration,
- détection d’un défaut électrique par le module de commande, - detection of an electrical fault by the control module,
- suite à la détection d’un défaut, interruption du premier signal par le module de commande et génération par le module de commande d’un deuxième signal électrique de coupure à destination de chaque premier transistor, - following the detection of a fault, interruption of the first signal by the control module and generation by the control module of a second electrical cut-off signal intended for each first transistor,
- suite à la réception du deuxième signal correspondant, interruption du courant par au moins un premier transistor, et - following receipt of the corresponding second signal, interruption of the current by at least one first transistor, and
- commutation de l’organe de commutation dans la deuxième configuration. - switching of the switching device in the second configuration.
Des caractéristiques et avantages de l’invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en référence aux dessins annexés, sur lesquels : Characteristics and advantages of the invention will appear on reading the following description, given solely by way of non-limiting example and made with reference to the appended drawings, in which:
[Fig 1] la figure 1 est une représentation schématique d’un exemple d’un système de commutation selon l’invention comportant un premier exemple de dispositif de commutation selon l’invention, [Fig 1] Figure 1 is a schematic representation of an example of a switching system according to the invention comprising a first example of a switching device according to the invention,
[Fig 2] la figure 2 est un ordinogramme d’un procédé de commutation mis en œuvre par le dispositif de commutation de la figure 1 , [Fig 2] Figure 2 is a flowchart of a switching process implemented by the switching device of Figure 1,
[Fig 3] la figure 3 est une représentation schématique d’un deuxième exemple de dispositif de commutation selon l’invention, et [Fig 3] Figure 3 is a schematic representation of a second example of a switching device according to the invention, and
[Fig.4] la figure 4 est une représentation schématique d’un deuxième exemple d’un système de commutation selon l’invention. Un exemple d’un système de commutation 10 selon l’invention est représenté sur la figure 1. Un deuxième exemple de système de commutation 10 sera représenté et décrit ultérieurement. [Fig.4] Figure 4 is a schematic representation of a second example of a switching system according to the invention. An example of a switching system 10 according to the invention is represented in FIG. 1. A second example of a switching system 10 will be represented and described later.
Le système de commutation 10 présente au moins une entrée 1 , 3 et au moins une sortie 2, 4. En particulier, le nombre d’entrées 1, 3 est égal au nombre de sorties 2, 4. Dans l’exemple représenté sur la figure 1, le nombre d’entrées et de sorties est égal à deux, toutefois ce nombre est susceptible de varier. The switching system 10 has at least one input 1, 3 and at least one output 2, 4. In particular, the number of inputs 1, 3 is equal to the number of outputs 2, 4. In the example represented on the figure 1, the number of inputs and outputs is equal to two, however this number is likely to vary.
Le système de commutation 10 est configuré pour recevoir un courant sur chacune de ses entrées 1 , 3, et pour transmettre chaque courant à une sortie 2, 4 respective. The switching system 10 is configured to receive a current on each of its inputs 1, 3, and to transmit each current to a respective output 2, 4.
Optionnellement, le système de commutation 10 comporte également une entrée de neutre EN et une ou des sortie(s) de neutre SN, le système de commutation 10 étant configuré pour conduire une courant entre l’entrée de neutre EN et la ou les sortie(s) de neutre SN et, de manière connue en soi, pour couper ce courant à l’aide d’un sectionneur de neutre S. Optionally, the switching system 10 also comprises a neutral input EN and one or more neutral output(s) SN, the switching system 10 being configured to conduct a current between the neutral input EN and the output(s) ( s) neutral SN and, in a manner known per se, to cut this current using a neutral switch S.
Le système de commutation 10 est, en outre, configuré pour détecter un défaut électrique relatif à au moins un des courants et pour interrompre ledit courant, ou une pluralité des courants, notamment tous les courants, en cas de détection du défaut. The switching system 10 is, moreover, configured to detect an electrical fault relating to at least one of the currents and to interrupt said current, or a plurality of the currents, in particular all the currents, in the event of detection of the fault.
Le système de commutation 10 comporte au moins un dispositif de commutation 15, et en particulier un dispositif de commutation 15 pour chaque paire formée par une entrée 1 , 3 et une sortie 2,4. The switching system 10 comprises at least one switching device 15, and in particular a switching device 15 for each pair formed by an input 1, 3 and an output 2.4.
Sur la figure 1 , le système de commutation 10 est un système bipolaire, i.e un système 10 à deux pôles, ou à deux phases électriques, sans neutre. In FIG. 1, the switching system 10 is a bipolar system, i.e. a system 10 with two poles, or with two electrical phases, without neutral.
Un homme du métier pourra adapter aisément un tel système de commutation, par exemple, à des installations mono-, bi-, tri- ou quadri-polaires, avec ou sans neutre. A person skilled in the art can easily adapt such a switching system, for example, to mono-, bi-, tri- or quadri-polar installations, with or without neutral.
Chaque pôle de l’installation sera associé à une entrée 1, 3 et une sortie 2, 4 respective, avec notamment un dispositif de commutation 15 correspondant, le neutre étant associé à l’entrée EN et la sortie SN correspondantes du système 10. Each pole of the installation will be associated with a respective input 1, 3 and output 2, 4, with in particular a corresponding switching device 15, the neutral being associated with the corresponding input EN and output SN of the system 10.
Les différents dispositifs de commutation 15 correspondant aux différents pôles du système 10 sont, par exemple, identiques les uns aux autres. The different switching devices 15 corresponding to the different poles of the system 10 are, for example, identical to each other.
Chaque dispositif de commutation 15 comporte l’entrée 1, 3 et la sortie 2, 4 correspondante et est configuré pour conduire de l’entrée 1 , 3 à la sortie 2, 4 un courant électrique reçu sur l’entrée 1 , 3. Each switching device 15 comprises input 1, 3 and the corresponding output 2, 4 and is configured to conduct from input 1, 3 to output 2, 4 an electric current received at input 1, 3.
Le courant est, par exemple, un courant continu, mais est, en variante, susceptible d’être un courant alternatif. Le courant est associé à une tension électrique entre l’entrée 1 , 3 et la sortie 2, 4. Chaque dispositif de commutation 15 est, en outre, configuré pour détecter un défaut électrique relatif au courant qu’il conduit et pour interrompre ledit courant en cas de détection du défaut. The current is, for example, a direct current, but is, in a variant, likely to be an alternating current. The current is associated with an electrical voltage between input 1, 3 and output 2, 4. Each switching device 15 is, moreover, configured to detect an electrical fault relating to the current that it conducts and to interrupt said current in the event of detection of the fault.
Chaque défaut est, par exemple, une intensité excessive du courant, un court- circuit, une surtension, une température excessive d’un composant interne, une panne interne après un auto test du disjoncteur, une sous-tension, une forme anormale de la tension (non sinusoïdale par exemple sur un réseau AC), ou encore un arc électrique. Each fault is, for example, excessive current intensity, short circuit, overvoltage, excessive temperature of an internal component, internal failure after circuit breaker self-test, undervoltage, abnormal shape of the voltage (non-sinusoidal for example on an AC network), or even an electric arc.
Chaque dispositif de commutation 15 comporte, outre l’entrée 1, 3 et la sortie 2, 4 correspondante, un module 20 de commutation et un module 25 de commande. Each switching device 15 comprises, in addition to the input 1, 3 and the corresponding output 2, 4, a switching module 20 and a control module 25.
Il est à noter que certains éléments des dispositifs de commutation 15, notamment le module de commande 25, sont susceptibles suivant les cas d’être propre à un unique dispositif de commutation 15 ou commun à plusieurs dispositifs de commutation 15. It should be noted that certain elements of the switching devices 15, in particular the control module 25, are likely, depending on the case, to be specific to a single switching device 15 or common to several switching devices 15.
Chaque entrée 1 , 3 ou sortie 2, 4 est configurée pour être connectée à un conducteur électrique d’arrivée ou de départ du courant, par exemple à un fil ou câble conducteur, ou encore à une borne d’entrée ou de sortie d’un autre dispositif électrique. Each input 1, 3 or output 2, 4 is configured to be connected to an electric current inlet or outlet conductor, for example to a conductive wire or cable, or else to an input or output terminal of another electrical device.
Le module de commutation 20 comporte un circuit électrique reliant l’entrée 1, 3 à la sortie 2, 4 et configuré pour conduire le courant entre l’entrée 1, 3 et la sortie 2, 4. Switch module 20 has an electrical circuit connecting input 1, 3 to output 2, 4 and configured to conduct current between input 1, 3 and output 2, 4.
Le circuit électrique comporte, connectés en série, au moins deux premiers transistors 30 et 35 et un organe de commutation 40. Optionnellement, le circuit comporte, en outre, un sectionneur 45. The electrical circuit comprises, connected in series, at least two first transistors 30 and 35 and a switching device 40. Optionally, the circuit further comprises a disconnector 45.
Optionnellement, le module de commutation 20 comporte, en outre, un écrêteur 50.Optionally, the switching module 20 further comprises a peak limiter 50.
Chaque premier transistor 30, 35 est un transistor JFET. Each first transistor 30, 35 is a JFET transistor.
L’acronyme JFET, de l’Anglais « Junction Field-Effect Transistor » désigne un transistor à effet de champ dont la grille est directement en contact avec le canal semi- conducteur reliant la source et le drain, le canal étant interposé entre deux portions semi- conductrices présentant un type de dopage différent de celui du canal, de sorte que la modification du potentiel de la grille (connectée à l’une de ces deux portions) tend à augmenter la taille de la zone de déplétion qui apparaît à la jonction entre le canal et lesdites portions. Ainsi, si la tension est suffisante, le canal est entièrement dépiété et rendu électriquement isolant. The acronym JFET, from the English "Junction Field-Effect Transistor" designates a field-effect transistor whose gate is directly in contact with the semiconductor channel connecting the source and the drain, the channel being interposed between two portions semiconductors having a type of doping different from that of the channel, so that the modification of the potential of the gate (connected to one of these two portions) tends to increase the size of the depletion zone which appears at the junction between the channel and said portions. Thus, if the voltage is sufficient, the channel is completely stripped and made electrically insulating.
Chaque premier transistor 30, 35 est, notamment, un JFET à canal de type n.Each first transistor 30, 35 is, in particular, an n-type channel JFET.
Chaque premier transistor 30, 35 est passant par défaut (ou « normalement passant »). En d’autre termes, chaque premier transistor 30, 35 est tel que, en l’absence d’action sur la grille du premier transistor 30, 35, le premier transistor 30, 35 permet la circulation d’un courant entre la source et le drain. Les premiers transistors 30, 35 sont disposés tête-bêche dans le circuit électrique, c’est-à-dire que le courant circule depuis la source vers le drain dans l’un des premiers transistors 30, 35 et depuis le drain vers la source dans l’autre premier transistor 30, 35. Each first transistor 30, 35 is on by default (or “normally on”). In other words, each first transistor 30, 35 is such that, in the absence of action on the gate of the first transistor 30, 35, the first transistor 30, 35 allows a current to flow between the source and the drain. The first transistors 30, 35 are arranged head to tail in the electrical circuit, that is to say the current flows from the source to the drain in one of the first transistors 30, 35 and from the drain to the source in the other first transistor 30, 35.
Ainsi, l’expression « tête-bêche » désigne des premiers transistors 30, 35 connectés en sens opposés. Thus, the expression “head to tail” designates first transistors 30, 35 connected in opposite directions.
Notamment, chaque premier transistor 30 est connecté dans un sens opposé au sens de chaque premier transistor 35. In particular, each first transistor 30 is connected in a direction opposite to the direction of each first transistor 35.
Selon un mode de réalisation, les sources des deux premiers transistors 30, 35 sont interposées entre les drains des deux premiers transistors 30, 35 le long du trajet du courant. According to one embodiment, the sources of the first two transistors 30, 35 are interposed between the drains of the first two transistors 30, 35 along the current path.
Dans l’exemple de dispositif de commutation 15 de la figure 1, les sources des deux premiers transistors 30, 35 sont connectées l’une à l’autre en un point 55. In the example of switching device 15 of Figure 1, the sources of the first two transistors 30, 35 are connected to each other at a point 55.
Optionnellement, le nombre de premiers transistors 30, 35 est différent de deux, par exemple égal à quatre, six ou tout nombre pair. Optionally, the number of first transistors 30, 35 is different from two, for example equal to four, six or any even number.
Dans ce cas, les premiers transistors 30, 35 sont répartis en deux groupes de premiers transistors 30, 35, les transistors 30, 35 qui appartiennent à un même groupe étant disposés dans le même sens et, connectés successivement en série les uns aux autres. In this case, the first transistors 30, 35 are divided into two groups of first transistors 30, 35, the transistors 30, 35 which belong to the same group being arranged in the same direction and successively connected in series to each other.
En variante, deux paires de groupes ou plus sont présentes, chaque paire comportant un groupe de premiers transistors 30 connectés en série les uns aux autres et un groupe de premiers transistors 35 connectés en série les uns aux autres, les deux groupes de la paire étant connectés en série l’un à l’autre. Alternatively, two or more pairs of groups are present, each pair comprising a group of first transistors 30 connected in series with each other and a group of first transistors 35 connected in series with each other, the two groups of the pair being connected in series to each other.
Les différentes paires de groupes sont connectées en parallèles les unes des autres. The different pairs of groups are connected in parallel to each other.
Selon une variante, chaque paire comporte un unique premier transistor 30 et un unique premier transistor 35 connectés en série, les paires étant connectées en parallèle les unes des autres. According to a variant, each pair comprises a single first transistor 30 and a single first transistor 35 connected in series, the pairs being connected in parallel with each other.
Selon une autre variante, le circuit électrique comporte une pluralité de groupes de premiers transistors 30, 35, les groupes étant connectés en série les uns aux autres. According to another variant, the electrical circuit comprises a plurality of groups of first transistors 30, 35, the groups being connected in series to each other.
Chaque groupe comporte alors au moins deux premiers transistor 30 ou au moins deux premiers transistors 35, les premiers transistors 30, 35 d’un même groupe étant connectés en parallèle les uns aux autres. En particulier, chaque groupe ne contient que des premiers transistors 30, 35 orientés dans un même sens, et il existe au moins un groupe de premiers transistors 30 orientés dans un sens et au moins un groupe de premiers transistors 35 orientés dans l’autre sens. Ainsi, quel que soit le sens du courant, au moins l’un des groupes de premiers transistors 30, 35 empêche le passage du courant. Par exemple, les premiers transistors 30 d’un groupe sont tous connectés à une extrémité à un même point que les premiers transistors 35 d’un premier groupe voisin et optionnellement à une autre extrémité à un même point que les premiers transistors 30 ou 35 d’un deuxième groupe voisin. Each group then comprises at least two first transistors 30 or at least two first transistors 35, the first transistors 30, 35 of the same group being connected in parallel to each other. In particular, each group contains only first transistors 30, 35 oriented in the same direction, and there is at least one group of first transistors 30 oriented in one direction and at least one group of first transistors 35 oriented in the other direction. . Thus, whatever the direction of the current, at least one of the groups of first transistors 30, 35 prevents the current from flowing. For example, the first transistors 30 of a group are all connected at one end to the same point as the first transistors 35 of a first neighboring group and optionally at the other end to the same point as the first transistors 30 or 35 d a second neighboring group.
Chaque premier transistor 30, 35 est, par exemple, réalisé en carbure de silicium SiC. En variante, au moins un premier transistor 30, 35, notamment chaque premier transistor 30, 35 est réalisé en un autre matériau semi-conducteur, par exemple en nitrure de gallium GaN ou encore en silicium. Le matériau utilisé dépend notamment des tensions et des intensités des courants que le dispositif de commutation 15 est prévu pour supporter. Each first transistor 30, 35 is, for example, made of silicon carbide SiC. As a variant, at least one first transistor 30, 35, in particular each first transistor 30, 35 is made of another semiconductor material, for example of gallium nitride GaN or else of silicon. The material used depends in particular on the voltages and intensities of the currents that the switching device 15 is designed to withstand.
L’organe de commutation 40 comporte une première borne 60 et une deuxième borne 65. La première borne 60 est, par exemple, connectée à l’un des premiers transistors 30, 35. The switching device 40 comprises a first terminal 60 and a second terminal 65. The first terminal 60 is, for example, connected to one of the first transistors 30, 35.
L’organe de commutation 40 est configuré pour commuter entre une première configuration et une deuxième configuration. The switching device 40 is configured to switch between a first configuration and a second configuration.
Lorsque l’organe de commutation 40 est dans la première configuration, l’organe de commutation permet le passage du courant entre la première borne 60 et la deuxième borne 65. When the switching device 40 is in the first configuration, the switching device allows current to flow between the first terminal 60 and the second terminal 65.
Lorsque l’organe de commutation 40 est dans la deuxième configuration, l’organe de commutation isole électriquement la première borne de la deuxième borne 65. When the switching device 40 is in the second configuration, the switching device electrically isolates the first terminal from the second terminal 65.
L’organe de commutation 40 est configuré pour commuter entre la première et la deuxième configuration sur réception d’un premier signal de commande du module de commande 25. The switching device 40 is configured to switch between the first and the second configuration upon receipt of a first control signal from the control module 25.
L’organe de commutation 40 configuré pour être, par défaut, dans la deuxième configuration. En d’autres termes, en l’absence de premier signal de commande transmis par le module de commande 25, l’organe de commutation 40 est dans la deuxième configuration. The switching device 40 configured to be, by default, in the second configuration. In other words, in the absence of a first control signal transmitted by the control module 25, the switching device 40 is in the second configuration.
Selon le mode de réalisation représenté sur la figure 1, l’organe de commutation 40 est un relais comportant un premier contact 70 et un premier actionneur 75. According to the embodiment shown in Figure 1, the switching device 40 is a relay comprising a first contact 70 and a first actuator 75.
L’organe de commutation 40 n’est, notamment, pas dimensionné pour interrompre à lui seul le courant circulant entre l’entrée 1, 3 et la sortie 2, 4. En particulier, l’organe de commutation 40 n’est pas configuré pour éteindre un éventuel arc électrique apparaissant entre le premier contact 70 et l’une ou l’autre des bornes 60, 65. L’organe de commutation 40 est, par exemple, dépourvu de chambre de coupure. The switching device 40 is, in particular, not sized to interrupt on its own the current flowing between the input 1, 3 and the output 2, 4. In particular, the switching device 40 is not configured to extinguish any electric arc appearing between the first contact 70 and one or the other of the terminals 60, 65. The switching member 40 is, for example, devoid of arcing chamber.
Toutefois, l’organe de commutation 40 est, par exemple, configuré pour empêcher un courant de circuler entre les bornes 60, 65 si la tension entre l’entrée 1, 3 et la sortie 2, 4 est appliquée entre les bornes 60 et 65. Il est à noter que, selon des variantes envisageables, l’organe de commutation 40 est dimensionné pour éteindre à lui seul le courant si besoin, par exemple en éteignant un éventuel arc électrique qui en résulterait. However, the switching device 40 is, for example, configured to prevent a current from flowing between the terminals 60, 65 if the voltage between the input 1, 3 and the output 2, 4 is applied between the terminals 60 and 65 . It should be noted that, according to possible variants, the switching device 40 is sized to extinguish the current on its own if necessary, for example by extinguishing any electric arc which would result therefrom.
Le premier contact 70 est électriquement conducteur et est mobile entre une première position et une deuxième position, représentée sur la figure 1 . The first contact 70 is electrically conductive and is movable between a first position and a second position, represented in FIG.
Lorsque l’organe de commutation 40 est dans la première configuration, le premier contact 70 est dans la première position. Lorsque l’organe de commutation 40 est dans la deuxième configuration, le premier contact 70 est dans la deuxième position. When the switching member 40 is in the first configuration, the first contact 70 is in the first position. When the switching device 40 is in the second configuration, the first contact 70 is in the second position.
Lorsque le premier contact 70 est dans la première position, le premier contact 70 connecte électriquement les deux bornes 60 et 65, par exemple en étant en appui contre les deux bornes 60 et 65. When the first contact 70 is in the first position, the first contact 70 electrically connects the two terminals 60 and 65, for example by pressing against the two terminals 60 and 65.
Lorsque le premier contact 70 est dans la deuxième position, le premier contact 70 est distant d’au moins une des bornes 60 et 65. Ainsi, le premier contact 70 ne permet pas le passage du courant entre les bornes 60 et 65. When the first contact 70 is in the second position, the first contact 70 is distant from at least one of the terminals 60 and 65. Thus, the first contact 70 does not allow current to flow between the terminals 60 and 65.
De nombreux types de mécanismes, notamment rotatifs, sont susceptibles d’être utilisés pour assurer la mobilité et le guidage du premier contact 70. Many types of mechanisms, in particular rotary ones, are likely to be used to ensure the mobility and guidance of the first contact 70.
Selon des modes de réalisation envisageables, le relais 40 est un relais MEMS (de l’Anglais « Micro Electro-Mechanical System », signifiant « microsystème électromécanique »). Un relais MEMS est un relais dont au moins une partie de dimensions microscopiques est fabriquée à partir de matériaux semi-conducteurs. Par exemple, une poutre de dimensions microscopiques se déformant sous l’effet d’un champ électrique joue le rôle de premier contact 70. De tels relais, de très petite taille, ne permettent pas de couper sans arc électrique des courants élevés, mais commutent très rapidement, leurs temps de commutation étant typiquement de l’ordre de 10 microsecondes. According to possible embodiments, the relay 40 is a MEMS relay (from the English “Micro Electro-Mechanical System”, meaning “micro electromechanical system”). A MEMS relay is a relay of which at least a part of microscopic dimensions is made from semiconductor materials. For example, a beam of microscopic dimensions deforming under the effect of an electric field plays the role of first contact 70. very quickly, their switching times being typically of the order of 10 microseconds.
En variante, le relais 40 est un relais de dimensions macroscopiques d’un type connu. As a variant, the relay 40 is a relay of macroscopic dimensions of a known type.
Le premier actionneur 75 est configuré pour déplacer le premier contact 70 entre la première position et la deuxième position suite à la réception d’un premier signal de commande, notamment d’un premier signal de commande électrique, du module de commande 25. The first actuator 75 is configured to move the first contact 70 between the first position and the second position following receipt of a first control signal, in particular a first electrical control signal, from the control module 25.
En particulier, le premier actionneur 75 est configuré pour maintenir le premier contact 70 dans la deuxième position en l’absence de premier signal de commande, et pour déplacer le premier contact 70 dans la première position et l’y maintenir lorsque le premier actionneur 75 est alimenté avec le premier signal de commande. In particular, the first actuator 75 is configured to maintain the first contact 70 in the second position in the absence of a first control signal, and to move the first contact 70 into the first position and maintain it there when the first actuator 75 is supplied with the first control signal.
Par exemple, le premier actionneur 75 est d’un type connu comportant un ressort et un électro-aimant, le ressort tendant à déplacer le premier contact 70 vers sa deuxième position et l’électro-aimant étant configuré, lorsqu’il est alimenté par le premier signal de commande, pour exercer, directement ou indirectement, sur le premier contact 70 une force tendant à déplacer le premier contact 70 vers sa première position. Toutefois, de nombreux types de premiers actionneurs 75 sont susceptibles d’être envisagés. Par exemple, si le relais 40 est un relais MEMS, l’actionneur 75 est un actionneur électrostatique. For example, the first actuator 75 is of a known type comprising a spring and an electromagnet, the spring tending to move the first contact 70 towards its second position and the electromagnet being configured, when powered by the first control signal, to exert, directly or indirectly, on the first contact 70 a force tending to move the first contact 70 towards its first position. However, many types of first actuators 75 are likely to be considered. For example, if relay 40 is a MEMS relay, actuator 75 is an electrostatic actuator.
Le sectionneur 45 est interposé entre l’organe de commutation 40 et la sortie 2, 4. Le sectionneur 45 comporte une troisième borne 80 reliée à l’organe de commutation 40, une quatrième borne 85 reliée à la sortie, un deuxième contact 90, un deuxième actionneur 95 et un organe de commande 100. The disconnector 45 is interposed between the switching device 40 and the output 2, 4. The disconnector 45 comprises a third terminal 80 connected to the switching device 40, a fourth terminal 85 connected to the output, a second contact 90, a second actuator 95 and a control device 100.
Le deuxième contact 90 est électriquement conducteur et est mobile entre une troisième position et une quatrième position, représentée sur la figure 1 . The second contact 90 is electrically conductive and is movable between a third position and a fourth position, represented in FIG.
Lorsque le deuxième contact 90 est dans la troisième position (ou « position ON »), le deuxième contact 90 connecte électriquement les deux bornes 80 et 85, par exemple en étant en appui contre les deux bornes 80 et 85. When the second contact 90 is in the third position (or "ON position"), the second contact 90 electrically connects the two terminals 80 and 85, for example by pressing against the two terminals 80 and 85.
Lorsque le deuxième contact 90 est dans la quatrième position (ou « position OFF »), le deuxième contact 90 est distant d’au moins une des bornes 80 et 85. Ainsi, le deuxième contact 90 ne permet pas le passage du courant entre les bornes 80 et 85. When the second contact 90 is in the fourth position (or "OFF position"), the second contact 90 is distant from at least one of the terminals 80 and 85. Thus, the second contact 90 does not allow the passage of current between the terminals 80 and 85.
De nombreux types de mécanismes, notamment rotatifs, sont susceptibles d’être utilisés pour assurer la mobilité et le guidage du deuxième contact 90. Many types of mechanisms, in particular rotary, are likely to be used to ensure the mobility and guidance of the second contact 90.
Le sectionneur 45 est, notamment, configuré pour maintenir une isolation entre les bornes 80 et 85, même si la tension entre l’entrée 1 , 3 et la sortie 2, 4 est appliquée entre les bornes 80 et 85. Par exemple, la distance entre le deuxième contact 90 et au moins une des bornes 80, 85, lorsque le deuxième contact 90 est dans la quatrième position, est telle qu’un arc électrique ne se produit pas entre les bornes 80 et 85 lorsque la tension est appliquée entre ces bornes. Cette distance est, notamment, supérieure ou égale à 3 millimètres (mm), mais est susceptible de varier d’un mode de réalisation à un autre, notamment en fonction de la tension imposée entre les différents éléments de l’installation. Disconnector 45 is, in particular, configured to maintain insulation between terminals 80 and 85, even if the voltage between input 1, 3 and output 2, 4 is applied between terminals 80 and 85. For example, the distance between the second contact 90 and at least one of the terminals 80, 85, when the second contact 90 is in the fourth position, is such that an electric arc does not occur between the terminals 80 and 85 when the voltage is applied between these terminals. This distance is, in particular, greater than or equal to 3 millimeters (mm), but is likely to vary from one embodiment to another, in particular according to the voltage imposed between the various elements of the installation.
Le deuxième actionneur 95 est configuré pour déplacer le deuxième contact 90 entre la troisième position et la quatrième position suite à la réception d’un deuxième signal de commande, notamment d’un deuxième signal de commande électrique, du module de commande 25. The second actuator 95 is configured to move the second contact 90 between the third position and the fourth position following receipt of a second control signal, in particular a second electrical control signal, from the control module 25.
En particulier, le deuxième actionneur 95 est configuré pour maintenir le deuxième contact 90 dans la quatrième position (« OFF ») en l’absence de deuxième signal de commande, et pour déplacer le deuxième contact 90 dans la troisième position (« ON ») et l’y maintenir lorsque le deuxième actionneur 95 est alimenté avec le deuxième signal de commande. Par exemple, le deuxième actionneur 95 est d’un type connu comportant un ressort et un électro-aimant, le ressort tendant à déplacer le deuxième contact 90 vers sa quatrième position et l’électro-aimant étant configuré, lorsqu’il est alimenté par le deuxième signal de commande, pour exercer, directement ou indirectement, sur le deuxième contact 90 une force tendant à déplacer le deuxième contact 90 vers sa troisième position. Toutefois, de nombreux types de deuxièmes actionneur 95 sont susceptibles d’être envisagés. In particular, the second actuator 95 is configured to maintain the second contact 90 in the fourth position ("OFF") in the absence of a second control signal, and to move the second contact 90 to the third position ("ON") and hold it there when the second actuator 95 is supplied with the second control signal. For example, the second actuator 95 is of a known type comprising a spring and an electromagnet, the spring tending to move the second contact 90 towards its fourth position and the electromagnet being configured, when it is powered by the second control signal, to exert, directly or indirectly, on the second contact 90 a force tending to move the second contact 90 towards its third position. However, many types of second actuator 95 are likely to be considered.
Optionnellement, le deuxième actionneur 95 est également configuré pour ouvrir le sectionneur de neutre S en même temps que le sectionneur 45. Optionally, the second actuator 95 is also configured to open the neutral disconnector S at the same time as the disconnector 45.
L’organe de commande 100 est configuré pour être actionné par un opérateur de manière à agir sur le deuxième actionneur 95 pour que le deuxième actionneur 95 déplace le deuxième contact 90 entre ses troisième et quatrième positions. The control member 100 is configured to be actuated by an operator so as to act on the second actuator 95 so that the second actuator 95 moves the second contact 90 between its third and fourth positions.
De manière connue en soi, l’organe de commande 100 est, par exemple, une manette rotative, ou encore un bouton, déplaçable par l’opérateur entre deux positions pour commander le déplacement du deuxième contact 90. In a manner known per se, the control member 100 is, for example, a rotary handle, or even a button, which can be moved by the operator between two positions to control the movement of the second contact 90.
Optionnellement, l’organe de commande 100 est, en outre, configuré pour, lorsqu’il est déplacé par un opérateur de manière à déplacer le deuxième contact 90 vers sa quatrième position, agir sur le module de commande 25 pour que le module de commande 25 commande l’interruption du courant par les premiers transistors 30, 35 et par l’organe de commutation 40. Optionally, the control member 100 is furthermore configured so that, when it is moved by an operator so as to move the second contact 90 to its fourth position, to act on the control module 25 so that the control module 25 controls the interruption of the current by the first transistors 30, 35 and by the switching device 40.
En variante, l’organe de commande 100 est configuré pour commander le déplacement du deuxième contact 90 par l’intermédiaire du module de commande 25, par exemple en envoyant un signal au module de commande 25 qui commande en réponse le deuxième actionneur 95. Le contrôleur 110 est, par exemple, prévu pour recevoir d’un capteur 102 des informations sur la position de l’organe de commande 100. Alternatively, the control unit 100 is configured to control the movement of the second contact 90 via the control module 25, for example by sending a signal to the control module 25 which controls the second actuator 95 in response. controller 110 is, for example, provided to receive from a sensor 102 information on the position of the control member 100.
Selon des modes de réalisation optionnels, l’organe de commande 100 comporte un mécanisme de verrouillage propre à maintenir l’organe de commande 100 dans la position dans laquelle l’organe de commande 100 maintient le deuxième contact 90 dans la quatrième position. Un tel mécanisme permet alors la consignation de l’installation qui est en aval du dispositif 10. According to optional embodiments, the control member 100 comprises a locking mechanism capable of maintaining the control member 100 in the position in which the control member 100 maintains the second contact 90 in the fourth position. Such a mechanism then allows the installation which is downstream of the device 10 to be locked out.
Le capteur 102 est configuré pour détecter une position de l’organe de commande 100, notamment pour détecter que l’organe de commande 100 atteint, au cours de son mouvement, une position précédant la position dans laquelle l’organe de commande 100 entraîne l’ouverture du sectionneur 45. Le capteur 102 est, par exemple, un capteur optique prévu pour détecter le passage devant le capteur optique d’une partie de l’organe de commande 100 lorsque l’organe de commande 100 atteint la position précédant la position dans laquelle l’organe de commande 100 entraîne l’ouverture du sectionneur 45. Le module de commande 25 est configuré pour détecter le défaut électrique et pour commander en réponse l’interruption du courant par au moins les premiers transistors 30, 35 et l’organe de commutation 40. The sensor 102 is configured to detect a position of the control member 100, in particular to detect that the control member 100 reaches, during its movement, a position preceding the position in which the control member 100 drives the opening of the disconnector 45. The sensor 102 is, for example, an optical sensor provided to detect the passage in front of the optical sensor of a part of the control member 100 when the control member 100 reaches the position preceding the position in which the control member 100 causes the opening of the disconnector 45. The control module 25 is configured to detect the electrical fault and to control in response the interruption of the current by at least the first transistors 30, 35 and the switching device 40.
Le module de commande 25 comporte au moins un organe de surveillance 105, un contrôleur 110, une alimentation principale 115 et, optionnellement, une alimentation auxiliaire 120. The control module 25 comprises at least one monitoring device 105, a controller 110, a main power supply 115 and, optionally, an auxiliary power supply 120.
Dans l’exemple représenté sur la figure 1 , un unique contrôleur 110, une unique alimentation principale 115 et une unique alimentation auxiliaire 120 sont communs aux différents dispositifs de commutation 15, toutefois en variante ces éléments des différents dispositifs de commutation 15 sont susceptibles d’être distincts les uns des autres. Selon une autre variante, plusieurs alimentations 115 et/ou plusieurs alimentations 120 sont susceptibles d’être présentes, pour alimenter de manière redondantes le contrôleur 110 et ainsi éviter que la défaillance de l’une d’entre elles suffise à mettre hors service le système 10. In the example shown in Figure 1, a single controller 110, a single main power supply 115 and a single auxiliary power supply 120 are common to the different switching devices 15, however, as a variant, these elements of the different switching devices 15 are likely to be distinct from each other. According to another variant, several power supplies 115 and/or several power supplies 120 are likely to be present, to supply the controller 110 in a redundant manner and thus prevent the failure of one of them being sufficient to put the system out of service. 10.
Chaque organe de surveillance 105 est configuré pour surveiller le courant circulant dans le dispositif de commutation 15. Each monitoring device 105 is configured to monitor the current flowing in the switching device 15.
Par exemple, chaque organe de surveillance 105 est configuré pour mesurer des valeurs de l’intensité du courant et pour transmettre ces valeurs au contrôleur 110, par exemple sous la forme d’un signal électrique dont une tension ou une intensité est fonction de l’intensité du courant. Dans ce cas, l’organe de surveillance 105 est, par exemple, un tore, notamment un tore de Rogowsky. Toutefois, d’autres types de capteurs d’intensité sont susceptibles d’être utilisés, par exemple des capteurs à effet Hall, ou encore des capteurs shunt, entre autres. For example, each monitoring device 105 is configured to measure current intensity values and to transmit these values to the controller 110, for example in the form of an electrical signal whose voltage or intensity is a function of the current intensity. In this case, the monitoring member 105 is, for example, a torus, in particular a Rogowsky torus. However, other types of intensity sensors are likely to be used, for example Hall effect sensors, or even shunt sensors, among others.
Le contrôleur 110 est configuré pour détecter l’occurrence d’un défaut électrique du courant, par exemple à partir des valeurs mesurées. Les critères de détection des différents défauts sont connus en soi, et parfois établis par des normes, et ne sont pas décrits ici. The controller 110 is configured to detect the occurrence of an electrical current fault, for example from the measured values. The criteria for detecting the various faults are known per se, and sometimes established by standards, and are not described here.
Le contrôleur 110 est, en outre, configuré pour commander une commutation de chaque premier transistor 30, 35. Par exemple, le contrôleur 110 est configuré pour générer, en réponse à la détection d’un défaut, un troisième signal électrique à destination de chaque premier transistor 30, 35, le ou chaque troisième signal étant propre à entraîner l’interruption du courant par le ou les premiers transistors 30, 35. The controller 110 is further configured to control a switching of each first transistor 30, 35. For example, the controller 110 is configured to generate, in response to the detection of a fault, a third electrical signal intended for each first transistor 30, 35, the or each third signal being capable of causing the current to be interrupted by the first transistor or transistors 30, 35.
Chaque troisième signal est, par exemple, une tension électrique entre la source et la grille du premier transistor 30, 35, la tension étant telle que le canal conducteur dudit premier transistor 30, 35 est pincé et donc interrompu par les deux zones de déplétion entre lesquelles le canal est interposé. Selon un mode de réalisation, le contrôleur 110 est électriquement connecté à chacune des grilles des premiers transistors 30, 35 et au point 55, de manière à imposer une tension électrique entre les grilles et le point 55, dont le potentiel est égal au potentiel des sources des premiers transistors 30, 35. Each third signal is, for example, an electric voltage between the source and the gate of the first transistor 30, 35, the voltage being such that the conductive channel of the said first transistor 30, 35 is pinched and therefore interrupted by the two depletion zones between which the channel is interposed. According to one embodiment, the controller 110 is electrically connected to each of the gates of the first transistors 30, 35 and to the point 55, so as to impose an electric voltage between the gates and the point 55, the potential of which is equal to the potential of the sources of the first transistors 30, 35.
Optionnellement, si deux groupes de transistors 30, 35 sont présents, chaque troisième signal est transmis simultanément au moins aux transistors 30, 35 qui sont dans le même sens, par exemple à tous les transistors 30, 35. Optionally, if two groups of transistors 30, 35 are present, each third signal is transmitted simultaneously at least to the transistors 30, 35 which are in the same direction, for example to all the transistors 30, 35.
Le contrôleur 110 est configuré pour générer le premier signal de commande et pour le transmettre à l’organe de commutation 40 de manière à maintenir cet organe de commutation 40 dans la première position. The controller 110 is configured to generate the first control signal and to transmit it to the switching device 40 so as to maintain this switching device 40 in the first position.
Le contrôleur 110 est, en outre, configuré pour commander la commutation de l’organe de commutation 40 de la première configuration à la deuxième configuration en réponse à la détection d’un défaut, par exemple en interrompant le premier signal. The controller 110 is furthermore configured to control the switching of the switching device 40 from the first configuration to the second configuration in response to the detection of a fault, for example by interrupting the first signal.
Le contrôleur 110 est, de plus, optionnellement configuré pour commander la commutation du sectionneur 45 vers sa quatrième position en cas de détection d’un défaut, par exemple en émettant ou en interrompant le deuxième signal électrique. The controller 110 is, moreover, optionally configured to control the switching of the disconnector 45 to its fourth position in the event of detection of a fault, for example by emitting or interrupting the second electrical signal.
Selon un mode de réalisation, le contrôleur 110 commande la commutation du sectionneur 45 vers sa quatrième position en alimentant électriquement avec le deuxième signal un enroulement conducteur 125, de manière à exercer sur le deuxième actionneur 95 une force provoquant l’ouverture du sectionneur 45 par le deuxième actionneur 95. According to one embodiment, the controller 110 controls the switching of the disconnector 45 to its fourth position by supplying electricity with the second signal to a conductive winding 125, so as to exert on the second actuator 95 a force causing the opening of the disconnector 45 by the second actuator 95.
Il est à noter de que nombreux moyens différents sont susceptibles d’être utilisés pour permettre au contrôleur 110 d’agir sur le sectionneur 45 de manière à en provoquer la commutation. It should be noted that many different means are likely to be used to allow the controller 110 to act on the disconnector 45 so as to cause it to switch.
Le contrôleur 110 est, par exemple, formé par un processeur et une mémoire stockant un ensemble d’instructions logicielles, les instructions logicielles entraînant la mise en œuvre d’un exemple de procédé de commutation, décrit ci-après, lorsqu’elles sont mises en œuvre sur le processeur. The controller 110 is, for example, formed by a processor and a memory storing a set of software instructions, the software instructions leading to the implementation of an example of a switching method, described below, when they are put implemented on the processor.
En variante, le contrôleur 110 est formé par un ensemble de composants logiques programmables, par un ou des circuits dédiés, notamment un ou des circuits intégrés, ou par tout ensemble de composants électriques ou électroniques. As a variant, the controller 110 is formed by a set of programmable logic components, by one or more dedicated circuits, in particular one or more integrated circuits, or by any set of electrical or electronic components.
L’alimentation principale 115 est configurée pour alimenter électriquement le contrôleur 110 et, optionnellement, le ou les organes de surveillance 105, avec un ou des courants d’alimentation générés à partir du ou des courants électriques traversant le ou les dispositifs de commutation 15. The main power supply 115 is configured to electrically supply the controller 110 and, optionally, the monitoring device(s) 105, with one or more supply currents generated from the electrical current(s) passing through the switching device(s) 15.
L’alimentation auxiliaire 120 est configurée pour alimenter électriquement le contrôleur 110 et, optionnellement, le ou les organes de surveillance 105, avec un ou des courants d’alimentation générés par exemple à partir d’une réserve d’énergie électrique A1 telle qu’une batterie ou un condensateur, ou reçus d’une source A2 extérieure au système 10, par exemple d’un réseau de distribution d’électricité. The auxiliary power supply 120 is configured to electrically supply the controller 110 and, optionally, the monitoring device(s) 105, with one or more supply currents generated for example from a reserve of electrical energy A1 such as a battery or a capacitor, or received from a source A2 external to the system 10, for example from an electricity distribution network .
L’écrêteur 50 est connecté en parallèle aux deux premiers transistors 30, 35 et est configuré pour empêcher qu’une tension électrique entre les bornes extrêmes, par exemple entre les drains, des deux premiers transistors 30, 35 ne dépasse un seuil de tension prédéterminé. Des écrêteurs 50 de types multiples sont connus de l’homme du métier, utilisant par exemple une varistance ou encore une ou des diode(s) Zener. De tels circuits sont parfois nommés « TVS », de l’Anglais « Transient-Voltage Suppressor », qui signifie « écrêteur de signaux transitoires ». The limiter 50 is connected in parallel to the first two transistors 30, 35 and is configured to prevent an electric voltage between the extreme terminals, for example between the drains, of the first two transistors 30, 35 from exceeding a predetermined voltage threshold. . Clippers 50 of multiple types are known to those skilled in the art, using for example a varistor or even one or more Zener diode(s). Such circuits are sometimes called “TVS”, from the English “Transient-Voltage Suppressor”, which means “transient signal limiter”.
Un ordinogramme du procédé de commutation est représenté sur la figure 2. A flowchart of the switching process is shown in Figure 2.
Le procédé comporte une étape 200 initiale, une étape 210 de détection d’un défaut, une étape 220 de commande, une première étape 230 d’interruption, une deuxième étape 240 d’interruption, une étape 250 de commutation et une étape 260 d’actionnement. The method comprises an initial step 200, a step 210 of detecting a fault, a step 220 of controlling, a first step 230 of interrupting, a second step 240 of interrupting, a step 250 of switching and a step 260 of actuation.
Au cours de l’étape initiale 200, l’organe de commutation 40 est dans sa première configuration et le contact mobile 90 du sectionneur 45 dans sa troisième position. En outre, le contrôleur 110 ne génère pas le troisième signal, et les premiers transistors 30, 35 sont donc passants. During the initial step 200, the switching device 40 is in its first configuration and the movable contact 90 of the disconnector 45 in its third position. Further, controller 110 does not generate the third signal, and first transistors 30, 35 are therefore on.
Ainsi, un courant électrique circule entre l’entrée 1, 3 et la sortie 2, 4, permettant la génération d’un courant d’alimentation électrique par l’alimentation principale 115. Le contrôleur 110 utilise le courant d’alimentation pour générer le premier signal électrique qui maintient l’organe de commutation 40 dans sa première configuration. Thus, an electric current flows between the input 1, 3 and the output 2, 4, allowing the generation of a power supply current by the main supply 115. The controller 110 uses the supply current to generate the first electrical signal which maintains the switching member 40 in its first configuration.
Lors de l’étape de détection 210, le contrôleur 110 détecte l’occurrence d’un défaut, par exemple à partir de valeurs d’intensité du courant mesurées par l’organe de surveillance 105. During the detection step 210, the controller 110 detects the occurrence of a fault, for example from current intensity values measured by the monitoring device 105.
En réponse à la détection du défaut, le contrôleur 110 génère, pour chaque premier transistor 30, 35, le troisième signal de commande correspondant, et transmet chaque troisième signal de commande au premier transistor 30, 35 auquel il est destiné, au cours de l’étape de commande 220. Par exemple, le contrôleur 110 impose une tension prédéfinie entre la grille et la source de chaque premier transistor 30, 35, et maintient cette tension tant que l’alimentation électrique du contrôleur 110 le permet. In response to the detection of the fault, the controller 110 generates, for each first transistor 30, 35, the corresponding third control signal, and transmits each third control signal to the first transistor 30, 35 for which it is intended, during the control step 220. For example, the controller 110 imposes a predefined voltage between the gate and the source of each first transistor 30, 35, and maintains this voltage as long as the power supply of the controller 110 allows it.
Lors de la première étape d’interruption 230, le contrôleur 110 interrompt le premier signal de commande. Optionnellement, lors de cette étape, le contrôleur 110 émet en outre le deuxième signal de commande à destination du deuxième actionneur 95 ou, le cas échéant, de l’enroulement 125. Optionnellement, le premier signal de commande est interrompu après l’expiration d’une durée de temporisation prédéterminée, cette durée de temporisation étant mesurée depuis l’émission de chaque troisième signal de commande. During the first interrupt step 230, the controller 110 interrupts the first control signal. Optionally, during this step, the controller 110 also sends the second control signal to the second actuator 95 or, if applicable, to the winding 125. Optionally, the first control signal is interrupted after the expiry of a predetermined time delay, this time delay being measured from the emission of each third control signal.
La durée de temporisation est, par exemple comprise entre 5 nanosecondes et 10 millisecondes, mais est susceptible de varier d’un mode de mise en œuvre à un autre. The delay time is, for example, between 5 nanoseconds and 10 milliseconds, but is likely to vary from one mode of implementation to another.
En variante, le premier signal de commande est interrompu par le contrôleur 110 après que le contrôleur 110 a mesuré que l’intensité du courant circulant entre l’entrée 1, 3 et la sortie 2, 4 est inférieure ou égale à un seuil en valeur absolue, notamment égale à zéro. As a variant, the first control signal is interrupted by the controller 110 after the controller 110 has measured that the intensity of the current flowing between the input 1, 3 and the output 2, 4 is less than or equal to a threshold in value absolute, in particular equal to zero.
L’émission du deuxième signal de commande, prévu pour commander l’ouverture du sectionneur 45, est par exemple simultanée avec l’interruption du premier signal de commande. The transmission of the second control signal, provided to control the opening of the disconnector 45, is for example simultaneous with the interruption of the first control signal.
Optionnellement, si un sectionneur de neutre S est présent, une commande de coupure du sectionneur de neutre S est émise au cours de l’étape 230. Optionally, if a neutral disconnector S is present, a command to cut the neutral disconnector S is sent during step 230.
Lors de la deuxième étape d’interruption 240, le courant est interrompu par au moins un des premiers transistors 30, 35. During the second interruption step 240, the current is interrupted by at least one of the first transistors 30, 35.
En effet, puisque les deux premiers transistors 30, 35 sont connectés tête-bêche dans le circuit électrique, au moins un des premiers transistors 30, 35 est effectivement non-passant sous l’effet du troisième signal de commande correspondant quel que soit le sens du courant, y compris si le courant est un courant alternatif. Indeed, since the first two transistors 30, 35 are connected head to tail in the electrical circuit, at least one of the first transistors 30, 35 is effectively non-conducting under the effect of the corresponding third control signal whatever the direction. current, including if the current is alternating current.
En particulier, le courant circule à travers le dispositif de commutation 15 au début de la deuxième étape d’interruption 240, et est interrompu par la commutation des premiers transistors 30, 35. In particular, current flows through the switching device 15 at the start of the second interrupt stage 240, and is interrupted by the switching of the first transistors 30, 35.
Lors de l’étape de commutation 250, l’organe de commutation 40 commute jusqu’à sa deuxième configuration. Optionnellement, le contact mobile 90 du sectionneur 45 commute jusqu’à sa quatrième position. During the switching step 250, the switching device 40 switches to its second configuration. Optionally, the movable contact 90 of the disconnector 45 switches to its fourth position.
Il est à noter que ce n’est pas la commutation de l’organe de commutation 40 ni celle du sectionneur 45 qui entraîne l’interruption du courant. En effet, la commutation des transistors 30, 35 étant très rapide, elle a généralement lieu avant que la commutation de l’organe 40 ait pu se terminer. Dans le cas où l’organe 40 serait capable de commuter très rapidement, la temporisation précitée assure que les transistors 30, 35 commutent avant l’organe 40. It should be noted that it is not the switching of the switching device 40 nor that of the disconnector 45 which causes the current to be interrupted. Indeed, the switching of the transistors 30, 35 being very fast, it generally takes place before the switching of the member 40 has been able to end. If component 40 is capable of switching very quickly, the aforementioned time delay ensures that transistors 30, 35 switch before component 40.
Par exemple, l’étape de commutation 250 est mise en œuvre postérieurement à la deuxième étape d’interruption 240. En variante, le déplacement du contact mobile 70 débute avant que le courant ne soit interrompu par les premiers transistors 30, 35, mais cette interruption intervient avant l’apparition d’un arc électrique entre le contact 70 et la borne 65. For example, the switch step 250 is implemented after the second interrupt step 240. Alternatively, the movement of the movable contact 70 begins before the current is interrupted by the first transistors 30, 35, but this interruption occurs before the appearance of an electric arc between the contact 70 and the terminal 65.
L’étape d’actionnement 260 est mise en œuvre postérieurement à l’étape de commutation 250. En particulier, lors de l’étape d’actionnement, suite à l’interruption du courant par les premiers transistors 30, 35, le contrôleur 110 n’est pas alimenté électriquement et ne transmet donc pas de troisième signal aux premiers transistors 30, 35 qui sont donc passants, ni de deuxième signal à l’organe de commutation 40, qui est donc dans la deuxième configuration. The actuation step 260 is implemented after the switching step 250. In particular, during the actuation step, following the interruption of the current by the first transistors 30, 35, the controller 110 is not electrically powered and therefore does not transmit a third signal to the first transistors 30, 35 which are therefore on, nor a second signal to the switching device 40, which is therefore in the second configuration.
Optionnellement, le sectionneur de neutre S est coupé au cours de l’étape 260, si un tel sectionneur de neutre S est présent. Optionally, the neutral disconnector S is cut off during step 260, if such a neutral disconnector S is present.
Lors de l’étape d’actionnement 260, un opérateur agit sur la manette 100 pour fermer le sectionneur 45 et ainsi connecter électriquement les bornes 80 et 85. Cependant, bien que les premiers transistors 30, 35 soient passants, l’organe de commutation 40, étant par défaut dans la deuxième configuration, empêche le passage du courant. During the actuation step 260, an operator acts on the lever 100 to close the disconnector 45 and thus electrically connect the terminals 80 and 85. However, although the first transistors 30, 35 are on, the switching device 40, being by default in the second configuration, prevents the passage of current.
Ainsi, le courant est coupé rapidement par les JFET 30, 35 en cas de détection d’un défaut électrique. En outre, l’organe de commutation 40, étant dans la deuxième configuration et donc non-passant par défaut, assure le maintien de cette protection même lorsque le module de commande n’est pas alimenté électriquement et donc ne peut pas maintenir les JFET 30, 35 dans leur état non-passant, par exemple si un opérateur actionne la manette 100. Ainsi, malgré l’utilisation de premiers transistors 30, 35 passants par défauts, la protection électrique de l’installation reste assurée même si le contrôleur 110 n’est pas fonctionnel. Thus, the current is cut off quickly by the JFETs 30, 35 in the event of detection of an electrical fault. In addition, the switching device 40, being in the second configuration and therefore non-conducting by default, ensures the maintenance of this protection even when the control module is not electrically powered and therefore cannot maintain the JFETs 30 , 35 in their non-conducting state, for example if an operator actuates the lever 100. Thus, despite the use of first transistors 30, 35 passing by default, the electrical protection of the installation remains ensured even if the controller 110 n is not functional.
De plus, puisque les JFET coupent le courant très rapidement, l’organe de commutation n’a pas à être dimensionné de manière à permettre cette coupure, mais uniquement le maintien de l’isolation. En particulier, aucun arc électrique n’apparaît même si l’organe de commutation est du type à contact mobile, ce qui limite son usure et évite donc qu’une chambre de coupure soit requise. De manière générale, l’organe de commutation peut présenter une conductivité électrique élevée puisqu’il n’a pas à couper des courants élevés, ce rôle étant joué par les JFET, qui présentent eux naturellement une conductivité très élevée. La résistance électrique du dispositif de commutation est donc faible. Moreover, since the JFETs break the current very quickly, the switching device does not have to be dimensioned in such a way as to allow this cut, but only the maintenance of the insulation. In particular, no electric arc appears even if the switching device is of the moving contact type, which limits its wear and therefore avoids the need for an interrupting chamber. In general, the switching device can have a high electrical conductivity since it does not have to break high currents, this role being played by the JFETs, which naturally have a very high conductivity. The electrical resistance of the switching device is therefore low.
En outre, les JFET 30, 35 tendent à saturer et ainsi à limiter l’intensité du courant qui les traverse lorsque cette intensité est très élevée, par exemple en cas de court-circuit, et participent donc ainsi à la protection du réseau même avant leur coupure. Lorsque l’organe de commutation 40 est un relais comportant un contact mobile 70, l’organe de commutation 40 permet de manière fiable une isolation efficace même en l’absence d’alimentation électrique du module de commande 25. In addition, the JFETs 30, 35 tend to saturate and thus limit the intensity of the current flowing through them when this intensity is very high, for example in the event of a short-circuit, and therefore thus participate in the protection of the network even before their cut. When the switching member 40 is a relay comprising a movable contact 70, the switching member 40 reliably allows effective isolation even in the absence of electrical power supply from the control module 25.
L’utilisation d’un sectionneur 45 distinct de l’organe de commutation 40 permet à un opérateur d’interrompre manuellement le courant sans pour autant que, par un mouvement inverse, l’opérateur ne puisse causer le passage du courant à un moment où le contrôleur 110, non fonctionnel car par exemple non alimenté électriquement, ne pourrait surveiller la présence d’un défaut et couper le courant via les premiers transistors 30, 35. The use of a disconnector 45 separate from the switching device 40 allows an operator to manually interrupt the current without, however, by a reverse movement, the operator being able to cause the current to flow at a time when the controller 110, non-functional because for example not electrically powered, could not monitor the presence of a fault and cut off the current via the first transistors 30, 35.
En outre, le sectionneur 45 permet une isolation galvanique entre l’entrée 1 , 3 et la sortie 2, 4. In addition, disconnector 45 provides galvanic isolation between input 1, 3 and output 2, 4.
Une manette rotative 100 est un moyen efficace pour permettre à l’opérateur de commander le sectionneur 45. A rotary handle 100 is an effective way to allow the operator to control the disconnector 45.
Lorsque les sources de deux des premiers transistors 30, 35 sont connectées entre elles, le contrôleur 110 peut commander simplement la commutation de ces deux transistors 30, 35 en agissant sur le point milieu 55 et/ou sur la tension de grille des transistors 30, 35, et donc commander les deux transistors 30, 35 à l’aide d’un seul signal. When the sources of two of the first transistors 30, 35 are connected together, the controller 110 can simply control the switching of these two transistors 30, 35 by acting on the midpoint 55 and/or on the gate voltage of the transistors 30, 35, and therefore control the two transistors 30, 35 using a single signal.
Des JFET en SiC ou GaN sont adaptés pour conduire de manière sécurisée des courants élevés. SiC or GaN JFETs are suitable for safely conducting high currents.
Si deux groupes de premiers transistors 30, 35 sont utilisés, les transistors 30, 35 de chaque groupe étant connectés dans le même sens, plusieurs transistors participent nécessairement en même temps à la coupure du courant, quel que soit le sens de celui-ci. Ainsi, les contraintes portant sur le dimensionnement des transistors 30, 35 sont plus limitées puisque chacun ne doit supporter qu’une partie de la fonction de coupure du courant et ne doit résister qu’à une partie de la tension totale qui apparaît lors de cette coupure. If two groups of first transistors 30, 35 are used, the transistors 30, 35 of each group being connected in the same direction, several transistors necessarily participate at the same time in breaking the current, whatever the direction of the latter. Thus, the constraints relating to the sizing of the transistors 30, 35 are more limited since each must only support part of the current breaking function and must only withstand part of the total voltage which appears during this cut.
Si plusieurs paires de transistors 30, 35 ou plusieurs paires de groupes de transistors 30, 35 sont connectées en parallèle les unes des autres, la résistance totale entre l’entrée 1, 3 et la sortie 2, 4 est diminuée. If several pairs of transistors 30, 35 or several pairs of groups of transistors 30, 35 are connected in parallel to each other, the total resistance between input 1, 3 and output 2, 4 is decreased.
Un deuxième exemple de dispositif de commutation 15 est représenté sur la figure 3 et va maintenant être décrit. Les éléments identiques au premier exemple de la figure 1 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence. A second example of switching device 15 is shown in Figure 3 and will now be described. The elements identical to the first example of FIG. 1 are not described again. Only the differences are highlighted.
Il est à noter que si un seul dispositif de commutation 15 comportant un unique module de commutation 20 et un unique module de commande 25 dédié au seul module de commutation 20 est représenté, des modes de réalisation dans lesquels plusieurs dispositifs de commutation tels que celui de la figure 2, comportant un unique module de commande 25 commun ou une pluralité de modules de commande 25 associés chacun à l’un des modules de commutation 20, sont également envisagés. It should be noted that if a single switching device 15 comprising a single switching module 20 and a single control module 25 dedicated to the single switching module 20 is represented, embodiments in which several switching devices such as that of Figure 2, comprising a single module of control 25 common or a plurality of control modules 25 each associated with one of the switching modules 20, are also envisaged.
L’organe de commutation 40 est dépourvu de contact mobile 70, et comporte à la place au moins deux deuxièmes transistors 130 et 135, d’un type non-passant par défaut, connectés en série entre les deux bornes 60 et 65. The switching device 40 has no moving contact 70, and instead comprises at least two second transistors 130 and 135, of a non-conducting type by default, connected in series between the two terminals 60 and 65.
Les deuxièmes transistors 130 et 135 sont, par exemple, des MOSFETs The second transistors 130 and 135 are, for example, MOSFETs
Les MOSFETs, selon l’acronyme anglophone de « Métal Oxide Semiconductor Field Effect T ransistor », en Français « transistor à effet de champ à structure métal-oxyde- semiconducteur ou « transistor à effet de champ à grille isolée », sont des transistors unipolaires. The MOSFETs, according to the English acronym of "Metal Oxide Semiconductor Field Effect T ransistor", in French "transistor with field effect with metal-oxide-semiconductor structure or "transistor with field effect with insulated gate", are unipolar transistors .
Les MOSFETs non-passants par défaut sont dits « à enrichissement », et sont prévus pour que l’application d’un potentiel électrique prédéfini sur la grille entraîne l’accumulation dans le canal de porteurs de charge qui permettent alors au canal d’être conducteur, alors qu’en l’absence de ce potentiel le canal est dépourvu de porteurs de charge libres et est donc isolant. The non-passing MOSFETs by default are said to be "enhancement", and are designed so that the application of a predefined electric potential on the gate leads to the accumulation in the channel of charge carriers which then allow the channel to be conductive, whereas in the absence of this potential the channel is devoid of free charge carriers and is therefore insulating.
Dans l’exemple représenté sur la figure 3, les deux deuxièmes transistors 130 et 135 sont interposés entre les deux premiers transistors 30, 35 et connectés entre eux en série tête-bêche. In the example represented in FIG. 3, the two second transistors 130 and 135 are interposed between the two first transistors 30, 35 and connected to each other in series head to tail.
En particulier, chaque deuxième transistor 130, 135 est interposé entre la source d’un premier transistor 30, 35 et le point 55. Par exemple, les drains des deux deuxièmes transistors 130, 135 sont connectés au point 55 et les sources de ces deux deuxièmes transistors 130, 135 sont connectées chacune à la source d’un premier transistor 30, 35 correspondant par l’intermédiaire d’une borne 60, 65 respective. In particular, each second transistor 130, 135 is interposed between the source of a first transistor 30, 35 and point 55. For example, the drains of the two second transistors 130, 135 are connected to point 55 and the sources of these two second transistors 130, 135 are each connected to the source of a corresponding first transistor 30, 35 via a respective terminal 60, 65.
En outre, une diode 140 est connectée en parallèle entre la source et le drain de chacun des deux deuxièmes transistors 130, 135, la cathode de la diode étant connectée au drain du deuxième transistor 130, 135 correspondant et l’anode de la diode 140 connectée à la source. Furthermore, a diode 140 is connected in parallel between the source and the drain of each of the two second transistors 130, 135, the cathode of the diode being connected to the drain of the corresponding second transistor 130, 135 and the anode of the diode 140 connected to the source.
La grille de chaque deuxième transistor 130, 135 est connectée au contrôleur 110 de manière à permettre au contrôleur 110 de rendre passant le deuxième transistor 130, 135 par l’application d’une tension électrique entre le point 55 (donc les sources des deuxièmes transistors 130, 135) et la grille. The gate of each second transistor 130, 135 is connected to the controller 110 so as to allow the controller 110 to turn on the second transistor 130, 135 by applying an electric voltage between point 55 (therefore the sources of the second transistors 130, 135) and the grille.
Le point 55 est, par exemple, électriquement connecté aux drains des deux deuxièmes transistors 130, 135 et aux grilles des deux premiers transistors 30, 35, pour permettre au contrôleur 110 de commander simultanément les deux premiers transistors 30, 35 par l’application d’une tension électrique entre le point 55 et les grilles des premiers transistors 30, 35 avant la coupure des deuxièmes transistors 130, 135. Par exemple, le point 55 est connecté à un premier point dont le potentiel électrique est fixé par le contrôleur 110 (par exemple fixé par l’alimentation électrique du contrôleur 110), tandis que les grilles des deuxièmes transistors 130, 135 sont connectées à un deuxième point dont le contrôleur 110 est configuré pour modifier le potentiel électrique, le premier point et le deuxième point étant reliés par une résistance prédéfinie. Point 55 is, for example, electrically connected to the drains of the two second transistors 130, 135 and to the gates of the two first transistors 30, 35, to allow the controller 110 to simultaneously control the two first transistors 30, 35 by the application of an electric voltage between point 55 and the gates of the first transistors 30, 35 before the switching off of the second transistors 130, 135. For example, point 55 is connected to a first point whose electric potential is fixed by controller 110 (for example fixed by the power supply of controller 110), while the gates of the second transistors 130, 135 are connected to a second point whose controller 110 is configured to modify the electric potential, the first point and the second point being connected by a predefined resistance.
Les grilles des premiers transistors 30, 35 sont reliées à un troisième point dont le contrôleur 110 est configuré pour faire varier le potentiel électrique. Le troisième point est, lui aussi, connecté au premier point par une résistance prédéfinie. The gates of the first transistors 30, 35 are connected to a third point whose controller 110 is configured to vary the electric potential. The third point is also connected to the first point by a predefined resistor.
Un tel montage permet de commander séparément les MOSFETs 130, 135 et les JFETs 30, 35. En particulier, il permet de faire varier la tension entre la grille et la source de chacun des JFETs 30, 35 sans modifier la tension entre la grille et la source des MOSFETs, et ainsi de jouer sur la conductivité des JFETs 30, 35, notamment en imposant une tension légèrement positive (par exemple 2 V) entre la grille et la source des JFET pour en augmenter la conductivité ou en rendant les JFET non-passants par l’imposition d’une tension négative (par exemple -15V), sans changer le comportement des MOSFETs 130, 135. Such an assembly makes it possible to separately control the MOSFETs 130, 135 and the JFETs 30, 35. In particular, it makes it possible to vary the voltage between the gate and the source of each of the JFETs 30, 35 without modifying the voltage between the gate and the source. the source of the MOSFETs, and thus to play on the conductivity of the JFETs 30, 35, in particular by imposing a slightly positive voltage (for example 2 V) between the gate and the source of the JFETs to increase their conductivity or by making the JFETs not -passages by imposing a negative voltage (for example -15V), without changing the behavior of the MOSFETs 130, 135.
Ainsi, l’ensemble des deux deuxièmes transistors 130, 135 et des diodes 140 forme un organe de commutation qui est dans sa deuxième configuration par défaut (en l’absence de tension imposée entre la grille et la source des transistors 130, 135) mais l’application d’une tension rend chacun des deux transistors 130, 135 passant à l’un des deux sens possibles de circulation du courant, et donc même si le courant est alternatif. Thus, the set of two second transistors 130, 135 and diodes 140 forms a switching device which is in its second configuration by default (in the absence of voltage imposed between the gate and the source of transistors 130, 135) but the application of a voltage causes each of the two transistors 130, 135 to switch to one of the two possible current flow directions, and therefore even if the current is alternating.
Le fonctionnement du deuxième exemple est similaire au premier exemple, la coupure des JFET 30, 35 précédant la coupure des deuxièmes transistors 130, 135, qui ne participent donc qu’au maintien de la coupure et non à l’interruption d’un courant en train de circuler, ce qui limite donc les contraintes pesant sur ces deuxièmes transistors 130, 135. The operation of the second example is similar to the first example, the cutoff of the JFETs 30, 35 preceding the cutoff of the second transistors 130, 135, which therefore participate only in maintaining the cutoff and not in the interruption of a current in circulating, which therefore limits the stresses weighing on these second transistors 130, 135.
Il est à noter que bien que l’organe de commutation 40 ait été décrit, dans le deuxième exemple, comme étant formé de deux transistors 130, 135 connectés successivement entre les deux premiers transistors 30, 35, ce qui permet de simplifier la commande du module de commutation 20, le positionnement des transistors 130 et 135 dans le circuit électrique est susceptible de varier. It should be noted that although the switching device 40 has been described, in the second example, as being formed of two transistors 130, 135 successively connected between the first two transistors 30, 35, which makes it possible to simplify the control of the switching module 20, the positioning of transistors 130 and 135 in the electrical circuit is likely to vary.
Un organe de commutation 40 à transistors, notamment à MOSFETs, permet une commutation plus rapide qu’un relais à contact mobile, tout en assurant l’isolation même en l’absence de signal de commande (i.e en cas de défaillance ou de non-alimentation du contrôleur 110). En outre, les MOSFETS sont de faible taille, ce qui permet de réduire l’encombrement du système 10 par rapport à un système 10 utilisant un relais 40. En outre, les MOSFETs sont peu onéreux. A switching device 40 with transistors, in particular with MOSFETs, allows faster switching than a moving contact relay, while providing insulation even in the absence of a control signal (ie in the event of failure or non- controller power supply 110). Additionally, the MOSFETS are small in size, which reduces the size of the system 10 compared to a system 10 using a relay 40. In addition, the MOSFETs are inexpensive.
Selon un mode de réalisation, le rôle d’organe de commutation 40 est joué par le sectionneur 45. Dans ce cas, les moyens de commande 100 n’agissent pas directement sur l’actionneur 95, mais agissent sur le contrôleur 110, qui commande alors électriquement l’actionneur 95. En particulier, le signal électrique d’alimentation de l’actionneur 95 est coupé par le contrôleur 110 suite à l’actionnement des moyens de commande par l’opérateur. According to one embodiment, the role of switching device 40 is played by the disconnector 45. In this case, the control means 100 do not act directly on the actuator 95, but act on the controller 110, which controls then the actuator 95 electrically. In particular, the electrical supply signal of the actuator 95 is cut by the controller 110 following the actuation of the control means by the operator.
Il est ainsi évité que le sectionneur 45 soit refermé par l’opérateur sans que le contrôleur 110 soit fonctionnel et ne puisse assurer la coupure du courant si nécessaire via les transistors 30, 35. It is thus avoided that the disconnector 45 is closed by the operator without the controller 110 being functional and not being able to ensure the breaking of the current if necessary via the transistors 30, 35.
Bien que l’organe 40 ait été décrit ici comme comprenant soit un relais soit un ensemble de MOSFETs, il est bien évident que d’autres types d’organes 40 sont susceptibles d’être utilisés. Although the member 40 has been described here as comprising either a relay or a set of MOSFETs, it is obvious that other types of member 40 are likely to be used.
Selon des modes de réalisation envisageables, dont un exemple est représenté sur la figure 4, le système de commutation 10 comporte un unique dispositif de commutation 15 comprenant une unique entrée 1 et une pluralité de sorties 2, ainsi qu’un unique circuit électrique comportant au moins deux transistors 30, 35 entre l’entrée 1 et chaque sortie 2. According to possible embodiments, an example of which is represented in FIG. 4, the switching system 10 comprises a single switching device 15 comprising a single input 1 and a plurality of outputs 2, as well as a single electrical circuit comprising at least two transistors 30, 35 between input 1 and each output 2.
Notamment les deux transistors 30, 35 ou plus sont interposés entre l’entrée 1 et un point 5 du circuit auquel toutes les sorties 2 sont reliées. In particular the two transistors 30, 35 or more are interposed between input 1 and a point 5 of the circuit to which all outputs 2 are connected.
Un organe de commutation 40 est interposé entre chaque sortie 2 et le point 5.A switching device 40 is interposed between each output 2 and point 5.
En cas de détection d’un défaut concernant un courant fourni par une sortie 2 à une installation en aval de la sortie 2 considérée, le contrôleur 110 commande la coupure du courant entre l’entrée 1 et le point 5, ainsi que la commutation de chaque organe de commutation 40 vers sa deuxième configuration respective. In the event of detection of a fault concerning a current supplied by an output 2 to an installation downstream of the output 2 in question, the controller 110 controls the cut-off of the current between input 1 and point 5, as well as the switching of each switching member 40 to its respective second configuration.
Ensuite, le contrôleur 110 commande aux transistors 30, 35 de laisser à nouveau le courant circuler entre l’entrée 1 et le point 5, et rebascule chacun des organes de commutation 40 qui ne correspondent pas à la sortie 2 à laquelle le défaut est associé dans sa première configuration. Par contre, l’organe de commutation 40 qui correspond à la sortie 2 à laquelle le défaut est associé reste dans sa deuxième configuration. Then, the controller 110 commands the transistors 30, 35 to again let the current flow between input 1 and point 5, and switches back each of the switching elements 40 which do not correspond to output 2 with which the fault is associated. in its first configuration. On the other hand, the switching device 40 which corresponds to output 2 with which the fault is associated remains in its second configuration.
Ainsi, la coupure du courant en cas de défaut reste assurée malgré l’utilisation d’un unique contrôleur 110 et surtout d’un unique ensemble de transistors 30, 35, tandis que la coupure des courants associés aux sorties 2 qui n’ont pas donné lieu à un défaut est très courte. La structure du système de commutation 10 est donc simplifiée par rapport à des cas où le courant à envoyer aux différentes sorties 2, 4 serait fourni à plusieurs entrées 1 , 3 associées chacune à un dispositif de commutation 15 distinct comprenant son propre ensemble de transistors 30, 35 et son propre organe de commutation 40. Thus, the breaking of the current in the event of a fault remains ensured despite the use of a single controller 110 and above all of a single set of transistors 30, 35, while the breaking of the currents associated with the outputs 2 which have not given rise to a fault is very short. The structure of the switching system 10 is therefore simplified compared to cases where the current to be sent to the various outputs 2, 4 would be supplied to several inputs 1, 3 each associated with a separate switching device 15 comprising its own set of transistors 30, 35 and its own switching device 40.
Un tel mode de réalisation est particulièrement propice à l’utilisation de relais MEMS en tant qu’organes de commutation 40, permettant une commutation rapide et donc une interruption très courte des courants 2 qui n’ont pas été associés à des défauts. Such an embodiment is particularly conducive to the use of MEMS relays as switching devices 40, allowing rapid switching and therefore very short interruption of currents 2 which have not been associated with faults.
Il est à noter que, comme mentionné plus haut, en cas de détection d’un défaut, la coupure du courant par les premiers transistors 30, 35 est commandée et effective avant que l’organe de commutation 40 et/ou le sectionneur 45 ne soient basculés chacun dans leur configuration dans laquelle ils empêchent le passage du courant. Cela évite notamment de devoir dimensionner ces organes 40, 45 pour couper le courant, notamment pour couper un arc électrique qui se produirait si les organes 40, 45 étaient manœuvrés pour couper le courant alors que le courant circule. It should be noted that, as mentioned above, in the event of detection of a fault, the breaking of the current by the first transistors 30, 35 is controlled and effective before the switching device 40 and/or the disconnector 45 are each switched to their configuration in which they prevent the passage of current. This in particular avoids having to size these members 40, 45 to cut off the current, in particular to cut an electric arc which would occur if the members 40, 45 were operated to cut off the current while the current is flowing.
De manière générale, c’est le cas quel que soit la raison de la coupure du courant. En d’autres termes, le contrôleur 110 est configuré pour, systématiquement, couper le premier signal (ce qui entraîne le basculement de l’organe de commutation 40 dans sa deuxième configuration) à un instant tel qu’un des premiers transistors 30, 35 au moins, notamment les deux premiers transistors 30, 35 ont basculé dans leur état non-passant avant que l’organe de commutation 40 ne bascule dans sa deuxième position. Par exemple, le premier signal est interrompu postérieurement ou au plus tard au même instant temporel où le courant est coupé par le ou les premiers transistors 30, 35. C’est le cas par exemple si un signal extérieur commande au contrôleur 110 la coupure du courant, par exemple s’il est désiré de couper le courant pour intervenir sur une installation en aval. Generally speaking, this is the case regardless of the reason for the power outage. In other words, the controller 110 is configured to systematically cut off the first signal (which causes the switching device 40 to switch to its second configuration) at a time such that one of the first transistors 30, 35 at least, in particular the first two transistors 30, 35 have switched to their non-conducting state before the switching device 40 switches to its second position. For example, the first signal is interrupted after or at the latest at the same time instant when the current is cut by the first transistor or transistors 30, 35. This is the case for example if an external signal commands the controller 110 to cut off the current, for example if it is desired to cut off the current to work on a downstream installation.
Lors du démarrage du système 10, si l’organe 100 est dans une position dans laquelle il ferme le sectionneur 45, le contrôleur 110 commande le basculement de l’organe de commutation 40 depuis sa deuxième configuration (dans laquelle il empêche le passage du courant) jusqu’à sa première configuration (permettant le passage du courant). Une fois l’organe de commutation 40 dans sa première configuration, par exemple après qu’une durée temporelle prédéterminée et suffisante pour permettre ce basculement s’est écoulée, alors le contrôleur 110 commande le passage de chaque premier transistor 30, 35 vers son état passant. When the system 10 starts up, if the member 100 is in a position in which it closes the disconnector 45, the controller 110 controls the switching of the switching member 40 from its second configuration (in which it prevents the passage of current ) until its first configuration (allowing the passage of current). Once the switching device 40 is in its first configuration, for example after a predetermined time period sufficient to allow this switching has elapsed, then the controller 110 controls the passage of each first transistor 30, 35 to its state passing.
En cas d’action d’un opérateur sur l’organe 100 pour couper le courant, le capteur 102 détecte que l’organe 100 s’approche de la position dans laquelle l’organe 100 provoque l’ouverture du sectionneur 45. Avant que cette position soit atteinte, le capteur 102 transmet au contrôleur 110 un signal qui provoque l’émission des troisièmes signaux puis, après une temporisation prédéterminée, coupe le premier signal, de sorte que le courant est interrompu par les premiers transistors 30, 35 avant la coupure du premier signal. De plus, le capteur 102 est configuré de manière à ce que la coupure du courant par les transistors 30, 35 a lieu à un instant où le contact mobile 90 est en contact avec les deux bornes 80 et 85, et avant que le contact mobile ne s’éloigne de l’une de ces deux bornes 80, 85. Ainsi, l’interruption du courant est effectuée par les transistors 30, 35 et non par le sectionneur 45. In the event of action by an operator on member 100 to cut off the current, sensor 102 detects that member 100 is approaching the position in which member 100 causes disconnector 45 to open. this position is reached, the sensor 102 transmits to the controller 110 a signal which causes the emission of the third signals then, after a predetermined delay, cuts the first signal, so that the current is interrupted by the first transistors 30, 35 before the cut off the first signal. In addition, the sensor 102 is configured so that the current break by the transistors 30, 35 takes place at a time when the moving contact 90 is in contact with the two terminals 80 and 85, and before the moving contact moves away from one of these two terminals 80, 85. Thus, the interruption of the current is carried out by the transistors 30, 35 and not by the disconnector 45.
Lorsque l’organe 100 est rebasculé par l’opérateur pour rétablir le courant, le contrôleur 110 commande la fermeture de l’organe 40 avant de commander le basculement des transistors 30, 35 dans leur état passant en coupant le troisième signal électrique. When the member 100 is switched back by the operator to restore the current, the controller 110 commands the closing of the member 40 before commanding the switching of the transistors 30, 35 into their on state by cutting off the third electrical signal.
Il est à noter que bien qu’un dispositif de commutation 15 d’un seul tenant soit représenté sur les figures, selon une variante envisageable, les modules 20 et 25 sont susceptibles d’être situés dans des parties différentes et distantes l’une de l’autre, mais communiquant l’une avec l’autre, du dispositif de commutation 15. It should be noted that although a switching device 15 in one piece is shown in the figures, according to a possible variant, the modules 20 and 25 are likely to be located in different parts and distant from one another. the other, but communicating with each other, of the switching device 15.
Par exemple, le dispositif de commutation 15 comporte un premier appareil comportant le module de commutation 20 et un deuxième appareil comportant le module de commande 25. Dans ce cas, le premier appareil (ou « appareil de commutation ») comporte par exemple un premier boîtier et le deuxième appareil (ou «appareil de commande ») comporte un deuxième boîtier distinct et notamment distant du premier boîtier. For example, the switching device 15 comprises a first device comprising the switching module 20 and a second device comprising the control module 25. In this case, the first device (or “switching device”) comprises for example a first housing and the second device (or “control device”) comprises a second box that is distinct and in particular remote from the first box.
L’appareil de commande 25 est configuré pour transmettre à l’appareil de commutation 20 les différents signaux électriques, par exemple via un conducteur électrique tel qu’un câble. The control device 25 is configured to transmit to the switching device 20 the various electrical signals, for example via an electrical conductor such as a cable.

Claims

REVENDICATIONS
1. Dispositif de commutation électrique (15) comportant une entrée (1 , 3), une sortie (2, 4), un module de commutation (20) et un module de commande (25), le module de commutation (20) étant apte à conduire un courant électrique entre l’entrée (1 , 3) et la sortie (2, 4), le module de commande (25) étant configuré pour détecter un défaut électrique et pour commander l’interruption du courant par le module de commutation (20) en cas de détection d’un défaut, caractérisé en ce que le module de commutation (20) comporte un circuit électrique configuré pour conduire le courant entre l’entrée (1 , 3) et la sortie (2, 4) , le circuit comportant, en série, au moins deux premiers transistors JFET (30, 35) normalement passants tête-bêche et au moins un organe de commutation (40) comportant une première borne (60) et une deuxième borne (65), l’organe de commutation (40) étant configuré pour commuter entre une première configuration et une deuxième configuration, l’organe de commutation (40) permettant le passage du courant entre la première borne (60) et la deuxième borne (65) lorsque l’organe de commutation (40) est dans la première configuration, l’organe de commutation (40) empêchant le passage du courant lorsque l’organe de commutation (40) est dans la deuxième configuration, l’organe de commutation (40) étant dans la deuxième configuration par défaut, le module de commande (25) étant configuré pour générer au moins un premier signal électrique propre à maintenir l’organe de commutation (40) dans la première configuration, le module de commande (25) étant configuré pour, en cas de détection d’un défaut, générer au moins un deuxième signal électrique de coupure à destination d’un premier transistor (30, 35), chaque deuxième signal étant apte à commander l’interruption du courant par le premier transistor (30, 35) correspondant, le module de commande (25) étant configuré pour interrompre le premier signal en réponse à la détection. 1. Electrical switching device (15) comprising an input (1, 3), an output (2, 4), a switching module (20) and a control module (25), the switching module (20) being capable of conducting an electric current between the input (1, 3) and the output (2, 4), the control module (25) being configured to detect an electrical fault and to control the interruption of the current by the switching (20) in the event of detection of a fault, characterized in that the switching module (20) comprises an electrical circuit configured to conduct the current between the input (1, 3) and the output (2, 4) , the circuit comprising, in series, at least two first JFET transistors (30, 35) normally on head to tail and at least one switching element (40) comprising a first terminal (60) and a second terminal (65), the the switching member (40) being configured to switch between a first configuration and a second configuration, the switching member (40) per placing the passage of current between the first terminal (60) and the second terminal (65) when the switching element (40) is in the first configuration, the switching element (40) preventing the passage of current when the switching member (40) is in the second configuration, the switching member (40) being in the second configuration by default, the control module (25) being configured to generate at least a first electrical signal capable of maintaining the switching device (40) in the first configuration, the control module (25) being configured to, in the event of detection of a fault, generate at least a second electrical cut-off signal intended for a first transistor (30, 35), each second signal being able to control the interruption of the current by the corresponding first transistor (30, 35), the control module (25) being configured to interrupt the first signal in response to the detection.
2. Dispositif de commutation selon la revendication 1 , dans lequel l’organe de commutation (40) comporte un premier actionneur (75) et un premier contact (70) électriquement conducteur, le premier contact (70) étant mobile entre une première position et une deuxième position, le premier contact (70) étant dans la première position lorsque l’organe de commutation (40) est dans la première configuration et étant dans la deuxième position lorsque l’organe de commutation (40) est dans la deuxième configuration, le premier contact (70) conduisant le courant entre la première borne (60) et la deuxième borne (65) lorsque le premier contact (70) est dans la première position, le premier contact (70) étant distant d’au moins une des première et deuxième bornes (60, 65) lorsque le premier contact (70) est dans la deuxième position, le premier actionneur (75) étant configuré pour maintenir le premier contact (70) dans la première position lorsque l’actionneur (75) est alimenté avec le premier signal électrique. 2. Switching device according to claim 1, wherein the switching member (40) comprises a first actuator (75) and a first contact (70) electrically conductive, the first contact (70) being movable between a first position and a second position, the first contact (70) being in the first position when the switching member (40) is in the first configuration and being in the second position when the switching member (40) is in the second configuration, the first contact (70) conducting the current between the first terminal (60) and the second terminal (65) when the first contact (70) is in the first position, the first contact (70) being separated by at least one of the first and second terminals (60, 65) when the first contact (70) is in the second position, the first actuator (75) being configured to hold the first contact (70) in the first position when the actuator (75) is energized with the first electrical signal.
3. Dispositif de commutation selon la revendication 1 , dans lequel le dispositif de commutation (15) comporte deux deuxièmes transistors MOSFET (130, 135), de type non-passant par défaut, en série tête-bêche entre la première borne (60) et la deuxième borne (65), chaque deuxième transistor (130, 135) conduisant le courant lorsque le deuxième transistor (130, 135) est alimenté par un premier signal respectif et empêchant le passage du courant en l’absence de premier signal. 3. Switching device according to claim 1, in which the switching device (15) comprises two second MOSFET transistors (130, 135), of the non-conducting type by default, in series head to tail between the first terminal (60) and the second terminal (65), each second transistor (130, 135) conducting current when the second transistor (130, 135) is energized by a respective first signal and preventing current from flowing in the absence of the first signal.
4. Dispositif de commutation selon l’une quelconque des revendications 1 à 3, dans lequel le circuit comporte, en outre, un sectionneur (45) connecté en série avec les premiers transistors (30, 35) et avec l’organe de commutation (40), le sectionneur (45) comportant une troisième borne (80), une quatrième borne (85), un deuxième contact (90), un deuxième actionneur (95) et un organe de commande (100), le deuxième contact (90) étant mobile entre une troisième position et une quatrième position, le deuxième contact (90) conduisant le courant entre la troisième borne (80) et la quatrième borne (85) lorsque le deuxième contact (90) est dans la troisième position, le deuxième contact (90) étant distant d’au moins une des troisième et quatrième bornes (80, 65) lorsque le deuxième contact (90) est dans la quatrième position, le deuxième actionneur (95) étant configuré pour déplacer le deuxième contact (90) entre la troisième position et la quatrième position lorsque l’organe de commande (100) est actionné par un opérateur. 4. Switching device according to any one of claims 1 to 3, wherein the circuit further comprises a disconnector (45) connected in series with the first transistors (30, 35) and with the switching member ( 40), the disconnector (45) comprising a third terminal (80), a fourth terminal (85), a second contact (90), a second actuator (95) and a control member (100), the second contact (90 ) being movable between a third position and a fourth position, the second contact (90) conducting current between the third terminal (80) and the fourth terminal (85) when the second contact (90) is in the third position, the second contact (90) being distant from at least one of the third and fourth terminals (80, 65) when the second contact (90) is in the fourth position, the second actuator (95) being configured to move the second contact (90) between the third position and the fourth position when the control member (100) is operated by an operator.
5. Dispositif selon la revendication 4, dans lequel l’organe de commande (100) est une manette rotative. 5. Device according to claim 4, wherein the control member (100) is a rotary handle.
6. Dispositif selon l’une quelconque des revendications 1 à 3, comportant un organe de commande (100) actionnable par un opérateur pour commander la coupure, par le module de commande (25), du premier signal. 6. Device according to any one of claims 1 to 3, comprising a control member (100) operable by an operator to control the cutoff, by the control module (25), of the first signal.
7. Dispositif selon l’une quelconque des revendications précédentes, dans lequel chaque premier transistor (30, 35) comporte une source, un drain et une grille, les sources de deux des premiers transistors (30, 35) étant interposées, le long du trajet du courant, entre les drains desdits deux premiers transistors (30, 35). 7. Device according to any one of the preceding claims, in which each first transistor (30, 35) comprises a source, a drain and a gate, the sources of two of the first transistors (30, 35) being interposed, along the current path, between the drains of said two first transistors (30, 35).
8. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le nombre de premiers transistors (30, 35) est supérieur ou égal à quatre, les premiers transistors (30, 35) étant répartis en paires de groupes de premiers transistors (30, 35), chaque groupe contenant au moins un premier transistor (30, 35) les premiers transistors (30, 35) de chaque groupe étant connectés successivement les uns aux autres en série dans le même sens si le groupe comporte plus d’un premier transistor (30, 35), chaque premier transistor (30, 35) d’un groupe étant dans le sens différent du ou des premiers transistors (30, 35) de l’autre groupe de la même paire, chaque groupe d’une paire étant connecté en série à l’autre groupe de la paire, les paires étant connectées en série les unes aux autres. 8. Device according to any one of the preceding claims, in which the number of first transistors (30, 35) is greater than or equal to four, the first transistors (30, 35) being divided into pairs of groups of first transistors (30 , 35), each group containing at least one first transistor (30, 35) the first transistors (30, 35) of each group being connected successively to each other in series in the same direction if the group comprises more than one first transistor (30, 35), each first transistor (30, 35) of a group being in the different direction from the first transistor or transistors (30, 35) of the other group of the same pair, each group of a pair being connected in series to the other group of the pair, the pairs being connected in series to each other.
9. Dispositif selon l’une quelconque des revendications précédentes, dans lequel les premiers transistors (30, 35) sont réalisés en SiC ou en GaN. 9. Device according to any one of the preceding claims, in which the first transistors (30, 35) are made of SiC or GaN.
10. Dispositif selon l’une quelconque des revendications précédentes, comportant une unique entrée et une pluralité de sorties (2), chaque sortie (2) étant reliée à un unique point (5), les premiers transistors (30, 35) étant interposés entre l’entrée (1) et ledit unique point (5), le module de commutation (20) comportant, pour chaque sortie (2), un organe de commutation (40) respectif interposé entre la sortie (2) et ledit unique point (5). 10. Device according to any one of the preceding claims, comprising a single input and a plurality of outputs (2), each output (2) being connected to a single point (5), the first transistors (30, 35) being interposed between the input (1) and the said single point (5), the switching module (20) comprising, for each output (2), a respective switching device (40) interposed between the output (2) and the said single point (5).
11. Dispositif selon l’une quelconque des revendications précédentes, comportant un appareil de commutation et un appareil de commande, l’appareil de commutation comportant le module de commutation (20), l’appareil de commande comportant le module de commande (25), l’appareil de commutation et l’appareil de commande étant distants l’un de l’autre et étant configurés pour communiquer l’un avec l’autre. 11. Device according to any one of the preceding claims, comprising a switching device and a control device, the switching device comprising the switching module (20), the control device comprising the control module (25) , the switching device and the control device being remote from each other and being configured to communicate with each other.
12. Système de commutation (10) configuré pour transmettre une pluralité de courants entre des entrées (1 , 3) et des sorties (2, 4) respectives, pour détecter un défaut électrique relatif à au moins un desdits courant, et pour interrompre au moins le courant correspondant en cas de détection d’un défaut électrique, comportant une pluralité de dispositifs de commutation (15) selon l’une quelconque des revendications précédentes. 12. Switching system (10) configured to transmit a plurality of currents between respective inputs (1, 3) and outputs (2, 4), to detect an electrical fault relating to at least one of said currents, and to interrupt at the minus the corresponding current in the event of detection of an electrical fault, comprising a plurality of switching devices (15) according to any one of the preceding claims.
13. Procédé de commutation d’un courant, mis en œuvre par un dispositif de commutation électrique (15) comportant une entrée (1 , 3), une sortie (2, 4), un module de commutation (20) et un module de commande (25), le module de commutation (20) étant apte à conduire un courant électrique entre l’entrée (1 , 3) et la sortie (2, 4), le module de commutation (20) comportant un circuit électrique configuré pour conduire le courant entre l’entrée (1 , 3) et la sortie (2, 4), le circuit comportant, en série, au moins deux premiers transistors (30, 35) JFET normalement passants tête-bêche et au moins un organe de commutation (40) comportant une première borne (60) et une deuxième borne (65), l’organe de commutation (40) étant configuré pour commuter entre une première configuration et une deuxième configuration, l’organe de commutation (40) permettant le passage du courant entre la première borne (60) et la deuxième borne (65) lorsque l’organe de commutation (40) est dans la première configuration, l’organe de commutation (40) empêchant le passage du courant lorsque l’organe de commutation (40) est dans la deuxième configuration, l’organe de commutation (40) étant dans la deuxième configuration par défaut, le procédé comportant des étapes de : 13. A method of switching a current, implemented by an electrical switching device (15) comprising an input (1, 3), an output (2, 4), a switching module (20) and a module of control (25), the switching module (20) being able to conduct an electric current between the input (1, 3) and the output (2, 4), the switching module (20) comprising an electric circuit configured to conduct the current between the input (1, 3) and the output (2, 4), the circuit comprising, in series, at least two first JFET transistors (30, 35) normally on head to tail and at least one switching device (40) comprising a first terminal (60) and a second terminal (65), the switching device (40) being configured to switch between a first configuration and a second configuration, the switching device (40) allowing the passage of current between the first terminal (60) and the second terminal (65) when the switching element (40) is in the first configuration tion, the switching member (40) preventing the passage of current when the switching member (40) is in the second configuration, the switching member (40) being in the second configuration by default, the method comprising steps of:
- génération (200), par le module de commande (25), d’au moins un premier signal électrique propre à maintenir l’organe de commutation (40) dans la première configuration, - generation (200), by the control module (25), of at least one first electrical signal capable of maintaining the switching device (40) in the first configuration,
- détection (210) d’un défaut électrique par le module de commande (25),- detection (210) of an electrical fault by the control module (25),
- suite à la détection d’un défaut, interruption (220) du premier signal par le module de commande (25) et génération (230) par le module de commande (25) d’un deuxième signal électrique de coupure à destination de chaque premier transistor (30, 35), - following the detection of a fault, interruption (220) of the first signal by the control module (25) and generation (230) by the control module (25) of a second electrical cut-off signal intended for each first transistor (30, 35),
- suite à la réception du deuxième signal correspondant, interruption (240) du courant par au moins un premier transistor (30, 35), et - following receipt of the corresponding second signal, interruption (240) of the current by at least one first transistor (30, 35), and
- commutation (250) de l’organe de commutation (40) dans la deuxième configuration. - switching (250) of the switching member (40) in the second configuration.
EP22731995.1A 2021-05-20 2022-05-19 Electrical switching device, and associated method and switching system Pending EP4342047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105286A FR3123164A1 (en) 2021-05-20 2021-05-20 Electrical switching device, switching system and associated method
PCT/EP2022/063625 WO2022243464A1 (en) 2021-05-20 2022-05-19 Electrical switching device, and associated method and switching system

Publications (1)

Publication Number Publication Date
EP4342047A1 true EP4342047A1 (en) 2024-03-27

Family

ID=76730798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22731995.1A Pending EP4342047A1 (en) 2021-05-20 2022-05-19 Electrical switching device, and associated method and switching system

Country Status (6)

Country Link
EP (1) EP4342047A1 (en)
KR (1) KR20240008949A (en)
CN (1) CN117378111A (en)
CA (1) CA3219994A1 (en)
FR (1) FR3123164A1 (en)
WO (1) WO2022243464A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930091B1 (en) * 2008-04-09 2011-10-28 Schneider Electric Ind Sas STATIC RELAY SYSTEM COMPRISING TWO JFET-TYPE TRANSISTORS IN SERIES
DE102011056577C5 (en) * 2011-12-19 2015-02-19 Sma Solar Technology Ag Circuit arrangement for suppressing a occurring during a switching arc
US11342151B2 (en) * 2019-05-18 2022-05-24 Amber Solutions, Inc. Intelligent circuit breakers with visual indicators to provide operational status

Also Published As

Publication number Publication date
KR20240008949A (en) 2024-01-19
WO2022243464A1 (en) 2022-11-24
CN117378111A (en) 2024-01-09
FR3123164A1 (en) 2022-11-25
CA3219994A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
EP1538645B1 (en) Hybrid circuit breaker
EP1557922B1 (en) Differential protection device with simplified adjusting means for the protection parameters
FR3035751A1 (en) CIRCUIT CUTTER FOR CONTINUOUS CURRENT AND METHOD OF USE
EP1950885A1 (en) Control device of an electronic power switch and infinitely-variable speed transmission comprising such a device.
FR2738664A1 (en) Hybrid suppressor utilising Miller effect for suppressing arcs formed at contacts of electrical switch
EP2466601A1 (en) Cutting device with an arc-cutting screen
WO2016012478A1 (en) Device for cutting off current on a transmission line
EP1225673A1 (en) Electrical power distribution device, installation comprising such a device and method for electrical protection
WO2009138603A1 (en) Hybrid electromechanical/semiconductor protection switch
EP2842151B1 (en) Driver circuit for a circuit breaker
EP4342047A1 (en) Electrical switching device, and associated method and switching system
EP3479448B1 (en) Semiconductor cutoff device
EP2631927B1 (en) Method for shutting down an electric arc, method and device for protecting a facility against overvoltages
EP4167261A1 (en) Electric switching device and associated switching system and method
FR2653593A1 (en) Trip switch with current limiting device, ref. 1736
EP3437115B1 (en) Hybridisation system for high voltage direct current
EP4088294B1 (en) Protected switch
EP2577702A1 (en) Device for controlling a plurality of current breaking apparatuses via electric motors
EP2198507B1 (en) Variable control device
FR3107987A1 (en) Hybrid switch and control device
FR2968829A1 (en) CURRENT LIMITER CIRCUIT BREAKER
FR3060226A1 (en) ELECTRICAL GROUNDING APPARATUS INCLUDING AN INSULATING DERIVATION AND METHOD FOR CLOSING THE SAME
CH699418B1 (en) Utilization of bidirectional direct current interruption device i.e. circuit-breaker, for interrupting direct current in e.g. high voltage alternating current supply line, using control device that controls opening and closing of device
FR2842020A1 (en) AUXILIARY DEVICE FOR CONTROLLING THE OPENING OF A SWITCHING APPARATUS
FR2495823A1 (en) Automatic AC supply switch with random delay - has relay controlling two inverter contacts in supply lines of which solenoid has diode exciter circuit and series resistor across lines and

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR