EP4337767A1 - Biosynthesis of phenylpropanoid compounds - Google Patents

Biosynthesis of phenylpropanoid compounds

Info

Publication number
EP4337767A1
EP4337767A1 EP22727965.0A EP22727965A EP4337767A1 EP 4337767 A1 EP4337767 A1 EP 4337767A1 EP 22727965 A EP22727965 A EP 22727965A EP 4337767 A1 EP4337767 A1 EP 4337767A1
Authority
EP
European Patent Office
Prior art keywords
sequence seq
genetically modified
arof
modified strain
pseudomonas putida
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22727965.0A
Other languages
German (de)
French (fr)
Inventor
William MERRÉ
Ricardo DE ANDRADE
Caroline RANQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bgene Genetics
Original Assignee
Bgene Genetics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bgene Genetics filed Critical Bgene Genetics
Publication of EP4337767A1 publication Critical patent/EP4337767A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/16Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced pteridine as one donor, and incorporation of one atom of oxygen (1.14.16)
    • C12Y114/16001Phenylalanine 4-monooxygenase (1.14.16.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010964a-Hydroxytetrahydrobiopterin dehydratase (4.2.1.96)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01023Tyrosine ammonia-lyase (4.3.1.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010124-Coumarate-CoA ligase (6.2.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/40Pseudomonas putida

Definitions

  • the present invention falls within the field of the production of phenylpropanoid compounds, and in particular that of strains genetically modified for the production of phenylpropanoid compounds such as coumaric acid or frambinone.
  • the pathway for the biosynthesis of phenylpropanoid compounds in particular frambinone, can be reconstituted within a microorganism thanks to the insertion of heterologous genes coding for certain key enzymes of said pathway.
  • Tyrosine is an important amino acid for the biosynthesis of phenylpropanoid compounds because it is in particular the precursor of coumaric acid or frambinone.
  • frambinone can be obtained from the aromatic amino acid L-tyrosine as an initial substrate via a 4-step biosynthetic pathway.
  • the tyrosine is deaminated by a tyrosine ammonia lyase (TAL, EC 4.3.1.23) to form coumaric acid.
  • TAL tyrosine ammonia lyase
  • a 4-coumarate:CoA ligase (4CL, EC 6.2.1.12)
  • CoA Coenzyme A
  • Coumaroyl-CoA is then converted by a benzalacetone synthase (BAS, EC 2.3.1.212) into 4-hydroxy benzalacetone.
  • BAS benzalacetone synthase
  • This reaction is a decarboxylative condensation and uses a malonyl-CoA unit as a co-substrate.
  • the final step is the reduction of 4-hydroxy benzalacetone to frambinone by a benzalacetone reductase.
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • PEP phospho(enol)pyruvate
  • E4P erythrose-4-phosphate
  • This DAHP synthase activity is carried out via 3 isoenzymes in E. coli: AroG (retro-regulated by phenylalanine), AroF (retro-regulated by tyrosine) and AroH (retro-regulated by tryptophan) .
  • AroG retro-regulated by phenylalanine
  • AroF retro-regulated by tyrosine
  • AroH retro-regulated by tryptophan
  • Phenylpropanoid compounds have also been synthesized from Saccharomyces cerevisiae strains which overexpress tyrosine, as described by Rodriguez et al., 2015.
  • Document GB 2416 769 describes the possibility of producing frambinone using microorganisms containing genes coding for the enzymes 4CL and BAS, at least one of which is from a heterologous source.
  • the preferred microorganism is E. coli (strain BL21) and may also comprise a sequence encoding BAR, C4H, PAL and/or CHS, the sequence encoding BAR being advantageously endogenous.
  • E. coli or S. cerevisiae strains do not tolerate the toxicity of phenylpropanoid compounds well and are therefore not the microorganisms best suited for their production.
  • Bacteria of the Pseudomonas genus are more tolerant to these highly toxic molecules, in particular the bacterium Pseudomonas putida (Calera et al., 2017).
  • the enzymes involved in the production of aromatic amino acids in P. putida are poorly described.
  • the tyrosine-overproducing strains developed to date are essentially E. coli and S. cerevisiae strains. However, these strains do not tolerate the toxicity of phenylpropanoid compounds well and are therefore not the best suited microorganisms for their production.
  • One of the aspects of the present invention relates to a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene encoding 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase having the sequence SEQ ID NO:1 and having at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/S193A double mutation.
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • Another aspect of the invention relates to a method for synthesizing a phenylpropanoid compound or a phenylpropanoid derivative by using a genetically modified strain according to the invention of Pseudomonas putida.
  • the invention also relates to the use of a genetically modified strain of Pseudomonas putida for the synthesis of phenylpropanoid compounds.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • FIG. 1 Graph of PEP consumed in mM in the presence or absence of aromatic amino acid by the wild-type AroF-1 protein (WT). The results shown are from three independent replicates.
  • FIG. 2 [0033]
  • FIG. 2 Graph representing the proportion of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-1 WT protein compared with the simple mutants AroF-1-G191, AroF-1-P160 and AroF-1-S193. The results shown are from three independent replicates.
  • Fig. 3 Graph representing the proportion of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-1 WT protein compared with the simple mutants AroF-1-G191, AroF-1-P160 and AroF-1-S193. The results shown are from three independent replicates.
  • Fig. 3 Graph representing the proportion of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-1 WT protein compared with the simple mutants AroF-1-G191, AroF-1-P160 and AroF-1-S193. The results shown are from three independent replicates.
  • Fig. 3 Graph representing the proportion of PEP
  • FIG. 3 Graph representing the share of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-l WT protein compared to the double mutants AroF-l-P160_G191, AroF-l-P160L_Q164, AroF-l-P160_S190 and AroF -l-P160_S193. The results shown are from three independent replicates.
  • FIG. 4 Graph representing the share of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-l WT protein compared to the simple mutants AroF-l-P160 and AroF-l-S193 and to the double mutant AroF-l- P160_S193. The results shown are from three independent replicates.
  • FIG. 5 presents the conjugation protocol that can be used to transform and genetically modify P. putida.
  • FIG. 6 Graph showing the production of coumaric acid (PCA) and cinnamic acid (CA) by strains of Pseudomonas putida expressing the enzymes AroF-l WT/TAL (aroF-l WT) and aroF-l fbr P160L/S193A /TAL (aroF-l fbr).
  • PCA coumaric acid
  • CA cinnamic acid
  • FIG. 7 Graph presenting the production of total phenolics and the proportion of coumaric acid among total phenolics (%PCA) by strains of Pseudomonas putida expressing the enzymes AroF-l WT/TAL (aroF-l WT), AroF-l WT /TAL + empty plasmid (aroF-l WT + control), AroF-l WT/TAL + phhA/B plasmid (aroF-l WT + phhA/B), aroF-l fbr P160L/S193A/TAL (aroF-l fbr ), aroF-1 fbr P160L/S193A/TAL + empty plasmid (aroF-1 fbr + control), and aroF-1 fbr P160L/S193A/TAL + phhA/B plasmid (aroF-1 fbr + p
  • a first object of the invention therefore relates to a genetically modified strain of Pseudomonas putida comprising a mutated AroF-l gene coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase whose sequence present at the identity with at least 80% with the sequence SEQ ID NO: 1 and exhibiting at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/S193A double mutation.
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • the term "genetically modified strain” means a strain which comprises either (i) at least one recombinant nucleic acid, or transgene, stably integrated into its genome, and/or present on a vector, for example a plasmid vector, or (ii) one or more unnatural mutations by insertion, substitution or deletion of nucleotides, said mutations being obtained by transformation techniques or by gene editing techniques known to those skilled in the art.
  • the mutagenesis technique described in Example 2 will be used.
  • a genetically modified strain may comprise a nucleic acid modifying the expression of one or more genes naturally expressed in Pseudomonas putida.
  • a genetically modified strain may comprise a nucleic acid encoding one or more enzymes, not naturally expressed in Pseudomonas putida.
  • the wild strains of P. putida KT2440 are available for example in the NBRC strain bank (National Institute of Technology and Evaluation Biological Resource center https://www.nite.go.jp/en/nbrc/, NBRC100650) .
  • strains of Pseudomonas putida or Pseudomonas taiwanensis optimized for the production of tyrosine are known to those skilled in the art who can use them as a starting strain to obtain the genetically modified strains according to the invention (Calera et al ., 2016; Wierckx et al., 2005, Appl Environ Microbiol. 71 (12):8221-7; Wynands et al., 2018; Otto et al. 2019, Front Bioeng Biotechnol Nov 20;7:312).
  • the percentage of identity refers to the percentage of identical residues in a nucleotide or amino acid sequence on a given fragment after alignment and comparison with a reference sequence.
  • an alignment algorithm is used and the sequences to be compared are entered with the corresponding parameters of the algorithm. Default algorithm settings can be used.
  • blastn algorithm as described in https://blast.ncbi.nlm.nih.gov/Blast. cgi with default settings is used
  • mutated AroF1 gene means a nucleic acid comprising at least one part encoding a mutated version of 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase under control of a promoter allowing its expression in the genetically modified strain.
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase means the enzymes (EC 2.5.1.54) capable of carrying out in bacteria the first reaction of the shikimate pathway which consists of the condensation of a phospho(enol)pyruvate (PEP) and an erythrose-4-phosphate (E4P) to DAHP.
  • the genetically modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAHP synthase, the amino acid sequence of which has at least 80%, 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 1, and exhibiting at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/ S193A.
  • the AroF-l gene endogenous to Pseudomonas putida codes for the DAFIP synthase of amino acid sequence SEQ ID NO: 1.
  • the genetically modified strain according to the present invention may therefore comprise, in addition to the endogenous AroF-l gene, at least one mutated AroF-l recombinant nucleic acid sequence encoding a mutated protein comprising the P160L mutation, the P160L/Q164A double mutation, or the P160L/S193A double mutation, preferably the P160L/S193A double mutation.
  • the genetically modified strain of Pseudomonas putida comprises a mutated AroF-l gene coding for DAFIP synthase comprising a P160L mutation as defined by the amino acid sequence SEQ ID NO: 2.
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase, the sequence of which has at least 80%, 85%, 90%, 95% and very particularly , at least 98% identity with the sequence SEQ ID NO: 2 and contains the P160L mutation.
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase and exhibiting at least one P160L/Q164A double mutation.
  • the mutated AroF-l gene codes for DAFIP synthase comprising the double mutation P160L/Q164A defined by the amino acid sequence SEQ ID NO: 3.
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase whose sequence has at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 3 and contains the double mutation P160L/Q164A.
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAHP synthase exhibiting at least one double P160L/S193A mutation.
  • the mutated AroF-l gene codes for DAFIP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4.
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase, the sequence of which has at least 80%, 85%, 90%, 95% and most particularly , at least 98% identity with the sequence SEQ ID NO: 4 and contains the double mutation P160L/S193A.
  • the coding sequence of the mutated AroF-1 gene is placed under the control of a heterologous promoter, in particular a constitutive or inducible promoter, for example chosen from promoters ptrc, xyls/pm or araC/pBAD, which makes it possible to overexpress the mutated AroF-1 gene in the genetically modified strain according to the invention.
  • a heterologous promoter in particular a constitutive or inducible promoter, for example chosen from promoters ptrc, xyls/pm or araC/pBAD, which makes it possible to overexpress the mutated AroF-1 gene in the genetically modified strain according to the invention.
  • the coding sequence of the mutated AroF-1 gene in the genetically modified strain according to the invention is inserted in such a way as to render the AroFI gene non-functional, for example by disruption of the AroFI gene, or by deletion of the gene AroFI and in particular all or part of its coding sequence.
  • the AroFI gene encodes another DAFIP synthase (isoenzyme of AroF).
  • the genetically modified strain according to the present invention comprises the deleted or disrupted AroFI gene and at least one recombinant nucleic acid comprising the mutated AroF-1 gene as described above or a coding sequence of the mutated AroF-1 gene .
  • the Applicant has developed a strain of Pseudomonas putida capable of expressing a recombinant DAFIP synthase insensitive to negative retroregulation by tyrosine, thus deregulating the pathway production of the tyrosin.
  • the present invention allows the production of strains that overproduce tyrosine, as a final product or as an intermediate product in the synthesis of phenylpropanoid compounds.
  • this overproduction is particularly advantageous for the production of phenylpropanoid compounds by the strains modified according to the invention.
  • Phenylpropanoid compounds are a class of organic compounds, derived from plants, and biosynthesized from phenylalanine or tyrosine.
  • Examples of phenylpropanoid compounds include coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalacetone, frambinone, zingerone, vanillin, flavonoids and stilbenoids.
  • tyrosine overproducing strain within the meaning of the present invention, a modified strain of Pseudomonas putida capable of producing tyrosine in a greater quantity compared to a wild-type Pseudomonas putida strain comprising the AroF-1 gene encoding DHAP synthase of amino acid sequence SEQ ID NO: 1 (unmutated gene), either as a final product or as an intermediate product.
  • the modified strain according to the invention may also advantageously comprise at least one additional recombinant gene.
  • additional recombinant gene is understood to mean, within the meaning of the present invention, any recombinant gene present in the Pseudomonas putida strain in addition to the mutated AroF-1 gene as defined above.
  • the additional recombinant gene may result from the insertion of a heterologous promoter, for example a strong promoter to overexpress an endogenous gene of Pseudomonas putida, or a recombinant coding sequence coding for a protein not naturally expressed in Pseudomonas putida.
  • the genetically modified strain of Pseudomonas putida comprises at least one additional recombinant gene coding for a polypeptide with phenylalanine hydroxylase activity (phhA) and one additional recombinant gene coding for a polypeptide with tetrahydrobiopterin dehydratase activity (phhB ).
  • phhA phenylalanine hydroxylase activity
  • phhB tetrahydrobiopterin dehydratase activity
  • the activities have therefore been optimized by overexpressing these two enzymes phhA and phhB.
  • the overexpression can for example be obtained by placing the additional recombinant genes of these enzymes under the control of a heterologous promoter, in particular a constitutive or inducible promoter.
  • a heterologous promoter in particular a constitutive or inducible promoter.
  • promoters are in particular the ptrc, xylS/pm, araC/pBAD promoters.
  • the overexpression of the phhA and phhB enzymes is obtained by placing the additional recombinant genes of these enzymes under the control of a strong inducible promoter araC/pBADopt (Prior et al., 2010).
  • the overexpression of a gene is understood as a higher expression of said gene in a genetically modified strain compared to the same strain in which the gene is expressed only under the control of the natural promoter.
  • Overexpression can be obtained by inserting one or more copies of the gene directly into the genome of the strain, preferably under the control of a strong promoter, or also by cloning into plasmids, in particular multicopy plasmids, preferably also under dependence on a strong promoter.
  • the endogenous coding sequences phhA and phhB are placed under the control of a heterologous promoter as defined previously, for example in order to overexpress the corresponding endogenous coding sequences in the genetically modified strain according to the invention.
  • the modified strain may comprise an additional recombinant gene coding for a phenylalanine hydroxylase (phhA) (EC 1.14.16.1) whose sequence is defined by the amino acid sequence SEQ ID NO: 5 or by a sequence having at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 5 and coding for an enzyme with phhA activity, and an additional recombinant gene coding for a tetrahydrobiopterin dehydratase (phhB) (EC 4.2.1.96) whose sequence is defined by the amino acid sequence SEQ ID NO: 6 or by a sequence having at least 80%, 85%, 90%, 95% and very particularly, at least 98% identity with the sequence SEQ ID NO: 6 and coding for an enzyme with phhB activity, in particular under the control of a heterologous promoter allowing their overexpression.
  • phhA phenylalanine hydroxylase
  • the genetically modified strain according to the invention is capable of overproducing tyrosine but also of transforming phenylalanine into tyrosine via the enzymes phhA and phhB.
  • the additional recombinant genes coding for phenylalanine hydroxylase (phhA) and for tetrahydrobiopterin dehydratase (phhB) comprise the corresponding coding sequences of Pseudomonas fluorescens (phhA VVN86558.1/phhB: AYF50180.1) or Pseudomonas aeruginosa (phhA AAA25936.1/ phhB AAA25937.1).
  • the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4, or a sequence presenting at least 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 4, and the two additional recombinant genes below:
  • phhA phenylalanine hydroxylase
  • SEQ ID NO: 5 a phenylalanine hydroxylase
  • phhB tetrahydrobiopterin dehydratase
  • the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene coding for a polypeptide with tyrosine ammonia lyase (TAL) activity.
  • TAL tyrosine ammonia lyase
  • a recombinant gene encoding TAL can come from the microorganism Rhodotorula glutinis and be optimized according to the reference Zhou et al., 2015 (three point mutations of this TAL enzyme make it more efficient: S9N; A11T; E518V). This TAL enzyme is called TAL_rg_opt.
  • the modified strain may comprise a recombinant gene coding for a tyrosine ammonia lyase (TAL) (EC 4.3.1.23) whose sequence is defined by the amino acid sequence SEQ ID NO: 7 (TAL_rg_opt) or by a sequence having at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 7 and coding for an enzyme with TAL activity.
  • TAL tyrosine ammonia lyase
  • the genetically modified strain according to the invention is capable of overproducing tyrosine but also of converting it into coumaric acid via the enzyme TAL.
  • the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene encoding 4-coumarate-CoA ligase (4-CL).
  • the modified strain may comprise a recombinant gene coding for a 4-CL (EC 6.2.1.12) whose sequence is defined by the amino acid sequence SEQ ID NO: 8 or by a sequence presenting at least 80%, 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 8 and coding for an enzyme with 4-CL activity.
  • the genetically modified strain is capable of converting coumaric acid into p-coumaryl-coA via the enzyme 4-CL.
  • the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene encoding a polypeptide with benzalacetone synthase (BAS) activity.
  • the modified strain may comprise a recombinant gene coding for a BAS (EC 2.3.1.212) whose sequence is defined by the amino acid sequence SEQ ID NO: 9 or by a sequence presenting at least 80%, 85% , 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 9 and coding for an enzyme with BAS activity.
  • the genetically modified strain is capable of converting p-coumaryl-coA into 4-hydroxybenzalketone via the BAS enzyme.
  • the genetically modified strain of Pseudomonas putida comprises several additional recombinant genes, namely in particular the five additional recombinant genes below:
  • phhA phenylalanine hydroxylase
  • SEQ ID NO: 5 a phenylalanine hydroxylase
  • phhB tetrahydrobiopterine dehydratase
  • phhB tetrahydrobiopterine dehydratase
  • TAL_RG_OPT tyrosine ammonia lyase
  • a recombinant gene encoding a 4-coumarate-CoA ligase (4-CL), preferably a 4-CL defined by the sequence SEQ ID NO: 8,
  • a recombinant gene coding for a benzalacetone synthase (BAS), preferably a BAS defined by the sequence SEQ ID NO: 9.
  • the TAL, 4-CL and BAS enzymes are all enzymes involved in the synthesis of phenylpropanoid compounds.
  • the modified strain is capable of producing a multitude of phenylpropanoid compounds, namely in particular coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalketone.
  • Another subject of the invention relates to a genetically modified strain of Pseudomonas putida comprising an additional recombinant gene AroF-1 coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase, the sequence of which is present at least 80% identity with the sequence SEQ ID NO: 1, and in which the genes coding for the enzymes phhA and phhB are overexpressed.
  • DHAP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • Another object of the invention relates to a process for the synthesis of one or more phenylpropanoid compounds.
  • the phenylpropanoid compounds can be defined above.
  • the synthesis method according to the invention comprises the implementation of a growth step of a genetically modified strain of Pseudomonas putida as defined above in a culture medium under conditions allowing the expression of the mutated gene and/or additional recombinant genes necessary for the synthesis of one or more phenylpropanoid compounds.
  • the synthesis process according to the invention makes it possible to produce coumaric acid in large quantities.
  • the method may comprise a step of growing a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene coding for 3-Deoxy-D-arabino-Heptulodonate 7- phosphate (DAHP) synthase, for example of sequence SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4, and at least the additional recombinant genes below coding for:
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7- phosphate
  • phhA a phenylalanine hydroxylase
  • TAL_RG_OPT a tyrosine ammonia lyase
  • the synthesis process according to the invention makes it possible to produce frambinone, in particular in industrial quantities, and in particular with a yield at least equal to 20 g/l of frambinone in a fermenter of at least 500 I.
  • the method comprises a step of growing a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase of sequence SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4. and comprising the following additional recombinant genes coding for:
  • TAL_RG_OPT a tyrosine ammonia lyase
  • 4-CL 4-coumarate-CoA ligase (4-CL), preferably a 4-CL defined by the sequence SEQ ID NO: 8,
  • BAS benzalacetone synthase
  • the synthesis process according to the invention may also comprise a step for purifying and/or recovering the phenylpropanoid compound, such as coumaric acid or frambinone
  • the strain is a genetically modified strain of Pseudomonas putida comprising an additional recombinant gene AroF-1 coding for 3-Deoxy-D-arabino-Fleptulodonate 7-phosphate (DFIAP) synthase whose sequence has at least 80% identity with the sequence SEQ ID NO: 1, and in which the genes coding for the enzymes phhA and phhB are overexpressed.
  • DFIAP 3-Deoxy-D-arabino-Fleptulodonate 7-phosphate
  • Another object of the invention relates to the use of a strain of Pseudomonas putida as defined above for the synthesis of phenylpropanoid compounds.
  • the phenylpropanoid compound is chosen from coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalacetone and frambinone, preferably from coumaric acid and/or frambinone.
  • Example 1 Development of a mutant allowing the production of 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) insensitive to the negative retro-regulation of tyrosine [0100]
  • DHAP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • the starting enzyme used is the AroF-1 enzyme identified as 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) in P. putida (Uniprot identifier Q88KG6).
  • DAHP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • the tertiary structure (in PDB format) of this enzyme was reconstructed from its protein sequence by the methodology described in Waterhouse, A. et al., (SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Res.46(W1), W296-W303 (2016)).
  • the basic structure selected by sequence homology was that of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Saccharomyces oerevisiae.
  • the region which characterizes tyrosine retro-regulation has been identified in the literature via a homologous protein in E. coli. Thanks to an alignment of tertiary structures of these two enzymes, the region corresponding to this retro-regulation on AroF-1 has been identified.
  • This method made it possible to identify the amino acids involved in the formation of chemical bonds with phenylalanine in the docking pocket, namely, among others, the amino acids in positions 160 (P160), 164 (Q164), 190 (S190), 191 (G191), 193 (S193) and 225 (I225).
  • the corresponding genes are cloned into a plasmid pET28_b(+) with a His-Tag grafted onto the N-terminal part of the protein ( upstream of the ATG of the gene).
  • the Gibson Assembly method is used (Gibson et al., 2009).
  • the reaction product is transformed into E. coli BL21 (DE3) strains (Novagen).
  • the transformed cells are plated on agar medium with antibiotic for selection.
  • the colonies obtained are then verified by PCR and sequenced in order to validate them.
  • the E. coli BL21 (DE3) strains containing the plasmids are cultured for 24 hours in an auto-inducing ZYM medium whose composition is as follows:
  • the cells are then lysed by sonication (Omni Sonic Ruptor 400, Omni International, power 30%, pulses 40 for 8 minutes). After adding 0.22% of Streptomycin, the samples are then centrifuged for 30 minutes at 15000xg 4°C. The supernatant is recovered and the purification of soluble proteins is carried out according to the supplier's recommendations using the Protino® Ni-TED 2000 kit (Macherey-Nagel)
  • the purified proteins are concentrated ⁇ 10 times using Amicon Ultra-430Kd centrifugal filters (Merck) and the elution buffer is replaced with 0.1 M Tris-HCI pH7.5 + 10% Glycerol . Purified proteins are stored at -80°C.
  • the activity of the enzymes is measured by monitoring the disappearance of the substrate with detection by HPLC (High Pressure Liquid Chromatography).
  • the reaction is carried out in a final volume of 200mI with 40mM of phosphate buffer pH 7, 300mM of phospho(enol)pyruvate (PEP), 20mg of purified enzyme, 1mM of tyrosine (or other aromatic amino acid) or 3mM HCl, and the volume is made up with ultrapure water.
  • PEP phospho(enol)pyruvate
  • the reaction is started by adding 300 mM of erythrose-4-phosphate (E4P) and the reaction mixture is incubated for 60 minutes at 30° C. Finally, the mixture is heated for 5 minutes at 80° C. in order to stop the reaction and precipitate the proteins.
  • E4P erythrose-4-phosphate
  • the enzymatic activity tests are first centrifuged for 10 minutes at 15000 ⁇ g in order to precipitate the proteins.
  • the supernatant obtained is filtered on a 0.22 ⁇ m membrane before HPLC analysis.
  • the phhA/B genes are amplified by PCR directly from gDNA of the Pseudomonas putida KT2440 strain and cloned into a pBBR1-MCS2 plasmid, dependent on of the araC/pBAD promoter.
  • the Gibson Assembly method is used (Gibson et al., 2009).
  • the reaction product is transformed into the E. coli strain BL21 (DE3) (Novagen).
  • the transformed cells are plated on agar medium with antibiotic for selection.
  • the colonies obtained are then checked by PCR and the plasmids sequenced in order to validate them.
  • the expression plasmid is then transformed into the strain of E. coli donor S17.1 in order to be transferred into the strains of Pseudomonas putida of interest by conjugation.
  • Example 2 Pseudomonas putida strains genetically modified for the synthesis of phenylpropanoid compound
  • suicide plasmids which integrate into the chromosome and emerge from it, leaving the desired deletion or insertion of genes.
  • the suicide plasmid used is pK18mobsacB (Schàfer A, Tauch A, Jàger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum Gene 1994 Jul 22;145(1):69-73).
  • This plasmid carries a resistance cassette to the antibiotic Kanamycin and the sacB counter-selection cassette. It also has an origin of replication that only works in E. coli bacteria, and an origin of transfer oriT that allows it to be transferred by conjugation from E. coli to another bacterial strain such as Pseudomonas putida.
  • the genes to be inserted are cloned into this plasmid, as well as the regions of homology at the chosen insertion site on the bacterial chromosome. These areas of homology are cloned on either side of the gene to be inserted, and must be at least 800 base pairs in size.
  • the cloning is done in a strain of Escherichia coli capable of conjugating (generally the strain S17.1, Simon, R., Priefer, U. and A. Pülher, A broad host range mobilization System for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature BioTechnology volume 1, pages 784-791 (1983)).
  • the conjugation protocol is as follows:
  • a drop of culture of S17.1/suicide plasmid (donor strain) is deposited on a rich LB Agar medium (Luria-Miller, Roth, reference X968.2 containing 1.5% agar), and a drop of culture of the Pseudomonas putida strain (recipient strain) is deposited on the first drop.
  • the culture dish is incubated overnight at 30°C.
  • the drop is then diluted in 10 mM MgSO4 and the protocol is performed as described in Figure 6.
  • the conjugation plasmid pK18mobsacB is an integrative plasmid capable of integrating into the genome of the recipient bacterial strain in order to produce transconjugants.
  • the plasmid being resistant to Kanamycin, the transconjugant selection medium is LB Agar containing Ampicillin 100 mg/ml (Pseudomonas putida is naturally resistant to this antibiotic), and Kanamycin at 50 mg/ml (Kanamycin, ROTH reference T832.4; Ampicillin, EUROMEDEX, reference EU0400-D). This medium therefore makes it possible to select the Pseudomonas putida bacteria in which a plasmid has integrated.
  • the remainder of the protocol comprises the following steps:
  • genes listed below are inserted into Pseudomonas putida in order to allow the biosynthesis of phenylpropanoid compounds, such as for example coumaric acid or frambinone. These genes have been specifically identified and selected from known microorganisms. Genes are synthesized and codons are optimized for maximum expression in Pseudomonas putida.
  • DHAP 3-Deoxy-D-arabino-Heptulodonate 7-phosphate
  • SEQ ID NO: 10 sequence of the gene for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase with P160L mutation (Pseudomonas putida KT2440) encoding the DHAP synthase of sequence SEQ ID NO: 2.
  • SEQ ID NO: 11 sequence of the gene for 3-Deoxy-D-arabino-
  • DHAP Heptulodonate 7-phosphate (DHAP) synthase with double mutation P160L/Q164A (Pseudomonas putida KT2440) encoding the DHAP synthase of sequence SEQ ID NO:3.
  • SEQ ID NO: 12 sequence of the gene for 3-Deoxy-D-arabino-
  • DHAP Heptulodonate 7-phosphate
  • SEQ ID NO: 13 phenylalanine hydroxylase (phhA) gene (Pseudomonas putida KT2440) encoding phhA of sequence SEQ ID NO: 5.
  • SEQ ID NO: 14 tetrahydrobiopterin dehydratase (phhB) gene (Pseudomonas putida KT2440) encoding the phhB of sequence SEQ ID NO: 6.
  • SEQ ID NO: 15 tyrosine ammonia lyase gene (Rhodotorula glutinis) encoding beta-xylosidase of sequence SEQ ID NO: 7.
  • SEQ ID NO: 16 gene (fcs Pseudomonas putida KT2440 gene) for 4-coumarate-CoA ligase (4-CL) encoding 4-CL of sequence SEQ ID NO: 8.
  • SEQ ID NO: 17 benzalacetone synthase (BAS) gene (Rheum palmatum) encoding the BAS of sequence SEQ ID NO: 9.
  • BAS benzalacetone synthase
  • Example 3 In vivo activity of a genetically modified Pseudomonas putida strain according to the invention
  • a Pseudomonas putida KT2440 strain was genetically modified as described in example 1 so as to express the AroF-1 gene coding for DHAP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4, and to express the additional recombinant gene coding for a heterologous tyrosine ammonia lyase (TAL_RG_OPT) of sequence SEQ ID NO: 7.
  • TAL_RG_OPT heterologous tyrosine ammonia lyase
  • This strain is called “AroF-1-fbr P160L/S193A mutant”.
  • the activity of the AroF-l-fbr P160L/S193A mutant on the production of coumaric acid (CPA) or cinnamic acid (CA) was determined by measuring the quantities produced of these acids compared to a Pseudomonas strain putida KT2440 genetically modified so as to express the wild-type AroF-1 enzyme and which serves as a control (Mutant AroF-1-WT).
  • the AroF-1-fbr P160L/S193A mutant was modified in order to express the additional recombinant genes coding for a phenylalanine hydroxylase (phhA) of sequence SEQ ID NO: 5 and a tetrahydrobiopterin dehydratase (phhB) of sequence SEQ ID NO: 6.
  • the genes coding for these enzymes were cloned into a plasmid and expressed under the control of the inducible araC/pBADopt promoter, the induction being carried out with 0.5% arabinose: plasmid pC2F387.
  • This strain is called “optimized AroF-1-fbr mutant”.
  • the optimized AroF-l-fbr mutant makes it possible to obtain a much greater production of total phenolic acids than the AroF-l-fbr P160L/S193A mutant and the AroF-l-WT phhA mutant. /B.
  • coumaric acid represents almost all of the total phenolics produced and this is advantageous because cinnamic acid is not an industrially exploitable compound for the production of phenylpropanoid compounds.
  • - nplcit2 Larsen et al., 1991, Acta Agric. scand. 41, 447-54).
  • - nplcit3 Kikuchi Y et al. “Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli.” Appl Environ Microbiol 63:761-762 (1997).): P160L, Q164A, S190A, G191K, S193A, I225P.
  • - nplcitl 9 (Gibson et al., 2009).
  • - nplcit20 Schàfer A, et al., “Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum”. Gene 1994 Jul 22; 145(1):69-73)

Abstract

The present invention relates to the field of the production of phenylpropanoid compounds, especially that of genetically modified strains for the production of phenylpropanoid compounds. In particular, the invention relates to a genetically modified strain of Pseudomonas putida comprising a mutated AroF-I gene encoding 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP), and to the use thereof for the synthesis of phenylpropanoid compounds, in particular coumaric acid or frambinone.

Description

Description Description
Titre : Biosynthèse de composés phénylpropanoïdesTitle: Biosynthesis of phenylpropanoid compounds
Domaine technique Technical area
[0001] La présente invention relève du domaine de la production de composés phénylpropanoïdes, et notamment celui des souches génétiquement modifiées pour la production de composés phénylpropanoïdes tel que l’acide coumarique ou la frambinone. The present invention falls within the field of the production of phenylpropanoid compounds, and in particular that of strains genetically modified for the production of phenylpropanoid compounds such as coumaric acid or frambinone.
Technique antérieure Prior technique
[0002] La bioproduction d’arômes et fragrances « naturels » représente depuis de nombreuses années un axe de recherche important pour l’industrie afin de répondre aux consommateurs soucieux d’être de plus en plus éco-responsables. La biologie de synthèse, notamment par l’intermédiaire de microorganismes, permet cette production naturelle, mais les rendements ne sont pas toujours suffisants pour une production à grande échelle. [0002] The bioproduction of “natural” flavorings and fragrances has for many years been an important area of research for the industry in order to respond to consumers who are concerned about being more and more eco-responsible. Synthetic biology, in particular through microorganisms, allows this natural production, but the yields are not always sufficient for large-scale production.
[0003] La saveur de la framboise (Rubus idaeus) est liée à plus de 200 composés, mais la frambinone, un composé phénolique naturel, est le composé qui a le plus d'impact, définissant son goût caractéristique (Klesk et al., 2004, J. Agric. Food Chem. 52, 5155- 61 ; Larsen et al., 1991 , Acta Agric. Scand. 41 , 447-54). [0003] The flavor of raspberry (Rubus idaeus) is linked to more than 200 compounds, but frambinone, a natural phenolic compound, is the compound that has the most impact, defining its characteristic taste (Klesk et al., 2004, J. Agric. Food Chem. 52, 5155-61; Larsen et al., 1991, Acta Agric. Scand. 41, 447-54).
[0004] Dans la mesure où elle n'est présente qu'en petite quantité dans les framboises (1 -4 mg par kg de fruits), la frambinone naturelle est d'une grande valeur (Larsen et al., 1991 ). Cependant, comme sa disponibilité naturelle est limitée, sa production biotechnologique est hautement désirable. [0004] Insofar as it is only present in small quantities in raspberries (1-4 mg per kg of fruit), natural frambinone is of great value (Larsen et al., 1991). However, as its natural availability is limited, its biotechnological production is highly desirable.
[0005] Dans ce contexte, la voie de biosynthèse de composés phénylpropanoïdes, notamment la frambinone, peut être reconstituée au sein d’un microorganisme grâce à l’insertion de gènes hétérologues codants pour certaines enzymes clés de ladite voie. [0005] In this context, the pathway for the biosynthesis of phenylpropanoid compounds, in particular frambinone, can be reconstituted within a microorganism thanks to the insertion of heterologous genes coding for certain key enzymes of said pathway.
[0006] La tyrosine est un acide aminé important pour la biosynthèse de composés phénylpropanoïdes car il est notamment le précurseur de l’acide coumarique ou de la frambinone. [0007] En effet, la frambinone peut être obtenue à partir de l'acide aminé aromatique L-tyrosine comme substrat initial via une voie de biosynthèse en 4 étapes. [0006] Tyrosine is an important amino acid for the biosynthesis of phenylpropanoid compounds because it is in particular the precursor of coumaric acid or frambinone. [0007] In fact, frambinone can be obtained from the aromatic amino acid L-tyrosine as an initial substrate via a 4-step biosynthetic pathway.
[0008] Selon la première étape, la tyrosine est désaminée par une tyrosine ammonia lyase (TAL, EC 4.3.1.23) pour former de l'acide coumarique. Catalysée par une 4- coumarate:CoA ligase (4CL, EC 6.2.1.12), une molécule de Coenzyme A (CoA) est greffée sur l'acide coumarique. Le coumaroyl-CoA est alors converti par une benzalacétone synthase (BAS, EC 2.3.1.212) en 4-hydroxy benzalacétone. Cette réaction est une condensation décarboxylative et utilise une unité de malonyl- CoA en tant que co- substrat. L'étape finale est la réduction du 4-hydroxy benzalacétone en frambinone par une benzalacétone réductase. [0008] According to the first step, the tyrosine is deaminated by a tyrosine ammonia lyase (TAL, EC 4.3.1.23) to form coumaric acid. Catalyzed by a 4-coumarate:CoA ligase (4CL, EC 6.2.1.12), a molecule of Coenzyme A (CoA) is grafted onto coumaric acid. Coumaroyl-CoA is then converted by a benzalacetone synthase (BAS, EC 2.3.1.212) into 4-hydroxy benzalacetone. This reaction is a decarboxylative condensation and uses a malonyl-CoA unit as a co-substrate. The final step is the reduction of 4-hydroxy benzalacetone to frambinone by a benzalacetone reductase.
[0009] Ainsi, le développement de souche surproductrice de tyrosine comme plateforme pour la production de composés phénylpropanoïdes, notamment la frambinone, est un point de départ crucial pour la biosynthèse de ces composés. [0009] Thus, the development of a strain that overproduces tyrosine as a platform for the production of phenylpropanoid compounds, in particular frambinone, is a crucial starting point for the biosynthesis of these compounds.
[0010] Cependant, la production de tyrosine chez les microorganismes est tout aussi complexe que très finement régulée. En effet, certaines enzymes de la voie de production de la tyrosine, également connue sous le nom de voie du shikimate (en anglais « shikimate pathway »), sont régulées négativement par cet acide aminé qui inhibe leur activité via la fixation sur un site d’inhibition lorsque la concentration devient trop élevée dans la cellule. Ce système de régulation lorsque la tyrosine est présente en trop grande quantité dans le microorganisme est appelée retro- régulation négative. [0010] However, the production of tyrosine in microorganisms is just as complex as it is very finely regulated. Indeed, certain enzymes of the tyrosine production pathway, also known as the shikimate pathway, are negatively regulated by this amino acid, which inhibits their activity via binding to a site of inhibition when the concentration becomes too high in the cell. This regulatory system when tyrosine is present in too large a quantity in the microorganism is called negative retro-regulation.
[0011] Malgré tout, il devrait être possible d’obtenir par mutagenèse des enzymes « insensibles » à cette inhibition et donc de déréguler la voie de production de tyrosine. Ces mutants insensibles à la rétro-régulation négative de la tyrosine sont appelés mutant fbr pour « feedback résistant ». [0011] Nevertheless, it should be possible to obtain, by mutagenesis, enzymes that are "insensitive" to this inhibition and therefore to deregulate the tyrosine production pathway. These mutants insensitive to negative feedback regulation of tyrosine are called fbr mutant for "feedback resistant".
[0012] De nombreux articles décrivent la dérégulation de cette voie chez E. coli et une enzyme a été particulièrement très étudiée : la DAHP synthase (DAHP = 3- Deoxy-D-arabino-Heptulodonate 7-phosphate). C’est la première réaction de la voie du shikimate qui consiste en la condensation d’un phospho(enol)pyruvate (PEP) et d’un erythrose-4-phosphate (E4P) en DAHP. [0013] Cette activité DAHP synthase est réalisée par l’intermédiaire de 3 isoenzymes chez E. coli : AroG (retro-régulée par la phénylalanine), AroF (retro- régulée par la tyrosine) et AroH (rétro-régulée par le tryptophane). Les structures de ces protéines sont connues et les sous-structures (ainsi que les acides aminés impliqués) liées à la retro-régulation sont également très bien décrits dans la littérature. [0012] Numerous articles describe the deregulation of this pathway in E. coli and one enzyme has been particularly extensively studied: DAHP synthase (DAHP=3-Deoxy-D-arabino-Heptulodonate 7-phosphate). It is the first reaction of the shikimate pathway which consists of the condensation of a phospho(enol)pyruvate (PEP) and an erythrose-4-phosphate (E4P) to DAHP. This DAHP synthase activity is carried out via 3 isoenzymes in E. coli: AroG (retro-regulated by phenylalanine), AroF (retro-regulated by tyrosine) and AroH (retro-regulated by tryptophan) . The structures of these proteins are known and the substructures (as well as the amino acids involved) related to retro-regulation are also very well described in the literature.
[0014] Kikuchi et al., 1997 et Cui et al., 2019, ont identifié, décrit et étudié chez E. coli respectivement des mutants AroGfbr et AroFfbr insensibles à la rétro-régulation de la phenylalanine et de la tyrosine. Des mutants fbr de la protéine TyrA (mutant tyrAfbr) ont également été décrits chez E. coli par Lütke-Eversloh and Stephanopoulos, (2005) (Lütke-Eversloh and Stephanopoulos, Appl. Environ Microbiol. 2005 Nov ; 71 (11 ) : 7224-8). [0014] Kikuchi et al., 1997 and Cui et al., 2019, identified, described and studied in E. coli respectively AroGfbr and AroFfbr mutants insensitive to the retro-regulation of phenylalanine and tyrosine. Fbr mutants of the TyrA protein (tyrAfbr mutant) have also been described in E. coli by Lütke-Eversloh and Stephanopoulos, (2005) (Lütke-Eversloh and Stephanopoulos, Appl. Environ Microbiol. 2005 Nov; 71 (11): 7224 -8).
[0015] En 2007, Lütke-Eversloh and Stephanopoulos (Lütke-Eversloh and Stephanopoulos, Appl. Environ Microbiol. 2007 Nov ; 75(1 ) : 103-10) ont également décrit des souches d’E. coli surproductrices de tyrosine obtenues en combinant ces différentes enzymes mutées. Ces souches ont été utilisées pour produire des phénylpropanoïdes comme l’acide coumarique (Kang et al., 2012), ou la naringenine via notamment une mutation du gène rpoA en plus des mutations aroGfbr et tyrAfbr (Santos et al., 2011 ). [0015] In 2007, Lütke-Eversloh and Stephanopoulos (Lütke-Eversloh and Stephanopoulos, Appl. Environ Microbiol. 2007 Nov; 75(1): 103-10) also described strains of E. coli overproducing tyrosine obtained by combining these different mutated enzymes. These strains have been used to produce phenylpropanoids such as coumaric acid (Kang et al., 2012), or naringenin via in particular a mutation of the rpoA gene in addition to the aroGfbr and tyrAfbr mutations (Santos et al., 2011).
[0016] Une vue d’ensemble des modifications effectuées pour obtenir des souches d’E. coli surproductrices de tyrosine est bien décrite par l’article « Modular engineering of L-tyrosine production in E. coli » (Juminaga et al., 2011 ). [0016] An overview of the modifications made to obtain strains of E. coli that overproduce tyrosine is well described by the article “Modular engineering of L-tyrosine production in E. coli” (Juminaga et al., 2011).
[0017] Des composés phénylpropanoïdes ont également été synthétisés à partir de souches Saccharomyces cerevisiae qui surexpriment la tyrosine, comme décrit par Rodriguez et al., 2015. [0017] Phenylpropanoid compounds have also been synthesized from Saccharomyces cerevisiae strains which overexpress tyrosine, as described by Rodriguez et al., 2015.
[0018] Le document GB 2416 769 décrit la possibilité de produire de la frambinone à l'aide de microorganismes contenant des gènes codant pour les enzymes 4CL et BAS dont au moins une est de source hétérologue. Le microorganisme préféré est E. coli (souche BL21 ) et peut en outre comprendre une séquence codant BAR, C4H, PAL et/ou CHS, la séquence codant BAR étant avantageusement endogène. [0019] Cependant, il apparait que les souches E. coli ou S. cerevisiae ne tolèrent pas bien la toxicité des composés phénylpropanoïdes et ne sont donc pas les microorganismes les mieux adaptés pour leur production. [0018] Document GB 2416 769 describes the possibility of producing frambinone using microorganisms containing genes coding for the enzymes 4CL and BAS, at least one of which is from a heterologous source. The preferred microorganism is E. coli (strain BL21) and may also comprise a sequence encoding BAR, C4H, PAL and/or CHS, the sequence encoding BAR being advantageously endogenous. [0019] However, it appears that the E. coli or S. cerevisiae strains do not tolerate the toxicity of phenylpropanoid compounds well and are therefore not the microorganisms best suited for their production.
[0020] Les bactéries du genre Pseudomonas sont plus tolérantes à ces molécules hautement toxiques, notamment la bactérie Pseudomonas putida (Calera et al., 2017). En revanche, les enzymes impliquées dans la production d’acides aminés aromatiques chez P. putida sont peu décrites. [0020] Bacteria of the Pseudomonas genus are more tolerant to these highly toxic molecules, in particular the bacterium Pseudomonas putida (Calera et al., 2017). On the other hand, the enzymes involved in the production of aromatic amino acids in P. putida are poorly described.
[0021] Par conséquent, la surproduction chez P. putida de dérivés de la voie du shiikimate, tel que la tyrosine, implique l’utilisation de mutants AroGfbr et TyrAfbr provenant de chez E. coli, ce qui n’est pas très efficace (Calera et al., 2016). [0021] Consequently, the overproduction in P. putida of derivatives of the shiikimate pathway, such as tyrosine, involves the use of AroGfbr and TyrAfbr mutants from E. coli, which is not very efficient ( Calera et al., 2016).
[0022] La surproduction de tyrosine et de phénol a été décrite chez la bactérie Pseudomonas taiwanensis VLB120 grâce à la mise en oeuvre de mutations ponctuelles dans 3 gènes : trpEP290S, aroF-l P148L et pheAT310I (Wynands et al., Metab Eng. 2018 May ; 47 :121 -133). The overproduction of tyrosine and phenol has been described in the bacterium Pseudomonas taiwanensis VLB120 thanks to the implementation of point mutations in 3 genes: trpEP290S, aroF-l P148L and pheAT310I (Wynands et al., Metab Eng. 2018 May; 47:121-133).
[0023] Cependant, il existe toujours un besoin de développer des nouvelles enzymes et de nouvelles souches de Pseudomonas putida surproductrices de tyrosine permettant la production de composés phénylpropanoïde, notamment l’acide coumarique et la frambinone. However, there is still a need to develop new enzymes and new strains of Pseudomonas putida that overproduce tyrosine allowing the production of phenylpropanoid compounds, in particular coumaric acid and frambinone.
Problème technique Technical problem
[0024] Les souches surproductrices de tyrosine développées à ce jour sont essentiellement des souches E. coli et S. Cerevisiae. Cependant, ces souches ne tolèrent pas bien la toxicité des composés phénylpropanoïdes et ne sont donc pas les microorganismes les mieux adaptés pour leur production. [0024] The tyrosine-overproducing strains developed to date are essentially E. coli and S. cerevisiae strains. However, these strains do not tolerate the toxicity of phenylpropanoid compounds well and are therefore not the best suited microorganisms for their production.
[0025] Ainsi, il existe un besoin particulier de développer de nouvelles souches surproductrices de tyrosine permettant la production de composés phénylpropanoïdes. [0025] Thus, there is a particular need to develop new strains that overproduce tyrosine allowing the production of phenylpropanoid compounds.
[0026] La présente divulgation vient améliorer la situation. Résumé [0026] This disclosure improves the situation. Summary
[0027] Un des aspects de la présente invention porte sur une souche génétiquement modifiée de Pseudomonas putida comprenant un gène AroF-l muté codant pour la 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase ayant la séquence SEQ ID NO :1 et présentant au moins une mutation P160L, une double mutation P160L/Q164A, ou une double mutation P160L/S193A, de préférence une double mutation P160L/S193A. One of the aspects of the present invention relates to a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene encoding 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase having the sequence SEQ ID NO:1 and having at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/S193A double mutation.
[0028] Un autre aspect de l’invention porte sur un procédé de synthèse de composé phénylpropanoïde ou d’un dérivé de phénylpropanoïde par la mise en oeuvre d’une souche génétiquement modifiée selon l’invention de Pseudomonas putida. Another aspect of the invention relates to a method for synthesizing a phenylpropanoid compound or a phenylpropanoid derivative by using a genetically modified strain according to the invention of Pseudomonas putida.
[0029] Enfin, l’invention porte également sur l’utilisation d’une souche génétiquement modifiée de Pseudomonas putida pour la synthèse de composé phénylpropanoïdes. Finally, the invention also relates to the use of a genetically modified strain of Pseudomonas putida for the synthesis of phenylpropanoid compounds.
[0030] Les caractéristiques exposées dans les paragraphes suivants peuvent, optionnellement, être mises en oeuvre. Elles peuvent être mises en oeuvre indépendamment les unes des autres ou en combinaison les unes avec les autres : [0030] The characteristics described in the following paragraphs can optionally be implemented. They can be implemented independently of each other or in combination with each other:
Brève description des figures Brief description of figures
[0031] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : Fig. 1 [0031] Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings, in which: FIG. 1
[0032] [Fig. 1] Graphique du PEP consommé en mM en présence ou absence d’acide aminé aromatique par la protéine AroF-l sauvage (WT). Les résultats présentés sont ceux de trois réplicas indépendants. [0032] [Fig. 1] Graph of PEP consumed in mM in the presence or absence of aromatic amino acid by the wild-type AroF-1 protein (WT). The results shown are from three independent replicates.
Fig. 2 [0033] [Fig. 2] Graphique représentant la part de PEP consommé en mM en présence ou absence d’acide aminé aromatique par la protéine aroF-l WT comparativement aux simples mutants AroF-l-G191 , AroF-l-P160 et AroF-l-S193. Les résultats présentés sont ceux de trois réplicas indépendants. Fig. 3 Fig. 2 [0033] [Fig. 2] Graph representing the proportion of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-1 WT protein compared with the simple mutants AroF-1-G191, AroF-1-P160 and AroF-1-S193. The results shown are from three independent replicates. Fig. 3
[0034] [Fig. 3] Graphique représentant la part de PEP consommé en mM en présence ou absence d’acide aminé aromatique par la protéine aroF-l WT comparativement aux doubles mutants AroF-l-P160_G191 , AroF-l-P160L_Q164, AroF-l-P160_S190 et AroF-l-P160_S193. Les résultats présentés sont ceux de trois réplicas indépendants. [0034] [Fig. 3] Graph representing the share of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-l WT protein compared to the double mutants AroF-l-P160_G191, AroF-l-P160L_Q164, AroF-l-P160_S190 and AroF -l-P160_S193. The results shown are from three independent replicates.
Fig. 4 Fig. 4
[0035] [Fig. 4] Graphique représentant la part de PEP consommé en mM en présence ou absence d’acide aminé aromatique par la protéine aroF-l WT comparativement aux simples mutants AroF-l-P160 et AroF-l-S193 et au double mutant AroF-l-P160_S193. Les résultats présentés sont ceux de trois réplicas indépendants. [0035] [Fig. 4] Graph representing the share of PEP consumed in mM in the presence or absence of aromatic amino acid by the aroF-l WT protein compared to the simple mutants AroF-l-P160 and AroF-l-S193 and to the double mutant AroF-l- P160_S193. The results shown are from three independent replicates.
Fig. 5 Fig. 5
[0036] [Fig. 5] présente le protocole de conjugaison utilisable pour transformer et modifier génétiquement P. putida. [0036] [Fig. 5] presents the conjugation protocol that can be used to transform and genetically modify P. putida.
Fig. 6 Fig. 6
[0037] [Fig. 6] Graphique présentant la production d’acide coumarique (PCA) et d’acide cinnamique (CA) par des souches de Pseudomonas putida exprimant les enzymes AroF-l WT/TAL (aroF-l WT) et aroF-l fbr P160L/S193A/TAL (aroF-l fbr). Fig. 7 [0037] [Fig. 6] Graph showing the production of coumaric acid (PCA) and cinnamic acid (CA) by strains of Pseudomonas putida expressing the enzymes AroF-l WT/TAL (aroF-l WT) and aroF-l fbr P160L/S193A /TAL (aroF-l fbr). Fig. 7
[0038] [Fig. 7] Graphique présentant la production de phénoliques totaux et la proportion d’acide coumarique parmi les phénolique totaux (%PCA) par des souches de Pseudomonas putida exprimant les enzymes AroF-l WT/TAL (aroF-l WT), AroF-l WT/TAL + plasmide vide (aroF-l WT + contrôle), AroF-l WT/TAL + plasmide phhA/B (aroF-l WT + phhA/B), aroF-l fbr P160L/S193A/TAL (aroF-l fbr), aroF-l fbr P160L/S193A/TAL + plasmide vide (aroF-l fbr + contrôle), et aroF-l fbr P160L/S193A/TAL + plasmide phhA/B (aroF-l fbr + phhA/B). L’expression des gènes phhA/B à partir du promoteur araC/pBAD est induite ou non. [0038] [Fig. 7] Graph presenting the production of total phenolics and the proportion of coumaric acid among total phenolics (%PCA) by strains of Pseudomonas putida expressing the enzymes AroF-l WT/TAL (aroF-l WT), AroF-l WT /TAL + empty plasmid (aroF-l WT + control), AroF-l WT/TAL + phhA/B plasmid (aroF-l WT + phhA/B), aroF-l fbr P160L/S193A/TAL (aroF-l fbr ), aroF-1 fbr P160L/S193A/TAL + empty plasmid (aroF-1 fbr + control), and aroF-1 fbr P160L/S193A/TAL + phhA/B plasmid (aroF-1 fbr + phhA/B). The expression of the phhA/B genes from the araC/pBAD promoter is induced or not.
Description des modes de réalisation [0039] Un premier objet de l’invention concerne donc une souche génétiquement modifiée de Pseudomonas putida comprenant un gène AroF-l muté codant pour la 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase dont la séquence présente au moins 80% d’identité avec la séquence SEQ ID NO :1 et présentant au moins une mutation P160L, une double mutation P160L/Q164A, ou une double mutation P160L/S193A, de préférence une double mutation P160L/S193A. Description of embodiments A first object of the invention therefore relates to a genetically modified strain of Pseudomonas putida comprising a mutated AroF-l gene coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase whose sequence present at the identity with at least 80% with the sequence SEQ ID NO: 1 and exhibiting at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/S193A double mutation.
[0040] Au sens de la présente description, les expressions « souche génétiquement modifiée de Pseudomonas putida », « souche modifiée de Pseudomonas putida », « souche génétiquement modifiée », ou encore « souche modifiée » sont considérées comme synonymes les unes des autres. Within the meaning of the present description, the expressions “genetically modified strain of Pseudomonas putida”, “modified strain of Pseudomonas putida”, “genetically modified strain”, or even “modified strain” are considered to be synonyms of one another.
[0041] En particulier, on entend par « souche génétiquement modifiée », une souche qui comprend soit (i) au moins un acide nucléique recombinant, ou transgène, intégré de manière stable dans son génome, et/ou présent sur un vecteur, par exemple un vecteur plasmidique, soit (ii) une ou plusieurs mutations non naturelles par insertion, substitution ou délétion de nucléotides, lesdites mutations étant obtenues par des techniques de transformation ou par des techniques d’édition de gènes connues de l’homme du métier. In particular, the term "genetically modified strain" means a strain which comprises either (i) at least one recombinant nucleic acid, or transgene, stably integrated into its genome, and/or present on a vector, for example a plasmid vector, or (ii) one or more unnatural mutations by insertion, substitution or deletion of nucleotides, said mutations being obtained by transformation techniques or by gene editing techniques known to those skilled in the art.
[0042] En effet, les techniques de modifications génétiques par transformation, mutagenèse ou édition de gènes sont bien connues de l’homme du métier et sont décrites par exemple dans « Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation », Journal of Zhejiang Univ- Sci B (Biomed & Biotechnol) 2016 17(2):83-99., et dans Martinez-Garcia and de Lorenzo, « Pseudomonas putida in the quest of programmable chemistry », Current Opinion in Biotechnology, 59 :111 -121 , 2019. [0042] Indeed, the techniques of genetic modification by transformation, mutagenesis or editing of genes are well known to those skilled in the art and are described for example in "Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation », Journal of Zhejiang Univ- Sci B (Biomed & Biotechnol) 2016 17(2):83-99., and in Martinez-Garcia and de Lorenzo, « Pseudomonas putida in the quest of programmable chemistry », Current Opinion in Biotechnology, 59:111-121, 2019.
[0043] De préférence, pour l’intégration des gènes mutés ou recombinants chez Pseudomonas putida, on utilisera la technique de mutagenèse décrite dans l’exemple 2. Preferably, for the integration of mutated or recombinant genes in Pseudomonas putida, the mutagenesis technique described in Example 2 will be used.
[0044] En particulier, une souche génétiquement modifiée peut comprendre un acide nucléique modifiant l’expression d’un ou plusieurs gènes naturellement exprimés chez Pseudomonas putida. [0045] Selon un mode de réalisation particulier, une souche génétiquement modifiée peut comprendre un acide nucléique codant une ou plusieurs enzymes, non naturellement exprimée chez Pseudomonas putida. [0044] In particular, a genetically modified strain may comprise a nucleic acid modifying the expression of one or more genes naturally expressed in Pseudomonas putida. According to a particular embodiment, a genetically modified strain may comprise a nucleic acid encoding one or more enzymes, not naturally expressed in Pseudomonas putida.
[0046] Les souches sauvages de P. putida KT2440 sont disponibles par exemple dans la Banque de souches NBRC (National Institute of Technology and Evaluation Biological Resource center https://www.nite.go.jp/en/nbrc/, NBRC100650). The wild strains of P. putida KT2440 are available for example in the NBRC strain bank (National Institute of Technology and Evaluation Biological Resource center https://www.nite.go.jp/en/nbrc/, NBRC100650) .
[0047] De plus, des souches de Pseudomonas putida ou Pseudomonas taiwanensis optimisées pour la production de tyrosine sont connues de l’homme du métier qui pourra les utiliser comme souche de départ pour obtenir les souches génétiquement modifiées selon l’invention (Calera et al., 2016 ; Wierckx et al., 2005, Appl Environ Microbiol. 71 (12) :8221 -7 ; Wynands et al., 2018 ; Otto et al. 2019, Front Bioeng Biotechnol Nov 20 ;7 :312). In addition, strains of Pseudomonas putida or Pseudomonas taiwanensis optimized for the production of tyrosine are known to those skilled in the art who can use them as a starting strain to obtain the genetically modified strains according to the invention (Calera et al ., 2016; Wierckx et al., 2005, Appl Environ Microbiol. 71 (12):8221-7; Wynands et al., 2018; Otto et al. 2019, Front Bioeng Biotechnol Nov 20;7:312).
[0048] Au sens de la présente invention, le pourcentage d’identité fait référence au pourcentage de résidus identiques dans une séquence nucléotidique ou d’acides aminés sur un fragment donné après alignement et comparaison avec une séquence de référence. Pour la comparaison, on utilise un algorithme d’alignement et les séquences à comparer sont entrées avec les paramètres correspondants de l’algorithme. Les paramètres par défaut de l’algorithme peuvent être utilisés. Within the meaning of the present invention, the percentage of identity refers to the percentage of identical residues in a nucleotide or amino acid sequence on a given fragment after alignment and comparison with a reference sequence. For the comparison, an alignment algorithm is used and the sequences to be compared are entered with the corresponding parameters of the algorithm. Default algorithm settings can be used.
[0049] De préférence, pour une comparaison de séquence d’acide nucléique et la détermination d’un pourcentage d’identité, l’algorithme blastn tel que décrit dans https://blast.ncbi.nlm.nih.gov/Blast.cgi avec les paramètres par défaut est utilisé[0049] Preferably, for nucleic acid sequence comparison and determination of percent identity, the blastn algorithm as described in https://blast.ncbi.nlm.nih.gov/Blast. cgi with default settings is used
[0050] Au sens de la présente invention, on entend par « gène AroF1 muté », un acide nucléique comprenant au moins une partie codant une version mutée de la 3- Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase sous contrôle d’un promoteur permettant son expression dans la souche génétiquement modifiée. For the purposes of the present invention, the term “mutated AroF1 gene” means a nucleic acid comprising at least one part encoding a mutated version of 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase under control of a promoter allowing its expression in the genetically modified strain.
[0051] Au sens de la présente invention, on entend par 3-Deoxy-D-arabino- Heptulodonate 7-phosphate (DAHP) synthase, les enzymes (EC 2.5.1 .54) capables de réaliser chez les bactéries la première réaction de la voie du shikimate qui consiste en la condensation d’un phospho(enol)pyruvate (PEP) et d’un erythrose-4- phosphate (E4P) en DAHP. [0052] Selon un mode de réalisation particulier, la souche génétiquement modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAHP synthase dont la séquence d’acides aminés présente au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO :1 , et présentant au moins une mutation P160L, une double mutation P160L/Q164A, ou une double mutation P160L/S193A, de préférence une double mutation P160L/S193A. For the purposes of the present invention, the term 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase means the enzymes (EC 2.5.1.54) capable of carrying out in bacteria the first reaction of the shikimate pathway which consists of the condensation of a phospho(enol)pyruvate (PEP) and an erythrose-4-phosphate (E4P) to DAHP. According to a particular embodiment, the genetically modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAHP synthase, the amino acid sequence of which has at least 80%, 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 1, and exhibiting at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/ S193A.
[0053] Le gène AroF-l endogène à Pseudomonas putida code pour la DAFIP synthase de séquence d’acides aminés SEQ ID NO :1 . Dans un mode de réalisation particulier, la souche génétiquement modifiée selon la présente invention peut comprendre donc, en plus du gène AroF-l endogène, au moins une séquence d’acide nucléique recombinante AroF-l mutée codant une protéine mutée comprenant la mutation P160L, la double mutation P160L/Q164A, ou la double mutation P160L/S193A, de préférence la double mutation P160L/S193A. The AroF-l gene endogenous to Pseudomonas putida codes for the DAFIP synthase of amino acid sequence SEQ ID NO: 1. In a particular embodiment, the genetically modified strain according to the present invention may therefore comprise, in addition to the endogenous AroF-l gene, at least one mutated AroF-l recombinant nucleic acid sequence encoding a mutated protein comprising the P160L mutation, the P160L/Q164A double mutation, or the P160L/S193A double mutation, preferably the P160L/S193A double mutation.
[0054] Selon un mode de réalisation particulier, la souche génétiquement modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase comprenant une mutation P160L telle que définie par la séquence d’acides aminés SEQ ID NO :2. According to a particular embodiment, the genetically modified strain of Pseudomonas putida comprises a mutated AroF-l gene coding for DAFIP synthase comprising a P160L mutation as defined by the amino acid sequence SEQ ID NO: 2.
[0055] Selon une variante de ce mode de réalisation, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase dont la séquence présente au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 2 et contient la mutation P160L. According to a variant of this embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase, the sequence of which has at least 80%, 85%, 90%, 95% and very particularly , at least 98% identity with the sequence SEQ ID NO: 2 and contains the P160L mutation.
[0056] Selon un autre mode de réalisation particulier, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase et présentant au moins une double mutation P160L/Q164A. Selon ce mode de réalisation, le gène AroF-l muté code pour la DAFIP synthase comprenant la double mutation P160L/Q164A défini par la séquence d’acides aminés SEQ ID NO: 3. According to another particular embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase and exhibiting at least one P160L/Q164A double mutation. According to this embodiment, the mutated AroF-l gene codes for DAFIP synthase comprising the double mutation P160L/Q164A defined by the amino acid sequence SEQ ID NO: 3.
[0057] Selon une variante de ce mode de réalisation, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase dont la séquence présente au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 3 et contient la double mutation P160L/Q164A. According to a variant of this embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase whose sequence has at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 3 and contains the double mutation P160L/Q164A.
[0058] Selon un mode de réalisation préféré, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAHP synthase présentant au moins une double mutation P160L/S193A. Selon ce mode de réalisation, le gène AroF-l muté code pour la DAFIP synthase comprenant la double mutation P160L/S193A défini par la séquence d’acide aminés SEQ ID NO: 4. According to a preferred embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAHP synthase exhibiting at least one double P160L/S193A mutation. According to this embodiment, the mutated AroF-l gene codes for DAFIP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4.
[0059] Selon une variante de ce mode de réalisation, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase dont la séquence présente au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 4 et contient la double mutation P160L/S193A. According to a variant of this embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase, the sequence of which has at least 80%, 85%, 90%, 95% and most particularly , at least 98% identity with the sequence SEQ ID NO: 4 and contains the double mutation P160L/S193A.
[0060] Dans un mode de réalisation, qui peut être combiné aux précédents, la séquence codante du gène AroF-l mutée est placée sous le contrôle d’un promoteur hétérologue, en particulier un promoteur constitutif ou inductible, par exemple choisi parmi les promoteurs ptrc, xyls/pm ou araC/pBAD, qui permet de surexprimer le gène AroF-l muté dans la souche génétiquement modifiée selon l’invention. Dans un mode de réalisation préféré, la séquence codante du gène AroF-l muté dans la souche génétiquement modifiée selon l’invention est insérée de manière à rendre non fonctionnel le gène AroFI, par exemple par disruption du gène AroFI, ou par délétion du gène AroFI et en particulier de tout ou partie de sa séquence codante. In one embodiment, which can be combined with the previous ones, the coding sequence of the mutated AroF-1 gene is placed under the control of a heterologous promoter, in particular a constitutive or inducible promoter, for example chosen from promoters ptrc, xyls/pm or araC/pBAD, which makes it possible to overexpress the mutated AroF-1 gene in the genetically modified strain according to the invention. In a preferred embodiment, the coding sequence of the mutated AroF-1 gene in the genetically modified strain according to the invention is inserted in such a way as to render the AroFI gene non-functional, for example by disruption of the AroFI gene, or by deletion of the gene AroFI and in particular all or part of its coding sequence.
[0061] Le gène AroFI code pour une autre DAFIP synthase (isoenzyme d’AroF). Ainsi, dans un mode de réalisation, la souche génétiquement modifiée selon la présente invention comprend le gène AroFI délété ou disrupté et au moins un acide nucléique recombinant comprenant le gène AroF-l muté comme décrit précédemment ou une séquence codante du gène AroF-1 muté. The AroFI gene encodes another DAFIP synthase (isoenzyme of AroF). Thus, in one embodiment, the genetically modified strain according to the present invention comprises the deleted or disrupted AroFI gene and at least one recombinant nucleic acid comprising the mutated AroF-1 gene as described above or a coding sequence of the mutated AroF-1 gene .
[0062] De manière tout à fait avantageuse, par la mise en oeuvre de mutations spécifiques, la Demanderesse a développé une souche de Pseudomonas putida capable d’exprimer une DAFIP synthase recombinante insensible à la rétro régulation négative par la tyrosine, dérégulant ainsi la voie de production de la tyrosine. En d’autres termes, la présente invention permet la réalisation de souches surproductrices de tyrosine, comme produit final ou comme produit intermédiaire dans la synthèse de composés phénylpropanoïdes. En particulier, cette surproduction est particulièrement avantageuse pour la production de composés phénylpropanoïdes par les souches modifiées selon l’invention. Quite advantageously, by implementing specific mutations, the Applicant has developed a strain of Pseudomonas putida capable of expressing a recombinant DAFIP synthase insensitive to negative retroregulation by tyrosine, thus deregulating the pathway production of the tyrosin. In other words, the present invention allows the production of strains that overproduce tyrosine, as a final product or as an intermediate product in the synthesis of phenylpropanoid compounds. In particular, this overproduction is particularly advantageous for the production of phenylpropanoid compounds by the strains modified according to the invention.
[0063] Les composés phénylpropanoïdes sont une classe de composés organiques, dérivés de plantes, et biosynthétisés à partir de la phénylalanine ou de la tyrosine. A titre d’exemple de composés phénylpropanoïdes, on peut notamment citer l’acide coumarique, le p-coumaroyl-coA, le 4-hydroxybenzalacetone, la frambinone, la zingerone, la vanilline, les flavonoïdes et les stilbénoïdes. [0063] Phenylpropanoid compounds are a class of organic compounds, derived from plants, and biosynthesized from phenylalanine or tyrosine. Examples of phenylpropanoid compounds include coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalacetone, frambinone, zingerone, vanillin, flavonoids and stilbenoids.
[0064] On entend par « souche surproductrice de tyrosine » au sens de la présente invention, une souche modifiée de Pseudomonas putida capable de produire la tyrosine en quantité supérieure comparativement à une souche Pseudomonas putida sauvage comprenant le gène AroF-l codant la DHAP synthase de séquence d’acides aminés SEQ ID NO :1 (gène non muté), soit en tant que produit final, soit en tant que produit intermédiaire. The term "tyrosine overproducing strain" within the meaning of the present invention, a modified strain of Pseudomonas putida capable of producing tyrosine in a greater quantity compared to a wild-type Pseudomonas putida strain comprising the AroF-1 gene encoding DHAP synthase of amino acid sequence SEQ ID NO: 1 (unmutated gene), either as a final product or as an intermediate product.
[0065] Afin de pouvoir convertir la tyrosine en composé phénylpropanoïde, tel que l’acide coumarique, la souche modifiée selon l’invention peut comprendre en outre avantageusement au moins un gène recombinant additionnel. In order to be able to convert tyrosine into a phenylpropanoid compound, such as coumaric acid, the modified strain according to the invention may also advantageously comprise at least one additional recombinant gene.
[0066] Par l’expression « gène recombinant additionnel », on entend au sens de la présente invention tout gène recombinant présent dans la souche Pseudomonas putida en plus du gène muté AroF-l tel que défini précédemment. Le gène recombinant additionnel peut résulter de l’insertion d’un promoteur hétérologue, par exemple un promoteur fort pour surexprimer un gène endogène de Pseudomonas putida, ou une séquence codante recombinante codant pour une protéine non naturellement exprimée chez Pseudomonas putida. The expression “additional recombinant gene” is understood to mean, within the meaning of the present invention, any recombinant gene present in the Pseudomonas putida strain in addition to the mutated AroF-1 gene as defined above. The additional recombinant gene may result from the insertion of a heterologous promoter, for example a strong promoter to overexpress an endogenous gene of Pseudomonas putida, or a recombinant coding sequence coding for a protein not naturally expressed in Pseudomonas putida.
[0067] Selon un mode de réalisation particulier, la souche génétiquement modifiée de Pseudomonas putida comprend au moins un gène recombinant additionnel codant pour un polypeptide à activité phénylalanine hydroxylase (phhA) et un gène recombinant additionnel codant pour un polypeptide à activité tétrahydrobiopterine deshydratase (phhB). [0068] La Demanderesse a constaté que ces deux enzymes, bien que présentes de manière endogène chez Pseudomonas putida, pouvaient ne pas être assez actives et/ou leur expression pouvait être insuffisante dans le cadre d’une utilisation de la souche pour la production de composés phénylpropanoïdes. Selon ce mode de réalisation, les activités ont donc été optimisées en surexprimant ces deux enzymes phhA et phhB. La surexpression peut par exemple être obtenue en plaçant les gènes recombinants additionnels de ces enzymes sous le contrôle d’un promoteur hétérologue, en particulier un promoteur constitutif ou inductible. Des exemples de tels promoteurs sont notamment les promoteurs ptrc, xylS/pm, araC/pBAD. According to a particular embodiment, the genetically modified strain of Pseudomonas putida comprises at least one additional recombinant gene coding for a polypeptide with phenylalanine hydroxylase activity (phhA) and one additional recombinant gene coding for a polypeptide with tetrahydrobiopterin dehydratase activity (phhB ). The Applicant has found that these two enzymes, although present endogenously in Pseudomonas putida, may not be active enough and/or their expression may be insufficient in the context of use of the strain for the production of phenylpropanoid compounds. According to this embodiment, the activities have therefore been optimized by overexpressing these two enzymes phhA and phhB. The overexpression can for example be obtained by placing the additional recombinant genes of these enzymes under the control of a heterologous promoter, in particular a constitutive or inducible promoter. Examples of such promoters are in particular the ptrc, xylS/pm, araC/pBAD promoters.
[0069] De préférence, la surexpression des enzymes phhA et phhB est obtenue en plaçant les gènes recombinants additionnels de ces enzymes sous le contrôle d’un promoteur inductible fort araC/pBADopt (Prior et al., 2010). Preferably, the overexpression of the phhA and phhB enzymes is obtained by placing the additional recombinant genes of these enzymes under the control of a strong inducible promoter araC/pBADopt (Prior et al., 2010).
[0070] La surexpression d’un gène s’entend comme une expression supérieure dudit gène dans une souche génétiquement modifiée par rapport à la même souche dans laquelle le gène est exprimée uniquement sous contrôle du promoteur naturel. La surexpression peut être obtenue en insérant une ou plusieurs copies du gène directement dans le génome de la souche, de préférence sous la dépendance d’un promoteur fort, ou également par clonage dans des plasmides, en particulier des plasmides multicopies, de préférence également sous la dépendance d’un promoteur fort. The overexpression of a gene is understood as a higher expression of said gene in a genetically modified strain compared to the same strain in which the gene is expressed only under the control of the natural promoter. Overexpression can be obtained by inserting one or more copies of the gene directly into the genome of the strain, preferably under the control of a strong promoter, or also by cloning into plasmids, in particular multicopy plasmids, preferably also under dependence on a strong promoter.
[0071] Dans un autre mode de réalisation, qui peut être combiné au précédent, les séquences codantes endogènes phhA et phhB sont placées sous le contrôle d’un promoteur hétérologue tels que définis précédemment, par exemple afin de surexprimer les séquences codantes endogènes correspondantes dans la souche génétiquement modifiée selon l’invention. In another embodiment, which can be combined with the previous one, the endogenous coding sequences phhA and phhB are placed under the control of a heterologous promoter as defined previously, for example in order to overexpress the corresponding endogenous coding sequences in the genetically modified strain according to the invention.
[0072] En particulier, la souche modifiée peut comprendre un gène recombinant additionnel codant pour une phénylalanine hydroxylase (phhA) (EC 1 .14.16.1 ) dont la séquence est définie par la séquence d’acide aminés SEQ ID NO : 5 ou par une séquence présentant au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 5 et codant pour une enzyme à activité phhA, et un gène recombinant additionnel codant pour une tétrahydrobiopterine déshydratase (phhB) (EC 4.2.1.96) dont la séquence est définie par la séquence d’acide aminés SEQ ID NO : 6 ou par une séquence présentant au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 6 et codant pour une enzyme à activité phhB, en particulier sous le contrôle d’un promoteur hétérologue permettant leur surexpression. In particular, the modified strain may comprise an additional recombinant gene coding for a phenylalanine hydroxylase (phhA) (EC 1.14.16.1) whose sequence is defined by the amino acid sequence SEQ ID NO: 5 or by a sequence having at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 5 and coding for an enzyme with phhA activity, and an additional recombinant gene coding for a tetrahydrobiopterin dehydratase (phhB) (EC 4.2.1.96) whose sequence is defined by the amino acid sequence SEQ ID NO: 6 or by a sequence having at least 80%, 85%, 90%, 95% and very particularly, at least 98% identity with the sequence SEQ ID NO: 6 and coding for an enzyme with phhB activity, in particular under the control of a heterologous promoter allowing their overexpression.
[0073] Selon ce mode de réalisation la souche génétiquement modifiée selon l’invention est capable de surproduire la tyrosine mais également de transformer la phénylalanine en tyrosine par l’intermédiaire des enzymes phhA et phhB. According to this embodiment, the genetically modified strain according to the invention is capable of overproducing tyrosine but also of transforming phenylalanine into tyrosine via the enzymes phhA and phhB.
[0074] Selon un mode de réalisation particulier, les gènes recombinants additionnels codants pour la phénylalanine hydroxylase (phhA) et pour la tétrahydrobiopterine deshydratase (phhB) comprennent les séquences codantes correspondantes de Pseudomonas fluorescens (phhA VVN86558.1/ phhB : AYF50180.1) ou Pseudomonas aeruginosa (phhA AAA25936.1/ phhB AAA25937.1 ). According to a particular embodiment, the additional recombinant genes coding for phenylalanine hydroxylase (phhA) and for tetrahydrobiopterin dehydratase (phhB) comprise the corresponding coding sequences of Pseudomonas fluorescens (phhA VVN86558.1/phhB: AYF50180.1) or Pseudomonas aeruginosa (phhA AAA25936.1/ phhB AAA25937.1).
Selon un mode de réalisation préféré, la souche modifiée de Pseudomonas putida comprend un gène AroF-l muté codant pour la DAFIP synthase comprenant la double mutation P160L/S193A défini par la séquence d’acide aminés SEQ ID NO: 4, ou une séquence présentant au moins 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO: 4, et les deux gènes recombinants additionnels ci-dessous : According to a preferred embodiment, the modified strain of Pseudomonas putida comprises a mutated AroF-1 gene coding for DAFIP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4, or a sequence presenting at least 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 4, and the two additional recombinant genes below:
- un gène recombinant codant pour une phénylalanine hydroxylase (phhA), de préférence une phhA définie par la séquence SEQ ID NO : 5, ou une séquence présentant au moins 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO: 5, et - a recombinant gene coding for a phenylalanine hydroxylase (phhA), preferably a phhA defined by the sequence SEQ ID NO: 5, or a sequence having at least 85%, 90%, 95% and very particularly, at least 98% d identity with the sequence SEQ ID NO: 5, and
- un gène recombinant codant pour une tétrahydrobiopterine déshydratase (phhB), de préférence une phhB définie par la séquence SEQ ID NO : 6, ou une séquence présentant au moins 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO: 6, de préférence lesdits gènes phhA et phhB étant placés sous le contrôle d’un promoteur hétérologue permettant leur surexpression. - a recombinant gene coding for a tetrahydrobiopterin dehydratase (phhB), preferably a phhB defined by the sequence SEQ ID NO: 6, or a sequence having at least 85%, 90%, 95% and most particularly at least 98% d identity with the sequence SEQ ID NO: 6, preferably said phhA and phhB genes being placed under the control of a heterologous promoter allowing their overexpression.
[0075] Selon un autre mode de réalisation particulier pouvant être de préférence combiné avec le précédent, la souche génétiquement modifiée de Pseudomonas putida comprend un gène recombinant additionnel codant pour un polypeptide à activité tyrosine ammonia lyase (TAL). Un gène recombinant codant la TAL peut provenir du microorganisme Rhodotorula glutinis et être optimisé selon la référence Zhou et al., 2015 (trois mutations ponctuelles de cette enzyme TAL la rende plus efficace : S9N ; A11T ; E518V). Cette enzyme TAL est appelée TAL_rg_opt. En particulier, la souche modifiée peut comprendre un gène recombinant codant pour une tyrosine ammonia lyase (TAL) (EC 4.3.1 .23) dont la séquence est définie par la séquence d’acide aminés SEQ ID NO : 7 (TAL_rg_opt ) ou par une séquence présentant au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 7 et codant pour une enzyme à activité TAL. According to another particular embodiment which can preferably be combined with the preceding one, the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene coding for a polypeptide with tyrosine ammonia lyase (TAL) activity. A recombinant gene encoding TAL can come from the microorganism Rhodotorula glutinis and be optimized according to the reference Zhou et al., 2015 (three point mutations of this TAL enzyme make it more efficient: S9N; A11T; E518V). This TAL enzyme is called TAL_rg_opt. In particular, the modified strain may comprise a recombinant gene coding for a tyrosine ammonia lyase (TAL) (EC 4.3.1.23) whose sequence is defined by the amino acid sequence SEQ ID NO: 7 (TAL_rg_opt) or by a sequence having at least 80%, 85%, 90%, 95% and most particularly at least 98% identity with the sequence SEQ ID NO: 7 and coding for an enzyme with TAL activity.
[0076] Selon ce mode de réalisation particulier, la souche génétiquement modifiée selon l’invention est capable de surproduire la tyrosine mais également de la convertir en acide coumarique par l’intermédiaire de l’enzyme TAL. According to this particular embodiment, the genetically modified strain according to the invention is capable of overproducing tyrosine but also of converting it into coumaric acid via the enzyme TAL.
[0077] Selon un autre mode de réalisation particulier pouvant être combiné avec les précédents, la souche génétiquement modifiée de Pseudomonas putida comprend un gène recombinant additionnel codant la 4-coumarate-CoA ligase (4- CL). En particulier, la souche modifiée peut comprendre un gène recombinant codant pour une 4-CL (EC 6.2.1.12) dont la séquence est définie par la séquence d’acide aminés SEQ ID NO : 8 ou par une séquence présentant au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 8 et codant pour une enzyme à activité 4-CL. According to another particular embodiment which can be combined with the previous ones, the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene encoding 4-coumarate-CoA ligase (4-CL). In particular, the modified strain may comprise a recombinant gene coding for a 4-CL (EC 6.2.1.12) whose sequence is defined by the amino acid sequence SEQ ID NO: 8 or by a sequence presenting at least 80%, 85%, 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 8 and coding for an enzyme with 4-CL activity.
[0078] Selon ce mode de réalisation particulier, la souche génétiquement modifiée est capable de convertir l’acide coumarique en p-coumaryl-coA par l’intermédiaire de l’enzyme 4-CL. According to this particular embodiment, the genetically modified strain is capable of converting coumaric acid into p-coumaryl-coA via the enzyme 4-CL.
[0079] Selon un autre mode de réalisation particulier pouvant être combiné avec les précédents, la souche génétiquement modifiée de Pseudomonas putida comprend un gène recombinant additionnel codant un polypeptide à activité benzalacétone synthase (BAS). En particulier, la souche modifiée peut comprendre un gène recombinant codant pour une BAS (EC 2.3.1.212) dont la séquence est définie par la séquence d’acide aminés SEQ ID NO : 9 ou par une séquence présentant au moins 80%, 85%, 90%, 95% et tout particulièrement, au moins 98% d’identité avec la séquence SEQ ID NO : 9 et codant pour une enzyme à activité BAS. According to another particular embodiment which can be combined with the previous ones, the genetically modified strain of Pseudomonas putida comprises an additional recombinant gene encoding a polypeptide with benzalacetone synthase (BAS) activity. In particular, the modified strain may comprise a recombinant gene coding for a BAS (EC 2.3.1.212) whose sequence is defined by the amino acid sequence SEQ ID NO: 9 or by a sequence presenting at least 80%, 85% , 90%, 95% and most particularly, at least 98% identity with the sequence SEQ ID NO: 9 and coding for an enzyme with BAS activity.
[0080] Selon ce mode de réalisation particulier, la souche génétiquement modifiée est capable de convertir le p-coumaryl-coA en 4-hydroxybenzalcetone par l’intermédiaire de l’enzyme BAS. According to this particular embodiment, the genetically modified strain is capable of converting p-coumaryl-coA into 4-hydroxybenzalketone via the BAS enzyme.
[0081] Selon un mode de réalisation préféré, la souche génétiquement modifiée de Pseudomonas putida comprend plusieurs gènes recombinants additionnels, à savoir notamment les cinq gènes recombinants additionnels ci-dessous : According to a preferred embodiment, the genetically modified strain of Pseudomonas putida comprises several additional recombinant genes, namely in particular the five additional recombinant genes below:
- un gène recombinant codant pour une phénylalanine hydroxylase (phhA), de préférence une phhA définie par la séquence SEQ ID NO : 5, en particulier sous contrôle d’un promoteur hétérologue permettant sa surexpression, - a recombinant gene coding for a phenylalanine hydroxylase (phhA), preferably a phhA defined by the sequence SEQ ID NO: 5, in particular under the control of a heterologous promoter allowing its overexpression,
- un gène recombinant codant pour une tétrahydrobiopterine deshydratase (phhB), de préférence une phhB définie par la séquence SEQ ID NO : 6, en particulier sous contrôle d’un promoteur hétérologue permettant sa surexpression, - a recombinant gene coding for a tetrahydrobiopterine dehydratase (phhB), preferably a phhB defined by the sequence SEQ ID NO: 6, in particular under the control of a heterologous promoter allowing its overexpression,
- un gène recombinant codant pour une tyrosine ammonia lyase (TAL_RG_OPT), de préférence une TAL_RG_OPT définie par la séquence SEQ ID NO : 7, - a recombinant gene coding for a tyrosine ammonia lyase (TAL_RG_OPT), preferably a TAL_RG_OPT defined by the sequence SEQ ID NO: 7,
- un gène recombinant codant une 4-coumarate-CoA ligase (4-CL), de préférence une 4-CL définie par la séquence SEQ ID NO :8, - a recombinant gene encoding a 4-coumarate-CoA ligase (4-CL), preferably a 4-CL defined by the sequence SEQ ID NO: 8,
- un gène recombinant codant pour une benzalacétone synthase (BAS), de préférence une BAS définie par la séquence SEQ ID NO :9. - a recombinant gene coding for a benzalacetone synthase (BAS), preferably a BAS defined by the sequence SEQ ID NO: 9.
[0082] Les enzymes TAL, 4-CL et BAS sont toutes des enzymes impliquées dans la synthèse de composés phénylpropanoïdes. The TAL, 4-CL and BAS enzymes are all enzymes involved in the synthesis of phenylpropanoid compounds.
[0083] Selon ce mode de réalisation préféré, la souche modifiée est capable de produire une multitude de composés phénylpropanoïdes, à savoir notamment l’acide coumarique, le p-coumaroyl-coA, le 4-hydroxybenzalcetone. [0084] Un autre objet de l’invention concerne une souche génétiquement modifiée de Pseudomonas putida comprenant un gène recombinant additionnel AroF-l codant pour la 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase dont la séquence présente au moins 80% d’identité avec la séquence SEQ ID NO :1 , et dans laquelle les gènes codants pour les enzymes phhA et phhB sont surexprimés. According to this preferred embodiment, the modified strain is capable of producing a multitude of phenylpropanoid compounds, namely in particular coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalketone. Another subject of the invention relates to a genetically modified strain of Pseudomonas putida comprising an additional recombinant gene AroF-1 coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase, the sequence of which is present at least 80% identity with the sequence SEQ ID NO: 1, and in which the genes coding for the enzymes phhA and phhB are overexpressed.
[0085] Procédé de synthèse d’un composé phénylpropanoïdes [0085] Process for the synthesis of a phenylpropanoid compound
[0086] Un autre objet de l’invention concerne un procédé de synthèse d’un ou plusieurs composés phénylpropanoïdes. Another object of the invention relates to a process for the synthesis of one or more phenylpropanoid compounds.
[0087] Les composés phénylpropanoïdes peuvent être définis précédemment. The phenylpropanoid compounds can be defined above.
[0088] Le procédé de synthèse selon l’invention comprend la mise en oeuvre d’une étape de croissance d’une souche génétiquement modifiée de Pseudomonas putida telle que définie précédemment dans un milieu de culture sous des conditions permettant l’expression du gène muté et/ou des gènes recombinants additionnels nécessaire à la synthèse d’un ou plusieurs composés phénylpropanoïdes. The synthesis method according to the invention comprises the implementation of a growth step of a genetically modified strain of Pseudomonas putida as defined above in a culture medium under conditions allowing the expression of the mutated gene and/or additional recombinant genes necessary for the synthesis of one or more phenylpropanoid compounds.
[0089] Selon un mode de réalisation particulier, le procédé de synthèse selon l’invention permet de produire de l’acide coumarique en grande quantité. According to a particular embodiment, the synthesis process according to the invention makes it possible to produce coumaric acid in large quantities.
[0090] Selon une variante de ce mode de réalisation, le procédé peut comprendre une étape de croissance d’une souche génétiquement modifiée de Pseudomonas putida comprenant un gène AroF-l muté codant pour la 3-Deoxy-D-arabino- Heptulodonate 7-phosphate (DAHP) synthase, par exemple de séquence SEQ ID NO :2, SEQ ID NO :3 ou SEQ ID NO :4, et au moins les gènes recombinants additionnels ci-dessous codants pour : According to a variant of this embodiment, the method may comprise a step of growing a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene coding for 3-Deoxy-D-arabino-Heptulodonate 7- phosphate (DAHP) synthase, for example of sequence SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4, and at least the additional recombinant genes below coding for:
- une phénylalanine hydroxylase (phhA) de séquence SEQ ID NO : 5, - a phenylalanine hydroxylase (phhA) of sequence SEQ ID NO: 5,
- une tétrahydrobiopterine deshydratase (phhB) de séquence SEQ ID NO : 6, et- a tetrahydrobiopterin dehydratase (phhB) of sequence SEQ ID NO: 6, and
- une tyrosine ammonia lyase (TAL_RG_OPT) de séquence SEQ ID NO : 7. - a tyrosine ammonia lyase (TAL_RG_OPT) of sequence SEQ ID NO: 7.
[0091] Selon un autre mode de réalisation particulier, le procédé de synthèse selon l’invention permet de produire la frambinone, en particulier en quantité industrielle, et notamment avec un rendement au moins égal à 20 g/l de frambinone dans un fermenteur d’au moins 500 I. [0092] Selon ce mode de réalisation, le procédé comprend une étape de croissance d’une souche génétiquement modifiée de Pseudomonas putida comprenant un gène AroF-l muté codant pour la 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase de séquence SEQ ID NO :2, SEQ ID NO :3 ou SEQ ID NO :4. et comprenant les gènes recombinants additionnels ci-après codant pour :According to another particular embodiment, the synthesis process according to the invention makes it possible to produce frambinone, in particular in industrial quantities, and in particular with a yield at least equal to 20 g/l of frambinone in a fermenter of at least 500 I. According to this embodiment, the method comprises a step of growing a genetically modified strain of Pseudomonas putida comprising a mutated AroF-1 gene coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase of sequence SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4. and comprising the following additional recombinant genes coding for:
- une tyrosine ammonia lyase (TAL_RG_OPT), de préférence une TAL_RG_OPT définie par la séquence SEQ ID NO : 7, - a tyrosine ammonia lyase (TAL_RG_OPT), preferably a TAL_RG_OPT defined by the sequence SEQ ID NO: 7,
- une 4-coumarate-CoA ligase (4-CL), de préférence une 4-CL définie par la séquence SEQ ID NO :8, - a 4-coumarate-CoA ligase (4-CL), preferably a 4-CL defined by the sequence SEQ ID NO: 8,
- une benzalacétone synthase (BAS), de préférence une BAS définie par la séquence SEQ ID NO :9. - a benzalacetone synthase (BAS), preferably a BAS defined by the sequence SEQ ID NO: 9.
[0093] Le procédé de synthèse selon l’invention peut également comprendre une étape de purification et/ou de récupération du composé phénylpropanoïde, tel que l’acide coumarique ou la frambinone The synthesis process according to the invention may also comprise a step for purifying and/or recovering the phenylpropanoid compound, such as coumaric acid or frambinone
[0094] Selon un mode de réalisation particulier, la souche est une souche génétiquement modifiée de Pseudomonas putida comprenant un gène recombinant additionnel AroF-l codant pour la 3-Deoxy-D-arabino-Fleptulodonate 7-phosphate (DFIAP) synthase dont la séquence présente au moins 80% d’identité avec la séquence SEQ ID NO :1 , et dans laquelle les gènes codants pour les enzymes phhA et phhB sont surexprimés. According to a particular embodiment, the strain is a genetically modified strain of Pseudomonas putida comprising an additional recombinant gene AroF-1 coding for 3-Deoxy-D-arabino-Fleptulodonate 7-phosphate (DFIAP) synthase whose sequence has at least 80% identity with the sequence SEQ ID NO: 1, and in which the genes coding for the enzymes phhA and phhB are overexpressed.
[0095] Utilisations des souches selon l’invention [0095] Uses of the strains according to the invention
[0096] Un autre objet de l’invention concerne l’utilisation d’une souche de Pseudomonas putida telle que définie précédemment pour la synthèse de composé phénylpropanoïdes. Another object of the invention relates to the use of a strain of Pseudomonas putida as defined above for the synthesis of phenylpropanoid compounds.
[0097] Selon un mode de réalisation préféré, le composé phénylpropanoïde est choisi parmi l’acide coumarique, le p-coumaroyl-coA, 4-hydroxybenzalacetone et la frambinone, de préférence parmi l’acide coumarique et/ou la frambinone. According to a preferred embodiment, the phenylpropanoid compound is chosen from coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalacetone and frambinone, preferably from coumaric acid and/or frambinone.
[0098] La présente invention sera mieux comprise à la lumière des exemples non limitatifs suivants, qui sont donnés à titre purement illustratif et n'ont pas pour but de limiter la portée de cette invention qui est définie par les revendications. Exemples The present invention will be better understood in the light of the following non-limiting examples, which are given for purely illustrative purposes and are not intended to limit the scope of this invention which is defined by the claims. Examples
[0099] Exemple 1 : Mise au point de mutant permettant la production de 3- Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) insensible à la rétro- régulation négative de la tyrosine [0100] A. Etude In Silico [0109] Example 1: Development of a mutant allowing the production of 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) insensitive to the negative retro-regulation of tyrosine [0100] A. In Silico Study
[0101] L’enzyme de départ utilisée est l’enzyme AroF-l identifiée comme la 3- Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) chez P. putida (identifiant Uniprot Q88KG6). The starting enzyme used is the AroF-1 enzyme identified as 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) in P. putida (Uniprot identifier Q88KG6).
[0102] La structure tertiaire (en format PDB) de cette enzyme a été reconstruite à partir de sa séquence protéique par la méthodologie décrite dans Waterhouse, A. et al., (SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1 ), W296-W303 (2018)). La structure de base sélectionnée par homologie de séquences a été celle de la 3-deoxy-d-arabino-heptulosonate-7- phosphate synthase de Saccharomyces œrevisiae. [0103] La région qui caractérise la rétro régulation à la tyrosine a été identifiée dans la littérature par l’intermédiaire d’une protéine homologue chez E. coli. Grâce à un alignement de structures tertiaires de ces deux enzymes, la région correspondante à cette rétro régulation sur AroF-l a été identifiée. The tertiary structure (in PDB format) of this enzyme was reconstructed from its protein sequence by the methodology described in Waterhouse, A. et al., (SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Res.46(W1), W296-W303 (2018)). The basic structure selected by sequence homology was that of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Saccharomyces oerevisiae. The region which characterizes tyrosine retro-regulation has been identified in the literature via a homologous protein in E. coli. Thanks to an alignment of tertiary structures of these two enzymes, the region corresponding to this retro-regulation on AroF-1 has been identified.
[0104] Ensuite, le « docking » d’une molécule de tyrosine avec l’enzyme AroF-l a été réalisé selon la méthodologie décrite par O. Trott et al., (« AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading », Journal of Computanional Chemestry, 2010). [0104] Next, the “docking” of a tyrosine molecule with the AroF-1 enzyme was carried out according to the methodology described by O. Trott et al., (“AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading”, Journal of Computanional Chemistry, 2010).
[0105] Cette méthode a permis d’identifier les acides aminés impliqués dans la formation de liaisons chimiques avec la phénylalanine dans la poche de docking, à savoir, entres autres, les acides aminés en positions 160 (P160), 164 (Q164), 190 (S190), 191 (G191 ), 193 (S193) et 225 (I225). This method made it possible to identify the amino acids involved in the formation of chemical bonds with phenylalanine in the docking pocket, namely, among others, the amino acids in positions 160 (P160), 164 (Q164), 190 (S190), 191 (G191), 193 (S193) and 225 (I225).
[0106] Par recherche dans la littérature mais également dans les bases des données NCBI et Uniprot nous avons identifié des séquences protéiques similaires à AroF-l, mais présentant une certaine diversité d’acides aminés, en particulier dans les positions correspondantes à celles impliqués dans le docking. [0107] Cette démarche a permis d’identifier des acides aminés pouvant se substituer aux acides aminés naturellement trouvés dans la poche de « docking » de la protéine AroF-l sans modifier sa structure, ni son activité. [0106] By research in the literature but also in the NCBI and Uniprot databases, we have identified protein sequences similar to AroF-1, but presenting a certain diversity of amino acids, in particular in the positions corresponding to those involved in the dock. This approach has made it possible to identify amino acids which can replace the amino acids naturally found in the “docking” pocket of the AroF-1 protein without modifying its structure or its activity.
[0108] Ainsi, seule la liaison à la tyrosine est inhibée par les mutations mise en évidence. Le Tableau 1 ci-dessous, liste les positions et les acides aminés d’origine ainsi que les substituts qui caractérisent les mutations qui pouvaient potentiellement désactiver la fonction de rétrorégulation de AroF-l. Thus, only tyrosine binding is inhibited by the mutations demonstrated. Table 1 below lists the positions and the original amino acids as well as the surrogates that characterize the mutations that could potentially disable the feedback regulation function of AroF-1.
[0109] [Tableau 1] [0110] Parmi les différentes mutations identifiées dans le Tableau 1, un sous ensemble de mutations a été choisi selon les propriétés des acides aminés substituts ainsi que selon l’impact de ces mutations dans des protéines évolutivement proches déjà décrites dans la littérature ((Cui, D et al., Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino- heptulosonate-7-phosphate synthase from Escherichia coli, 2019), (Ding, R. et al. Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli . Biotechnol Lett 36, 2103-2108 (2014)), (Kikuchi Y et al. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino- heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761-762 (1997). [0111] Le sous-ensemble choisi est le suivant : P160L, Q164A, S190A, G191 K, S193A, et I225P. [0109] [Table 1] Among the various mutations identified in Table 1, a subset of mutations was chosen according to the properties of the substitute amino acids as well as according to the impact of these mutations in evolutionarily close proteins already described in the literature ((Cui , D et al., Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli, 2019), (Ding, R. et al. Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli Biotechnol Lett 36, 2103-2108 (2014)), (Kikuchi Y et al. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli Appl Environ Microbiol 63:761-762 (1997). The chosen subset is as follows: P160L, Q164A, S190A, G191 K, S193A, and I225P.
[0112] B. Expérimentations [0112] B. Experiments
[0113] Matériels et méthodes [0113] Materials and methods
[0114] Clonage des gènes codants pour l’enzyme AroF-l et les mutants dérivés [0114] Cloning of the genes coding for the AroF-1 enzyme and the derived mutants
[0115] Afin d’exprimer et purifier l’enzyme AroF-l et les mutants qui en découlent, les gènes correspondant sont clonés dans un plasmide pET28_b(+) avec un His- Tag greffé sur la partie N-terminale de la protéine (en amont de l’ATG du gène). In order to express and purify the AroF-1 enzyme and the resulting mutants, the corresponding genes are cloned into a plasmid pET28_b(+) with a His-Tag grafted onto the N-terminal part of the protein ( upstream of the ATG of the gene).
[0116] Pour effectuer ces constructions, la méthode Gibson Assembly est utilisée (Gibson et al., 2009). Le produit de la réaction est transformé dans des souches E. coli BL21 (DE3) (Novagen). Les cellules transformées sont étalées sur milieu gélosé avec antibiotique pour sélection. Les colonies obtenues sont ensuite vérifiées par PCR et séquencées afin de les valider. To perform these constructions, the Gibson Assembly method is used (Gibson et al., 2009). The reaction product is transformed into E. coli BL21 (DE3) strains (Novagen). The transformed cells are plated on agar medium with antibiotic for selection. The colonies obtained are then verified by PCR and sequenced in order to validate them.
[0117] Expression et purification des enzymes [0117] Expression and purification of enzymes
[0118] Les souches E. coli BL21 (DE3) contenant les plasmides sont mises en culture durant 24h dans un milieu ZYM auto-inducteur dont la composition est la suivante : The E. coli BL21 (DE3) strains containing the plasmids are cultured for 24 hours in an auto-inducing ZYM medium whose composition is as follows:
[0119] a) Base saline : [0119] a) Saline base:
- Extrait de levure : 5 g/l - Yeast extract: 5 g/l
- tryptone : 10 g/l - tryptone: 10 g/l
- Na2SC>4 : 0,7 g/l - Na 2 SC>4: 0.7 g/l
- NH4CI :2,7 g/l - NH 4 CI: 2.7 g/l
- KH2PO4 : 3,4 g/l - KH2PO4: 3.4 g/l
- Na2HPC>4 :4,45 g/l - Na2HPC>4: 4.45 g/l
[0120] b) Solution de sucres (concentrée 50 fois) : [0120] b) Solution of sugars (concentrated 50 times):
- Glycérol : 250 g/l - Glycerol: 250 g/l
- Glucose : 25 g/l - Glucose: 25 g/l
- Lactose : 100 g/l [0121] c) Solution de métaux (concentrée 5000 fois) : [Tableau 2] - Lactose: 100 g/l [0121] c) Solution of metals (concentrated 5000 times): [Table 2]
[0122] d) Préparation du milieu complet : [0123] [Tableau 3] [0124] Le milieu est ensemencé à D0=0,05 à partir d’une préculture sur la nuit. La culture est réalisée dans un volume final de 50ml en erlenmeyer de 250ml. Les paramètres de culture sont les suivants : agitation 140rpm, 5 heures à 25°C puis 19 heures à 15°C. [0122] d) Preparation of the complete medium: [0123] [Table 3] The medium is inoculated at D0=0.05 from an overnight preculture. The culture is carried out in a final volume of 50ml in a 250ml Erlenmeyer flask. The culture parameters are as follows: stirring at 140 rpm, 5 hours at 25°C then 19 hours at 15°C.
[0125] Tous les produits chimiques utilisés pour la préparation du milieu proviennent de Sigma-Aldrich, Roth ou Euromedex. All the chemicals used for the preparation of the medium come from Sigma-Aldrich, Roth or Euromedex.
[0126] Après incubation, les 50ml de culture sont centrifugés 10 minutes à 5000xg 4°C. Le surnageant est jeté et le culot repris dans 3ml de tampon LEW (Macherey- Nagel, voir ci-après), 1 mg/ml de lyzosyme sont ajoutés et la suspension est laissée sur glace durant 30 minutes. After incubation, the 50ml of culture are centrifuged for 10 minutes at 5000xg 4°C. The supernatant is discarded and the pellet taken up in 3 ml of LEW buffer (Macherey-Nagel, see below), 1 mg/ml of lyzosyme are added and the suspension is left on ice for 30 minutes.
[0127] Les cellules sont ensuite lysées par sonication (Omni Sonic Ruptor 400, Omni International, puissance 30%, puise 40 pendant 8 minutes). Après ajout de 0,22% de Streptomycine, les échantillons sont ensuite centrifugés 30 minutes à 15000xg 4°C. Le surnageant est récupéré et la purification des protéines solubles est faite selon les recommandations du fournisseur en utilisant le kit Protino® Ni- TED 2000 (Macherey-Nagel) The cells are then lysed by sonication (Omni Sonic Ruptor 400, Omni International, power 30%, pulses 40 for 8 minutes). After adding 0.22% of Streptomycin, the samples are then centrifuged for 30 minutes at 15000xg 4°C. The supernatant is recovered and the purification of soluble proteins is carried out according to the supplier's recommendations using the Protino® Ni-TED 2000 kit (Macherey-Nagel)
[0128] Finalement, les protéines purifiées sont concentrées ~10 fois en utilisant des filtres à centrifuger Amicon Ultra-430Kd (Merck) et le tampon d’élution est remplacé par du Tris-HCI 0,1 M pH7,5 + 10% Glycérol. Les protéines purifiées sont stockées à -80°C. Finally, the purified proteins are concentrated ~10 times using Amicon Ultra-430Kd centrifugal filters (Merck) and the elution buffer is replaced with 0.1 M Tris-HCI pH7.5 + 10% Glycerol . Purified proteins are stored at -80°C.
[0129] Test d’activité enzymatique [0129] Enzyme activity test
[0130] L’activité des enzymes est mesurée par le suivi de la disparition du substrat avec détection par HPLC (High Pressure Liquid Chromatography). The activity of the enzymes is measured by monitoring the disappearance of the substrate with detection by HPLC (High Pressure Liquid Chromatography).
[0131] La réaction est effectuée dans un volume final de 200mI avec 40mM de tampon phosphate pH 7, 300mM de phospho(enol)pyruvate (PEP), 20mg d’enzyme purifiée, 1 mM de tyrosine (ou autre acide aminé aromatique) ou 3mM d’HCI, et le volume est complété avec de l’eau ultrapure. The reaction is carried out in a final volume of 200mI with 40mM of phosphate buffer pH 7, 300mM of phospho(enol)pyruvate (PEP), 20mg of purified enzyme, 1mM of tyrosine (or other aromatic amino acid) or 3mM HCl, and the volume is made up with ultrapure water.
[0132] Après pré-incubation 2 minutes à 30°C, la réaction est démarrée en ajoutant 300mM d’erythrose-4-phosphate (E4P) et le mélange réactionnel est incubé 60 minutes à 30°C. [0133] Enfin, le mélange est chauffé 5 minutes à 80°C afin de stopper la réaction et précipiter les protéines. After pre-incubation for 2 minutes at 30° C., the reaction is started by adding 300 mM of erythrose-4-phosphate (E4P) and the reaction mixture is incubated for 60 minutes at 30° C. Finally, the mixture is heated for 5 minutes at 80° C. in order to stop the reaction and precipitate the proteins.
[0134] Mesure de la consommation de PEP par HPLC [0134] Measurement of PEP consumption by HPLC
[0135] Les tests d’activité enzymatique sont premièrement centrifugés 10 minutes à 15000xg afin de précipiter les protéines. Le surnageant obtenu est filtré sur une membrane 0,22pm avant analyse HPLC. The enzymatic activity tests are first centrifuged for 10 minutes at 15000×g in order to precipitate the proteins. The supernatant obtained is filtered on a 0.22 μm membrane before HPLC analysis.
[0136] La méthode utilisée est décrite ci-dessous : The method used is described below:
- Système : Agilent 1100 (Agilent) - System: Agilent 1100 (Agilent)
- Colonne : Luna OMEGA polar C18 (Phenomenex) - Column: Luna OMEGA polar C18 (Phenomenex)
- Phase mobile : Acide phosphorique 1mM - Mobile phase: 1mM phosphoric acid
- Débit : 0,3ml/min - Flow rate: 0.3ml/min
- Détection UV : 220nm - UV detection: 220nm
- Injection : 5mI - Injection: 5mI
- Durée d’analyse : 15 minutes - Analysis time: 15 minutes
[0137] Afin de quantifier la quantité de PEP présente dans les échantillons, une gamme de standards est analysée avec des concentrations en PEP de 0,1 mM à 1mM. In order to quantify the quantity of PEP present in the samples, a range of standards is analyzed with PEP concentrations of 0.1 mM to 1 mM.
[0138] Mesure de la concentration en PCA et CA par HPLC [0138] Measurement of PCA and CA concentration by HPLC
La colonne utilisée est la suivante: Kinetex® 5pm F5 100A 150x4.6mm Phases Mobiles : Acide formique 0.1% et Acétonitrile Gradient : The column used is as follows: Kinetex® 5pm F5 100A 150x4.6mm Mobile phases: Formic acid 0.1% and Acetonitrile Gradient:
5min : 100% Acide formique 5min: 100% Formic acid
5min à 25min : 75% acide formique - 25% acétonitrile 5min to 25min: 75% formic acid - 25% acetonitrile
25min à 30min : 62% Acide formique - 38% Acétonitrile 25min to 30min: 62% Formic acid - 38% Acetonitrile
30min à 35min : 100% Acide formique 30min to 35min: 100% Formic acid
Débit : 1 ml/min Flow rate: 1ml/min
Température du four : 40°C Oven temperature: 40°C
Injection échantillon : 10mI Détection acide coumarique : 315nm Détection acide cinnamique : 280nm Sample injection: 10mI Coumaric acid detection: 315nm Cinnamic acid detection: 280nm
[0139] Clonage des gènes phaA/B dans un plasmide d’expression arabinose dépendant Les gènes phhA/B sont amplifiés par PCR directement à partir d’ADNg de la souche Pseudomonas putida KT2440 et clonés dans un plasmide pBBR1-MCS2, sous la dépendance du promoteur araC/pBAD. Cloning of the phaA/B Genes in an Arabinose-Dependent Expression Plasmid The phhA/B genes are amplified by PCR directly from gDNA of the Pseudomonas putida KT2440 strain and cloned into a pBBR1-MCS2 plasmid, dependent on of the araC/pBAD promoter.
[0140] Pour effectuer ces constructions, la méthode Gibson Assembly est utilisée (Gibson et al., 2009). Le produit de la réaction est transformé dans la souche E. coli BL21 (DE3) (Novagen). Les cellules transformées sont étalées sur milieu gélosé avec antibiotique pour sélection. Les colonies obtenues sont ensuite vérifiées par PCR et les plasmides séquencés afin de les valider. To perform these constructions, the Gibson Assembly method is used (Gibson et al., 2009). The reaction product is transformed into the E. coli strain BL21 (DE3) (Novagen). The transformed cells are plated on agar medium with antibiotic for selection. The colonies obtained are then checked by PCR and the plasmids sequenced in order to validate them.
[0141] Le plasmide d’expression est ensuite transformé dans la souche d’E. coli donneuse S17.1 afin d’être transféré dans les souches de Pseudomonas putida d’intérêt par conjugaison. The expression plasmid is then transformed into the strain of E. coli donor S17.1 in order to be transferred into the strains of Pseudomonas putida of interest by conjugation.
[0142] Résultats [0142] Results
[0143] L’activité de l’enzyme AroF-l sauvage de Pseudomonas putida est bien inhibée par la tyrosine (Figure 1). L’introduction de la mutation P160L permet de rendre l’enzyme partiellement insensible à cette inhibition par la tyrosine (Figure 2), et l’effet peut encore être légèrement amélioré par l’introduction d’une double mutation P160L/Q164A (Figure 3). Par contre, les double mutations P160L/G191K et P160L/S190, ont un effet délétère sur l’enzyme AroF-l qui n’a plus aucune activité, que ce soit en présence de tyrosine ou non (Figure 3). The activity of the wild-type AroF-l enzyme of Pseudomonas putida is well inhibited by tyrosine (FIG. 1). The introduction of the P160L mutation makes it possible to render the enzyme partially insensitive to this inhibition by tyrosine (Figure 2), and the effect can be further improved slightly by the introduction of a double P160L/Q164A mutation (Figure 3 ). On the other hand, the double mutations P160L/G191K and P160L/S190 have a deleterious effect on the AroF-l enzyme which no longer has any activity, whether in the presence of tyrosine or not (Figure 3).
[0144] En revanche, et de manière particulièrement intéressante et surprenante, l’introduction d’une double mutation P160L/S193A restaure la quasi-totalité de l’activité enzymatique et rend l’enzyme AroF-l presque complètement insensible à l’inhibition de la tyrosine (Figure 3). [0145] Ces résultats sont confirmés par la Figure 4 qui montre bien l’effet synergique de cette double mutation sur la rétro-régulation négative exercée par la tyrosine par rapport à la seule mutation P160L ou S193A. On the other hand, and in a particularly interesting and surprising manner, the introduction of a double P160L/S193A mutation restores almost all of the enzymatic activity and renders the AroF-1 enzyme almost completely insensitive to inhibition. tyrosine (Figure 3). These results are confirmed by FIG. 4, which clearly shows the synergistic effect of this double mutation on the negative retro-regulation exerted by tyrosine compared with the single P160L or S193A mutation.
[0146] Exemple 2: Souches de Pseudomonas putida génétiquement modifiées pour la synthèse de composé phénylpropanoïde Example 2: Pseudomonas putida strains genetically modified for the synthesis of phenylpropanoid compound
[0147] Afin de permettre la biosynthèse de composés phénylpropanoïdes, plusieurs modifications génétiques sont réalisées au sein de la souche de Pseudomonas putida. Pour cela, des gènes recombinants additionnels codant des enzymes de la synthèse de composés phénylpropanoïdes tels que l’acide coumarique ou la frambinone, sont intégrés au chromosome de Pseudomonas putida selon le protocole suivant. In order to allow the biosynthesis of phenylpropanoid compounds, several genetic modifications are carried out within the strain of Pseudomonas putida. For this, additional recombinant genes encoding enzymes for the synthesis of phenylpropanoid compounds such as coumaric acid or frambinone, are integrated into the chromosome of Pseudomonas putida according to the following protocol.
[0148] Protocole de mutagenèse génétique de Pseudomonas putida : Protocol for genetic mutagenesis of Pseudomonas putida:
[0149] La mutagenèse génétique chez Pseudomonas putida s’effectue au moyen de plasmides suicides qui s’intégrent dans le chromosome et en ressortent en laissant la délétion ou l’insertion de gènes désirées. Le plasmide suicide utilisé est le pK18mobsacB (Schàfer A, Tauch A, Jàger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: sélection of defined délétions in the chromosome of Corynebacterium glutamicum. Gene 1994 Jul 22 ; 145(1 ) :69-73). Ce plasmide porte une cassette de résistance à l’antibiotique Kanamycine et la cassette de contre-sélection sacB. Il comporte également une origine de réplication qui ne fonctionne que chez la bactérie E. coli, et une origine de transfert oriT qui lui permet d’être transféré par conjugaison d’E. coli à une autre souche bactérienne comme Pseudomonas putida. [0149] Genetic mutagenesis in Pseudomonas putida is carried out by means of suicide plasmids which integrate into the chromosome and emerge from it, leaving the desired deletion or insertion of genes. The suicide plasmid used is pK18mobsacB (Schàfer A, Tauch A, Jàger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum Gene 1994 Jul 22;145(1):69-73). This plasmid carries a resistance cassette to the antibiotic Kanamycin and the sacB counter-selection cassette. It also has an origin of replication that only works in E. coli bacteria, and an origin of transfer oriT that allows it to be transferred by conjugation from E. coli to another bacterial strain such as Pseudomonas putida.
[0150] Les gènes à insérer sont clonés dans ce plasmide, ainsi que les zones d’homologie au lieu d’insertion choisi sur le chromosome bactérien. Ces zones d’homologie sont clonées de part et d’autre du gène à insérer, et doivent avoir une taille de 800 paires de bases minimum. The genes to be inserted are cloned into this plasmid, as well as the regions of homology at the chosen insertion site on the bacterial chromosome. These areas of homology are cloned on either side of the gene to be inserted, and must be at least 800 base pairs in size.
[0151] Les clonages se font dans une souche d’Escherichia coli capable de conjuguer (en général la souche S17.1 , Simon, R., Priefer, U. and A. Pülher, A broad host range mobilization System for in vivo genetic engineering : transposon mutagenesis in gram négative bacteria. Nature BioTechnology volume 1 , pages784-791 (1983)). The cloning is done in a strain of Escherichia coli capable of conjugating (generally the strain S17.1, Simon, R., Priefer, U. and A. Pülher, A broad host range mobilization System for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature BioTechnology volume 1, pages 784-791 (1983)).
[0152] Le protocole de conjugaison est le suivant : The conjugation protocol is as follows:
[0153] Une goutte de culture de S17.1/plasmide suicide (souche donneuse) est déposée sur un milieu riche LB Agar (Luria-Miller, Roth, référence X968.2 contenants de l’agar à 1 ,5%), et une goutte de culture de la souche Pseudomonas putida (souche receveuse) est déposée sur la première goutte. La boîte de culture est incubée une nuit à 30°C. La goutte est ensuite diluée dans du MgS04 10 mM et le protocole est réalisé comme décrit à la figure 6. A drop of culture of S17.1/suicide plasmid (donor strain) is deposited on a rich LB Agar medium (Luria-Miller, Roth, reference X968.2 containing 1.5% agar), and a drop of culture of the Pseudomonas putida strain (recipient strain) is deposited on the first drop. The culture dish is incubated overnight at 30°C. The drop is then diluted in 10 mM MgSO4 and the protocol is performed as described in Figure 6.
[0154] Le plasmide de conjugaison pK18mobsacB est un plasmide intégratif apte à s’intégrer dans le génome de la souche bactérienne receveuse afin de produire des transconjugants. Le plasmide étant résistant à la Kanamycine, le milieu de sélection des transconjugants est du LB Agar contenant de l’Ampicilline 100 mg/ml ( Pseudomonas putida résiste naturellement à cet antibiotique), et de la Kanamycine à 50 mg/ml (Kanamycine, ROTH référence T832.4 ; Ampicilline, EUROMEDEX, référence EU0400-D). Ce milieu permet donc de sélectionner les bactéries Pseudomonas putida dans lesquelles un plasmide s’est intégré. The conjugation plasmid pK18mobsacB is an integrative plasmid capable of integrating into the genome of the recipient bacterial strain in order to produce transconjugants. The plasmid being resistant to Kanamycin, the transconjugant selection medium is LB Agar containing Ampicillin 100 mg/ml (Pseudomonas putida is naturally resistant to this antibiotic), and Kanamycin at 50 mg/ml (Kanamycin, ROTH reference T832.4; Ampicillin, EUROMEDEX, reference EU0400-D). This medium therefore makes it possible to select the Pseudomonas putida bacteria in which a plasmid has integrated.
[0155] La suite du protocole comprend les étapes suivantes : The remainder of the protocol comprises the following steps:
- Excision du plasmide suicide : prélever 8 clones Kn+AmpR et les mettre en culture dans 10ml de milieu LB+Amp 100 mg/ml (dilution 1/2000) à 30°C avec agitation. Incuber entre 12h et 24h. - Excision of the suicide plasmid: take 8 Kn+AmpR clones and put them in culture in 10ml of LB+Amp 100 mg/ml medium (1/2000 dilution) at 30° C. with shaking. Incubate between 12h and 24h.
- Contre-sélection sacB sur Sucrose 25% : strier la culture du pool de clones sur YT agar et YT+Sucrose 25% agar. Incuber à 30°C jusqu’au lendemain matin. Repiquer 20-25 clones Sucrose+ sur YT agar, YT+Sucrose 25% agar et YT agar +Kn 50 mg/ml. Incuber à 30°C jusqu’au lendemain matin. - SacB counter-selection on Sucrose 25%: streak the culture of the pool of clones on YT agar and YT+Sucrose 25% agar. Incubate at 30°C overnight. Subculture 20-25 Sucrose+ clones onto YT agar, YT+Sucrose 25% agar and YT agar +Kn 50 mg/ml. Incubate at 30°C overnight.
YT : Yeast extract tryptone YT: Yeast extract tryptone
- Vérification par PCR de l’insertion du gène - Verification by PCR of the insertion of the gene
[0156] Des primers s’hybridant de part et d’autre de la zone chromosomique d’insertion permettent de vérifier les clones mutants en réalisant des PCR sur colonie pour les clones KnS et Sucrose+. [0157] Gènes à insérer dans Pseudomonas putida Primers hybridizing on either side of the chromosomal insertion zone make it possible to verify the mutant clones by carrying out PCR on the colony for the KnS and Sucrose+ clones. [0157] Genes to insert into Pseudomonas putida
[0158] Un ou plusieurs des gènes listés ci-après sont insérés dans Pseudomonas putida afin de permettre la biosynthèse de composés phénylpropanoïdes, comme par exemple l’acide coumarique ou la frambinone. [0159] Ces gènes ont été spécifiquement identifiés et sélectionnés chez des microorganismes connus. Les gènes sont synthétisés et les codons sont optimisés pour une expression maximale chez Pseudomonas putida. One or more of the genes listed below are inserted into Pseudomonas putida in order to allow the biosynthesis of phenylpropanoid compounds, such as for example coumaric acid or frambinone. These genes have been specifically identified and selected from known microorganisms. Genes are synthesized and codons are optimized for maximum expression in Pseudomonas putida.
[0160] Certains gènes sont endogènes à Pseudomonas putida, mais il est recommandé de tester l’activité des protéines pour lesquelles ils codent et si ces enzymes ne sont pas assez actives ou leur expression insuffisante, ces activités peuvent être optimisées. Certain genes are endogenous to Pseudomonas putida, but it is recommended to test the activity of the proteins for which they code and if these enzymes are not active enough or their expression insufficient, these activities can be optimized.
[0161] Gènes codant une enzyme muté 3-Deoxy-D-arabino-Heptulodonate 7- phosphate (DHAP) synthase : Genes encoding a mutated 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase enzyme:
[0162] SEQ ID NO :10 : séquence du gène de la 3-Deoxy-D-arabino- Heptulodonate 7-phosphate (DHAP) synthase avec mutation P160L ( Pseudomonas putida KT2440) codant la DHAP synthase de séquence SEQ ID NO :2. [0162] SEQ ID NO: 10: sequence of the gene for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DHAP) synthase with P160L mutation (Pseudomonas putida KT2440) encoding the DHAP synthase of sequence SEQ ID NO: 2.
[0163] SEQ ID NO :11 : séquence du gène de la 3-Deoxy-D-arabino-[0163] SEQ ID NO: 11: sequence of the gene for 3-Deoxy-D-arabino-
Heptulodonate 7-phosphate (DHAP) synthase avec double mutation P160L/Q164A ( Pseudomonas putida KT2440) codant la DHAP synthase de séquence SEQ ID NO :3. Heptulodonate 7-phosphate (DHAP) synthase with double mutation P160L/Q164A (Pseudomonas putida KT2440) encoding the DHAP synthase of sequence SEQ ID NO:3.
[0164] SEQ ID NO :12 : séquence du gène de la 3-Deoxy-D-arabino-[0164] SEQ ID NO: 12: sequence of the gene for 3-Deoxy-D-arabino-
Heptulodonate 7-phosphate (DHAP) synthase avec double mutation P160L/S193A ( Pseudomonas putida KT2440) codant la DHAP synthase de séquence SEQ ID NO :4. [0165] Gènes additionnels permettant la synthèse de composés phénylpropanoïdes Heptulodonate 7-phosphate (DHAP) synthase with double mutation P160L/S193A (Pseudomonas putida KT2440) encoding the DHAP synthase of sequence SEQ ID NO: 4. [0165] Additional genes allowing the synthesis of phenylpropanoid compounds
[0166] SEQ ID NO :13: gène (Pseudomonas putida KT2440) de la phénylalanine hydroxylase (phhA) codant la phhA de séquence SEQ ID NO :5. [0167] SEQ ID NO :14: gène (Pseudomonas putida KT2440) de la tétrahydrobiopterine deshydratase (phhB) codant la phhB de séquence SEQ ID NO :6. [0166] SEQ ID NO: 13: phenylalanine hydroxylase (phhA) gene (Pseudomonas putida KT2440) encoding phhA of sequence SEQ ID NO: 5. [0167] SEQ ID NO: 14: tetrahydrobiopterin dehydratase (phhB) gene (Pseudomonas putida KT2440) encoding the phhB of sequence SEQ ID NO: 6.
[0168] SEQ ID NO :15: gène ( Rhodotorula glutinis) de la tyrosine ammonia lyase codant la beta-xylosidase de séquence SEQ ID NO :7. [0168] SEQ ID NO: 15: tyrosine ammonia lyase gene (Rhodotorula glutinis) encoding beta-xylosidase of sequence SEQ ID NO: 7.
[0169] SEQ ID NO :16 : gène (gène fcs Pseudomonas putida KT2440) de la 4- coumarate-CoA ligase (4-CL) codant la 4-CL de séquence SEQ ID NO :8. SEQ ID NO: 16: gene (fcs Pseudomonas putida KT2440 gene) for 4-coumarate-CoA ligase (4-CL) encoding 4-CL of sequence SEQ ID NO: 8.
[0170] SEQ ID NO :17: gène ( Rheum palmatum) de la benzalacétone synthase (BAS) codant la BAS de séquence SEQ ID NO : 9. [0170] SEQ ID NO: 17: benzalacetone synthase (BAS) gene (Rheum palmatum) encoding the BAS of sequence SEQ ID NO: 9.
[0171] Exemple 3: Activité in vivo d’une souche Pseudomonas putida génétiquement modifiées selon l’invention Example 3: In vivo activity of a genetically modified Pseudomonas putida strain according to the invention
[0172] Préparation d’un mutant AroF-l-fbr P160L/S193A [0172] Preparation of an AroF-1-fbr P160L/S193A mutant
[0173] Une souche Pseudomonas putida KT2440 a été génétiquement modifiée tel que décrit dans l’exemple 1 de manière à exprimer le gène AroF-l codant pour la DHAP synthase comprenant la double mutation P160L/S193A définie par la séquence d’acide aminés SEQ ID NO: 4, et à exprimer le gène recombinant additionnel codant pour une tyrosine ammonia lyase (TAL_RG_OPT) hétérologue de séquence SEQ ID NO : 7. A Pseudomonas putida KT2440 strain was genetically modified as described in example 1 so as to express the AroF-1 gene coding for DHAP synthase comprising the double mutation P160L/S193A defined by the amino acid sequence SEQ ID NO: 4, and to express the additional recombinant gene coding for a heterologous tyrosine ammonia lyase (TAL_RG_OPT) of sequence SEQ ID NO: 7.
[0174] Cette souche est appelée « mutant AroF-l-fbr P160L/S193A ». This strain is called “AroF-1-fbr P160L/S193A mutant”.
[0175] L’activité du mutant AroF-l-fbr P160L/S193A sur la production d’acide coumarique (CPA) ou d’acide cinnamique (CA) a été déterminée en mesurant les quantités produites de ces acides comparativement à une souche Pseudomonas putida KT2440 génétiquement modifiée de manière à exprimer l’enzyme AroF-l sauvage et qui sert de contrôle (Mutant AroF-l-WT). The activity of the AroF-l-fbr P160L/S193A mutant on the production of coumaric acid (CPA) or cinnamic acid (CA) was determined by measuring the quantities produced of these acids compared to a Pseudomonas strain putida KT2440 genetically modified so as to express the wild-type AroF-1 enzyme and which serves as a control (Mutant AroF-1-WT).
[0176] Résultats [0176] Results
[0177] La production d’acide cinnamique augmente de façon significative dans une souche de P. putida exprimant l’enzyme AroF-l fbr ayant la double mutation P160L/S193A (Figure 6). [0178] Optimisation du mutant AroF-l-fbr P160L/S193A pour la production d’acide coumarique The production of cinnamic acid increases significantly in a strain of P. putida expressing the enzyme AroF-1 fbr having the double mutation P160L/S193A (FIG. 6). [0178] Optimization of the AroF-1-fbr P160L/S193A mutant for the production of coumaric acid
[0179] Le mutant AroF-l-fbr P160L/S193A a été modifié afin d’exprimer les gènes recombinants additionnels codants pour une phénylalanine hydroxylase (phhA) de séquence SEQ ID NO : 5 et une tétrahydrobiopterine deshydratase (phhB) de séquence SEQ ID NO : 6. Les gènes codants pour ces enzymes ont été clonés dans un plasmide et exprimés sous la dépendance du promoteur inductible araC/pBADopt, l’induction étant réalisée avec 0,5% d’arabinose : plasmide pC2F387. The AroF-1-fbr P160L/S193A mutant was modified in order to express the additional recombinant genes coding for a phenylalanine hydroxylase (phhA) of sequence SEQ ID NO: 5 and a tetrahydrobiopterin dehydratase (phhB) of sequence SEQ ID NO: 6. The genes coding for these enzymes were cloned into a plasmid and expressed under the control of the inducible araC/pBADopt promoter, the induction being carried out with 0.5% arabinose: plasmid pC2F387.
[0180] Cette souche est appelée « mutant AroF-l-fbr optimisé ». This strain is called “optimized AroF-1-fbr mutant”.
[0181] La production d’acide coumarique (CPA) ou d’acide cinnamique (CA) du mutant AroF-l-fbr optimisé a été mesurée puis comparée à celle obtenue avec le mutant AroF-l-fbr P160L/S193A, et celle obtenue avec deux souches contrôles à savoir : The production of coumaric acid (CPA) or cinnamic acid (CA) of the optimized AroF-l-fbr mutant was measured and then compared with that obtained with the AroF-l-fbr mutant P160L/S193A, and that obtained with two control strains, namely:
- une souche Pseudomonas putida KT2440 exprimant l’enzyme AroF-l sauvage (Mutant AroF-l-WT), et - a Pseudomonas putida KT2440 strain expressing the wild-type AroF-l enzyme (Mutant AroF-l-WT), and
- une souche Pseudomonas putida KT2440 exprimant l’enzyme AroF-l sauvage et les deux enzymes phhA et phhB de séquences SEQ ID NO :5 et SEQ ID NO :6 respectivement (Mutant AroF-l-WT phhA/B). - a Pseudomonas putida KT2440 strain expressing the wild-type AroF-l enzyme and the two phhA and phhB enzymes of sequences SEQ ID NO: 5 and SEQ ID NO: 6 respectively (Mutant AroF-l-WT phhA/B).
[0182] Résultats [0182] Results
[0183] Les résultats présentés en Figure 6 montrent que la surexpression des gènes phhA et phhB dans la souche mutante AroFI-WT entraîne une production plus importante de d’acide phénoliques (PCA + CA). The results presented in Figure 6 show that the overexpression of the phhA and phhB genes in the AroFI-WT mutant strain leads to a greater production of phenolic acid (PCA+CA).
[0184] De manière particulièrement intéressante, le mutant AroF-l-fbr optimisé permet d’obtenir une production d’acides phénoliques totaux bien plus importante que le mutant AroF-l-fbr P160L/S193A et le mutant AroF-l-WT phhA/B. En proportion, l’acide coumarique représente la quasi-totalité des phénoliques totaux produits et c’est avantageux car l’acide cinnamique n’est pas un composé exploitable industriellement pour la production de composés phénylpropanoïdes. [0185] Ces résultats démontrent bien que le mutant AroF-l-fbr optimisé est particulièrement adapté pour la production de composés phénylpropanoïdes, et particulièrement d’acide coumarique. Of particular interest, the optimized AroF-l-fbr mutant makes it possible to obtain a much greater production of total phenolic acids than the AroF-l-fbr P160L/S193A mutant and the AroF-l-WT phhA mutant. /B. In proportion, coumaric acid represents almost all of the total phenolics produced and this is advantageous because cinnamic acid is not an industrially exploitable compound for the production of phenylpropanoid compounds. These results clearly demonstrate that the optimized AroF-1-fbr mutant is particularly suitable for the production of phenylpropanoid compounds, and particularly coumaric acid.
Texte libre du listage de séquences [0186] Dans la présente demande, il est fait référence aux listages de séquences dont les identificateurs (ou « SEQ ID NO ») sont listés dans le tableau ci-dessous. Quelle que soit la forme sous laquelle les listages sont fournis, ils font partie de la présente demande. Free text of the sequence listing [0186] In the present application, reference is made to the sequence listings whose identifiers (or "SEQ ID NO") are listed in the table below. Regardless of the form in which the listings are provided, they form part of this application.
[0187] [Tableau 4] [0187] [Table 4]
Liste des documents cités List of cited documents
Documents brevets Patent documents
[0188] À toute fin utile, le(s) document(s) brevet(s) suivant(s) est (sont) cité(s) : - patcitl : FR1234567 (numéro de dépôt) ; For all practical purposes, the following patent document(s) is (are) cited: - patcitl: FR1234567 (filing number);
- patcit2 : US2004230550 (numéro de publication) ; et - patcit2: US2004230550 (publication number); and
- patcit3 : FR2795457 (numéro de publication). - patcit3: FR2795457 (publication number).
Littérature non-brevet Non-patent literature
[0189] À toute fin utile, les éléments non-brevets suivants sont cités : - nplcitl : Klesk et al., 2004, J. Agric. Food Chem. 52, 5155- 61 ; For all practical purposes, the following non-patent elements are cited: - nplcitl: Klesk et al., 2004, J. Agric. Food Chem. 52, 5155-61;
- nplcit2 : Larsen et al., 1991 , Acta Agric. Scand. 41 , 447-54). - nplcit3 : Kikuchi Y et al. « Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli.” Appl Environ Microbiol 63:761-762 (1997).) : P160L, Q164A, S190A, G191 K, S193A, I225P. - nplcit2: Larsen et al., 1991, Acta Agric. scand. 41, 447-54). - nplcit3: Kikuchi Y et al. “Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli.” Appl Environ Microbiol 63:761-762 (1997).): P160L, Q164A, S190A, G191K, S193A, I225P.
- nplcit4 : Cui, Di et al., “Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli”, J Struct Biol. 2019 Jun 1 ; 206(3) :322-334. - nplcit4: Cui, Di et al., “Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli”, J Struct Biol. 2019 Jun 1; 206(3):322-334.
- nplcit5: Lütke-Eversloh and Stephanopoulos, 2005 - nplcit5: Lütke-Eversloh and Stephanopoulos, 2005
- nplcit6 : Lütke-Eversloh and Stephanopoulos, 2007. “L-Tyrosine production by deregulated strains of Escherichia coli”. - nplcit6: Lütke-Eversloh and Stephanopoulos, 2007. “L-Tyrosine production by deregulated strains of Escherichia coli”.
- nplcit7 : Kang et al., 2012 “Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain » - nplcit7: Kang et al., 2012 “Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain”
- nplcit8 : Santos et al., 2011. “Optimization of a heterologous pathway for the production of flavonoids from glucose », - nplcit8: Santos et al., 2011. “Optimization of a heterologous pathway for the production of flavonoids from glucose”,
- nplcit9 : Juminaga et al., 2011. « Modular engineering of L-tyrosine production in E. coli ». - nplcit9: Juminaga et al., 2011. “Modular engineering of L-tyrosine production in E. coli”.
- npicitlO : Rodriguez et al., 2015, “Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.” - npicitlO: Rodriguez et al., 2015, “Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.”
- npicitH : Calera et al., 2016. « Broad-host range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440”. - npicitH: Calera et al., 2016. “Broad-host range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440”.
- nplcitl 2 : Calera et al., 2017. « Genome-wide identification of tolérance mechanisms toward p-coumaric acid in Pseudomonas putida ». - nplcitl 2: Calera et al., 2017. “Genome-wide identification of tolerance mechanisms toward p-coumaric acid in Pseudomonas putida”.
- nplcitl 3 : Koeduka, T., et al. (2011 ). “Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits ». Biochemical and Biophysical Research Communications 412, 104-108. - nplcitl 3: Koeduka, T., et al. (2011). “Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits”. Biochemical and Biophysical Research Communications 412, 104-108.
- nplcitl 4 : Beekwilder et al., 2007. “Microbial production of natural raspberry ketone”. - nplcitl 4: Beekwilder et al., 2007. “Microbial production of natural raspberry ketone”.
- nplcitl 5 : Lee et al., 2017. “Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion”. - nplcitl 5: Lee et al., 2017. “Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic fusion enzyme”.
- nplcitl 6 : Waterhouse, A. et al., « SWISS-MODEL: homology modelling of protein structures and complexes ». Nucleic Acids Res. 46(W1), W296-W303 (2018)- nplcitl 6: Waterhouse, A. et al., “SWISS-MODEL: homology modeling of protein structures and complexes”. Nucleic Acids Res. 46(W1), W296-W303 (2018)
- nplcitl 7 : O. Trott et al., « AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading »,- nplcitl 7: O. Trott et al., “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading”,
Journal of computanional chemestry, 2010). Journal of computer chemistry, 2010).
- nplcitl 8 : Ding, R. et al. “Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli”. Biotechnol Lett 36, 2103-2108 (2014).- nplcitl 8: Ding, R. et al. “Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli”. Biotechnol Lett 36, 2103-2108 (2014).
- nplcitl 9 : (Gibson et al., 2009). - nplcit20 : Schàfer A, et al., “Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19 : sélection of defined délétions in the chromosome of Corynebacterium glutamicum”. Gene 1994 Jul 22 ; 145(1) :69-73) - nplcitl 9: (Gibson et al., 2009). - nplcit20: Schàfer A, et al., “Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum”. Gene 1994 Jul 22; 145(1):69-73)
- nplcit21 : Simon, R., et al. “A broad host range mobilization System for in vivo genetic engineering : transposon mutagenesis in gram négative bacteria”. Nature- nplcit21: Simon, R., et al. “A broad host range mobilization System for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria”. Nature
BioTechnology volume 1 , pages784-791 (1983)). BioTechnology volume 1, pages 784-791 (1983)).
- nplcit22 : 0. Trott et al., 2010. « AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading », Journal of computanional chemestry. - nplcit23: Zhou et al., “Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis”. Appl. Microbiol. Biotechnol, 2015. - nplcit22: 0. Trott et al., 2010. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading”, Journal of computanional chemestry. - nplcit23: Zhou et al., “Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis”. Appl. Microbiol. Biotechnol, 2015.
- nplcit23: Prior et al., “Broad-host-range vectors for protein expression across gram négative hosts”. Biotechnol Bioeng, 2010 Jun 1 ;106(2):326-32. - nplcit23: Prior et al., “Broad-host-range vectors for protein expression across gram negative hosts”. Biotechnol Bioeng, 2010 Jun 1;106(2):326-32.

Claims

Revendications Claims
[Revendication 1] Souche génétiquement modifiée de Pseudomonas putida caractérisée en ce qu’elle comprend un gène AroF-l muté codant pour la 3-Deoxy- D-arabino-Heptulodonate 7-phosphate (DAHP) synthase dont la séquence présente au moins 90% d’identité avec la séquence SEQ ID NO :1 et présentant au moins une mutation P160L, une double mutation P160L/Q164A, ou une double mutation P160L/S193A, de préférence une double mutation P160L/S193A. [Claim 1] Genetically modified strain of Pseudomonas putida characterized in that it comprises a mutated AroF-1 gene coding for 3-Deoxy-D-arabino-Heptulodonate 7-phosphate (DAHP) synthase, the sequence of which presents at least 90% of identity with the sequence SEQ ID NO: 1 and exhibiting at least one P160L mutation, a P160L/Q164A double mutation, or a P160L/S193A double mutation, preferably a P160L/S193A double mutation.
[Revendication 2] Souche génétiquement modifiée de Pseudomonas putida, selon la revendication 1 , caractérisée en ce qu’elle est capable d’exprimer une DAHP synthase recombinante insensible à la rétro régulation par la tyrosine. [Claim 2] Genetically modified strain of Pseudomonas putida, according to claim 1, characterized in that it is capable of expressing a recombinant DAHP synthase insensitive to retroregulation by tyrosine.
[Revendication 3] Souche génétiquement modifiée selon la revendication 1 ou 2, caractérisée en ce qu’elle comprend un gène recombinant additionnel codant pour une phénylalanine hydroxylase (phhA) dont la séquence présente au moins 80% d’identité avec la séquence SEQ ID NO : 5, et un gène recombinant additionnel codant pour une tétrahydrobiopterine deshydratase (phhB) dont la séquence présente au moins 80% d’identité avec la séquence SEQ ID NO : 6, de préférence lesdits gènes recombinants phhA et phhB étant placés sous contrôle d’un promoteur hétérologue permettant leur surexpression. [Claim 3] Genetically modified strain according to claim 1 or 2, characterized in that it comprises an additional recombinant gene coding for a phenylalanine hydroxylase (phhA) whose sequence has at least 80% identity with the sequence SEQ ID NO : 5, and an additional recombinant gene coding for a tetrahydrobiopterin dehydratase (phhB) whose sequence has at least 80% identity with the sequence SEQ ID NO: 6, preferably said recombinant genes phhA and phhB being placed under the control of a heterologous promoter allowing their overexpression.
[Revendication 4] Souche génétiquement modifiée selon l’une des revendications 1 à 3, caractérisée en ce qu’elle exprime une DAHP synthase présentant une séquence d’acide aminés ayant au moins 80% d’identité avec la séquence SEQ ID NO : 2, la séquence SEQ ID NO :3, ou la séquence SEQ ID NO :4. [Claim 4] Genetically modified strain according to one of Claims 1 to 3, characterized in that it expresses a DAHP synthase having an amino acid sequence having at least 80% identity with the sequence SEQ ID NO: 2 , the sequence SEQ ID NO:3, or the sequence SEQ ID NO:4.
[Revendication 5] Souche génétiquement modifiée selon la revendication 4, caractérisée en ce qu’elle exprime une DAHP synthase ayant une séquence d’acide aminés définie par la séquence SEQ ID NO : 2, SEQ ID NO :3, ou SEQ ID NO :4. [Claim 5] Genetically modified strain according to claim 4, characterized in that it expresses a DAHP synthase having an amino acid sequence defined by the sequence SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 4.
[Revendication 6] Souche génétiquement modifiée selon l’une des revendications 1 à 5, caractérisée en ce qu’elle comprend en outre un ou plusieurs gènes recombinants additionnels choisis parmi : [Claim 6] Genetically modified strain according to one of Claims 1 to 5, characterized in that it also comprises one or more additional recombinant genes chosen from:
- le gène recombinant codant un polypeptide à activité tyrosine ammonia lyase (TAL), en particulier un polypeptide TALayant au moins 80% d’identité avec la séquence d’acides aminés SEQ ID NO :7 du polypeptide TAL_RG_OPT, - the recombinant gene encoding a polypeptide with tyrosine ammonia lyase activity (TAL), in particular a TAL polypeptide having at least 80% identity with the amino acid sequence SEQ ID NO: 7 of the TAL_RG_OPT polypeptide,
- le gène recombinant codant un polypeptide à activité 4-coumarate-CoA ligase (4- CL), en particulier, un polypeptide 4CL ayant au moins 80% d’identité avec la séquence d’acides aminés SEQ ID NO :8, et/ou - the recombinant gene encoding a polypeptide with 4-coumarate-CoA ligase (4-CL) activity, in particular a 4CL polypeptide having at least 80% identity with the amino acid sequence SEQ ID NO: 8, and/ Where
- le gène recombinant codant un polypeptide à activité benzalacétone synthase (BAS), en particulier un polypeptide BAS ayant au moins 80% d’identité avec la séquence SEQ ID NO :9. - the recombinant gene encoding a polypeptide with benzalacetone synthase (BAS) activity, in particular a BAS polypeptide having at least 80% identity with the sequence SEQ ID NO: 9.
[Revendication 7] Souche génétiquement modifiée selon l’une des revendications 1 à 6, caractérisée en ce qu’elle est capable de produire un composé phénylpropanoïde, de préférence l’acide coumarique, le p-coumaroyl-coA, 4- hydroxybenzalacetone ou la frambinone. [Claim 7] Genetically modified strain according to one of Claims 1 to 6, characterized in that it is capable of producing a phenylpropanoid compound, preferably coumaric acid, p-coumaroyl-coA, 4-hydroxybenzalacetone or frambinone.
[Revendication 8] Procédé de synthèse d’un composé phénylpropanoïde, caractérisé en ce qu’il comprend une étape de croissance de la souche génétiquement modifiée selon la revendication 7, dans un milieu de culture sous des conditions permettant l’expression des gènes recombinants nécessaires à la synthèse dudit phénylpropanoïde, ledit composé phénylpropanoïde étant synthétisé par ladite souche génétiquement modifiée. [Claim 8] Process for the synthesis of a phenylpropanoid compound, characterized in that it comprises a step of growing the genetically modified strain according to claim 7, in a culture medium under conditions allowing the expression of the necessary recombinant genes to the synthesis of said phenylpropanoid, said phenylpropanoid compound being synthesized by said genetically modified strain.
[Revendication 9] Procédé selon la revendication 8, caractérisé en ce qu’il comprend également une étape de récupération du composé phénylpropanoïde dans le milieu de culture. [Claim 9] Process according to claim 8, characterized in that it also comprises a step of recovering the phenylpropanoid compound from the culture medium.
[Revendication 10] Utilisation de la souche selon l’une des revendication 1 à 9, pour la synthèse d’un composé phénylpropanoïde ou d’un dérivé de phénylpropanoïde, de préférence l’acide coumarique ou la frambinone. [Claim 10] Use of the strain according to one of Claims 1 to 9, for the synthesis of a phenylpropanoid compound or a phenylpropanoid derivative, preferably coumaric acid or frambinone.
EP22727965.0A 2021-05-12 2022-05-09 Biosynthesis of phenylpropanoid compounds Pending EP4337767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105009A FR3122882A1 (en) 2021-05-12 2021-05-12 Biosynthesis of phenylpropanoid compounds
PCT/FR2022/050880 WO2022238645A1 (en) 2021-05-12 2022-05-09 Biosynthesis of phenylpropanoid compounds

Publications (1)

Publication Number Publication Date
EP4337767A1 true EP4337767A1 (en) 2024-03-20

Family

ID=77519193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22727965.0A Pending EP4337767A1 (en) 2021-05-12 2022-05-09 Biosynthesis of phenylpropanoid compounds

Country Status (5)

Country Link
EP (1) EP4337767A1 (en)
JP (1) JP2024517485A (en)
CN (1) CN117730147A (en)
FR (1) FR3122882A1 (en)
WO (1) WO2022238645A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL241442A (en) 1958-09-06
EP0229161B1 (en) * 1985-06-24 1991-05-29 THE NUTRASWEET COMPANY (a Delaware corporation) Composite plasmids for amino acid synthesis
EP1270721B1 (en) * 1990-11-30 2007-11-21 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
FR2795457A1 (en) 2000-09-06 2000-12-29 Robert Signore Propulsive device has warm black body emitting radiating flow, with focussing mirror fitted to convert radiating flow into parallel flow to provide propulsion.
US20040230550A1 (en) 2003-04-03 2004-11-18 Simpson Michael J. Method and apparatus for electronic filing of patent and trademark applications and related correspondence
GB2416769A (en) 2004-07-28 2006-02-08 Danisco Biosynthesis of raspberry ketone
FR3052170B1 (en) * 2016-06-03 2021-01-22 Lesaffre & Cie PRODUCTION OF FRAMBINONE BY A RECOMBINANT FUNGAL MICROORGANISM

Also Published As

Publication number Publication date
JP2024517485A (en) 2024-04-22
FR3122882A1 (en) 2022-11-18
WO2022238645A1 (en) 2022-11-17
CN117730147A (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US10597685B2 (en) Host cells and methods for oxidizing aromatic amino acids
Martínez et al. Production of melanins with recombinant microorganisms
JP5761723B2 (en) Method for producing plant benzylisoquinoline alkaloids
JP5473927B2 (en) Acetone production by fermentation from renewable raw materials via a novel metabolic pathway
KR20210032928A (en) How to produce tryptamine
JP6881448B2 (en) Aldehyde production method
WO2017064439A1 (en) Genetic tool for the transformation of clostridium bacteria
CN107771214B (en) Modified microorganisms for optimized 2,4-dihydroxybutyric acid production with increased 2,4-dihydroxybutyric acid excrements
Dong et al. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis
JP7107225B2 (en) Method for producing benzaldehyde
Shao et al. Glycine betaine monooxygenase, an unusual Rieske-type oxygenase system, catalyzes the oxidative N-demethylation of glycine betaine in Chromohalobacter salexigens DSM 3043
JP7067706B2 (en) Transformed microorganisms and their utilization
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
Irla et al. Efficient cell factories for the production of N‐methylated amino acids and for methanol‐based amino acid production
US11932896B2 (en) Host cells and methods for producing hydroxytyrosol
KR101061412B1 (en) Cloning of Isoeugenol Monooxygenase and Uses thereof
WO2017207950A1 (en) Production of frambinone by a recombinant fungal microorganism
Liu et al. De Novo Biosynthesis of D-p-Hydroxyphenylglycine by a Designed Cofactor Self-Sufficient Route and Co-culture Strategy
Hölscher et al. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium
WO2022238645A1 (en) Biosynthesis of phenylpropanoid compounds
Shi et al. Transaminase encoded by NCgl2515 gene of Corynebacterium glutamicum ATCC13032 is involved in γ-aminobutyric acid decomposition
Zhu et al. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD
MXPA03003680A (en) FERMENTATIVE PRODUCTION OF D-p-HYDROXYPHENYLGLYCINE AND D-PHENYLGLYCINE.
FR2807764A1 (en) New mutant lactic acid bacteria, useful e.g. for making fermented foods, have the pgm gene inactivated and overexpress exopolysaccharides
US20120295314A1 (en) Method for producing monatin

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR