EP4337024A1 - Proteinpräparat aus mandelsamen und verfahren zur herstellung - Google Patents
Proteinpräparat aus mandelsamen und verfahren zur herstellungInfo
- Publication number
- EP4337024A1 EP4337024A1 EP22714169.4A EP22714169A EP4337024A1 EP 4337024 A1 EP4337024 A1 EP 4337024A1 EP 22714169 A EP22714169 A EP 22714169A EP 4337024 A1 EP4337024 A1 EP 4337024A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass
- less
- particularly preferably
- water
- protein preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 105
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 85
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 85
- 235000020224 almond Nutrition 0.000 title claims abstract description 76
- 235000011437 Amygdalus communis Nutrition 0.000 title claims abstract description 68
- 241000220304 Prunus dulcis Species 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 71
- 235000013305 food Nutrition 0.000 claims abstract description 23
- 229930006000 Sucrose Natural products 0.000 claims abstract description 16
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 15
- 244000144725 Amygdalus communis Species 0.000 claims description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 65
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 54
- 238000000605 extraction Methods 0.000 claims description 52
- 239000002904 solvent Substances 0.000 claims description 52
- 239000002245 particle Substances 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 16
- 239000005720 sucrose Substances 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 235000010582 Pisum sativum Nutrition 0.000 claims description 7
- 240000004713 Pisum sativum Species 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 7
- 230000001143 conditioned effect Effects 0.000 claims description 6
- 230000001804 emulsifying effect Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 244000068988 Glycine max Species 0.000 claims description 5
- 235000010469 Glycine max Nutrition 0.000 claims description 5
- 241001465754 Metazoa Species 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 3
- 235000021374 legumes Nutrition 0.000 claims description 3
- 244000105624 Arachis hypogaea Species 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 claims description 2
- 244000043158 Lens esculenta Species 0.000 claims description 2
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 2
- 238000000855 fermentation Methods 0.000 claims description 2
- 230000004151 fermentation Effects 0.000 claims description 2
- 235000020232 peanut Nutrition 0.000 claims description 2
- 235000002096 Vicia faba var. equina Nutrition 0.000 claims 1
- 235000005489 dwarf bean Nutrition 0.000 claims 1
- 244000013123 dwarf bean Species 0.000 claims 1
- 235000019640 taste Nutrition 0.000 abstract description 6
- 235000015173 baked goods and baking mixes Nutrition 0.000 abstract description 2
- 239000000839 emulsion Substances 0.000 abstract description 2
- 230000007935 neutral effect Effects 0.000 abstract description 2
- 235000013681 dietary sucrose Nutrition 0.000 abstract 1
- 229960004793 sucrose Drugs 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 63
- 239000003921 oil Substances 0.000 description 53
- 235000019198 oils Nutrition 0.000 description 52
- 239000003960 organic solvent Substances 0.000 description 16
- 235000019624 protein content Nutrition 0.000 description 13
- 238000003825 pressing Methods 0.000 description 12
- 238000000926 separation method Methods 0.000 description 12
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 10
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 235000014633 carbohydrates Nutrition 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 229930182485 cyanogenic glycoside Natural products 0.000 description 6
- 150000008142 cyanogenic glycosides Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000012459 muffins Nutrition 0.000 description 3
- 238000005325 percolation Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 235000013618 yogurt Nutrition 0.000 description 3
- 108010005094 Advanced Glycation End Products Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 241000698776 Duma Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- FERSMFQBWVBKQK-CXTTVELOSA-N Linustatin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](OC(C)(C)C#N)O[C@@H]1CO[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 FERSMFQBWVBKQK-CXTTVELOSA-N 0.000 description 1
- TXWILBYJLLXSRK-UHFFFAOYSA-N Linustatin Natural products CC(C)(C#N)C1OC(COC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O TXWILBYJLLXSRK-UHFFFAOYSA-N 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- WOSYVGNDRYBQCQ-BARGLTKPSA-N Neolinustatin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@](C)(CC)C#N)O[C@@H]1CO[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 WOSYVGNDRYBQCQ-BARGLTKPSA-N 0.000 description 1
- 108010084695 Pea Proteins Proteins 0.000 description 1
- 235000003893 Prunus dulcis var amara Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000011868 grain product Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- -1 mono- Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- HNEHIAKMTHNOMH-UHFFFAOYSA-N neolinustatin Natural products CCC(C)(C#N)C1OC(COC2OC(CO)C(O)C(O)C2O)C(O)C(O)C1O HNEHIAKMTHNOMH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000019702 pea protein Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 229940116540 protein supplement Drugs 0.000 description 1
- 235000005974 protein supplement Nutrition 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J1/00—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
- A23J1/14—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
- A23J1/142—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds by extracting with organic solvents
- A23J1/144—Desolventization
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/24—Organic nitrogen compounds
- A21D2/26—Proteins
- A21D2/264—Vegetable proteins
- A21D2/266—Vegetable proteins from leguminous or other vegetable seeds; from press-cake or oil bearing seeds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/005—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
- A23D7/0056—Spread compositions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J1/00—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
- A23J1/14—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seeds; from press-cake or oil-bearing seeds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
- A23J3/16—Vegetable proteins from soybean
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/142—Amino acids; Derivatives thereof
- A23K20/147—Polymeric derivatives, e.g. peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/40—Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/66—Proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L25/00—Food consisting mainly of nutmeat or seeds; Preparation or treatment thereof
- A23L25/30—Mashed or comminuted products, e.g. pulp, pastes, meal, powders; Products made therefrom, e.g. blocks, flakes, snacks; Liquid or semi-liquid products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/20—Removal of unwanted matter, e.g. deodorisation or detoxification
Definitions
- the invention relates to a sensory-appealing protein preparation for food, pet food and animal feed made from almond seeds and to a method for obtaining such an almond seed protein preparation.
- Press cakes with an oil content of less than 15% by mass are then produced at high temperatures of over 100°C. %, often less than 10% by mass. These can be ground into a powder and added to food and animal feed. Due to the treatment at high temperatures, the technofunctional properties such as the solubility of the protein are severely impaired. Due to the content of unsaturated fatty acids, the oily press cake also tends to oxidize the residual fat, which can quickly impair the sensory properties during storage. Compared to isolates from soya (protein content >90%) or peas (protein content >80%), such almond preparations also only have a protein concentration of between 40 and 45% by mass, which means that they can be used in many food applications in which protein enrichment is desired , difficult or impossible .
- almond preparations are known whose fat content is reduced to values below 2% by mass after pressing using supercritical CO 2 , which improves storage stability but also causes very high costs.
- the CO 2 extraction takes place at high pressure of several 100 bar in very expensive reactors, the production and operation of which are associated with high CO 2 emissions. Since the process also requires a lot of energy and significant amounts of CO2 are released from the de-oiled flour after the expansion, protein flours that are extracted using supercritical CO2 do not have any clear ecological advantages compared to animal proteins and sometimes even cause higher costs for the provision.
- the color of these preparations is still brown, which is also not conducive to acceptance in food applications. So far there are no light-colored preparations made from almond seeds with an increased protein content well above 50% by mass, good oxidation stability and at the same time appealing sensory properties.
- the object of the present invention was to provide a neutral-tasting, light-colored and high-quality protein preparation from almond seeds and a simple and cost-effective method of production that is suitable for food applications with sophisticated tastes such as drinks and yoghurt and fine baked goods such as cakes or emulsions such as creams and fillings.
- the preparation should advantageously have as high a protein content as possible in order to contribute to protein enrichment in foods even when used in small amounts.
- the raw material used for the production of the protein preparation according to the invention is almond seeds which have been cleaned and preferably freed from at least part of the seed skin, the proportion of seed skin in dry substance, based on the seed skin contained in native seeds, being less than or equal to 100% by mass, advantageously less 75% by mass, better less than 50% by mass, particularly preferably less than 10% by mass, which has a positive effect on the brightness of the preparation produced therewith.
- the preparation according to the invention can advantageously be obtained using the method according to the invention and is characterized by the following properties (the methods of determination are listed at the end of the description, fat and oil are used interchangeably below): •
- the fat content of the preparation is less than 6% by mass, advantageously less than 4% by mass, better less than 3% by mass, particularly advantageously less than 2% by mass, in each case based on the dry matter or dry substance (TS) of the preparation.
- the protein content is greater than 50% by mass, advantageously greater than 55% by mass, better greater than 60% by mass, particularly advantageously greater than 65% by mass (factor 6.25 and based on TS).
- the preparation contains a proportion of water-soluble carbohydrates such as mono-, di- and oligosaccharides. Since sucrose makes up the largest proportion of water-soluble carbohydrates, these are given below as the sucrose content.
- the sucrose content is less than 8% by mass, advantageously less than 4% by mass, better less than 2.5% by mass, even better less than 1% by mass, particularly advantageously less than 0.5% by mass ( related to TS).
- the preparation is light in color.
- the L* value after grinding to an average particle size d90 (d90: proportion of 90% of the mass of all particles smaller than the specified value) below 250 gm is greater than 70, advantageously greater than 80, preferably greater than 90, particularly advantageously greater than 94.
- the particle size of the preparation advantageously has a d90 value of less than 500 gm, better less than 250 gm, advantageously less than 150 gm, particularly advantageously less
- the preparation has good to very good technofunctional properties, the water binding is in particular greater than 1 mL/g, advantageously greater than 2 mL/g, particularly advantageously greater than 3 mL/g, the oil binding is in particular greater than 1 mL/g, advantageously greater 2 mL/g particularly advantageously greater than 2.5 mL/g.
- the preparation has an emulsifying capacity of more than 150 mL/g, advantageously more than 250 mL/g, better more than 400 mL/g, particularly advantageously more than 500 mL/g.
- the preparation has at pH 7, in particular a protein solubility greater than 10%, better greater than 20%, better greater than 30%, advantageously greater than 40%, advantageously greater than 50%, particularly advantageously greater than 60%.
- the preparations according to the invention are extremely suitable as an ingredient for fermented dairy alternatives with a pH of 4.5 (e.g.
- the preparation has good gel-forming properties.
- the minimum gel-forming concentration of the preparation is preferably ⁇ 12% by mass, advantageously ⁇ 10% by mass, better still ⁇ 8% by mass, particularly advantageously 6% by mass.
- the preparation optionally contains proportions of alcohol, in particular ethanol, greater than 0.001% by mass, better >0.01% by mass, advantageously >0.1% by mass, particularly advantageously >0.5% by mass, but in each case less than 1% by mass. This shows that even with a content of 0.5% by mass, the functional properties of the preparation are at a very high level.
- the preparation contains proportions of hexane greater than 0.0005% by mass, better than >0.001% by mass. but in each case less than 0.005% by mass. Preparations with such hexane levels exhibit better functional properties compared to lower hexane level preparations.
- preparations with proportions of organic solvents still show very good properties, such as very good ones, with the specified contents of solvents with regard to technical functionality Texturability in the extruder with the formation of solid gel structures.
- the inventors were able to show that preparations extracted with ethanol, despite the mild processing conditions and the good techno-functional properties, have a very low bacterial load, advantageously less than 1000 colony-forming units (cfu) per gram of preparation, advantageously less than 100 cfu, particularly advantageously less than 10 cfu per grams.
- the preparation has additional properties that can be of great use in different food applications.
- the content of the water-soluble carbohydrates originally contained in the seeds can be reduced with the help of suitable processes, so that the ratio of proteins to soluble carbohydrate content in the protein preparation is significantly higher than in almond seeds before processing.
- the ratio of the two key figures can be up to 500% higher than with native almond seeds. This can bring advantages in avoiding the formation of undesired Maillard reactions in the production of food, since Maillard products change the color of the food produced with the proteins and the food acquires a darker appearance and a Maillard taste. This can be undesirable, especially with very light-colored foods such as milk or yoghurt alternatives, poultry or fish alternatives or delicatessen products.
- the carbohydrate-reduced almond protein preparation according to the invention is particularly suitable for the production of sensory demanding foods that should contain no or only small amounts of Maillard products.
- protein contents of more than 60% by mass are achieved in the preparation according to the invention—after advantageous implementation of the method according to the invention.
- the method according to the invention has several sub-steps, with almond seeds freed from the stone shell and cleaned, which contain a proportion of seed skins between 0 and 100% of the seed skins originally adhering to the seeds, being provided and then processed.
- These almond seeds are - optionally after pre-crushing or hydrothermal conditioning - mechanically de-oiled, preferably with a continuous or quasi-continuous press, such as a screw press, an extruder or a hydraulic press, and freed from oil.
- a continuous or quasi-continuous press such as a screw press, an extruder or a hydraulic press
- Solvent extraction is largely freed from oil and possibly partially from water-soluble carbohydrates, in particular from sucrose.
- the solvent is then separated from the preparation.
- the preparation is preferably ground to a defined particle size distribution.
- the process can be advantageously accompanied by sieving and classifying processes. The process is described in detail below:
- cleaned almond seeds are provided or almond seeds are freed from impurities or contaminants using mechanical processes.
- the proportion of impurities is reduced to less than 0.5% by mass, advantageously less than 0.2% by mass, better less than 0.1% by mass, particularly advantageously less than 0.05% by mass, or it almonds are provided with a correspondingly low proportion of impurities.
- the almonds are at least partially freed from the seed coat.
- Abrasive methods can be used for this, with at least part of the surface of the almonds being freed from the seed shells by means of rubbing, shearing or grinding.
- the resulting shells with adhering portions of cotyledons are fed to a separate oil extraction, the almonds partially or completely freed from seed coats are fed to further processing according to the invention.
- separation under moist or wet conditions advantageously at elevated temperatures, can be used.
- the almond seeds are either steamed, heated or boiled before the hard stone shells are separated and the skin is rubbed off mechanically after the hard stone shells have been separated.
- the already peeled almond seeds are soaked in water or steam, heated and then freed from the seed shells.
- the method according to the invention is advantageously carried out using almonds which have been partially, largely or completely freed from Testa as raw material. It is also possible to carry out the procedure with almond seeds containing the whole husk and only to a later (e.g. after de-oiling) to separate parts of the seed coat, e.g. through sieves.
- the seeds before the mechanical partial deoiling, are conditioned by adjusting the temperature and moisture content of the seeds and, if necessary, after crushing the kernels.
- the water content in the seeds is adjusted to between 2 and 8% by mass, better still between 3 and 6% by mass, particularly advantageously between 4 and 5.5% by mass.
- the kernels Prior to the mechanical partial deoiling, are also advantageously coarsely comminuted to an edge length of 0.5-7 mm, advantageously between 0.5 and 5 mm, particularly advantageously between 0.5 and 2 mm.
- Rough crushing e.g. in an impact or cutting mill, can cause relevant parts of the seed coat to flake off, which can be separated from the kernels by sifting or other separation methods.
- the oil yield is higher when the almond seeds are pre-crushed. It is also advantageous to heat the seeds to a temperature of more than 40 °C, advantageously more than 50 °C, preferably more than 60 °C, particularly advantageously more than 70 °C but less than 100, before or after the comminution and before the mechanical partial deoiling °C, particularly advantageously less than 80 °C. After this type of conditioning, the almond seeds can be processed particularly well in a continuous press. According to the invention, the mechanical partial deoiling can be carried out both with almond seeds which still contain all of their seed skins or with almond seeds in which the seed skins have been partially or completely separated by a suitable pretreatment.
- a mechanical separation of the oil takes place with the optionally preconditioned almond seeds, advantageously with continuous devices for de-oiling.
- examples of such aggregates are screw presses, extruders or quasi-continuous hydraulic presses, but other mechanical devices for oil separation can also be used, such as centrifugal separation techniques.
- the pressing is carried out in such a way that the residual oil content after pressing is greater than 8% by mass but less than 40% by mass; the residual oil content is advantageously between 8 and 30% by mass, better between 8 and 25% by mass and particularly advantageously between 8 and 20% by mass.
- Almond seeds have an oil content of up to 60% and cannot be easily mechanically de-oiled due to the lack of structure-giving components for drainage.
- attempts will therefore be made to achieve a residual oil content of less than 20% by mass in the press cake after mechanical partial deoiling. It may therefore be necessary to press the press cake again or to further de-oil it using a device for mechanical partial de-oiling, in particular a press. This can be done during pressing by adding the press cake to the inlet of the first press together with unpressed seeds, or in a second press that only presses the press cake further.
- the pressing or mechanical partial de-oiling of the press cake can also be carried out several times in order to achieve the desired residual oil content. By repeatedly pressing press cakes or multiple mechanical partial de-oiling, the desired low residual oil content can be achieved at the end without setting temperatures that are too high have to.
- the mechanical partial deoiling is carried out according to the invention at moderate temperatures.
- the almonds are advantageously pressed or mechanically partially de-oiled at an average temperature below 100°C, particularly advantageously at less than 80°C.
- the mean temperature is understood to be the arithmetic mean of the temperature of the seeds in the intake and the temperature of the press cake at the outlet of the press or the device for mechanical partial de-oiling. This enables the oil to be pressed gently despite multiple pressing passes without having to accept significant color changes in the preparation.
- the press cake or partially de-oiled almond seeds can be conditioned again before extraction. It turns out that lowering the moisture in the press cake or partially de-oiled almond seeds to a residual moisture content of less than 8% by mass, advantageously less than 5% by mass, better less than 3% by mass, particularly advantageously less than 2% by mass , e.g. with the help of dryers, which makes de-oiling using organic solvents more efficient in the subsequent step, as more oil can be separated with less solvent at lower moisture levels. This can be used advantageously to reduce costs and contribute to protecting the proteins.
- the particle size and shape of the press cake or partially de-oiled almond seeds before or during extraction.
- press cakes from almond seeds tend to form very solid and sometimes hard discs, flakes or press cake structures, making it difficult or impossible for organic solvents to penetrate.
- crushing the press cake or the partially de-oiled almond seeds to particle sizes with a d90 value of less than 2 mm, advantageously less than 1 mm, better less than 0.5 mm, particularly advantageously less than 0.2 mm significantly accelerates the extraction.
- This acceleration leads to an improvement in the functional properties in the preparations, since the dwell time in the dryer before extraction and the contact time between solvent and proteins can be reduced.
- the proportion of fines with a particle size of less than 100 ⁇ m should be less than 50% by mass, advantageously less than 25% by mass, particularly advantageously less than 10% by mass.
- the flake thickness is advantageously set to below 2 mm, advantageously below 0.5 mm, particularly advantageously below 0.2 mm.
- Flake thickness is understood to mean the average thickness of the material emerging from the roller mill or another flaking unit. The average thickness can be determined, for example, by measuring with a caliper or a micrometer screw, it then corresponds to the average of 50 measurements.
- the particle size and shape of the press cake in mechanical partial de-oiling with a press can be adjusted using different methods. Mills or crushers with appropriate sieve inserts or roller mills with defined roller spacing can be used. Particle size distributions with a defined Size range can be obtained. These can be equalized after or during the grinding by separating them according to size, for example by means of sieving, with regard to the particle size distribution.
- Crushing in a suspension has proven to be particularly advantageous.
- Fast-flowing liquids can also be used as a pressure jet or suspensions containing solids to crush the press cake particles.
- conveyor units, agitators or mixers which lead to shearing of the press cake, can be used to break up the particles and always create a new surface for the solvent to penetrate.
- aggregates that are already used in the process for conveying the extraction agent are also used for this purpose. This makes it possible to use aggregates for comminution that are actually designed for pumping or stirring, such as centrifugal pumps or other forms of conveying aggregates or agitators that introduce high shear forces into the suspension of press cake and solvent.
- By means of a suitable residence time in these units or by circulation it is possible to set the comminution in the devices mentioned in such a way that the particle size distribution according to the invention is obtained.
- Mixtures of alcohols with water are preferably used as the solvent for the separation of oil and sucrose from the press cake or partially de-oiled almond seeds.
- the treatment with alcohol and the treatment with water can take place simultaneously in the same extraction step (in the form of an alcohol-water mixture) or they can be arranged one after the other.
- hexane can also be used in the presence of water as a solvent, as well as combinations of alcohol or hexane as one solvent and water as the other solvent.
- Alcohols such as ethanol, propanol, isopropanol or others can be used.
- the mass fraction of solvent based on the mass fraction of press cake or partially de-oiled almond seeds should be greater than 1.5, advantageously greater than 3, preferably greater than 5, even better greater than 7. particularly advantageously greater than 10 can be selected. In this way, an extensive reduction of the oil to less than 2% by mass can be achieved.
- a proportion of water is present in addition to the organic solvent during the extraction. This can be achieved by adding water or using an organic solvent with a defined water content or by adding water via a wet presscake.
- the water can be used during the solvent extraction of the oil or only afterwards.
- the water content in the extraction, based on the organic solvent is selected to be greater than 6% by mass, advantageously greater than 7% by mass, particularly advantageously greater than 8% by mass, better greater than 9% by mass, even better greater than 10% by mass %.
- alcohol in particular ethanol
- the water content should be less than 14% by mass in order to prevent the oil from being able to be dissolved sufficiently. This limitation makes it possible to obtain a protein preparation with technofunctional properties obtained that has a particularly light color and a very high protein content of more than 60% by mass.
- the water content in the extraction process can be adjusted by providing aqueous solvent, by adding press cake or partially de-oiled almond seeds with a residual moisture content, or by adding water directly before or during the solvent extraction. Combinations of the measures mentioned can also be selected.
- hexane is used as the organic solvent
- the water content can also be adjusted so that it is higher than 14% by mass, based on the hexane used.
- the good solubility for oil is retained, even if water contents, based on the solvent, of, for example, greater than 20% or up to 30% by mass, preferably ⁇ 30% by mass, are used.
- the water content according to the invention is therefore limited to a maximum of 14% by mass only in amphiphilic solvents such as alcohol; this limitation does not occur in the case of a lipophilic solvent.
- the temperature of the solvent or the mixture of solvents during the extraction will therefore be between 30°C and 75°C, advantageously between 45°C and 65°C, particularly advantageously between 50°C and 65°C. In this temperature range, the selected mixtures of water and organic solvent are able to separate both oil and sucrose from the almonds without at the same time denaturing the almonds too extensively to effect proteins.
- the duration of the contact between the organic solvent and the press cake or the protein preparation at temperatures above 45° C. is between 30 minutes and 12 hours in the method according to the invention, advantageously between 1 hour and 5 hours, particularly advantageously between 1 and 2 hours.
- the temperature ranges mentioned above should also be selected if, for example, non-polar solvents such as hexane are used, in order to largely avoid thermal damage to the proteins.
- a conventional percolation extraction can be used for the extraction, in which the solvent flows over a bed of press cake particles or particles that have been conditioned with regard to particle size/shape or moisture, so that oil and sucrose are discharged into the organic solvent or can take place in the water. Since fine particles are detached from the almond press cakes during this process and can be carried out with the solvent, filtration devices must be provided to prevent pumps and pipes from clogging or product losses. In order to prevent or at least limit this process, it can be advantageous to press the conditioned or unconditioned press cake into pellets before extraction, from which significantly fewer fine particles are released during extraction. As a result, the effort involved in filtration can be significantly reduced.
- immersion extraction preferably in a mixing-settling process, has particular advantages.
- a multi-stage immersion extraction is particularly advantageous.
- the press cakes or the conditioned press cakes are completely immersed in the solvent so that virtually no gas comes into contact with the particles.
- an immersion extractor is thus able to crush the particles simultaneously with the extraction, as described above, by mixing them vigorously with a stirrer. This also makes it possible to carry out a gradual comminution of the press cakes in a targeted manner into different particle sizes in several extraction containers arranged one behind the other.
- the solvent and the coarse particulate raffinate can be easily separated mechanically, advantageously by sedimentation or by centrifugation, e.g. in decanters.
- the oil-containing miscella in the supernatant can then be distilled and the recovered solvent can be used again for the extraction of press cake particles that have already been extracted once or several times and have a smaller particle size distribution than in the previous extraction.
- the press cake (raffinate) that has been separated from the solvent can be mixed with fresh solvent and thus be de-oiled again.
- the excess solvent from the treatment of a raffinate loaded with less oil can be used again for the extraction of a raffinate loaded with more oil to reduce the total amount of solvent, and so on. This gives a countercurrent extraction with stirred tanks that contain different large particle size distributions.
- a particular advantage of using sedimentation results from the possibility of setting the sedimentation time for setting the solid-liquid separation shafts.
- sedimentation takes place in the earth's gravity field up to a defined volume ratio of raffinate and supernatant. It makes sense here to separate the supernatant from the raffinate, for example from above by pumping, siphoning or suction, if the volume fraction of the supernatant is at least 50%, advantageously greater than 60%, particularly advantageously greater than 70%.
- the raffinate can be treated with solvent again in countercurrent and the suspension stirred until a new particle size distribution occurs due to the shearing during stirring. The sedimentation process then takes place again.
- the process of mixing and settling the raffinate can be repeated several times; the process is advantageously carried out more than 2 times, better more than 3 times, particularly advantageously more than 4 times, so that the extraction is carried out in several stages, particularly advantageously in countercurrent.
- a higher water content can be used in order to specifically separate water-soluble components; Solvents such as ethanol or isopropanol with a lower water content can dissolve more oil.
- this procedure also has the advantage that the water content is only high for a short time in the first extraction stage, so that protein denaturation can be minimized.
- This change in the water content is advantageously supported by the fact that after the second and/or third extraction part of the supernatant is not used for the next extraction but is treated with the miscella.
- a lipophilic solvent such as hexane or a less polar solvent such as ethanol with a water content of less than 5% by mass for the first extraction steps and, after partial removal of the solvent or complete desolventization of the raffinate, a hydrophilic solvent or one with more water to use mixed solvent. This can further reduce the stress on proteins from the presence of water.
- the preparation can optionally be further treated with aqueous enzyme solutions or by means of fermentation or dried directly to improve the functional properties. Drying is advantageously carried out at low temperatures in the material below 120° C., better below 100° C., particularly advantageously below 80° C., in order to protect the proteins and to keep the color of the preparation as light as possible.
- a dryer is advantageously used for this which has a jacket temperature above 100 °C, preferably above 120 °C, but which is operated in a vacuum and whose pressure is reduced again at the end of the drying process to remove the solvent residues.
- the pressure is reduced to values below 500 mbar, better below 200 mbar, particularly advantageously below 100 mbar. This reduction in pressure at the end of drying lowers the boiling point of the solvent and the jacket temperature can be reduced. Such a reduction in the temperature of the jacket during post-drying results in further protection of the proteins.
- the dried protein preparations are advantageously ground to adjust the functionality, because preparations ground with different fineness show clear differences in the technofunctional properties, such as, for example, in the solubility.
- the grinding is therefore carried out to d90 particle sizes less than 500 mpi, advantageously less than 250 mpi, better less than 150 mpi, particularly advantageously less than 100 mpi.
- the miscella loaded with oil and water is advantageously separated by distillation and optionally concentrated by rectification. It turns out that the sugars and some secondary plant substances remain in the water phase, which can be separated from the oil phase mechanically, e.g. centrifugally or in the gravitational field.
- the method according to the invention results in further advantages for the safety of the almond preparation. Since sweet almonds (almonds with a very low proportion of cyanogenic glycosides) can always contain proportions of bitter almonds (with a high content of cyanogenic glycosides), the extractive process with amphiphilic or hydrophilic solvents enables partial separation of the cyanogenic glycosides contained, so that from the resulting protein preparation - unlike pure press cake - poses no danger to humans.
- a mixture of the preparation according to the invention with protein components from legume proteins from the group pea, lentil, bean, broad bean, peanut or soya is advantageous, particularly advantageously only from the group pea and soya, particularly advantageously only pea.
- a mixture of the proteins mentioned and the almond preparation according to the invention should have a protein content of >60% by mass, advantageously >70% by mass, particularly advantageously >80% by mass.
- the ratio of the protein according to the invention to the total mass of the mixture should be greater than 5% by mass and less than 95% by mass, advantageously greater than 10% by mass and less than 90% by mass, particularly advantageously greater than 25% by mass. -% and less than 75% by mass, preferably greater than 40% by mass and less than 60% by mass. This makes it particularly possible to combine the functionality of the legume proteins with the good sensory properties and color of the preparation according to the invention and to compensate for deficits in individual amino acids of the individual proteins in the mixture.
- the protein content is defined as the content calculated by determining the nitrogen according to Dumas and multiplying it by a factor of 6.25. In the present patent application, the protein content is given in percent by mass, based on the dry substance (TS), ie the anhydrous sample.
- TS dry substance
- the perceivable color is defined using CIE-L*a*b* color measurement.
- the L* axis indicates the brightness, with black having the value 0 and white having the value 100.
- the a* axis describes the green or red component and the b* axis describes the blue or yellow component.
- the protein solubility is determined using the determination method according to Morr et al. Determined in 1985, see the journal article: Morr CV German B Kinsella JE Regenstein JM
- the protein solubility can be given for a defined pH value, if no pH value is given, the data refer to a pH value of 7.
- the emulsifying capacity is determined by means of a determination method (hereinafter referred to as EC determination method), in which 100 ml of a 1% suspension of the protein preparation with a pH of 7 and corn oil is added until the phase inversion of the oil-in-water emulsion occurs.
- EC determination method a determination method in which 100 ml of a 1% suspension of the protein preparation with a pH of 7 and corn oil is added until the phase inversion of the oil-in-water emulsion occurs.
- the emulsifying capacity is defined as the maximum oil absorption capacity of this suspension, determined via the spontaneous decrease in conductivity during phase inversion (cf. the journal article by Wäsche,
- the fat or oil content is determined by the Soxhlet method using hexane as a solvent.
- HCN hydrocyanic acid
- sucrose content is determined by modified measurement determined according to DIN 10758:1997-05 (including correction 1 from Sep. 2018) using HPLC methods.
- the sugars are extracted from the sample matrix with hot water. After separating interfering substances, the extracts are made up to a defined volume with water, filtered and the filtrates are fed to the HPLC measurement.
- the water binding capacity is determined using the method as given in: American Association of Cereal Chemists, "Approved methods of the AACC”. 10th ed., AACC. St Paul, MN, 2000b; Methods 56-20. "Hydration capacity of pregelatinized cereal products”.
- the water binding capacity is z. B. specified in ml / g, d. H. milliliters of bound water per gram of preparation, and is calculated according to the AACC
- the oil-binding capacity can be specified in ml/g, i.e. milliliters of bound oil per gram of preparation, and is measured according to centrifuge determination methods as the volume of the oil-binding sediment after mixing 1.5 g protein preparation with 15 ml corn oil for 1 minute and centrifuging at 700g for 15 minutes at 20°C.
- the minimum gelling concentration determines the concentration below which a protein preparation can form a thermally induced gel.
- the preparation is placed in test tubes in different concentrations in water and evenly suspended. The suspension is then heated to 85°C for 30 minutes and cooled again to 20°C. The test tube is inverted, leaving free water can flow off. The lowest concentration at which no more water flows off is referred to as the minimum gel concentration.
- the comminuted presscake was extracted 5 times with 3500 mL solvent (ethanol-water mixture with 7% by mass water content) each time. For this purpose, 3500 ml were added to the 800 g presscake in the first stage, the mixture was stirred at 58° C. for 5 minutes and the stirrer was then switched off.
- the preparation had a pleasant nutty taste and a protein content of 69% based on TS, a protein solubility of 68% at pH 7 and an emulsifying capacity of 535 mL/g.
- An L* value of 95 was determined in the L*a*b measurement.
- a content of cyanogenic glycosides, measured as hydrocyanic acid, was not detectable. Further properties of the preparation obtained can be found in the tables below. Table 1: L*a*b* color values of the preparation and an aqueous suspension
- Table 2 Composition of the raw materials and preparations
- Table 3 Functional properties of the preparations
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mycology (AREA)
- Physiology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Birds (AREA)
- Seeds, Soups, And Other Foods (AREA)
- Fats And Perfumes (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Proteinpräparat aus Mandelsamen und ein kostengünstiges Verfahren zu dessen Herstellung. Das Proteinpräparat weist einen Proteingehalt von mehr als 50 Mass.-%, einen Ölgehalt von unter 6 Mass.-%, einen Anteil an Saccharose von weniger als 8 Mass.-% und eine Helligkeit (L*) von größer als 70 auf. Das Proteinpräparat ist geschmacklich neutral, hell und qualitativ hochwertig, so dass es sich für farblich und geschmacklich anspruchsvolle Lebensmittelapplikationen wie Emulsionen und Backwaren eignet.
Description
Proteinpräparat aus Mandelsamen und Verfahren zur Herstellung
Anwendungsgebiet
Die Erfindung betrifft ein sensorisch ansprechendes Proteinpräparat für Lebensmittel, Heimtiernahrung und Futtermittel aus Mandelsamen sowie ein Verfahren zur Gewinnung eines derartigen Mandelsamenproteinpräparats.
Stand der Technik
Vor dem Hintergrund knapper werdender Agrarflächen und weiterer Ressourcen gewinnen pflanzliche Proteinpräparate für die Ernährung des Menschen und für den Einsatz in Tierfutter immer mehr an Bedeutung. Die zunehmende Nachfrage nach hochwertigen Lebensmitteln führt zu einem steigenden Bedarf an ernährungsphysiologisch und technofunktionell optimierten Proteinpräparaten, die einfach und kostengünstig bereitgestellt werden können.
Eine kostengünstige Quelle für Proteine zum Einsatz in Lebens- und Futtermitteln und Heimtiernahrung sind Press- und Extraktionsrückstände aus der Gewinnung von Speiseöl aus Mandelsamen. Mandelsamen haben nach dem Abtrennen der Steinschale eine dünne hell- bis dunkelbraune Samenschale (Testa), die im trocknen Zustand mechanisch nicht oder nur schwer von dem Samen (Endosperm) abgetrennt werden kann. Ein Abtrennen der Samenschale ist bei diesen Rohstoffen vor der Ölgewinnung zudem meist nicht gewollt, da eine hohe Ölausbeute erwünscht ist und die Drainage des Öls durch ein Schälen reduziert werden kann. Zur Steigerung der Ausbeute werden beim Pressen zur Gewinnung von Mandelöl nach Stand der Technik oft auch die Samen vor der Entölung thermisch behandelt, was die Viskosität des Öls reduziert und die Ausbeute steigert. Bei hohen Temperaturen von über 100°C werden dann Presskuchen mit einem Ölgehalt kleiner 15 Mass.-
%, vielfach kleiner 10 Mass.-% erhalten. Diese können zu einem Pulver vermahlen werden und Lebensmitteln und Tierfutter zugesetzt werden. Aufgrund der Behandlung bei hohen Temperaturen sind die technofunktionellen Eigenschaften wie z.B. die Löslichkeit des Proteins sehr stark beeinträchtigt. Aufgrund des Gehaltes an ungesättigten Fettsäuren neigt der ölhaltige Presskuchen auch zur Oxidation des Restfettes, was die sensorischen Eigenschaften während der Lagerung schnell verschlechtern kann. Derartige Mandelpräparate weisen im Vergleich zu Isolaten aus Soja (Proteingehalt >90%) oder Erbse (Proteingehalt >80%) zudem nur eine Proteinkonzentration zwischen 40 und 45 Mass.-% auf, was die Anwendung in vielen Lebensmittelanwendung, in denen eine Proteinanreicherung gewünscht wird, erschwert oder ausschließt .
Zudem sind Mandelpräparate bekannt, deren Fettgehalt nach der Pressung mittels überkritischem C02 auf Werte unter 2 Mass.-% reduziert wird, was die Lagerstabilität verbessert, aber auch sehr hohe Kosten verursacht. Zudem erfolgt die C02-Extraktion bei hohem Druck von mehreren 100 bar in sehr teuren Reaktoren, deren Herstellung und Betrieb mit hohen C02- Emissionen einhergehen. Da auch der Prozess viel Energie benötigt und nach der Entspannung signifikante Mengen an C02 aus dem entölten Mehl freigesetzt werden, haben Proteinmehle, die mittels überkritischem C02 extrahiert werden, keine deutlichen ökologischen Vorteile gegenüber tierischen Proteinen und verursachen für die Bereitstellung sogar teilweise höhere Kosten. Zudem ist die Farbe auch bei diesen Präparaten noch immer braun, was für die Akzeptanz in Lebensmittelanwendungen ebenfalls nicht förderlich ist. Somit gibt es bislang keine hellen Präparate aus Mandelsamen mit einem erhöhten Proteingehalt deutlich über 50 Mass.-%, einer guten Oxidationsstabilität bei gleichzeitig ansprechenden sensorischen Eigenschaften.
Aufgabe der vorliegenden Erfindung
Die Aufgabe der vorliegenden Erfindung bestand darin, ein geschmacklich neutrales, helles und qualitativ hochwertiges Proteinpräparat aus Mandelsamen und ein einfaches und kostengünstiges Verfahren zur Herstellung bereit zu stellen, das sich für geschmacklich anspruchsvolle Lebensmittel applikationen wie Drinks und Joghurt und feine Backwaren wie Kuchen oder auch Emulsionen wie Cremes und Füllungen eignet. Das Präparat sollte vorteilhaft einen möglichst hohen Proteingehalt aufweisen, um auch in geringen Einsatzmengen zu einer Proteinanreicherung in Lebensmitteln beizutragen.
Beschreibung der Erfindung
Die Aufgabe wird mit dem Proteinpräparat nach Anspruch 1 und dem Verfahren zu dessen Herstellung nach Anspruch 15 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens und des Proteinpräparats können den Unteransprüchen sowie der nachfolgenden Beschreibung und dem Ausführungsbeispiel entnommen werden.
Als Rohstoff für die Herstellung des erfindungsgemäßen Proteinpräparats kommen gereinigte und vorzugsweise von wenigstens einem Teil der Samenhäutchen befreite Mandelsamen zum Einsatz, wobei der Anteil an Samenhäutchen in Trockensubstanz, bezogen auf die in nativen Samen enthaltenen Samenhäutchen, kleiner gleich 100 Mass.-%, vorteilhaft kleiner 75 Mass.-%, besser kleiner 50 Mass.-%, besonders bevorzugt kleiner 10 Mass.-% beträgt, was sich positiv auf die Helligkeit des damit hergestellten Präparates auswirkt. Das erfindungsgemäße Präparat kann vorteilhaft mit dem erfindungsgemäßen Verfahren gewonnen werden und zeichnet sich durch folgende Eigenschaften aus (die Bestimmungsmethoden sind am Ende der Beschreibung angeführt, Fett und Öl werden im Folgenden gleichbedeutend verwendet):
• Der Fettgehalt des Präparats ist kleiner 6 Mass.-%, vorteilhaft kleiner 4 Mass.-%, besser kleiner 3 Mass.-%, besonders vorteilhaft kleiner 2 Mass.-%, jeweils bezogen auf die Trockenmasse bzw. Trockensubstanz (TS) des Präparats.
• Der Proteingehalt ist größer 50 Mass.-%., vorteilhaft größer 55 Mass.-%, besser größer 60 Mass.-%, besonders vorteilhaft größer 65 Mass.-% (Faktor 6,25 und bezogen auf TS).
• Das Präparat enthält einen Anteil wasserlöslicher Kohlenhydrate wie Mono-, Di- und Oligosaccharide. Da Saccharose den höchsten Anteil an den wasserlöslichen Kohlenhydraten ausmacht, werden diese im Folgenden als Gehalt an Saccharose angegeben. Der Gehalt an Saccharose ist kleiner 8 Mass.-%, vorteilhaft kleiner 4 Mass.-%, besser kleiner 2,5 Mass.-%, noch besser kleiner 1 Mass.- %, besonders vorteilhaft kleiner 0,5 Mass.-% (bezogen auf TS).
• Das Präparat hat eine helle Farbe. Der L*-Wert nach Vermahlen auf eine mittlere Partikelgröße d90 (d90: Anteil von 90% der Masse aller Partikel kleiner als der angegebene Wert) unter 250gm ist größer 70, vorteilhaft größer 80, besser größer 90, besonders vorteilhaft größer 94.
• Die Partikelgröße des Präparats hat vorteilhaft einen d90-Wert kleiner 500 gm, besser kleiner 250 gm, vorteil haft kleiner 150 gm, besonders vorteilhaft kleiner
100 gm.
• Das Präparat weist gute bis sehr gute technofunktionelle Eigenschaften auf, die Wasserbindung ist insbesondere größer als 1 mL/g, vorteilhaft größer 2 mL/g besonders vorteilhaft größer 3 mL/g, die Ölbindung ist insbesondere höher als 1 mL/g, vorteilhaft größer 2 mL/g besonders vorteilhaft größer 2,5 mL/g. Das Präparat hat insbesondere eine Emulgierkapazität größer 150 mL/g, vorteilhaft größer 250 mL/g, besser größer 400 mL/g besonders vorteilhaft größer 500 mL/g. Das Präparat hat
bei pH 7 insbesondere eine Proteinlöslichkeit größer 10 %, besser größer 20%, besser größer 30%, vorteilhaft größer 40%, vorteilhaft größer 50%, besonders vorteilhaft größer 60%. Überraschenderweise zeigen die erfindungsgemäßen Präparate trotz einer (Protein- )Löslichkeit von teilweise kleiner 17% bei pH 4,5 eine hervorragende Eignung als Zutat für fermentierte Molkereialternativen mit einem pH-Wert von 4,5 (z.B.
Joghurt- oder Frischkäseersatz).
• Das Präparat weist gute Gelbildeeigenschaften auf. Die minimale Gelbildekonzentration des Präparats liegt vorzugsweise bei < 12 Mass.-%, vorteilhaft < 10 Mass.-%, besser < 8 Mass.-% besonders vorteilhaft bei 6 Mass-%.
• Optional enthält das Präparat Anteile an Alkohol, insbesondere an Ethanol, größer 0,001 Mass.-%, besser >0,01 Mass%., vorteilhaft >0,1 Mass-%, besonders vorteilhaft >0,5 Mass.-% aber jeweils kleiner 1 Mass.-%. Dabei zeigt sich, dass auch bei einem Gehalt von 0,5 Mass.-% die funktionellen Eigenschaften des Präparats auf einem sehr hohen Niveau liegen.
• Optional enthält das Präparat Anteile an Hexan größer 0,0005 Mass.-%, besser >0,001 Mass%. aber jeweils kleiner 0,005 Mass-%. Präparate mit derartigen Hexangehalten zeigen besser funktionelle Eigenschaften im Vergleich zu Präparaten mit niedrigerem Hexangehalt.
Die in Mass.-% angegebenen Werte beziehen sich bei den Eigenschaften des Präparats in der vorliegenden Patentanmeldung jeweils auf die Trockenmasse bzw. Trockensubstanz des Proteinpräparats, mit Ausnahme der Anteile an Lösemitteln, die als absoluter Mass.-Anteil angegeben werden.
Überraschenderweise zeigen Präparate mit Anteilen an organischen Lösemitten bei den angegebenen Gehalten an Lösemittel hinsichtlich der Technofunktionalität noch immer sehr gute Eigenschaften wie z.B. eine sehr gute
Texturierbarkeit im Extruder mit der Ausbildung fester Gelstrukturen. Die Erfinder konnten zeigen, dass mit Ethanol extrahierte Präparate trotz der milden Bedingungen der Verarbeitung und der guten technofunktionellen Eigenschaften eine sehr geringe Keimbelastung aufweisen, vorteilhaft kleiner 1000 koloniebildende Einheiten (kbE) pro Gramm Präparat, vorteilhaft kleiner 100 kbE, besonders vorteilhaft kleiner 10 kbE pro Gramm.
In vorteilhaften Ausgestaltungen weist das Präparat zusätz liche Eigenschaften auf, die in unterschiedlichen Lebens mittelapplikationen von großem Nutzen sein können. So kann zum Beispiel der Gehalt der ursprünglich in den Samen enthaltenen wasserlöslichen Kohlenhydraten mit Hilfe geeigneter Verfahren reduziert sein, so dass im Protein präparat das Verhältnis von Proteinen zu löslichen Kohlenhydratgehalten deutlich größer ist als in Mandelsamen vor der Verarbeitung. Das Verhältnis der beiden Kennzahlen kann bei geeigneter Verarbeitung um bis zu 500% höher liegen als bei nativen Mandelsamen. Dies kann Vorteile bringen zur Vermeidung der Bildung von unerwünschten Maillardreaktionen bei der Herstellung von Lebensmitteln, da Maillardprodukte die Farbe des mit den Proteinen hergestellten Lebensmittels verändern und das Lebensmittel ein dunkleres Erscheinungsbild und einen Maillardgeschmack erhält. Dies kann im Besonderen bei sehr hellen Lebensmitteln wie Milch- oder Joghurt alternativen, Geflügel- oder Fischalternativen oder Feinkostprodukten unerwünscht sein. Somit eignet sich das erfindungsgemäße, Kohlenhydrat-reduzierte Mandelprotein präparat in besonderer Weise für die Herstellung von sensorisch anspruchsvollen Lebensmitteln, die keine oder nur geringe Mengen an Maillardprodukten enthalten sollten.
Es zeigt sich, dass bereits eine Reduktion des Gehaltes an wasserlöslichen Kohlenhydraten im Proteinpräparat bezogen auf den Gehalt wasserlöslicher Kohlenhydrate im Rohstoff auf Werte kleiner 50% die Maillardreaktion z.B. bei einer Extrusion oder beim Backen des Proteins bei Temperaturen über
130 °C erheblich reduziert werden und das finale Produkt heller und sensorisch neutraler ausfällt, als wenn ein Präparat mit dem ursprünglich in den Samen enthaltenen Gehalt an wasserlöslichen Kohlenhydraten verarbeitet wird.
Überraschenderweise erreicht man im erfindungsgemäßen Präparat - nach vorteilhafter Durchführung des erfindungs gemäßen Verfahrens - Proteingehalte von über 60 Mass.-%.
Damit können mit Hilfe eines sehr einfachen, kostengünstigen und sehr nachhaltigen Verfahrens ohne ein Herauslösen der Proteine aus der Presskuchen-Matrix hohe Proteingehalte erhalten werden, die für viele Lebensmittelanwendungen dringend erforderlich sind.
Beschreibung des Verfahrens zur Herstellung des Proteinpräparats :
Das erfindungsgemäße Verfahren weist mehrere Teilschritte auf, wobei von der Steinschale befreite und gereinigte Mandelsamen, die einen Anteil an Samenhäutchen zwischen 0 und 100 % der ursprünglich an den Samen anhaftenden Samenhäutchen enthalten, bereitgestellt und anschließend verarbeitet werden. Diese Mandelsamen werden - optional nach einer Vorzerkleinerung oder einer hydrothermischen Konditionierung - einer mechanischen Entölung vorzugsweise mit einer kontinuierlichen oder quasi-kontinuierlichen Presse, wie z.B. einer Schneckenpresse, einem Extruder oder einer hydraulischen Presse, zugeführt und von Öl befreit. Die erhaltenen Presskuchen werden dann mittels
Lösemittelextraktion - vorteilhaft nach Einstellung einer definierten Partikelgröße und Einstellung eines definierten Wassergehalts des Presskuchens - weitgehend von Öl und ggf. zum Teil von wasserlöslichen Kohlenhydraten, insbesondere von Saccharose, befreit. Anschließend wird das Lösemittel aus dem Präparat abgetrennt. Am Ende erfolgt vorzugsweise eine Vermahlung des Präparats auf eine definierte Partikelgrößen verteilung. Begleitet werden kann der Prozess vorteilhaft von
Sieb- und Sichtverfahren. Im Folgenden wird der Prozess im Detail beschrieben:
Reinigung :
In einem ersten Schritt werden gereinigte Mandelsamen bereitgestellt oder Mandelsamen mittels mechanischer Verfahren von Störstoffen oder Kontaminanten befreit. Der Anteil an Verunreinigungen wird dabei auf kleiner 0,5 Mass.- %, vorteilhaft kleiner 0,2 Mass.-%, besser kleiner 0,1 Mass.- % besonders vorteilhaft kleiner 0,05 Mass.-% reduziert, bzw. es werden Mandeln mit entsprechend geringem Anteil an Verunreinigungen bereitgestellt.
Teilabtrennung der Testa (optional):
Im folgenden optionalen Schritt werden die Mandeln zumindest teilweise von der Samenschale befreit. Hierfür können abrasive Methoden zum Einsatz kommen, mit mittels Reiben, Scheren oder Schleifen die Oberfläche der Mandeln zumindest anteilig von den Samenschalen befreien. Die dabei anfallenden Schalen mit anhaftenden Anteilen an Kotyledonen werden einer getrennten Ölgewinnung zugeführt, die von Samenhäutchen teilweise oder vollständig befreiten Mandeln werden der weiteren erfindungsgemäßen Verarbeitung zugeführt. Als alternatives Verfahren zur Reduktion des Anteils an Samenschalen kann eine Abtrennung unter feuchten bzw. nassen Bedingungen, vorteilhaft unter erhöhten Temperaturen zum Einsatz kommen. Dabei werden entweder die Mandelsamen vor Abtrennung der harten Steinschalen gedämpft, erhitzt bzw. gekocht und nach Abtrennung der harten Steinschale das Häutchen mechanisch abgerieben. Ähnlich kann es auch durch geführt werden, wenn die bereits geschälten Mandelsamen in Wasser oder Dampf eingeweicht, erhitzt und dann von den Samenschalen befreit werden. Vorteilhaft wird das erfindungsgemäße Verfahren durchgeführt mit von Testa teilweise, weitgehend oder vollständig befreiten Mandeln als Rohstoff. Es ist auch möglich, das Verfahren mit vollständig schalenhaltigen Mandelsamen durchzuführen und erst zu einem
späteren Zeitpunkt (z.B. nach der Entölung) Teile der Samenhäutchen z.B. durch Siebe abzutrennen.
Konditionieren :
In einer Ausgestaltung erfolgt vor der mechanischen Teilentölung eine Konditionierung der Samen mit Einstellung der Temperatur und Feuchte der Samen und ggf. nach Zerkleinerung der Kerne. Hierfür wird der Wassergehalt in den Samen zwischen 2 und 8 Mass.-% eingestellt, besser zwischen 3 und 6 Mass.-%, besonders vorteilhaft zwischen 4 und 5,5 Mass.-%. Vor der mechanischen Teilentölung erfolgt vorteilhaft zudem ein grobes Zerkleinern der Kerne auf eine Kantenlänge von 0,5-7 mm, vorteilhaft zwischen 0,5 und 5mm, besonders vorteilhaft zwischen 0,5 und 2 mm. Durch das grobe Zerkleinern z.B. in einer Prall- oder Schneidmühle können relevante Anteile der Samenhäutchen abplatzen, die von den Kernen vorteilhaft mittels Sichtung oder anderer Trennverfahren getrennt werden können. Dies verbessert die Farbe der Mandelproteinpräparate nachhaltig. Zudem zeigt sich, dass die Ölausbeute höher ist, wenn die Mandelsamen vorzerkleinert sind. Es ist es zudem vorteilhaft, die Samen vor oder nach der Zerkleinerung und vor der mechanischen Teilentölung auf eine Temperatur größer 40 °C zu erwärmen, vorteilhaft größer 50 °C, besser größer 60 °C, besonders vorteilhaft größer 70 °C aber kleiner als 100 °C, besonders vorteilhaft kleiner 80°C. Die Mandelsamen lassen sich nach dieser Art der Konditionierung besonders gut in einer kontinuierlichen Presse verarbeiten. Die mechanische Teilentölung kann erfindungsgemäß sowohl mit Mandelsamen erfolgen, die ihre Samenhäutchen noch vollständig enthalten oder mit Mandelsamen, bei denen die Samenhäutchen durch eine geeignete Vorbehandlung teilweise oder vollständig abgetrennt sind.
Mechanische Teilentölung:
Mit den ggf. vorkonditionierten Mandelsamen erfolgt eine mechanische Abtrennung des Öls, vorteilhaft mit
kontinuierlichen Vorrichtungen zur Entölung. Beispiele für derartige Aggregate sind Schneckenpressen, Extruder oder quasi-kontinuierliche hydraulische Pressen, es können aber auch andere mechanische Vorrichtungen zur Ölabtrennung zum Einsatz kommen wie zentrifugale Trenntechniken. Beim besonders vorteilhaften Abpressen der Samen zu Presskuchen und Öl mittels Schneckenpressen oder Extruder wird die Pressung so ausgeführt, dass der Restölgehalt nach der Pressung größer als 8 Mass.-% ist aber kleiner als 40 Mass.- %, vorteilhaft liegt der Restölgehalt zwischen 8 und 30 Mass.-%, besser zwischen 8 und 25 Mass.-% und besonders vorteilhaft zwischen 8 und 20 Mass.-%. Diese Werte gelten auch, falls keine Pressen, sondern andere Arten der mechanischen Teilentölung eingesetzt werden. Die Limitierung der unteren Grenze von 8 Mass-% an Restölgehalt wurde gefunden, da eine weitere Ölabtrennung deutliche höhere Scherraten, Pressdrücke und Temperaturen erfordert, die zu einer Schädigung der Proteine beitragen können.
Mandelsamen weisen einen Ölgehalt bis zu 60% auf und sind aufgrund der fehlenden strukturgebenden Bestandteile für die Drainage nicht einfach mechanisch zu entölen. Zur Reduktion des benötigten Lösemittels bei der Lösemittelextraktion wird man daher versuchen, einen Restölgehalt unter 20 Mass.-% im Presskuchen nach der mechanischen Teilentölung zu erreichen. Daher kann es erforderlich sein, den Presskuchen mit eine Einrichtung zur mechanischen Teilentölung, insbesondere einer Presse, erneut abzupressen bzw. weiter zu entölen. Dies kann beim Pressen durch Zugabe des Presskuchens in den Zulauf der ersten Pressung zusammen mit ungepressten Samen erfolgen oder in einer weiteren zweiten Presse, die nur den Presskuchen weiter presst. Die Pressung bzw. mechanische Teilentölung des Presskuchens kann auch mehrfach durchgeführt werden, um den gewünschten Restölgehalt zu erreichen. Durch mehrmaliges Pressen von Presskuchen bzw. mehrfache mechanische Teilentölung kann am Ende der gewünscht niedrige Restölgehalt erreicht werden, ohne zu hohe Temperaturen einstellen zu
müssen.
Um zu vermeiden, dass die Proteine durch die wiederholte mechanische Teilentölung zu sehr geschädigt werden, erfolgt die mechanische Teilentölung erfindungsgemäß bei moderaten Temperaturen. Vorteilhaft werden die Mandeln bei einer mittleren Temperatur unter 100°C, besonders vorteilhaft bei weniger als 80°C, gepresst bzw. mechanisch teilentölt. Unter der mittleren Temperatur wird dabei der arithmetische Mittelwert der Temperatur der Samen im Einzug und der Temperatur des Presskuchens am Auslass der Presse bzw. der Einrichtung zur mechanischen Teilentölung verstanden. Dies ermöglicht eine schonende Abpressung des Öls trotz mehrfacher Pressdurchgänge ohne deutliche Farbveränderungen im Präparat in Kauf nehmen zu müssen.
Optionale Konditionierung des Presskuchens bzw. der teilentölten Mandelsamen:
Vor einer Weiterverarbeitung zur Abtrennung des restlichen Öls und zur Reduktion des Anteils an Saccharose aus den Presskuchen oder teilentölten Mandelsamen kann in einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens vor einer Extraktion eine erneute Konditionierung der Presskuchen bzw. teilentölten Mandelsamen erfolgen. Dabei zeigt sich, dass ein Absenken der Feuchte in den Presskuchen bzw. teilentölten Mandelsamen auf eine Restfeuchte kleiner 8 Mass.-%, vorteilhaft kleiner 5 Mass.-%, besser kleiner 3 Mass.-%, besonders vorteilhaft kleiner 2 Mass.-%, z.B. mit Hilfe von Trocknern, die Entölung mittels organischer Lösemittel im Folgeschritt effizienter macht, indem mit weniger Lösemittel bei niedrigerer Feuchte mehr Öl abgetrennt werden kann. Dies kann vorteilhaft zur Kostensenkung genutzt werden und zur Schonung der Proteine beitragen.
Weiterhin ist es von Vorteil, die Presskuchen bzw. teilentölten Mandelsamen vor oder während der Extraktion in ihrer Partikelgröße und -form zu verändern. Dies ist im
Besonderen von hoher Relevanz, da Presskuchen aus Mandelsamen dazu neigen, sehr feste und z.T. harte Scheibchen, Flocken oder Presskuchenstrukturen auszubilden, so dass ein Eindringen von organischen Lösemitteln erschwert oder unmöglich wird. Es zeigt sich, dass eine Zerkleinerung des Presskuchens bzw. der teilentölten Mandelsamen auf Partikelgrößen mit einem d90-Wert kleiner 2 mm, vorteilhaft kleiner 1 mm, besser kleiner 0,5 mm, besonders vorteilhaft kleiner 0,2 mm die Extraktion deutlich beschleunigt. Diese Beschleunigung führt zur Verbesserung der funktionellen Eigenschaften in den Präparaten, da die Verweilzeit im Trockner vor der Extraktion und die Kontaktzeit zwischen Lösemittel und Proteinen verkürzt werden kann. In der zerkleinerten Presskuchen- bzw. Mandelsamenschüttung sollte erfindungsgemäß der Anteil an Feinkorn mit einer Partikelgröße kleiner 100 pm aber unter 50 Mass.-% liegen, vorteilhaft unter 25 Mass.-%, besonders vorteilhaft unter 10 Mass.-% .
Es ist auch möglich und für eine Perkolationsextraktion von Vorteil, wenn der Presskuchen oder die teilentölten Mandelsamen nicht vermahlen, sondern flockiert wird bzw. werden. Vorteilhaft wird die Flockendicke dabei auf unter 2 mm eingestellt, vorteilhaft unter 0,5 mm, besonders vorteilhaft unter 0,2 mm. Unter Flockendicke wird dabei die mittlere Dicke des aus dem Walzenstuhl oder einem anderen Flockieraggregat austretenden Materials verstanden. Die mittlere Dicke kann z.B. über Messung mit einem Messschieber oder einer Mikrometerschraube ermittelt werden, sie entspricht dann dem Mittelwert aus 50 Messungen.
Die Partikelgröße und -form des Presskuchens bei mechanischer Teilentölung mit einer Presse kann mit unterschiedlichen Verfahren eingestellt werden. So können Mühlen oder Brecher mit entsprechenden Siebeinsätzen oder Walzenstühle mit definierten Walzenabständen Verwendung finden. Dabei können Partikelgrößenverteilungen mit einem definierten
Größenspektrum erhalten werden. Diese können nach oder während der Vermahlung durch Trennung nach Größe z.B. mittels Siebung hinsichtlich der Partikelgrößenverteilung vergleichmäßigt werden.
Besonders vorteilhaft erweist sich eine Zerkleinerung in einer Suspension. So können auch schnell strömende Flüssigkeiten als Druckstrahl oder feststoffhaltige Suspensionen zum Zerkleinern der Presskuchenpartikel verwendet werden. Dabei können neben Flüssigkeitsdüsen auch Förderaggregate, Rührer oder Mischer, die zu einer Scherbelastung des Presskuchens führen, genutzt werden, um die Partikel zu zerkleinern und dabei stets eine neue Oberfläche für das Eindringen des Lösemittels zu erzeugen. Vorteilhaft werden hierfür Aggregate mitgenutzt, die im Prozess ohnehin zum Fördern des Extraktionsmittels verwendet werden. Damit gelingt es, Aggregate für die Zerkleinerung einzusetzen, die eigentlich zum Pumpen oder Rühren konzipiert sind, wie z.B. Kreiselpumpen oder andere Formen von Förderaggregaten oder Rührwerke, die hohe Scherkräfte in die Suspension aus Presskuchen und Lösemittel eintragen. Durch geeignete Verweilzeit in diesen Aggregaten oder durch Kreislaufführung kann es gelingen, die Zerkleinerung in den genannten Geräten so einzustellen, dass die erfindungsgemäße Partikelgrößenverteilung erhalten wird.
Lösemittelextraktion :
Für die Abtrennung von Öl und Saccharose aus den Presskuchen bzw. teilentölten Mandelsamen kommen vorzugsweise Mischungen von Alkoholen mit Wasser als Lösemittel zum Einsatz. Dabei können die Behandlung mit Alkohol und die Behandlung mit Wasser simultan im selben Extraktionsschritt erfolgen (in Form einer Alkohol-Wasser-Mischung) oder hintereinander angeordnet werden. Weiterhin kann auch Hexan unter Anwesenheit von Wasser als Lösemittel eingesetzt werden, ebenso wie Kombinationen von Alkohol oder Hexan als ein Lösungsmittel und Wasser als anderes Lösungsmittel. Als
Alkohole können z.B. Ethanol, Propanol, Iso-Propanol oder andere eingesetzt werden. Um eine weitgehende Abtrennung des Öls aus den Presskuchen oder teilentölten Mandelsamen sicher zu stellen, sollte der Massenanteil an Lösemittel bezogen auf den Massenanteil an Presskuchen bzw. teilentölten Mandelsamen größer als 1,5, vorteilhaft größer 3, besser größer 5, noch besser größer 7, besonders vorteilhaft größer 10 gewählt werden. Damit kann eine weitgehende Reduktion des Öls bis unter 2 Mass.-% erreicht werden.
Bei Einsatz der organischen Lösemittel Alkohol oder Hexan bei der Extraktion ist von Vorteil, wenn neben dem organischen Lösemittel während der Extraktion ein Anteil an Wasser vorhanden ist. Dies kann erreicht werden, indem Wasser zugegeben wird oder ein organisches Lösemittel mit einem definierten Wassergehalt verwendet wird oder indem Wasser über einen feuchten Presskuchen zugesetzt wird. Der Einsatz des Wassers kann dabei während der Lösemittelextraktion des Öls erfolgen oder erst im Anschluss. Im Falle des simultanen Einsatzes von organischem Lösemittel und Wasser und Wahl eines geeigneten Wassergehaltes gelingt es, sowohl das Öl aus den Presskuchen bzw. Mandelsamen weiterstgehend abzutrennen als auch simultan einen Anteil an Saccharose sowie gleichzeitig polare und amphiphile sekundäre Pflanzenstoffe zu entfernen. Dafür wird der Wassergehalt in der Extraktion bezogen auf das organische Lösemittel größer 6 Mass.-% gewählt, vorteilhaft größer 7 Mass.-%, besonders vorteilhaft größer 8 Mass.-%, besser größer 9 Mass.-%, noch besser größer 10 Mass.-%. Überraschenderweise kann z.B. bei Einsatz von Alkohol, insbesondere Ethanol, als Lösemittel auch bei derartig hohen Wasseranteilen noch eine Entölung erfolgen, ohne die Proteine zu sehr zu schädigen. Im Falle des Einsatzes von Alkoholen als organisches Lösemittel sollte der Wassergehalt aber kleiner als 14 Mass.-% gewählt werden, um zu vermeiden, dass das Öl nicht mehr hinreichend gelöst werden kann. Durch diese Begrenzung gelingt es, ein Proteinpräparat mit technofunktionellen Eigenschaften zu
erhalten das eine besonders helle Farbe und einen sehr hohen Proteingehalt größer 60 Mass.-% aufweist.
Wie bereits erwähnt, kann der Wassergehalt im Extraktions prozess durch Bereitstellung von wasserhaltigem Lösemittel erfolgen, durch Zusatz von Presskuchen bzw. teilentölten Mandelsamen mit einer Restfeuchte oder durch einen direkten Zusatz von Wasser vor oder während der Lösemittel-Extraktion. Es können auch Kombinationen aus den genannten Maßnahmen gewählt werden. Wenn in einer Ausgestaltung als organisches Lösemittel Hexan zum Einsatz kommt, kann der Wassergehalt auch so eingestellt werden, dass er bezogen auf das verwendete Hexan höher als 14 Mass.-% liegt. Im Falle von Hexan bleibt die gute Löslichkeit für Öl erhalten, selbst wenn Wassergehalte bezogen auf das Lösemittel von z.B. größer 20 oder bis zu 30 Mass.-%, vorzugsweise < 30 Mass.-%, genutzt werden. Somit ist der erfindungsgemäße Wassergehalt nur in amphiphilen Lösemitteln wie Alkohol auf maximal 14 Mass.-% limitiert, bei einem lipophilen Lösemittel tritt diese Limitierung nicht auf.
Es kann während der Behandlung der proteinreichen Mandelsamen bzw. Presskuchen aus Mandelsamen mit Wasser-Alkohol- Mischungen parallel zur Abtrennung des Öls und der Saccharose auch zu einer Denaturierung der Proteine kommen. Um diesen Effekt weitgehend zu umgehen, steht nur ein kleines Prozessfenster für diesen simultanen Trennschritt zur Verfügung. Dieses umfasst nicht nur den festgelegten Wassergehalt, sondern auch die Temperatur und die Verweilzeit. Die Temperatur des Lösemittels oder der Mischung aus Lösemitteln während der Extraktion wird deshalb erfindungsgemäß zwischen 30°C und 75°C liegen, vorteilhaft zwischen 45°C und 65°C, besonders vorteilhaft zwischen 50°C und 65°C. In diesem Temperaturbereich sind die gewählten Mischungen aus Wasser und organischem Lösemittel in der Lage, sowohl Öl als auch Saccharose aus den Mandeln abzutrennen, ohne gleichzeitig eine zu weitgehende Denaturierung der
Proteine zu bewirken. Die Dauer des Kontakts zwischen organischem Lösemittel und dem Presskuchen bzw. dem Proteinpräparat bei Temperaturen oberhalb 45°C liegt beim erfindungsgemäßen Verfahren zwischen 30 Minuten und 12 Stunden, vorteilhaft zwischen 1 Stunde und 5 Stunden, besonders vorteilhaft zwischen 1 und 2 Stunden. Die oben genannten Temperaturbereiche sollten aber auch gewählt werden, wenn z.B. unpolare Lösemittel wie Hexan zum Einsatz kommen, um eine thermische Schädigung der Proteine weitgehend zu vermeiden.
Für die Extraktion kann eine konventionelle Perkolations- extraktion zum Einsatz kommen, bei der eine Schüttung aus Presskuchenpartikeln oder Partikeln, die hinsichtlich Partikelgröße/form oder -feuchte konditioniert wurden, mit dem Lösemittel überströmt wird, damit ein Austrag von Öl und Saccharose in das organische Lösemittel bzw. in das Wasser erfolgen kann. Da bei diesem Vorgang aus den Mandelpress kuchen feine Partikel abgelöst werden und mit dem Lösemittel ausgetragen werden können, sind Filtrationsvorrichtungen vorzusehen, um ein Verstopfen von Pumpen und Rohrleitungen oder Produktverluste zu vermeiden. Um diesen Vorgang zu unterbinden oder zumindest zu begrenzen kann es von Vorteil sein, den konditionierten oder nicht-konditionierten Presskuchen vor der Extraktion in Pellets zu pressen, aus denen sich während der Extraktion deutlich weniger Fein partikel herauslösen. Dadurch kann der Aufwand der Filtration deutlich reduziert werden.
Da ein Verlust an Feinpartikeln bei der Perkolations- extraktion nicht vollständig vermieden werden kann, bringt eine Immersionsextraktion vorzugsweise z.B. in einem Mixing- Settling-Verfahren besondere Vorzüge mit sich. Besonders vorteilhaft gestaltet sich eine mehrstufige Immersions extraktion. Bei diesem Verfahren tauchen die Presskuchen bzw. die konditionierten Presskuchen ganz in das Lösemittel ein, so dass weitgehend kein Gas die Partikel kontaktiert. In
einem Immersionsextrakteur ist es damit möglich, die Partikel wie oben beschrieben durch heftiges Mischen mit einem Rührer simultan zur Extraktion zu zerkleinern. Damit gelingt es zudem, eine stufenweise Zerkleinerung der Presskuchen gezielt in unterschiedliche Partikelgrößen in mehreren hintereinander angeordneten Extraktionsbehältern durchzuführen.
Dies kann wie folgt durchgeführt werden: Im Anschluss an den ersten Extraktionsschritt können Lösemittel und das grobpartikuläre Raffinat einfach mechanisch getrennt werden, vorteilhaft durch Sedimentation oder durch Zentrifugation z.B. in Dekantern. Die ölhaltige Miscella im Überstand kann im Anschluss destilliert und das rückgewonnene Lösemittel kann erneut für die Extraktion von bereits einmal oder mehrfach extrahierten Presskuchenpartikeln zum Einsatz kommen, die eine kleinere Partikelgrößenverteilung aufweisen als bei der vorangegangenen Extraktion. Der von Lösemittel getrennte Presskuchen (Raffinat) kann mit frischem Lösemittel versetzt werden und damit nochmals entölt werden. Der Lösemittelüberstand aus der Behandlung eines mit weniger Öl belasteten Raffinats kann zur Reduktion der gesamten Lösemittelmenge erneut für die Extraktion eines mit mehr Öl belasteten Raffinats genutzt werden und so weiter. Damit erhält man eine Gegenstromextraktion mit Rührbehältern, die unterschiedliche große Partikelgrößenverteilungen enthalten.
Ein besonderer Vorteil des Einsatzes der Sedimentation ergibt sich aus der Möglichkeit, die Sedimentationsdauer zur Einstellung der Trennschäfte Fest-Flüssig-Trennung festzu legen. Hierbei findet im Anschluss an eine Extraktion, die mit definierter Partikelgrößenverteilung durchgeführt wird, nach Stoppen des Rührens eine Sedimentation im Erdschwerefeld bis zu einem definierten Volumenverhältnis aus Raffinat und Überstand statt. Dabei ist es sinnvoll, bei einem vorher festgelegten Volumenanteil des Überstands von mindestens 50%, vorteilhaft größer 60%, besonders vorteilhaft größer 70% den Überstand vom Raffinat z.B. von oben durch ein Abpumpen, Abhebern oder Absaugen abzutrennen.
Im Gegenstrom kann das Raffinat erneut mit Lösemittel beauf schlagt und die Suspension gerührt werden, bis sich aufgrund der Scherung während des Rührens eine neue Partikelgrößen verteilung einstellt. Im Anschluss findet der Sedimentations vorgang erneut statt. Der Vorgang des Vermischens und Absetzens des Raffinats kann mehrfach wiederholt werden, vorteilhaft erfolgt der Vorgang häufiger als 2-mal, besser häufiger als 3-mal, besonders vorteilhaft häufiger als 4-mal, so dass die Extraktion mehrstufig besonders vorteilhaft im Gegenstrom durchgeführt wird. Dabei ist es in einer Ausgestaltung des Verfahrens von Vorteil, in verschiedenen Stufen der mehrstufigen Extraktion unterschiedliche Mischungsverhältnisse aus organischem Lösemittel und Wasser zu verwenden. So kann in der ersten Extraktionsstufe, bei der der frische Presskuchen zum Einsatz kommt, ein höherer Wassergehalt genutzt werden, um wasserlösliche Komponenten gezielt abzutrennen, in weiteren Extraktionsschritten kann der Wassergehalt niedriger gewählt werden, um das Abtrennen von Öl effizienter zu machen, da z.B. ein Lösemittel wie Ethanol oder Iso-Propanol mit geringerem Wasseranteil mehr Öl lösen kann. Dieses Vorgehen hat z.B. bei Einsatz von Ethanol als Lösemittel zudem den Vorteil, dass der Wassergehalt nur für kurze Zeit in der ersten Extraktionsstufe hoch ist, so dass die Proteindenaturierung minimiert werden kann. Vorteilhaft wird diese Änderung des Wassergehaltes dadurch unterstützt, indem nach der zweiten und/oder dritten Extraktion jeweils ein Teil des Überstandes nicht für die nächste Extraktion genutzt werden, sondern mit der Miscella mitbehandelt werden. Dies zeigt überraschenderweise, dass bei Mandelsamen eine Denaturierung der Proteine reduziert werden kann, wenn in verschiedenen Extraktionsstufen Lösemittel oder Lösemittelmischungen mit unterschiedlichen Wassergehalten bzw. Polaritäten zum Einsatz kommen.
Neben der Mischung von Wasser und einem organischen Löse mittel wie Ethanol in einem Extraktionsschritt kann es auch
von Vorteil sein, für die ersten Extraktionsschritte zunächst ein lipophiles Lösemittel wie z.B. Hexan oder ein weniger polares Lösemittel wie z.B. Ethanol mit einem Wassergehalt kleiner 5 Mass.-% einzusetzen und nach teilweiser Abtrennung des Lösemittels oder vollständiger Desolventierung des Raffinats ein hydrophiles oder mit mehr Wasser versetztes Lösemittel zu verwenden. Dies kann die Belastung der Proteine durch Anwesenheit von Wasser weiter reduzieren.
Nachbehandlung und Desolventieren des Präparats:
Im Anschluss an die Extraktion mit organischen Lösemitteln und Wasser kann das Präparat optional, zur Verbesserung der funktionellen Eigenschaften, mit wässrigen Enzym-Lösungen oder mittels Fermentation weiter behandelt oder direkt getrocknet werden. Die Trocknung wird vorteilhaft bei geringen Temperaturen im Gut unter 120 °C erfolgen, besser unter 100 °C, besonders vorteilhaft unter 80 °C, um die Proteine zu schonen und die Farbe im Präparat möglichst hell zu erhalten. Dafür wird vorteilhaft ein Trockner genutzt werden, der zwar eine Manteltemperatur über 100 °C, besser über 120 °C aufweist, der aber im Vakuum betrieben wird und dessen Druck am Ende der Trocknung zur Abtrennung der Lösemittelreste nochmal abgesenkt wird. Vorteilhaft erfolgt eine Absenkung des Drucks auf Werte kleiner 500 mbar, besser kleiner 200 mbar, besonders vorteilhaft kleiner 100 mbar. Durch diese Druckabsenkung am Ende der Trocknung wird der Siedepunkt des Lösemittels herabgesetzt und die Manteltemperatur kann reduziert werden. Eine derartige Temperaturreduktion des Mantels während der Nachtrocknung hat eine weitere Schonung der Proteine zur Folge.
Nach der Trocknung erfolgt vorteilhaft eine Vermahlung der getrockneten Proteinpräparate zur Anpassung der Funktiona lität, denn unterschiedlich feine vermahlene Präparate zeigen deutlichen Unterschiede in den technofunktionellen Eigenschaften, wie z.B. in der Löslichkeit. Die Vermahlung erfolgt daher je nach Applikation auf d90-Partikelgrößen
kleiner 500 mpi, vorteilhaft kleiner 250 mpi, besser kleiner 150 mpi, besonders vorteilhaft kleiner 100 mpi.
Nachbehandlung und Desolventieren der Miscella:
Die mit Öl und Wasser beladene Miscella wird vorteilhaft destillativ aufgetrennt und ggf. über eine Rektifikation aufkonzentriert . Dabei zeigt sich, dass die Zucker und einige sekundäre Pflanzenstoffe in der Wasserphase verbleiben, die mechanisch z.B. zentrifugal oder im Gravitationsfeld von der Ölphase abgetrennt werden kann.
Durch das erfindungsgemäße Verfahren ergeben sich weitere Vorteile für die Sicherheit des Mandelpräparats. Da in süßen Mandeln (Mandeln mit sehr geringem Anteil an cyanogenen Glykosiden) auch immer Anteile an Bittermandeln (mit hohem Gehalt an cyanogenen Glykosiden) enthalten sein können, ermöglicht das extraktive Verfahren mit amphiphilen oder hydrophilen Lösemitteln eine Teilabtrennung der enthaltenen cyanogenen Glykoside, so dass von dem erhaltenen Proteinpräparat - anders als von reinen Presskuchen - keine Gefahr für den Menschen ausgeht.
Beschreibung eines Einsatzes des Präparates:
Bei Einsatz des erfindungsgemäßen Präparates aus Mandelsamen zeigen sich besondere Vorteile, wenn Proteinmischungen mit anderen Proteinzutaten für Lebensmittel oder Heimtiernahrung hergestellt werden. Aufgrund der sehr ansprechenden sensorischen Eigenschaften können Störaromen aus anderen Rohstoffen wie z.B. aus Erbsenprotein in der Mischung abgeschwächt werden, was die Verbraucherakzeptanz erhöht.
Vorteilhaft ist eine Mischung des erfindungsgemäßen Präparates mit Proteinanteilen aus Leguminosenprotein aus der Gruppe Erbse, Linse, Bohne, Ackerbohne, Erdnuss oder Soja, besonders vorteilhaft nur aus der Gruppe Erbse und Soja, besonders vorteilhaft nur Erbse.
Eine Mischung aus den genannten Proteinen und dem erfindungs gemäßen Mandelpräparat sollte >60 Mass.-%, vorteilhaft >70 Mass.-%, besonders vorteilhaft >80 Mass.-% Proteingehalt aufweisen. Das Verhältnis des erfindungsgemäßen Proteins zur gesamten Masse der Mischung sollte größer sein als 5 Mass.-% und kleiner 95 Mass.-%, vorteilhaft größer als 10 Mass.-% und kleiner als 90 Mass.-%, besonders vorteilhaft größer 25 Mass.-% und kleiner 75 Mass.-%, am besten größer 40 Mass.-% und kleiner 60 Mass.-%. Damit gelingt es in besonderem Maße, die Funktionalität der Leguminosenproteine mit der guten Sensorik und Farbe des erfindungsgemäßen Präparates zu kombinieren und Defizite in einzelnen Aminosäuren der einzelnen Proteine der Mischung zu kompensieren.
Nachfolgend wird zur quantitativen Charakterisierung der hergestellten Proteinpräparate auf folgende Bestimmungsverfahren zurückgegriffen:
- Proteingehalt:
Der Proteingehalt ist definiert als der Gehalt, der sich aus der Bestimmung des Stickstoffs nach Dumas und dessen Multiplikation mit dem Faktor 6,25 errechnet. Der Proteingehalt wird in der vorliegenden Patentanmeldung in Massenprozent angegeben, bezogen auf die Trockensubstanz (TS), also die wasserfreie Probe.
- Farbe:
Die wahrnehmbare Farbe ist mittels CIE-L*a*b*- Farbmessung definiert. Dabei gibt die L*-Achse die Helligkeit an, wobei Schwarz den Wert 0 und Weiß den Wert 100 hat. Die a*-Achse beschreibt den Grün- oder Rotanteil und die b*-Achse den Blau- oder Gelbanteil.
- Proteinlöslichkeit:
Die Proteinlöslichkeit ist mittels Bestimmungsverfahren nach Morr et al. 1985 bestimmt, siehe den Zeitschriftenartikel:
Morr C. V., German, B., Kinsella, J.E., Regenstein, J. M.,
Van Buren, J. P., Kilara, A., Lewis, B. A., Mangino, M.E, "A Collaborative Study to Develop a Standardized Food Protein Solubility Procedure. Journal of Food Science", Band 50 (1985) Seiten 1715-1718). Die Proteinlöslichkeit kann für einen definierten pH-Wert angegeben werden, falls kein pH- Wert genannt ist, beziehen sich die Daten auf einen pH-Wert von 7.
- Emulgierkapazität:
Die Emulgierkapazität wird mittels Bestimmungsverfahren (nachfolgend EC-Bestimmungsverfahren genannt) bestimmt, bei dem 100 ml einer 1 %igen Suspension des Proteinpräparats mit pH 7, Maiskeimöl zugegeben wird bis zur Phaseninversion der Öl-in-Wasser-Emulsion . Die Emulgierkapazität ist definiert als das maximale Ölaufnahmevermögen dieser Suspension, bestimmt über die spontane Abnahme der Leitfähigkeit bei der Phaseninversion (vgl. den Zeitschriftenartikel von Wäsche,
A., Müller, K., Knauf, U., "New processing of lupin protein isolates and functional properties". Nahrung/Food, 2001, 45, 393-395) und ist z.B. angegeben in ml Öl/g Proteinpräparat, d.h. Milliliter emulgiertes Öl pro Gramm Proteinpräparat
- Fettgehalt (synonym für Ölgehalt):
Der Fett- bzw. Ölgehalt wird bestimmt nach der Soxhlet Methode unter Verwendung von Hexan als Lösemittel.
- Gehalt an cyanogenen Glykosiden als Blausäure (HCN): Angegeben als HCN-Gehalt in mg HCN pro kg Präparat (bezogen auf TS), ermittelt mittels HPLC aus den Leitsubstanzen Linustatin und Neolinustatin in Anlehnung an Schilcher, H. & Wilkens-Sauter, M. (1986). Quantitative Bestimmung Cyanogenic Glykoside in Linum usitatissimum mit Hilfe der HPLC. Fette Seifen Anstrichmittel, 88, 287-290.
- Saccharose:
Der Gehalt an Saccharose wird mittels modifizierter Messung
gemäß DIN 10758:1997-05 (inkl. Berichtigung 1 von Sep. 2018) mit HPLC-Verfahren bestimmt. Zur Probenvorbereitung werden die Zucker mit heißem Wasser aus der Probenmatrix extrahiert. Nach Abtrennung von Störstoffen werden die Extrakte mit Wasser auf ein definiertes Volumen aufgefüllt, filtriert und die Filtrate der HPLC-Messung zugeführt.
- Wasserbindung:
Das Wasserbindevermögen wird mittels dem Verfahren ermittelt, wie es angegeben ist in: American Association of Cereal Chemists, "Approved methods of the AACC". 10th ed., AACC. St. Paul, MN, 2000b; Method 56-20. "Hydration capacity of pregelatinized cereal products". Das Wasserbindevermögen ist z. B. in ml/g angebbar, d. h. Milliliter gebundenes Wasser pro Gramm Präparat, und wird gemäß dem AACC-
Bestimmungsverfahren bestimmt über das Gewicht des mit Wasser gesättigten Sediments abzüglich der Einwaage des trockenen Präparats nach Mischung von ca. 2 g Proteinpräparat mit ca.
40 ml Wasser für 10 Minuten und Zentrifugation bei 1000g für 15 Minuten bei 20°C.
- Ölbindung:
Das Ölbindevermögen ist in ml/g angebbar, d.h. Milliliter gebundenes Öl pro Gramm Präparat, und wird gemäß Zentrifugen- Bestimmungsverfahren gemessen als Volumen des ölbindenden Sediments nach Mischung von 1,5 g Proteinpräparat mit 15 ml Maiskeimöl für 1 Minute und Zentrifugation bei 700g für 15 Minuten bei 20°C.
- Minimale Gelbildekonzentration:
Die minimale Gelbildekonzentration bestimmt die Konzen tration, unter denen ein Proteinpräparat ein thermisch indu ziertes Gel bilden kann. Das Präparat wird in Reagenzgläsern in unterschiedlichen Konzentrationen in Wasser gegeben und gleichmäßig suspendiert. Die Suspension wird anschließend 30 Minuten lang auf 85°C erhitzt und wieder auf 20 °C abgekühlt. Das Reagenzglas wird umgedreht, so dass freies Wasser
abfließen kann. Die niedrigste Konzentration, bei der kein Wasser mehr abfließt, wird als minimale Gelbildekonzentration bezeichnet. Je geringer der Wert der minimalen Gelbilde konzentration in Mass.-% an Proteinpräparat ist, desto eher eignet sich das Proteinpräparat als Gelbildner.
Ausführungsbeispiel :
800 g eines Mandelsamenpresskuchens mit einem Ölgehalt von 20 Mass.-%, der mit Hilfe einer Presse bei einer mittleren Temperatur von 75 °C durch einmaliges Pressen aus Mandelsamen ohne Testa (Samenhäutchen) gewonnen wurde, wurde in einem Trockner auf eine Wasserfeuchte von 2,5 Mass.-% getrocknet und der Presskuchen mit einem Mörser in Stückchen mit einer Kantenlänge von 1 mm grob zerkleinert. Der zerkleinerte Presskuchen wurde mit jeweils 3500 mL Lösemittel (Ethanol- Wasser-Mischung mit 7 Mass.-% Wassergehalt) 5-mal extrahiert. Dafür wurden in der ersten Stufe zu den 800 g Presskuchen 3500 mL zugesetzt, 5 Minuten bei 58°C gerührt, danach der Rührer ausgeschaltet.
Der Feststoff sedimentierte über 30 Minuten, im Anschluss wurden 2500 mL an Überstand abgezogen und erneut 2500 mL Lösemittel zugesetzt. Die folgenden Extraktionsschritte erfolgten analog, es wurden jeweils 2500 mL zugegeben und 2500 mL abgezogen. Im Anschluss wurde das letzte Raffinat bzw. Sediment in einem Trockenschrank für 24 Stunden getrocknet und anschließend vermahlen. Die Vermahlung erfolgte mit einem Siebeinsatz von 250 pm.
Das Präparat wies einen angenehm nussigen Geschmack auf und einen Proteingehalt von 69 % bezogen auf TS, eine Protein löslichkeit von 68% bei pH 7 und eine Emulgierkapazität von 535 mL/g. Bei der L*a*b-Messung konnte ein L*-Wert von 95 ermittelt werden. Ein Gehalt an cyanogenen Glykosiden gemessen als Blausäure war nicht nachweisbar. Weitere Eigenschaften des erhaltenen Präparats können den nachfolgenden Tabellen entnommen werden.
Tabelle 1: L*a*b*-Farbwerte des Präparats und einer wässrigen Suspensionen
Tabelle 2: Zusammensetzung der Rohstoffe und Präparate
Tabelle 3: Funktionelle Eigenschaften der Präparate
Anwendungsbeispiel :
50 g des Mandelsamenpräparates aus dem Ausführungsbeispiel wurden zu einer Muffinrezeptur gegeben. Mit dem Teig wurden Muffins gebacken und diese sensorisch bewertet. Das Erscheinungsbild war sehr ansprechend, die Muffins hatten eine lockere Krume, eine braune Kruste und einen sehr angenehmen Geschmack.
Claims
Patentansprüche Proteinpräparat, welches aus Mandelsamen hergestellt ist, mit einem
- Proteingehalt von mehr als 50 Mass.-% bezogen auf die Trockenmasse, und
- einem Ölgehalt unter 6 Mass.-% bezogen auf die Trockenmasse, bestimmt nach der Soxhlet Methode unter Verwendung von Hexan als Lösemittel, wobei das Proteinpräparat
- einen Anteil an Saccharose von weniger als 8 Mass.-% bezogen auf die Trockenmasse, und
- eine Helligkeit L* von größer als 70 aufweist, bestimmt gemäß CIE-L*a*b*-Farbmessung bei einer d90- Partikelgröße des Proteinpräparats unter 250 gm oder nach einem Vermahlen des Proteinpräparats auf eine d90- Partikelgröße unter 250 gm. Proteinpräparat nach Anspruch 1, das eine Helligkeit L* von größer als 80, vorzugsweise größer als 90, besonders bevorzugt größer als 94, aufweist . Proteinpräparat nach Anspruch 1 oder 2, bei dem der Anteil an Saccharose weniger als 4 Mass.-%, vorzugsweise weniger als 2,5 Mass.-%, besonders bevorzugt weniger als 1 Mass.-% oder weniger als 0,5 Mass.-% bezogen auf die Trockenmasse beträgt. Proteinpräparat nach einem der Ansprüche 1 bis 3, bei dem der Proteingehalt mehr als 55 Mass.-% beträgt, vorzugsweise mehr als 60 Mass.-%, besonders bevorzugt mehr als 65 Mass.-%. Proteinpräparat nach einem der Ansprüche 1 bis 4, bei dem der Ölgehalt unter 4 Mass.-% liegt, vorzugsweise
unter 3 Mass.-%, besonders bevorzugt unter 2 Mass.-%.
6. Proteinpräparat nach einem der Ansprüche 1 bis 5, bei dem die Emulgierkapazität, bestimmt nach dem in der Beschreibung angegebenen EC-Bestimmungsverfahren, mehr als 150 ml/g beträgt, vorzugsweise mehr als 250 ml/g, besonders bevorzugt mehr als 400 ml/g oder mehr als 500 ml/g.
7. Proteinpräparat nach einem der Ansprüche 1 bis 6, bei dem die Wasserbindung, bestimmt nach dem in der Beschreibung angegebenen AACC-Bestimmungsverfahren, mehr als 1 ml/g beträgt, vorzugsweise mehr als 2 ml/g, besonders bevorzugt mehr als 3 ml/g.
8. Proteinpräparat nach einem der Ansprüche 1 bis 7, bei dem die Ölbindung, bestimmt nach dem in der Beschreibung angegebenen Zentrifugen-Bestimmungs- verfahren, mehr als 1 ml/g beträgt, vorzugsweise mehr als 2 ml/g, besonders bevorzugt mehr als 2,5 ml/g.
9. Proteinpräparat nach einem der Ansprüche 1 bis 8, das eine Proteinlöslichkeit in Wasser bei pH 7 aufweist, die mehr als 10% oder mehr als 20% beträgt, vorzugsweise mehr als 30% oder mehr als 40%, besonders bevorzugt mehr als 50% oder mehr als 60%.
10. Proteinpräparat nach einem der Ansprüche 1 bis 9, das einen Anteil an Alkohol, insbesondere Ethanol, von > 0,001 Mass.-%, bevorzugt > 0,01 Mass.-%., besonders bevorzugt > 0,1 Mass.-% oder > 0,5 Mass.-%, aufweist, der jedoch weniger als 1 Mass.-% beträgt.
11. Proteinpräparat nach einem der Ansprüche 1 bis 9, das einen Anteil an Hexan von > 0,0005 Mass.-%, bevorzugt > 0,001 Mass.-%., aufweist, der jedoch weniger als 0,005 Mass.-% beträgt.
Proteinpräparat nach einem der Ansprüche 1 bis 11, das eine d90-Partikelgröße von weniger als 500 mpi aufweist, vorzugsweise weniger als 250 mpi, vorteilhaft von weniger als 150 gm, besonders bevorzugt von weniger als 100 gm. Proteinpräparat nach einem der Ansprüche 1 bis 12, dem zusätzlich Leguminosenproteine aus der Gruppe Erbse, Linse, Bohne, Ackerbohne, Erdnuss oder Soja, vorzugsweise nur aus der Gruppe Erbse und Soja, besonders bevorzugt nur aus Erbse, zugemischt wurden. Verwendung des Präparats nach einem der Ansprüche 1 bis
13 als Zutat in Lebensmitteln, Heimtiernahrung und Futtermitteln . Verfahren zur Gewinnung eines Proteinpräparats aus Mandelsamen, insbesondere nach einem der Ansprüche 1 bis 13, mit wenigstens folgenden Schritten:;
- mechanische Teilentölung der Mandelsamen;
- Durchführung eines oder mehrerer Extraktionsschritte zur weiteren Entölung der teilentölten Mandelsamen, optional nach einer Vermahlung oder Flockierung, bis auf einen Restölgehalt von unter 6 Mass.-%, bei der auch ein Anteil an Saccharose abgetrennt wird, wobei der eine oder die mehreren Extraktionsschritte mit einer oder mehreren Alkohol-Wassermischungen oder mit Alkohol oder Hexan als Lösungsmittel unter Anwesenheit oder Zugabe von Wasser durchgeführt werden, jeweils mit einem Wasseranteil im Bereich zwischen > 6 Mass.-% und <
14 Mass.-% bei Alkoholen und zwischen > 6 Mass.-% und < 30 Mass.-% bei Hexan, oder wobei die mehreren Extraktionsschritte mit Alkohol oder Hexan als einem ersten und mit Wasser als einem zweiten Lösungsmittel durchgeführt werden; und
- Trocknung des nach Durchführung des einen oder der
mehreren Extraktionsschritte erhaltenen Raffinats. Verfahren nach Anspruch 15, bei dem die Mandelsamen mit einem Restanteil an Samenhäutchen in Trockensubstanz von weniger als 100 Mass.-%, vorzugsweise weniger als 75 Mass.-%, besser weniger als 50 Mass.-%, besonders bevorzugt weniger als 10 Mass.-%, bezogen auf das ursprünglich in den Mandelsamen enthaltene Samenhäutchen in Trockensubstanz, bereitgestellt oder die Samenhäutchen bis auf diesen Restanteil entfernt werden. Verfahren nach Anspruch 15 oder 16, bei dem eine mittlere Temperatur der Mandelsamen bei der mechanischen Teilentölung unter 100°C, vorzugsweise unter 80°C, gehalten wird. Verfahren nach einem der Ansprüche 15 bis 17, bei dem die weitere Entölung der teilentölten Mandelsamen bis auf einen Restölgehalt von unter 4 Mass.-%, vorzugsweise unter 3 Mass.-%, besonders bevorzugt unter 2 Mass.-% erfolgt. Verfahren nach einem der Ansprüche 15 bis 18, bei dem der eine oder die mehreren Extraktionsschritte mit einer oder mehreren Alkohol-Wassermischungen als Lösungsmittel oder mit Alkohol als Lösungsmittel unter Anwesenheit von Wasser durchgeführt werden, wobei der Wasseranteil jeweils im Bereich zwischen > 7 Mass.-% und < 14 Mass.-%, vorzugsweise zwischen > 10 Mass.-% und <
14 Mass.-% liegt. Verfahren nach einem der Ansprüche 15 bis 18, bei dem der eine oder die mehreren Extraktionsschritte mit Hexan als Lösungsmittel unter Anwesenheit von Wasser durchgeführt werden, wobei der Wasseranteil jeweils im Bereich zwischen > 10 Mass.-% und < 30 Mass.-% liegt.
21. Verfahren nach einem der Ansprüche 15 bis 20, bei dem der Wasseranteil bei einer mehrstufigen Extraktion bei der ersten Stufe am höchsten und bei einer oder mehreren nachfolgenden Stufen niedriger gewählt wird.
22. Verfahren nach einem der Ansprüche 15 bis 21, bei dem eine Temperatur des Lösungsmittels bei der Durchführung des einen oder der mehreren
Extraktionsschritte zwischen 30°C und 75°C gewählt wird, vorzugsweise zwischen 45°C und 65°C, besonders bevorzugt zwischen 50°C und 65°C.
23. Verfahren nach Anspruch 22, bei dem eine Dauer des Kontakts zwischen dem Lösungsmittel und den teilentölten, gegebenenfalls vermahlenen oder flockierten, Mandelsamen bei Temperaturen des Lösungsmittels von > 45°C zwischen 30 Minuten und 12 Stunden, vorzugsweise zwischen 1 Stunde und 5 Stunden, besonders bevorzugt zwischen 1 und 2 Stunden gewählt wird.
24. Verfahren nach einem der Ansprüche 15 bis 23, bei dem die mechanische Teilentölung bis auf einen Restölgehalt erfolgt, der zwischen > 8 Mass.-% und < 40 Mass.-%, vorzugweise zwischen > 8 Mass.-% und < 30 Mass.-%, besonders bevorzugt zwischen > 8 Mass.-% und < 25 Mass.-% oder zwischen > 8 Mass.-% und < 20 Mass.-% liegt.
25. Verfahren nach einem der Ansprüche 15 bis 24, bei dem die Mandelsamen vor der mechanischen Teilentölung durch Einstellung der Feuchte der Samen auf einen Wassergehalt in den Samen zwischen 2 und 8 Mass.- %, vorzugsweise zwischen 3 und 6 Mass.-%, besonders bevorzugt zwischen 4 und 5,5 Mass.-%, konditioniert
werden.
26. Verfahren nach einem der Ansprüche 15 bis 25, bei dem die Mandelsamen vor der mechanischen Teilentölung auf eine Temperatur > 40°C, vorzugsweise > 50°C, vorteilhaft > 60°C, besonders bevorzugt > 70°C, jedoch < 100°C, besser < 80°C erwärmt werden.
27. Verfahren nach einem der Ansprüche 15 bis 26, bei dem die Mandelsamen vor der mechanischen Teilentölung grob auf eine Kantenlänge zwischen 0,5 und 7 mm, vorteilhaft zwischen 0,5 und 5 mm, besonders bevorzugt zwischen 0,5 und 2 mm, zerkleinert werden.
28. Verfahren nach einem der Ansprüche 15 bis 27, bei dem die teilentölten, gegebenenfalls grob zerkleinerten, vermahlenen oder flockierten, Mandelsamen vor der Durchführung des einen oder der mehreren Extraktionsschritte durch Absenken der Feuchte auf eine Restfeuchte von < 8 Mass.-%, vorzugsweise < 5 Mass.-%, besonders bevorzugt < 3 Mass.-% oder < 2 Mass.-%, konditioniert werden.
29. Verfahren nach einem der Ansprüche 15 bis 28, bei dem eine Partikelgröße der teilentölten Mandelsamen vor oder während der Durchführung des einen oder der mehreren Extraktionsschritte auf einen d90-Wert von < 2 mm, vorzugsweise < 1 mm, besonders bevorzugt < 0,5 mm oder < 0,2 mm gebracht wird, wobei vorzugsweise ein Anteil an Feinkorn mit einer Partikelgröße kleiner 100 pm < 50 Mass.-%, besonders bevorzugt < 25 Mass.-% oder < 10 Mass.-% beträgt.
30. Verfahren nach einem der Ansprüche 15 bis 28, bei dem die teilentölten Mandelsamen vor der Durchführung des einen oder der mehreren Extraktionsschritte auf eine Flockendicke von < 2 mm,
vorzugsweise < 0,5 mm, besonders bevorzugt < 0,2 mm flockiert werden. Verfahren nach einem der Ansprüche 15 bis 30, bei dem die Trocknung des Raffinats bei einer Temperatur von < 120 °C, vorzugsweise < 100 °C, besonders bevorzugt
< 80 °C erfolgt. Verfahren nach einem der Ansprüche 15 bis 31, bei dem die Trocknung des Raffinats ein einem Vakuumtrockner durchgeführt wird, wobei am Ende der Trocknung eine Absenkung des Drucks auf < 500 mbar, vorzugsweise < 200 mbar, besonders bevorzugt < 100 mbar erfolgt. Verfahren nach einem der Ansprüche 15 bis 32, bei dem vor der Trocknung des Raffinats eine Behandlung des Raffinats mit wässrigen Enzym-Lösungen oder mittels Fermentation erfolgt. Verfahren nach einem der Ansprüche 15 bis 33, bei dem das Raffinat nach der Trocknung auf eine definierte Partikelgrößenverteilung mit einem d90-Wert von < 500 pm, vorzugsweise < 250 pm, besonders bevorzugt
< 150 pm oder < 100 pm, vermahlen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021112273 | 2021-05-11 | ||
PCT/EP2022/056358 WO2022238031A1 (de) | 2021-05-11 | 2022-03-11 | Proteinpräparat aus mandelsamen und verfahren zur herstellung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4337024A1 true EP4337024A1 (de) | 2024-03-20 |
Family
ID=81074363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22714169.4A Pending EP4337024A1 (de) | 2021-05-11 | 2022-03-11 | Proteinpräparat aus mandelsamen und verfahren zur herstellung |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240268412A1 (de) |
EP (1) | EP4337024A1 (de) |
JP (1) | JP2024518066A (de) |
KR (1) | KR20240007127A (de) |
CN (1) | CN117412677A (de) |
AU (1) | AU2022272035A1 (de) |
CA (1) | CA3217513A1 (de) |
WO (1) | WO2022238031A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115812840A (zh) * | 2022-12-05 | 2023-03-21 | 河北农业大学 | 一种杏仁蛋白稳定的高内相乳液的制备方法及其应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101558795B (zh) * | 2008-11-07 | 2012-06-27 | 中国农业大学 | 一种杏仁粕浸榨降残脂方法 |
CN101485380A (zh) * | 2009-02-17 | 2009-07-22 | 西北师范大学 | 一种微波提取杏仁蛋白的方法 |
CN109548952A (zh) * | 2017-09-26 | 2019-04-02 | 肖梅 | 一种杏仁蛋白的提取方法 |
-
2022
- 2022-03-11 CN CN202280033975.7A patent/CN117412677A/zh active Pending
- 2022-03-11 WO PCT/EP2022/056358 patent/WO2022238031A1/de active Application Filing
- 2022-03-11 JP JP2023569628A patent/JP2024518066A/ja active Pending
- 2022-03-11 KR KR1020237035823A patent/KR20240007127A/ko unknown
- 2022-03-11 AU AU2022272035A patent/AU2022272035A1/en active Pending
- 2022-03-11 US US18/289,901 patent/US20240268412A1/en active Pending
- 2022-03-11 EP EP22714169.4A patent/EP4337024A1/de active Pending
- 2022-03-11 CA CA3217513A patent/CA3217513A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024518066A (ja) | 2024-04-24 |
AU2022272035A1 (en) | 2023-11-09 |
CN117412677A (zh) | 2024-01-16 |
US20240268412A1 (en) | 2024-08-15 |
CA3217513A1 (en) | 2022-11-17 |
KR20240007127A (ko) | 2024-01-16 |
WO2022238031A1 (de) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2400858B1 (de) | Aus rapssamen hergestelltes proteinpräparat | |
EP3681308B1 (de) | Verfahren zur gewinnung von proteinpräparaten aus ölsamen von sonnenblumen und/oder raps sowie proteinpräparat | |
EP2938204B1 (de) | Verfahren zur gewinnung von wertprodukten, insbesondere proteinen, aus einem nativen stoffgemenge | |
EP3550004B1 (de) | Verfahren und vorrichtung zur industriellen verarbeitung von rapssaat unter gewinnung von kaltgepresstem raps-kernöl | |
EP4337024A1 (de) | Proteinpräparat aus mandelsamen und verfahren zur herstellung | |
EP4250943A2 (de) | Proteinpräparat aus hanfsamen und verfahren zur herstellung | |
EP1351581A1 (de) | Verfahren zur herstellung von emulgierfähigen proteinprodukten aus einer ölsaat | |
EP3953442A1 (de) | Verfahren und vorrichtung zur industriellen gewinnung von rapskernöl und rapsproteinkonzentrat aus rapssaat | |
EP4422414A1 (de) | Verfahren zur gewinnung von proteinen aus rapspresskuchen | |
EP4250942A1 (de) | Proteinpräparat aus kürbiskernen und verfahren zur herstellung | |
WO2023105028A2 (de) | Proteinpräparat aus leinsamen und verfahren zur herstellung | |
EP3154375A1 (de) | Verfahren zur gewinnung von sinapinsäure aus einem nativen stoffgemenge | |
WO2021234026A1 (de) | Verfahren zur gewinnung von proteinen aus einem nativen stoffgemenge aus soja oder aus sojamilch | |
WO2004018069A1 (de) | Verfahren zur gewinnung einer ölfraktion und einer eiweiss-fraktion aus einer pflanzlichen ausgangssubstanz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |