EP4330210A1 - Dense sintered material of silicon carbide with very low electrical resistivity - Google Patents

Dense sintered material of silicon carbide with very low electrical resistivity

Info

Publication number
EP4330210A1
EP4330210A1 EP22727955.1A EP22727955A EP4330210A1 EP 4330210 A1 EP4330210 A1 EP 4330210A1 EP 22727955 A EP22727955 A EP 22727955A EP 4330210 A1 EP4330210 A1 EP 4330210A1
Authority
EP
European Patent Office
Prior art keywords
less
mass
sic
silicon carbide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22727955.1A
Other languages
German (de)
French (fr)
Inventor
Giovanni MASSASSO
Costana Bousquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP4330210A1 publication Critical patent/EP4330210A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the invention relates to a dense material based on silicon carbide (SiC) which can in particular be used for its high electrical conductivity properties.
  • Silicon carbide materials have long been known for their high hardness and high chemical inertness, high thermal and mechanical resistance and high thermal conductivity. This makes them prime candidates for applications such as cutting or machining tool components; turbine components or pump elements subject to high abrasion; pipe valves carrying corrosive products; supports and membranes intended for the filtration or pollution control of gases or liquids; kiln linings and firing supports; heat exchangers and solar absorbers; coatings or substrates for the thermochemical treatment of reactors, in particular for etching, or substrates intended for the electronics industry; heating elements or resistors; sensors for high temperature or pressure or for very aggressive environments; igniters or even magnetic susceptors that are more resistant to oxidation than those made of graphite; or even certain particular applications such as mirrors or other devices in the field of optics.
  • this type of material has a variable or even high electrical resistivity (of the order of 0.1 to several tens of ohm.cm at 20° C.) which is limiting in service.
  • various hot sintered silicon carbide materials with additions of aluminium, boron or silicon nitride and/or molybdenum disilicide.
  • these materials have a low silicon carbide content or a high porosity, which penalizes their performance, moreover, in particular their thermal conductivity or their properties at high temperature.
  • This mixture is dried, shaped by unidirectional pressing and then hardened at 200°C in order to obtain a manipulable part which is pretreated at 1450°C before being sintered under a load of 20 Mpa at a temperature of 2050°C under nitrogen.
  • the materials obtained have a relative density greater than 95% and a resistivity between 1.5 ⁇ 10 -4 and 2.9. 10 -2 ohm.m or between 15 and 290 milliomh.cm depending on the rare earth element added.
  • the object of the present invention is therefore to provide a sintered SiC material having a low electrical resistivity, that is to say less than 100, preferably less than 50 milliohm.cm, and high mechanical and thermal properties, including at high temperature.
  • the invention thus relates, according to a first aspect, to a polycrystalline ceramic material consisting of sintered grains with a median equivalent diameter of between 0.5 and 5 micrometers, said material comprising by mass more than 95% of silicon carbide (SiC), preferably more than 97% silicon carbide, and having the following elemental composition by mass:
  • the mass ratio of the SiC content in alpha crystallographic form (a) to the SiC content in beta crystallographic form (b) of said material is less than 0.1, preferably less than 0.05 and -the total porosity represents less than 15%, preferably less than 12%, more preferably less than 10%, by volume percent of said material.
  • the elemental composition previously described in the elements Si, C, O, Al etc. means of course in addition to silicon carbide, that is to say in complement of more than 95% (preferably more than 97%) by weight of silicon carbide present in said material.
  • the silicon in a form other than SiC can in particular be present in the form of free silica and/or free silicon (metallic silicon).
  • the carbon in a form other than SiC can in particular be present in the form of free carbon.
  • the material comprises more than 0.1%, preferably more than 0.5% of silicon in a form other than SiC, in particular in the form of free silica and/or of free silicon (metallic).
  • the material comprises more than 0.1%, preferably more than 0.5% of carbon in a form other than SiC, in particular in the form of free carbon.
  • the material comprises more than 0.1%, preferably more than 0.5% oxygen (O).
  • the material does not include, other than in the form of unavoidable impurities, silicon in a form other than SiC,
  • the material does not include, other than in the form of unavoidable impurities, carbon in a form other than SiC.
  • the material does not include, other than as unavoidable impurities, the elements oxygen (O), aluminum (Al), Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
  • the material does not contain, other than as unavoidable impurities, boron.
  • the material does not include, other than as inevitable impurities of other elements. - the total elemental content of Sodium (Na) + Potassium (K) + Calcium (Ca), cumulatively, is less than 0.5% of the mass of said material.
  • the elementary mass content of Aluminum (Al) represents less than 0.3% of the mass of said material.
  • the total elemental content of alkali, alkaline earth, aluminum and rare earth, combined, is less than 2%, preferably less than 1%, more preferably less than 0.5% of the mass of said material.
  • the elementary content of Boron (B) is less than 0.2% of the mass of said material, and/or greater than 0.02% of the mass of said material.
  • the elemental Zirconium (Zr) content is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material
  • the elemental Zirconium (Zr) content is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material.
  • Mo Molybdenum
  • the elementary titanium (Ti) content is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material
  • the elementary titanium (Ti) content is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material.
  • the elemental content of Hafnium (Hf) is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material
  • the elemental content of Hafnium (Hf) is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material.
  • the cumulative elementary content of Zr, Hf and Ti is between 0.05% and 1%.
  • the elemental nitrogen content is greater than 0.1%.
  • the elemental nitrogen content is less than 0.8%, preferably less than 0.7%, preferably less than 0.5% of the mass of said material.
  • Sic represents less than 1% of the mass of said material.
  • Sic represents less than 2% of the mass of said material.
  • the mass content of free or residual carbon of said material is less than 1.5%, preferably less than 1.0%.
  • the mass content of free or residual silica of said material is less than 1.5%, preferably less than 1.0%, preferably less than 0.5%.
  • the mass content of free or residual silicon of said material is less than 0.5%, preferably less than 0.1%.
  • Oxygen represents less than 0.4%, preferably less than 0.3%, of the mass of said material.
  • Sic represents more than 97%, preferably more than 98% of the mass of said material.
  • the SiC in beta crystallographic form (b) preferably represents more than 90% of the mass of the crystalline phases of said material.
  • the equivalent diameter of the silicon carbide grains in alpha crystallographic form is less than 10 micrometers.
  • more than 90%, preferably more than 95% of the grains have an equivalent diameter of between 0.5 and 5 micrometers, preferably between 0.5 and 3 micrometers.
  • grains of silicon carbide in beta crystalline form are grains of silicon carbide in beta crystalline form.
  • Grains of silicon carbide in beta crystalline form are understood to mean grains whose mass content of beta SiC is greater than 93%, preferably greater than 95%, preferably greater than 97%.
  • the grains of said material whose equivalent diameter is between 0.5 and 5 micrometers, are essentially in beta crystallographic form.
  • the grains of silicon carbide in alpha crystalline form represent less than 10%, preferably less than 5% by volume percentage of said material apart from its porosity.
  • said material may comprise at least 0.5% of silicon carbide grains in alpha crystalline form, apart from its porosity.
  • more than 90%, preferably more than 95%, even more preferably all the grains of silicon carbide in alpha crystalline form have an equivalent diameter of less than 5 micrometers, preferably less than 2 micrometers, or even less than 1 micrometer, the growth of such grains being inhibited according to the invention so as to minimize the electrical resistivity of said material.
  • the nitrogen is present in the grains by insertion into the crystal lattice of the SiC. Nitrogen is also present at the surface of the constituent grains of the material and at the grain boundaries, as are mainly the elements Si and C.
  • the total porosity of said material is less than 5%, preferably less than 4%, more preferably less than 3%, by volume of said material.
  • the median pore diameter of said material is less than 2 micrometers.
  • the material has an electrical resistivity, measured at 20° C. and at atmospheric pressure, of less than 50 milliOhm.cm, preferably less than 30 milliOhm.cm, preferably less than 20 milliOhm.cm.
  • the invention also relates to a process for manufacturing said material comprising the following steps: a) preparation of a starting charge comprising and preferably consisting essentially of, by mass:
  • carbon or a carbon precursor preferably an uncrystallized or amorphous graphite or carbon powder, the median diameter of which is less than 1 micrometer, less than 2% silicon or a precursor of silicon, preferably a metallic or amorphous, preferably metallic, silicon powder, the median diameter of which is less than 5 micrometers.
  • shaping of the starting charge in the form of a preform preferably by casting, c) solid phase sintering of said preform under a pressure greater than 60 MPa, preferably greater than 75 MPa, or even 80 MPa, and at a temperature above 1800° C. and below 2100° C. under a nitrogenous atmosphere, preferably under dinitrogen.
  • the nitrogen mass content of the silicon carbide powder in beta crystalline form is greater than 0.1%, preferably less than 1%.
  • the specific surface of the silicon carbide powder in beta crystalline form is greater than 5 cm 2 /g and/or less than 30 cm 2 /g.
  • the elementary aluminum content by mass of the silicon carbide powder in beta crystalline form is less than 0.1%.
  • the sum of the elementary Na+K+Ca+Mg mass contents of the silicon carbide powder in beta crystalline form is less than 0.2%.
  • the mass content of SiC of the silicon carbide powder essentially in beta crystalline form is greater than 99%.
  • the mass content of free or residual carbon of the silicon carbide powder essentially in beta crystalline form is less than 3%, preferably less than 2%, preferably less than 1.5%.
  • the mass content of free or residual silica of the silicon carbide powder essentially in beta crystalline form is less than 2%, more preferably less than 1.5%, preferably less than 1%.
  • the mass content of free or residual silicon of the silicon carbide powder essentially in beta crystalline form is less than 0.5%, more preferably less than 0.1%.
  • the total elementary mass content of contaminants or impurities, represented by elements or species other than silicon or free silica, residual carbon, of the silicon carbide powder essentially in beta crystalline form is less than 1%.
  • Said powder of silicon carbide particles has a mass content of free or residual carbon of less than 3%, of free or residual silica of less than 2%, of free or residual silicon of less than 0.5%, and a total elementary mass content of contaminants or impurities less than 1.
  • the silicon carbide powder essentially in beta crystalline form is bimodal and has two peaks, as measured by laser granulometry, more preferably a first peak whose maximum is between 0.1 and 0.5 micrometers and a second peak whose the maximum is between 1 and 6 micrometers.
  • the specific surface of the silicon carbide powder essentially in beta crystalline form is between 5 cm 2 /g and 30 cm 2 /g.
  • the starting charge comprises at least 0.05% of a solid phase sintering additive, preferably zirconium and/or titanium and/or hafnium, said additive preferably being a metal powder, oxide, nitride, carbide, boride or fluoride of one of these elements.
  • the starting charge comprises less than 1% of a sintering additive comprising the element chosen from zirconium and/or titanium and/or hafnium, said additive preferably being a metallic powder, oxide, nitride, carbide, boride or fluoride of one of these elements.
  • Said powder being of purity greater than 98% by mass, that is to say that the sum of the other elements are present according to a mass content of less than 2%.
  • the starting charge does not contain any solid phase sintering additive.
  • the silicon carbide powder can be doped with at least one of the elements zirconium and/or titanium and/or hafnium.
  • the starting charge comprises at least 0.05% silicon or silicon precursor.
  • the starting charge does not include silicon or silicon precursor.
  • the starting charge does not include any deliberate addition of aluminum or aluminum precursor, for example in the form of an aluminum nitride powder or an aluminum powder.
  • the starting charge does not include the voluntary addition of rare earths or a precursor of one of the elements among Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+ Er+Tm+Yb+Lu.
  • the starting charge comprises at least 0.05% carbon or carbon precursor.
  • the starting charge does not include carbon or carbon precursor.
  • the median diameter of the sintering powder is less than 2 micrometers, preferably less than 1 micrometer.
  • it is a boron carbide powder.
  • the sintering additive comprises the element zirconium.
  • the sintering additive is a zirconium carbide, fluoride or boride powder.
  • the starting charge comprises at least 0.5%, preferably at least 1%, of a carbon precursor.
  • the starting charge comprises less than 0.5% or even no silicon precursor.
  • the starting charge may optionally contain less than 1% of organic additives provided that they essentially contain the elements between C, O, H, N, Si.
  • organic additives for example, acrylic resins, PEG, siloxanes, vinyl, epoxy, phenolic, polyurethane compounds or resins, derivatives of alkyds or glycerophthalic compounds may be suitable.
  • any shaping technique known to those skilled in the art can be applied depending on the size of the part to be produced, provided that all precautions are taken to avoid contamination of the preform.
  • casting in a plaster mold can be adapted by using graphite media between the mold and the preform or oils avoiding too intimate contact and abrasion of the mold by the mixture and ultimately contamination of the preform.
  • These usage precautions mastered by those skilled in the art are also applicable to other stages of the process.
  • the mold or the matrix used containing the preform will preferably be made of graphite.
  • Hot pressing or “Hot Pressing”
  • hot isostatic pressing or “Hot Isostatic Pressing”
  • SPS Spark Plasma Sintering
  • the sintering under load is carried out by SPS, a sintering process in which the induction heating is carried out by the direct passage of current in a graphite matrix in which the preform is placed.
  • the average temperature rise rate is preferably greater than 10 and less than 100° C./minute.
  • the plateau time at the maximum temperature is preferably greater than 10 minutes. This time may be longer depending on the size of the preform and the load in the oven.
  • the nitrogen used for the sintering atmosphere in step c) has a purity greater than 99.99%, or even greater than 99.999% by volume.
  • the invention also relates to a device comprising the material according to the invention, said device being chosen from: a turbine, a pump, a valve or a fluid conduit system, a heat exchanger; a solar absorber or a device for recovering heat or reflecting light, a refractory furnace lining, a firing support, a crucible for melting metal or metalloid, a piece of protection against abrasion, a cutting tool, a brake pad or disc, a coating or a support for thermochemical treatment, for example etching, or a substrate for depositing active layers intended for the optics and/or electronics industry; a heating element or resistor; a temperature or pressure sensor; an igniter; a magnetic susceptor.
  • a device comprising the material according to the invention, said device being chosen from: a turbine, a pump, a valve or a fluid conduit system, a heat exchanger; a solar absorber or a device for recovering heat or reflecting light, a refractory furnace lining, a firing support,
  • the device is chosen from: a turbine, a pump, a valve or a fluid conduit system, a protective part against abrasion, a cutting tool, a brake pad or disc, an element or a heating resistor; a sensor of temperature or pressure; an igniter; a magnetic susceptor; a substrate for depositing active layers intended for the optics and/or electronics industry.
  • a turbine a pump, a valve or a fluid conduit system, a protective part against abrasion, a cutting tool, a brake pad or disc, an element or a heating resistor; a sensor of temperature or pressure; an igniter; a magnetic susceptor; a substrate for depositing active layers intended for the optics and/or electronics industry.
  • polycrystalline material is meant a material having several crystalline orientations or crystals of different crystalline orientation.
  • the sintered grains together represent the bulk of the mass of said material, the intergranular phase optionally consisting of a ceramic and/or metallic phase or of residual carbon advantageously representing less than 5% of the mass of said material.
  • the process for firing the material according to the invention is essentially carried out in the solid phase, that is to say it is sintering in which the additives added allowing sintering or the level of any impurities present do not make it possible to form a liquid phase in an amount such that it is sufficient to allow the rearrangement of the grains and thus bring them into contact with each other.
  • a material obtained by solid phase sintering is commonly referred to as “solid phase sinter”.
  • additive is understood in the present description to mean a compound usually known to allow and/or accelerate the kinetics of the sintering reaction.
  • -By impurities we mean the unavoidable constituents, involuntarily and necessarily introduced with the raw materials or resulting from the reactions between the constituents. Impurities are not necessary constituents but only tolerated constituents.
  • the elementary chemical contents of the sintered material or of the powders used in the mixture of the manufacturing process of said material are measured according to the techniques well known in the art.
  • the contents of elements such as for example Al, B, Ti, Zr, Fe, Mo, rare earths, alkalis and alkaline-earths in particular can be measured by X-ray fluorescence, preferably by ICP (“Induction Coupled Plasma” ), according to the contents present in particular by ICP if the contents are less than 0.5%, or even less than 0.2%, in particular according to standard ISO21068-3:2008 on product calcined at 750°C in air up to on weight gain.
  • ICP Induction Coupled Plasma
  • the mass contents of free silicon, free silica, free carbon and SiC are measured according to standard ISO 21068-2:2008. Those of oxygen and nitrogen are determined by LECO according to ISO21068-3:2008.
  • composition in polytypes of SiC and the presence of other phases of the sintered material or of the powders used in the mixture of the manufacturing process of said material are normally obtained by X-ray diffraction and Rietveld analysis.
  • the respective percentages of alpha and beta SiC phase can be determined using BRUKER's D8 Endeavor equipment using the following configuration:
  • the diffractograms can be analyzed qualitatively with the EVA software and the ICDD2016 database, then quantitatively with HighScore Plus software according to a Rietveld refinement.
  • the volume percentages of grains of the sintered material in alpha or beta form and their diameter can be determined by analyzing images from observations by electron backscatter diffraction EBSD (or "electron electron backscatter diffraction").
  • the installation can be for example composed of a scanning electron microscope (SEM) equipped with an EBSD detector and a spectrometry with energy dispersive X-ray spectrometry (EDX).
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray spectrometry
  • the EBSD and EDX detectors are controlled by the ESPRIT software ( version 2.1). Images of high crystallographic contrast and/or high density contrast can be collected using available software.
  • the equivalent diameter of a grain corresponds to the diameter of the disk with the same surface as that of the said grain observed according to a cutting plane of the material
  • This median diameter (or percentile D50) of grains corresponds to the diameter dividing the grains into first and second equal populations, these first and second populations comprising only grains having an equivalent diameter greater, or less, respectively, than the median diameter.
  • the total porosity (or total volume of pores) of the material according to the invention corresponds to the total sum of the volume of closed and open pores divided by the volume of the material. It is calculated according to the ratio expressed as a percentage of the apparent density measured according to IS018754 on the absolute density measured according to ISO5018.
  • the median particle diameter (or the median "size") of the particles constituting a powder can be obtained by characterization of the particle size distribution, in particular by means of a laser particle sizer.
  • the characterization of the particle size distribution is conventionally carried out with a laser particle sizer in accordance with the ISO 13320-1 standard.
  • the laser particle sizer can be, for example, a Partica LA-950 from the company HORIBA.
  • the median diameter of the particles designates respectively the diameter of the particles below which there is 50% by mass of the population. set of particles, in particular of a powder, the percentile Dso, i.e. the size dividing the particles into first and second populations equal in volume, these first and second populations comprising only particles having a larger size , or less respectively, than the median size.
  • the specific surface is measured by the B.E.T. (Brunauer Emmet Teller), described for example in the Journal of American Chemical Society 60 (1938), pages 309 to 316.
  • a powder of silicon carbide particles in beta crystalline form is understood to mean a powder for which the 3C or cubic crystallographic form represents more than 95% by mass of silicon carbide.
  • the alpha crystallographic forms of SiC being mainly the hexagonal or rhombohedral phases: 3H; 4H; 6H and 15R. Unless otherwise indicated, in the present description, all the percentages are mass percentages.
  • Figure 1 is an image taken under a scanning microscope of a polished section of the sintered material of example 3 according to the invention.
  • ceramic bodies in the form of cylinders with a diameter of 30 mm and a thickness of 10 mm were initially made by casting a slip into a plaster mold according to different formulations given in Table 1 below. afterwards from the following raw materials:
  • Sic silicon carbide particles in beta crystallographic form, which has a bimodal distribution with a first peak whose maximum is located at 0.3 micrometers and a second peak of height substantially twice as high as the first and whose maximum is located at 3 micrometers, according to a non-cumulative size distribution measured by number laser granulometer.
  • the median diameter of the bimodal powder is 1.5 ⁇ m.
  • This Sic powder has the following elementary mass contents:
  • Mo Molybdenum
  • Example 6° an aluminum nitride powder supplied by Nanografi under the grade with a median diameter of 0.06 ⁇ m. Pellets thus produced are dried at 50° C. in air.
  • the pellets of Examples 1 and 2 (comparative) are sintered in an oven under Argon at a temperature of 2150° C. for 2 hours without pressure or load.
  • the pellets of Example 3 (according to the invention) and of Example 5 (comparative) are loaded into equipment to carry out SPS-type sintering at 2000° C. under a load of 85 MPa (megapascals) under atmosphere of nitrogen. Unlike Example 3, the sintering of the pellets of Example 4 (comparative) is carried out under vacuum.
  • Example 6 according to the invention is carried out under the same conditions as example 5, but the boron carbide powder is replaced by a zirconia powder, just as in example 8 (also according to the invention) difference from Example 6, in Example 7 (according to the invention) the addition is made in the form of a titanium oxide powder.
  • Example 9 and 10 comparative
  • the addition consists of an aluminum nitride powder.
  • the sintering of examples 9 and 10 is respectively the same as that of example 7 (sintering under load and under N2) and that of Example 4 (sintering under load and under vacuum).
  • the total porosity of the material obtained is calculated by taking the difference between 100 and the ratio expressed as a percentage of the apparent density measured according to IS018754 on the absolute density measured according to ISO5018.
  • the free silica (SiCt) content is measured by HF attack. Free carbon, oxygen and nitrogen contents are measured by LECO. The free silicon content is measured by aqua regia attack, followed by titration. The other elementary contents are measured by X-ray fluorescence and ICP.
  • the percentage of Sic in beta form and the b/a crystallographic form ratio of SiC are determined by X-ray diffraction analysis according to the method described previously.
  • the electrical resistivity is measured at ambient temperature (20° C.) according to the Van der Pauw method at 4 points on a sample with a diameter of 20-30 mm and a thickness of 2.5 mm.
  • the volume percentages of grains of the sintered material in alpha or beta form and their diameter were determined by analyzing images from EBSD observations.
  • the installation is composed of a scanning electron microscope (SEM) equipped with a Bruker e-FlashHR+ EBSD detector equipped with the FSE/BSE Argus imaging system and a Bruker XFlash® 4010 EDX detector with an active surface of 10 mm 2 .
  • SEM scanning electron microscope
  • the EBSD detector is mounted on one of the rear ports of the FEI Nova NanoSEM 230 field emission gun SEM with a tilt angle of 10.6° from the horizontal in order to increase both the EBSD signal and the EDX signal. Under these conditions, the optimum working distance WD (ie, distance between the pole piece of the SEM and the analyzed zone of the sample) is approximately 13 mm.
  • the EBSD and EDS detectors are controlled by ESPRIT software (version 2.1).
  • FSE (high contrast) images crystallographic) and/or BSE (high density contrast) were collected using the Argus system by positioning the EBSD camera at a DD distance (sample detector distance) of 23 mm in order to be less sensitive to the topography of the sample.
  • EBSD measurements were performed in point and/or mapping mode. For this, the EBSD camera was positioned at a DD distance of 17 mm in order to increase the signal collected.
  • the equivalent diameter of a grain corresponds to the diameter of the disk with the same surface as that of said grain observed according to a cutting plane of the material.

Abstract

Disclosed is a polycrystalline sintered ceramic material of very low electrical resistivity comprising by mass: - more than 95% silicon carbide (SiC), - less than 1.5% silicon in another form than SiC, - less than 2.5% carbon in another form than SiC, - less than 1% oxygen (O), - less than 0.5% aluminium (Al), - less than 0.5% of the elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, - less than 0.5% alkali elements, - less than 0.5% alkaline earths, - between 0.1 and 1.5% nitrogen (N), - the other elements forming the complement to 100%, wherein the grains of the above material have a median equivalent diameter of between 0.5 and 5 micrometres, the mass ratio of SiC alpha (α))/SiC Beta (β) is less than 0.1, and the total porosity represents less than 15% by volume of said material.

Description

DESCRIPTION DESCRIPTION
Titre : MATERIAU FRITTE DENSE DE CARBURE DE SILICIUM A TRES FAIBLE RESISTIVITE ELECTRIQUE Title: DENSE SINTERED MATERIAL OF SILICON CARBIDE WITH VERY LOW ELECTRICAL RESISTIVITY
L'invention se rapporte à un matériau dense à base de carbure de silicium (SiC) pouvant notamment être utilisé pour ses propriétés de conductivité électrique élevée. The invention relates to a dense material based on silicon carbide (SiC) which can in particular be used for its high electrical conductivity properties.
Les matériaux de carbure de silicium sont connus depuis longtemps pour leur grande dureté et leur forte inertie chimique, leur résistance thermique, mécanique et leur conductivité thermique élevées. Ceci en fait des candidats de choix pour des applications telles que des composants d'outils de coupe ou d'usinage ; des composants de turbines ou des éléments de pompes soumis à une forte abrasion ; des valves de conduites transportant des produits corrosifs ; des supports et des membranes destinées à la filtration ou à la dépollution de gaz ou de liquides ; des revêtements de fours et des supports de cuisson; des échangeurs de chaleur et des absorbeurs solaires ; des revêtements ou des supports de traitement thermochimique de réacteurs, notamment pour la gravure, ou des substrats destinés à l'industrie de l'électronique ; des éléments ou des résistances chauffantes ; des capteurs de température ou de pression élevées ou pour des environnements très agressifs ; des allumeurs voire des suscepteurs magnétiques plus résistants à l'oxydation que ceux en graphite ; voire même certaines applications particulières telles que les miroirs ou d'autres dispositifs dans le domaine de l'optique. Ce type de matériau présente cependant une résistivité électrique variable voire élevée (de l'ordre de 0,1 à plusieurs dizaines d'ohm.cm à 20°C) qui est limitante en service. Afin de renforcer par exemple l'usage de ce matériau en particulier comme allumeur, il a été proposé par US3974106, US5045237 ou US5085804, différents matériaux de carbure de silicium frittés à chaud avec des ajouts de nitrure d'aluminium, de bore ou de silicium et/ ou de disiliciure de molybdène. Cependant ces matériaux présentent une teneur en carbure de silicium faible ou une porosité élevée ce qui pénalisent leur performance par ailleurs notamment leur conductivité thermique ou leurs propriétés à haute température. Silicon carbide materials have long been known for their high hardness and high chemical inertness, high thermal and mechanical resistance and high thermal conductivity. This makes them prime candidates for applications such as cutting or machining tool components; turbine components or pump elements subject to high abrasion; pipe valves carrying corrosive products; supports and membranes intended for the filtration or pollution control of gases or liquids; kiln linings and firing supports; heat exchangers and solar absorbers; coatings or substrates for the thermochemical treatment of reactors, in particular for etching, or substrates intended for the electronics industry; heating elements or resistors; sensors for high temperature or pressure or for very aggressive environments; igniters or even magnetic susceptors that are more resistant to oxidation than those made of graphite; or even certain particular applications such as mirrors or other devices in the field of optics. However, this type of material has a variable or even high electrical resistivity (of the order of 0.1 to several tens of ohm.cm at 20° C.) which is limiting in service. In order to reinforce for example the use of this material in particular as an igniter, it was proposed by US3974106, US5045237 or US5085804, various hot sintered silicon carbide materials with additions of aluminium, boron or silicon nitride and/or molybdenum disilicide. However, these materials have a low silicon carbide content or a high porosity, which penalizes their performance, moreover, in particular their thermal conductivity or their properties at high temperature.
Plus récemment la publication « Electrical resistivity of Silicon Carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide » dans Journal of the European Ceramic Society 32(2012) 4427-4434 de Young-Wook Kim et al. a étudié l'influence de l'ajout de terres rares associé à de l'AIN sur la résistivité électrique de corps en SiC fritté. Le mélange de départ contenant essentiellement du SiC sous forme cristalline beta ou cubique, des additifs de mise en forme dont un siloxane et une résine phénolique, et moins de 1% en masse d'une poudre de terre rare et d'une poudre d'AlN. Ce mélange est séché, mis en forme par pressage unidirectionnel puis durci à 200°C afin d'obtenir une pièce manipulable qui est prétraitée à 1450°C avant d'être frittée sous une charge de 20 Mpa à une température de 2050°C sous azote. Les matériaux obtenus présentent une densité relative supérieure à 95% et une résistivité entre 1,5.10-4 et 2,9. 10-2 ohm.m soit entre 15 et 290 milliomh.cm selon l'élément de terre rare ajouté. More recently the publication “Electrical resistivity of Silicon Carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide” in Journal of the European Ceramic Society 32(2012) 4427-4434 by Young-Wook Kim et al. studied the influence of the addition of rare earths associated with AIN on the electrical resistivity of sintered SiC bodies. The starting mixture essentially containing SiC in beta or cubic crystalline form, shaping additives including a siloxane and a phenolic resin, and less than 1% by mass of a rare earth powder and a powder of AlN. This mixture is dried, shaped by unidirectional pressing and then hardened at 200°C in order to obtain a manipulable part which is pretreated at 1450°C before being sintered under a load of 20 Mpa at a temperature of 2050°C under nitrogen. The materials obtained have a relative density greater than 95% and a resistivity between 1.5×10 -4 and 2.9. 10 -2 ohm.m or between 15 and 290 milliomh.cm depending on the rare earth element added.
Comme l'explique Y.Taki et al dans la publication « Electrical and thermal properties of nitrogen doped SiC sintered body » dans la revue Japan Society Powder Metallurgy Vol. 65 n°8 2018, l'ajout d'Al sous forme AIN conduit cependant à une phase liquide favorable à la densification mais néfaste aux propriétés mécaniques à haute température. Des techniques de frittage en phase solide sans recourir à une phase liquide telles que le frittage sans pression à partir d'ajout de bore et de carbone sont également connues depuis longtemps comme cela est décrit par exemple par US4004934. Plus récemment, comme le montre la publication « Pressureless sintering of beta Silicon Carbide nanoparticles » dans Journal of the European Ceramic Society 32 (2012) 4393-4400 de A.Malinge et al, l'utilisation de poudres de départ de carbure de silicium de taille submicronique de forme cristallographique beta a permis d'atteindre une densité relative de l'ordre de 90%. Cependant la température de frittage nécessaire à cette densification conduit inexorablement à la formation d'une phase de carbure de silicium alpha comme l'explique cette publication, ce qui augmente la résistivité électrique. As explained by Y.Taki et al in the publication “Electrical and thermal properties of nitrogen doped SiC sintered body” in the journal Japan Society Powder Metallurgy Vol. 65 n°8 2018, the addition of Al in AlN form however leads to a liquid phase favorable to densification but detrimental to the mechanical properties at high temperature. Solid phase sintering techniques without resorting to a liquid phase such as pressureless sintering at from the addition of boron and carbon have also been known for a long time as described for example by US4004934. More recently, as shown in the publication “Pressureless sintering of beta Silicon Carbide nanoparticles” in Journal of the European Ceramic Society 32 (2012) 4393-4400 by A.Malinge et al, the use of silicon carbide starting powders of submicron size of beta crystallographic form made it possible to reach a relative density of the order of 90%. However, the sintering temperature necessary for this densification leads inexorably to the formation of an alpha silicon carbide phase as explained in this publication, which increases the electrical resistivity.
L'objet de la présente invention est par conséquent de fournir un matériau de SiC fritté présentant une résistivité électrique faible, c'est à dire inférieure à 100 de préférence inférieure à 50 milliohm.cm, et des propriétés mécaniques et thermiques élevées, y compris à haute température. The object of the present invention is therefore to provide a sintered SiC material having a low electrical resistivity, that is to say less than 100, preferably less than 50 milliohm.cm, and high mechanical and thermal properties, including at high temperature.
Il a été mis en évidence par les travaux de la société déposante, décrits ci-après, un optimum en termes composition physico-chimique conduisant à une résistivité électrique extrêmement faible (inférieure à 50 milliohm.cm à la température ambiante (20°C) tout en conservant une porosité la plus faible possible (inférieure à 10% en volume) sans recours à des ajouts à base des éléments Aluminium ou de terres rares pénalisants à haute température. Ceci a été obtenu par une sélection appropriée des matières de départ et un procédé particulier permettant de minimiser voire d'éviter la formation de SiC sous forme alpha et toute formation de phase liquide au joints de grains. Il a en effet été trouvé par la société déposante que ces deux facteurs pouvaient pénaliser la conductivité électrique. L'invention se rapporte ainsi selon un premier aspect à un matériau céramique polycristallin constitué de grains frittés de diamètre équivalent médian compris entre 0,5 et 5 micromètres, ledit matériau comprenant en masse plus de 95% de carbure de Silicium (SiC), de préférence plus de 97% de carbure de silicium, et présentant la composition élémentaire suivante en masse: It has been highlighted by the work of the applicant company, described below, an optimum in terms of physico-chemical composition leading to an extremely low electrical resistivity (less than 50 milliohm.cm at room temperature (20 ° C) while maintaining the lowest possible porosity (less than 10% by volume) without resorting to additives based on aluminum elements or penalizing rare earths at high temperature.This was obtained by an appropriate selection of the starting materials and a particular process making it possible to minimize or even avoid the formation of SiC in the alpha form and any formation of liquid phase at the grain boundaries.It has in fact been found by the applicant company that these two factors could penalize the electrical conductivity. The invention thus relates, according to a first aspect, to a polycrystalline ceramic material consisting of sintered grains with a median equivalent diameter of between 0.5 and 5 micrometers, said material comprising by mass more than 95% of silicon carbide (SiC), preferably more than 97% silicon carbide, and having the following elemental composition by mass:
-moins de 1,5% de silicium sous une autre forme que le SiC, - less than 1.5% silicon in a form other than SiC,
-moins de 2,5% de carbone sous une autre forme que le SiC, et -less than 2.5% carbon in a form other than SiC, and
-moins de 1%, de préférence moins de 0,75%, de préférence moins de 0,5% d'oxygène(O), et -moins de 0,5% d'aluminium (Al) et -less than 1%, preferably less than 0.75%, preferably less than 0.5% oxygen (O), and -less than 0.5% aluminum (Al) and
-moins de 0,5% au total des éléments Sc, Y, La, Ce, Pr,- less than 0.5% in total of the elements Sc, Y, La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb et Lu, etNd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and
-moins de 0,5% d'éléments alcalins, et -moins de 0,5% d'alcalino-terreux, et -less than 0.5% alkaline elements, and -less than 0.5% alkaline earth, and
-de préférence moins de 0,50% de bore (B), de préférence encore moins de 0,2% de bore, -preferably less than 0.50% boron (B), even more preferably less than 0.2% boron,
-entre 0,05 et 1% d'azote (N), -between 0.05 and 1% nitrogen (N),
-les autres éléments formant le complément à 100%, et dans lequel : - the other elements forming the 100% complement, and in which:
-le rapport massique de la teneur en SiC sous forme cristallographique alpha (a) sur la teneur en SiC sous forme cristallographique beta (b) dudit matériau est inférieur à 0,1, de préférence inférieur à 0,05 et -la porosité totale représente moins de 15%, de préférence moins de 12%, de préférence encore moins de 10%, en pourcentage volumique dudit matériau. -the mass ratio of the SiC content in alpha crystallographic form (a) to the SiC content in beta crystallographic form (b) of said material is less than 0.1, preferably less than 0.05 and -the total porosity represents less than 15%, preferably less than 12%, more preferably less than 10%, by volume percent of said material.
La composition élémentaire précédemment décrite en les éléments Si, C, O, Al etc. s'entend bien entendu en complément du carbure de silicium, c'est-à-dire en complément des plus de 95% (de préférence plus de 97%) massique de carbure de silicium présents dans ledit matériau. Le silicium sous une autre forme que le SiC peut notamment être présent sous forme de silice libre et/ou de silicium libre (silicium métallique). The elemental composition previously described in the elements Si, C, O, Al etc. means of course in addition to silicon carbide, that is to say in complement of more than 95% (preferably more than 97%) by weight of silicon carbide present in said material. The silicon in a form other than SiC can in particular be present in the form of free silica and/or free silicon (metallic silicon).
Le carbone sous une autre forme que le SiC peut notamment être présent sous forme de carbone libre. The carbon in a form other than SiC can in particular be present in the form of free carbon.
Selon d'autres caractéristiques additionnelles optionnelles mais avantageuses dudit matériau : -Le matériau comprend plus de 0,1%, de préférence plus de 0,5% de silicium sous une autre forme que le SiC, notamment sous forme de silice livre et/ou de silicium libre (métallique). According to other optional but advantageous additional characteristics of said material: the material comprises more than 0.1%, preferably more than 0.5% of silicon in a form other than SiC, in particular in the form of free silica and/or of free silicon (metallic).
- Le matériau comprend plus de 0,1%, de préférence plus de 0,5% de carbone sous une autre forme que le SiC, notamment sous forme de Carbone libre. - The material comprises more than 0.1%, preferably more than 0.5% of carbon in a form other than SiC, in particular in the form of free carbon.
- Le matériau comprend plus de 0,1%, de préférence plus de 0,5% d'oxygène(O). - The material comprises more than 0.1%, preferably more than 0.5% oxygen (O).
- Le matériau ne comprend pas, autrement que sous forme d'impuretés inévitables, de silicium sous une autre forme que le SiC, - The material does not include, other than in the form of unavoidable impurities, silicon in a form other than SiC,
- Le matériau ne comprend pas, autrement que sous forme d'impuretés inévitables, de carbone sous une autre forme que le SiC. Le matériau ne comprend pas, autrement que sous forme d'impuretés inévitables, les éléments oxygène(O), aluminium (Al), Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,- The material does not include, other than in the form of unavoidable impurities, carbon in a form other than SiC. The material does not include, other than as unavoidable impurities, the elements oxygen (O), aluminum (Al), Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb et Lu, les alcalins, les alcalino-terreux Le matériau ne comprend pas, autrement que sous forme d'impuretés inévitables, de bore. Dy, Ho, Er, Tm, Yb and Lu, alkalis, alkaline earths The material does not contain, other than as unavoidable impurities, boron.
Le matériau ne comprend pas, autrement que sous forme d'impuretés inévitables d'autres éléments. - la teneur élémentaire totale de Sodium (Na) + Potassium (K) + Calcium (Ca), en cumulé, est inférieure à 0,5% de la masse dudit matériau. The material does not include, other than as inevitable impurities of other elements. - the total elemental content of Sodium (Na) + Potassium (K) + Calcium (Ca), cumulatively, is less than 0.5% of the mass of said material.
- la teneur massique élémentaire en Aluminium (Al) représente moins de 0,3% de la masse dudit matériau. la teneur élémentaire totale d'alcalin, d'alcalino- terreux, d'aluminium et de terre rare, en cumulé, est inférieure à 2%, de préférence inférieure à 1%, de manière plus préférée inférieure à 0,5% de la masse dudit matériau.- the elementary mass content of Aluminum (Al) represents less than 0.3% of the mass of said material. the total elemental content of alkali, alkaline earth, aluminum and rare earth, combined, is less than 2%, preferably less than 1%, more preferably less than 0.5% of the mass of said material.
- la teneur élémentaire en Bore (B) est inférieure à 0,2% de la masse dudit matériau, et/ou supérieure à 0,02% de la masse dudit matériau. - the elementary content of Boron (B) is less than 0.2% of the mass of said material, and/or greater than 0.02% of the mass of said material.
- la teneur élémentaire en Zirconium (Zr) est inférieure à 1,0%, de préférence inférieure à 0,8%, de préférence inférieure à 0,5% de la masse dudit matériau, - the elemental Zirconium (Zr) content is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material,
- la teneur élémentaire en Zirconium (Zr) est supérieure à 0,02%, de préférence supérieure à 0,05%, de préférence supérieure à 0,1%, de préférence supérieure à 0,2% de la masse dudit matériau. - the elemental Zirconium (Zr) content is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material.
- la teneur élémentaire en Molybdène (Mo) est inférieure à 0,2% de la masse dudit matériau, de préférence inférieure à 0,1% de la masse dudit matériau. - the elementary content of Molybdenum (Mo) is less than 0.2% of the mass of said material, preferably less than 0.1% of the mass of said material.
- la teneur élémentaire en Titane (Ti) est inférieure à 1,0%, de préférence inférieure à 0,8%, de préférence inférieure à 0,5% de la masse dudit matériau, - the elementary titanium (Ti) content is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material,
- la teneur élémentaire en Titane (Ti) est supérieure à 0,02%, de préférence supérieure à 0,05%, de préférence supérieure à 0,1%, de préférence supérieure à 0,2% de la masse dudit matériau. - the elementary titanium (Ti) content is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material.
- la teneur élémentaire en Hafnium (Hf) est inférieure à 1,0%, de préférence inférieure à 0,8%, de préférence inférieure à 0,5% de la masse dudit matériau - la teneur élémentaire en Hafnium (Hf) est supérieure à 0,02%, de préférence supérieure à 0,05%, de préférence supérieure à 0,1%, de préférence supérieure à 0,2% de la masse dudit matériau. - la teneur élémentaire cumulée en Zr, Hf et Ti est comprise entre 0,05% et 1%. - the elemental content of Hafnium (Hf) is less than 1.0%, preferably less than 0.8%, preferably less than 0.5% of the mass of said material - the elemental content of Hafnium (Hf) is greater than 0.02%, preferably greater than 0.05%, preferably greater than 0.1%, preferably greater than 0.2% of the mass of said material. - the cumulative elementary content of Zr, Hf and Ti is between 0.05% and 1%.
-la teneur élémentaire en azote est supérieure à 0,1%. -the elemental nitrogen content is greater than 0.1%.
- la teneur élémentaire en azote est inférieure à 0,8%, de préférence inférieure à 0,7%, de préférence inférieure à 0,5% de la masse dudit matériau. - the elemental nitrogen content is less than 0.8%, preferably less than 0.7%, preferably less than 0.5% of the mass of said material.
- la teneur élémentaire en fer (Fe) représente moins de 0,5% de la masse dudit matériau. - the elemental content of iron (Fe) represents less than 0.5% of the mass of said material.
- le silicium sous une autre forme que le carbure de silicium Sic représente moins de 1% de la masse dudit matériau. - Le carbone sous une autre forme que le carbure de silicium- silicon in a form other than silicon carbide Sic represents less than 1% of the mass of said material. - Carbon in a form other than silicon carbide
Sic représente moins de 2% de la masse dudit matériau. Sic represents less than 2% of the mass of said material.
- La teneur massique en carbone libre ou résiduel dudit matériau est inférieure à 1,5%, de préférence inférieure à 1,0%. - La teneur massique en silice libre ou résiduelle dudit matériau est inférieure à 1,5%, de préférence inférieure à 1,0%, de préférence inférieure à 0,5%. - The mass content of free or residual carbon of said material is less than 1.5%, preferably less than 1.0%. - The mass content of free or residual silica of said material is less than 1.5%, preferably less than 1.0%, preferably less than 0.5%.
- La teneur massique en silicium libre ou résiduel dudit matériau est inférieure à 0,5%, de préférence inférieure à 0,1%. - The mass content of free or residual silicon of said material is less than 0.5%, preferably less than 0.1%.
- L'oxygène représente moins de 0,4%, de préférence moins de 0,3%, de la masse dudit matériau. - Oxygen represents less than 0.4%, preferably less than 0.3%, of the mass of said material.
- le Sic représente plus de 97%, de préférence plus de 98% de la masse dudit matériau. -le SiC sous forme cristallographique beta (b) représente de préférence plus de 90% de la masse des phases cristallines dudit matériau. - le diamètre équivalent des grains de carbure de silicium sous forme cristallographique alpha est inférieur à 10 micromètres. - Sic represents more than 97%, preferably more than 98% of the mass of said material. the SiC in beta crystallographic form (b) preferably represents more than 90% of the mass of the crystalline phases of said material. - the equivalent diameter of the silicon carbide grains in alpha crystallographic form is less than 10 micrometers.
- en volume, plus de 90%, de préférence plus de 95% des grains ont un diamètre équivalent compris entre 0,5 et 5micromètres, de préférence compris entre 0,5 et 3 micromètres. - By volume, more than 90%, preferably more than 95% of the grains have an equivalent diameter of between 0.5 and 5 micrometers, preferably between 0.5 and 3 micrometers.
- en volume dudit matériau hormis sa porosité, plus de 90%, de préférence plus de 93%, de manière plus préférée plus de 95% des grains sont des grains de carbure de silicium sous forme cristalline beta. On entend par des grains de carbure de silicium sous forme cristalline beta, des grains dont la teneur massique en beta SiC est supérieure à 93%, de préférence supérieure à 95%, de préférence supérieure à 97%.- by volume of said material apart from its porosity, more than 90%, preferably more than 93%, more preferably more than 95% of the grains are grains of silicon carbide in beta crystalline form. Grains of silicon carbide in beta crystalline form are understood to mean grains whose mass content of beta SiC is greater than 93%, preferably greater than 95%, preferably greater than 97%.
- les grains dudit matériau, dont le diamètre équivalent est compris entre 0,5 et 5 micromètres, sont essentiellement sous forme cristallographique beta. - the grains of said material, whose equivalent diameter is between 0.5 and 5 micrometers, are essentially in beta crystallographic form.
-les grains de carbure de silicium sous forme cristalline alpha représentent moins de 10%, de préférence moins de 5% en pourcentage volumique dudit matériau hormis sa porosité. Selon un mode de réalisation ledit matériau peut comprendre au moins 0,5% de grains de carbure de silicium sous forme cristalline alpha, hormis sa porosité. the grains of silicon carbide in alpha crystalline form represent less than 10%, preferably less than 5% by volume percentage of said material apart from its porosity. According to one embodiment, said material may comprise at least 0.5% of silicon carbide grains in alpha crystalline form, apart from its porosity.
-En particulier en volume plus de 90%, de préférence plus de 95%, de manière encore plus préférée tous les grains de carbure de silicium sous forme cristalline alpha ont un diamètre équivalent inférieur à 5 micromètres, de préférence inférieur à 2 micromètres, voire inférieur à 1 micromètre, la croissance de tels grains étant inhibée selon l'invention de manière à minimiser la résistivité électrique dudit matériau. -In particular by volume more than 90%, preferably more than 95%, even more preferably all the grains of silicon carbide in alpha crystalline form have an equivalent diameter of less than 5 micrometers, preferably less than 2 micrometers, or even less than 1 micrometer, the growth of such grains being inhibited according to the invention so as to minimize the electrical resistivity of said material.
- Dans le matériau constituant le matériau selon l'invention, l'azote est présent dans les grains par insertion dans le réseau cristallin du SiC. L'azote est aussi présent à la surface des grains constitutifs du matériau et aux joints de grain tout comme principalement les éléments Si et C. - In the material constituting the material according to the invention, the nitrogen is present in the grains by insertion into the crystal lattice of the SiC. Nitrogen is also present at the surface of the constituent grains of the material and at the grain boundaries, as are mainly the elements Si and C.
-La porosité totale dudit matériau est inférieure à 5%, de préférence inférieure à 4%, de manière plus préférée inférieure à 3%, en volume dudit matériau. -The total porosity of said material is less than 5%, preferably less than 4%, more preferably less than 3%, by volume of said material.
-le diamètre médian de pores dudit matériau est inférieur à 2 micromètres. the median pore diameter of said material is less than 2 micrometers.
- Le matériau présente une résistivité électrique, mesurée à 20°C et à la pression atmosphérique, inférieure à 50 milliOhm.cm, de préférence inférieure à 30 milliOhm.cm, de préférence inférieure à 20 milliOhm.cm. - The material has an electrical resistivity, measured at 20° C. and at atmospheric pressure, of less than 50 milliOhm.cm, preferably less than 30 milliOhm.cm, preferably less than 20 milliOhm.cm.
Dans la présente description, sauf autrement spécifié, tous les pourcentages sont In this description, unless otherwise specified, all percentages are
-massiques pour les compositions chimiques ou cristallographique et -mass for chemical or crystallographic compositions and
-volumiques pour les tailles de grains ou de pores. -volume for grain or pore sizes.
L'invention se rapporte aussi à un procédé de fabrication dudit matériau comprenant les étapes suivantes : a) préparation d'une charge de départ comprenant et de préférence constituée essentiellement par, en masse: The invention also relates to a process for manufacturing said material comprising the following steps: a) preparation of a starting charge comprising and preferably consisting essentially of, by mass:
-au moins 95% d'une poudre de particules de carbure de silicium de taille médiane comprise entre 0,1 et 5 micromètres, dont la teneur en carbure de silicium sous forme cristalline beta est d'au moins 95% en masse, et -de préférence moins de 0,2% d'un additif de frittage de préférence comprenant du bore, et -at least 95% of a powder of silicon carbide particles with a median size of between 0.1 and 5 micrometers, the silicon carbide content of which in beta crystalline form is at least 95% by mass, and - preferably less than 0.2% of a sintering additive preferably comprising boron, and
-moins de 3% de carbone ou d'un précurseur de carbone, de préférence une poudre de graphite ou de carbone non cristallisé ou amorphe, dont le diamètre médian est inférieur à 1 micromètre, moins de 2% de silicium ou d'un précurseur de silicium, de préférence une poudre de silicium métallique ou amorphe, de préférence métallique, dont le diamètre médian est inférieur à 5 micromètres. b) mise en forme de la charge de départ sous la forme d'une préforme, de préférence par coulage, c) frittage en phase solide de ladite préforme sous une pression supérieure à 60MPa, de préférence supérieure à 75MPa, voire même 80Mpa, et à une température supérieure à 1800°C et inférieure à 2100°C sous atmosphère azotée, de préférence sous diazote. -less than 3% carbon or a carbon precursor, preferably an uncrystallized or amorphous graphite or carbon powder, the median diameter of which is less than 1 micrometer, less than 2% silicon or a precursor of silicon, preferably a metallic or amorphous, preferably metallic, silicon powder, the median diameter of which is less than 5 micrometers. b) shaping of the starting charge in the form of a preform, preferably by casting, c) solid phase sintering of said preform under a pressure greater than 60 MPa, preferably greater than 75 MPa, or even 80 MPa, and at a temperature above 1800° C. and below 2100° C. under a nitrogenous atmosphere, preferably under dinitrogen.
Ces ajouts limités éventuels de précurseur de carbone ou de silicium ont pour but de faire réagir respectivement le silicium ou la silice résiduels ou le carbone résiduel présents dans la poudre de carbure de silicium beta afin de former du carbure de silicium par réaction. These possible limited additions of carbon or silicon precursor are intended to react respectively the residual silicon or silica or the residual carbon present in the beta silicon carbide powder in order to form silicon carbide by reaction.
Selon d'autres caractéristiques additionnelles optionnelles et avantageuses dudit procédé : According to other optional and advantageous additional characteristics of said method:
- La teneur massique en azote de la poudre de carbure de silicium sous forme cristalline beta est supérieure à 0,1%, de préférence inférieure à 1%. - The nitrogen mass content of the silicon carbide powder in beta crystalline form is greater than 0.1%, preferably less than 1%.
- La surface spécifique de la poudre de carbure de silicium sous forme cristalline beta est supérieure à 5 cm2/g et /ou inférieure à 30 cm2/g. - The specific surface of the silicon carbide powder in beta crystalline form is greater than 5 cm 2 /g and/or less than 30 cm 2 /g.
- la teneur massique élémentaire en Aluminium de la poudre de carbure de silicium sous forme cristalline beta est inférieure à 0,1%. - the elementary aluminum content by mass of the silicon carbide powder in beta crystalline form is less than 0.1%.
- la somme des teneurs massiques élémentaires Na+K+Ca+Mg de la poudre de carbure de silicium sous forme cristalline beta est inférieure à 0,2%. - the sum of the elementary Na+K+Ca+Mg mass contents of the silicon carbide powder in beta crystalline form is less than 0.2%.
- la somme des teneurs massiques élémentaires- the sum of the elementary mass contents
Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu de la poudre de carbure de silicium sous forme cristalline beta est inférieure à 0,5%. Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu of silicon carbide powder in crystalline form beta is less than 0.5 %.
- La teneur massique en SiC de la poudre de carbure de silicium essentiellement sous forme cristalline beta, c'est-à-dire dont la teneur massique en phase beta est d'au moins 95%, est supérieure à 99%. La teneur massique en carbone libre ou résiduel de la poudre de carbure de silicium essentiellement sous forme cristalline beta est inférieure à 3%, de préférence inférieure à 2%, de préférence inférieure à 1,5%. - The mass content of SiC of the silicon carbide powder essentially in beta crystalline form, that is to say whose mass content in beta phase is at least 95%, is greater than 99%. The mass content of free or residual carbon of the silicon carbide powder essentially in beta crystalline form is less than 3%, preferably less than 2%, preferably less than 1.5%.
La teneur massique en silice libre ou résiduelle de la poudre de carbure de silicium essentiellement sous forme cristalline beta est inférieure à 2%, de préférence encore inférieure à 1,5%, de préférence inférieure à 1%. The mass content of free or residual silica of the silicon carbide powder essentially in beta crystalline form is less than 2%, more preferably less than 1.5%, preferably less than 1%.
La teneur massique en silicium libre ou résiduel de la poudre de carbure de silicium essentiellement sous forme cristalline beta est inférieure à 0,5%, de préférence encore inférieure à 0,1%. The mass content of free or residual silicon of the silicon carbide powder essentially in beta crystalline form is less than 0.5%, more preferably less than 0.1%.
La teneur massique élémentaire totale en contaminants ou impuretés, représentés par les éléments ou espèces autres que le silicium ou la silice libre, le carbone résiduel, de la poudre de carbure de silicium essentiellement sous forme cristalline beta est inférieure à 1%. The total elementary mass content of contaminants or impurities, represented by elements or species other than silicon or free silica, residual carbon, of the silicon carbide powder essentially in beta crystalline form is less than 1%.
Ladite poudre de particules carbure de silicium présente une teneur massique en carbone libre ou résiduel inférieure à 3%, en silice libre ou résiduelle inférieure à 2%, en silicium libre ou résiduel inférieure à 0,5%, et une teneur massique élémentaire totale en contaminants ou impuretés inférieure à 1.Said powder of silicon carbide particles has a mass content of free or residual carbon of less than 3%, of free or residual silica of less than 2%, of free or residual silicon of less than 0.5%, and a total elementary mass content of contaminants or impurities less than 1.
La poudre de carbure de silicium essentiellement sous forme cristalline beta est bimodale et présente deux pics, tel que mesuré par granulométrie laser, de préférence encore un premier pic dont le maximum est compris entre 0,1 et 0,5 micromètres et un deuxième pic dont le maximum est compris entre 1 et 6 micromètres. - La surface spécifique de la poudre de carbure de silicium essentiellement sous forme cristalline beta est comprise entre 5 cm2 /g et à 30 cm2 /g. The silicon carbide powder essentially in beta crystalline form is bimodal and has two peaks, as measured by laser granulometry, more preferably a first peak whose maximum is between 0.1 and 0.5 micrometers and a second peak whose the maximum is between 1 and 6 micrometers. - The specific surface of the silicon carbide powder essentially in beta crystalline form is between 5 cm 2 /g and 30 cm 2 /g.
- la charge de départ comporte au moins 0,05% d'un additif de frittage en phase solide, de préférence du zirconium et/ou du titane et/ou de l'hafnium, ledit additif étant de préférence une poudre métallique, d'oxyde, de nitrure, de carbure, de borure ou de fluorure d'un de ces éléments. De préférence la charge de départ comporte moins de 1% d'un additif de frittage comprenant l'élément choisi parmi zirconium et/ou du titane et/ou de l'hafnium, ledit additif étant de préférence une poudre métallique, d'oxyde, de nitrure, de carbure, de borure ou de fluorure d'un de ces éléments. Ladite poudre étant de pureté supérieure à 98% en masse, c'est- à-dire que la somme des autres éléments sont présents selon une teneur massique inférieure à 2%. - the starting charge comprises at least 0.05% of a solid phase sintering additive, preferably zirconium and/or titanium and/or hafnium, said additive preferably being a metal powder, oxide, nitride, carbide, boride or fluoride of one of these elements. Preferably, the starting charge comprises less than 1% of a sintering additive comprising the element chosen from zirconium and/or titanium and/or hafnium, said additive preferably being a metallic powder, oxide, nitride, carbide, boride or fluoride of one of these elements. Said powder being of purity greater than 98% by mass, that is to say that the sum of the other elements are present according to a mass content of less than 2%.
- La charge de départ ne comporte pas d'additif de frittage en phase solide. La poudre de carbure de silicium pouvant être dopée en au moins un des éléments zirconium et/ou du titane et/ou de l'hafnium. - The starting charge does not contain any solid phase sintering additive. The silicon carbide powder can be doped with at least one of the elements zirconium and/or titanium and/or hafnium.
- la charge de départ comporte au moins 0,05% de silicium ou de précurseur de silicium. - the starting charge comprises at least 0.05% silicon or silicon precursor.
- La charge de départ ne comprend pas de silicium ou de précurseur de silicium. - The starting charge does not include silicon or silicon precursor.
- la charge de départ ne comprend pas d'ajout volontaire d' aluminium ou de précurseur d'aluminium, par exemple sous la forme d'une poudre de nitrure d'aluminium ou d'une poudre d'aluminium. - the starting charge does not include any deliberate addition of aluminum or aluminum precursor, for example in the form of an aluminum nitride powder or an aluminum powder.
- la charge de départ ne comprend pas d'ajout volontaire de terres rares ou de précurseur d'un des éléments parmi Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu.- the starting charge does not include the voluntary addition of rare earths or a precursor of one of the elements among Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+ Er+Tm+Yb+Lu.
- la charge de départ comporte au moins 0,05% de carbone ou de précurseur de carbone. - La charge de départ ne comprend pas de carbone ou de précurseur de carbone. - the starting charge comprises at least 0.05% carbon or carbon precursor. - The starting charge does not include carbon or carbon precursor.
- le diamètre médian de la poudre de frittage est inférieur à 2 micromètres, de préférence inférieur à 1 micromètre. De préférence, il s'agit d'une poudre de carbure de bore. - the median diameter of the sintering powder is less than 2 micrometers, preferably less than 1 micrometer. Preferably, it is a boron carbide powder.
- selon un mode possible l'additif de frittage comprend l'élément zirconium. Selon un mode possible, l'additif de frittage est une poudre de carbure, de fluorure ou de borure de zirconium. - according to a possible mode, the sintering additive comprises the element zirconium. According to one possible embodiment, the sintering additive is a zirconium carbide, fluoride or boride powder.
- la charge de départ comporte au moins 0,5% de préférence au moins 1% d'un précurseur de carbone. - the starting charge comprises at least 0.5%, preferably at least 1%, of a carbon precursor.
- la charge de départ comporte moins de 0,5% voire pas de précurseur de silicium. - the starting charge comprises less than 0.5% or even no silicon precursor.
- La charge de départ peut éventuellement comporter moins de 1% d'additifs organiques sous réserve qu'ils contiennent essentiellement les éléments entre C, O, H, N, Si. Par exemple, les résines acryliques, le PEG, les siloxane, les composés ou résines vinyliques, époxydiques, phénoliques, polyuréthanes, les dérivés d'alkydes ou les composés glycérophtaliques peuvent convenir . - The starting charge may optionally contain less than 1% of organic additives provided that they essentially contain the elements between C, O, H, N, Si. For example, acrylic resins, PEG, siloxanes, vinyl, epoxy, phenolic, polyurethane compounds or resins, derivatives of alkyds or glycerophthalic compounds may be suitable.
Toute technique de mise en forme connue de l'homme du métier peut être appliquée en fonction de la dimension de la pièce à réaliser dès lors que toutes les précautions sont prises pour éviter la contamination de la préforme. Ainsi le coulage en moule plâtre peut être adapté en utilisant des médias de graphite entre le moule et la préforme ou des huiles évitant un contact trop intime et une abrasion du moule par le mélange et finalement une contamination de la préforme. Ces précautions d'usage maîtrisées par l'homme du métier sont aussi applicables à d'autres étapes du procédé. Ainsi lors du frittage le moule ou la matrice employée contenant la préforme sera de préférence en graphite. Des techniques de pressage à chaud (ou « Hot Pressing »), de pressage isostatique à chaud (ou « Hot Isostatique Pressing ») ou de SPS (« Spark Plasma Sintering ») sont particulièrement adaptées. De préférence, le frittage sous charge est réalisé par SPS, procédé de frittage dans lequel le chauffage par induction est réalisé par le passage direct du courant dans une matrice en graphite dans lequel est placé la préforme. La vitesse moyenne de montée en température est de préférence supérieure à 10 et inférieure 100 °C/minute. Le temps de palier à la température maximale est de préférence supérieur à 10 minutes. Ce temps peut être plus long en fonction du format de la préforme et de la charge du four. L'azote utilisé pour l'atmosphère de frittage à l'étape c) est de pureté supérieure à 99,99%, voire même supérieure à 99,999% en volume. Any shaping technique known to those skilled in the art can be applied depending on the size of the part to be produced, provided that all precautions are taken to avoid contamination of the preform. Thus casting in a plaster mold can be adapted by using graphite media between the mold and the preform or oils avoiding too intimate contact and abrasion of the mold by the mixture and ultimately contamination of the preform. These usage precautions mastered by those skilled in the art are also applicable to other stages of the process. Thus, during sintering, the mold or the matrix used containing the preform will preferably be made of graphite. Hot pressing (or “Hot Pressing”), hot isostatic pressing (or “Hot Isostatic Pressing”) or SPS (“Spark Plasma Sintering”) techniques are particularly suitable. Preferably, the sintering under load is carried out by SPS, a sintering process in which the induction heating is carried out by the direct passage of current in a graphite matrix in which the preform is placed. The average temperature rise rate is preferably greater than 10 and less than 100° C./minute. The plateau time at the maximum temperature is preferably greater than 10 minutes. This time may be longer depending on the size of the preform and the load in the oven. The nitrogen used for the sintering atmosphere in step c) has a purity greater than 99.99%, or even greater than 99.999% by volume.
L'invention se rapporte également à un dispositif comprenant le matériau selon l'invention, ledit dispositif étant choisi parmi : une turbine, une pompe, une valve ou un système de conduite de fluide, un échangeur de chaleur ; un absorbeur solaire ou un dispositif pour récupérer la chaleur ou réfléchir la lumière, un revêtement réfractaire de four, un support de cuisson, un creuset pour fusion de métal ou de métalloïde , une pièce de protection contre l'abrasion, un outil de coupe, une plaquette ou un disque de frein, un revêtement ou un support de traitement thermochimique, par exemple gravure, ou un substrat pour dépôt de couches actives destiné à l'industrie de l'optique et/ ou de l'électronique ; un élément ou une résistance chauffants ; un capteur de température ou de pression ; un allumeur; un suscepteur magnétique. De préférence, le dispositif est choisi parmi : une turbine, une pompe, une valve ou un système de conduite de fluide, une pièce de protection contre l'abrasion, un outil de coupe, une plaquette ou un disque de frein, un élément ou une résistance chauffants ; un capteur de température ou de pression ; un allumeur ; un suscepteur magnétique ; un substrat pour dépôt de couches actives destiné à l'industrie de l'optique et/ ou de l'électronique. Définitions : On donne les indications et définitions suivantes, en relation avec la description précédente de la présente invention : The invention also relates to a device comprising the material according to the invention, said device being chosen from: a turbine, a pump, a valve or a fluid conduit system, a heat exchanger; a solar absorber or a device for recovering heat or reflecting light, a refractory furnace lining, a firing support, a crucible for melting metal or metalloid, a piece of protection against abrasion, a cutting tool, a brake pad or disc, a coating or a support for thermochemical treatment, for example etching, or a substrate for depositing active layers intended for the optics and/or electronics industry; a heating element or resistor; a temperature or pressure sensor; an igniter; a magnetic susceptor. Preferably, the device is chosen from: a turbine, a pump, a valve or a fluid conduit system, a protective part against abrasion, a cutting tool, a brake pad or disc, an element or a heating resistor; a sensor of temperature or pressure; an igniter; a magnetic susceptor; a substrate for depositing active layers intended for the optics and/or electronics industry. Definitions: The following indications and definitions are given, in relation to the preceding description of the present invention:
Par matériau polycristallin, on entend un matériau présentant plusieurs orientations cristallines ou des cristaux d'orientation cristalline différente. By polycrystalline material is meant a material having several crystalline orientations or crystals of different crystalline orientation.
-Dans le matériau céramique, les grains frittés représentent ensemble l'essentiel de la masse dudit matériau, la phase intergranulaire constituée éventuellement d'une phase céramique et/ou métallique ou de carbone résiduel représentant avantageusement moins de 5% de la masse dudit matériau. A la différence d'un frittage dit en phase liquide, le processus de cuisson du matériau selon l'invention est essentiellement réalisé en phase solide, c'est-à-dire qu'il s'agit d'un frittage dans lequel les additifs ajoutés permettant le frittage ou le niveau des impuretés éventuellement présentes ne permettent pas de former une phase liquide en une quantité telle qu'elle soit suffisante pour permettre le réarrangement des grains et les amener ainsi au contact les uns des autres. Un matériau obtenu par frittage en phase solide est communément appelé « fritté en phase solide ». -In the ceramic material, the sintered grains together represent the bulk of the mass of said material, the intergranular phase optionally consisting of a ceramic and/or metallic phase or of residual carbon advantageously representing less than 5% of the mass of said material. Unlike so-called liquid-phase sintering, the process for firing the material according to the invention is essentially carried out in the solid phase, that is to say it is sintering in which the additives added allowing sintering or the level of any impurities present do not make it possible to form a liquid phase in an amount such that it is sufficient to allow the rearrangement of the grains and thus bring them into contact with each other. A material obtained by solid phase sintering is commonly referred to as “solid phase sinter”.
Par additif de frittage, souvent plus simplement appeléBy sintering additive, often more simply called
«additif», on entend dans la présente description un composé connu habituellement pour permettre et/ou accélérer la cinétique de la réaction de frittage. “additive” is understood in the present description to mean a compound usually known to allow and/or accelerate the kinetics of the sintering reaction.
-Par impuretés on entend les constituants inévitables, involontairement et nécessairement introduits avec les matières premières ou résultant des réactions entre les constituants. Les impuretés ne sont pas des constituants nécessaires mais seulement des constituants tolérés. -By impurities we mean the unavoidable constituents, involuntarily and necessarily introduced with the raw materials or resulting from the reactions between the constituents. Impurities are not necessary constituents but only tolerated constituents.
-Les teneurs chimiques élémentaires du matériau fritté ou des poudres utilisées dans le mélange du procédé de fabrication dudit matériau sont mesurées selon les techniques bien connues de l'art. En particulier les teneurs en éléments tels que par exemple Al, B, Ti, Zr, Fe, Mo, les terres rares, les alcalins et alcalino-terreux notamment peuvent être mesurées par fluorescence X, de préférence par ICP (« Induction Coupled Plasma »), selon les teneurs présentes en particulier par ICP si les teneurs sont inférieures à 0,5%, voire inférieures à 0,2%, en particulier selon la norme ISO21068-3:2008 sur produit calciné à 750°C sous air jusqu'à reprise de poids. Les teneurs massiques en silicium libre, la silice libre, le carbone libre et SiC sont mesurées selon la norme ISO 21068- 2:2008. Celles d'oxygène et d'azote sont déterminées par LECO selon ISO21068-3:2008. -The elementary chemical contents of the sintered material or of the powders used in the mixture of the manufacturing process of said material are measured according to the techniques well known in the art. In particular, the contents of elements such as for example Al, B, Ti, Zr, Fe, Mo, rare earths, alkalis and alkaline-earths in particular can be measured by X-ray fluorescence, preferably by ICP (“Induction Coupled Plasma” ), according to the contents present in particular by ICP if the contents are less than 0.5%, or even less than 0.2%, in particular according to standard ISO21068-3:2008 on product calcined at 750°C in air up to on weight gain. The mass contents of free silicon, free silica, free carbon and SiC are measured according to standard ISO 21068-2:2008. Those of oxygen and nitrogen are determined by LECO according to ISO21068-3:2008.
La composition en polytypes du SiC et la présence d'autres phases du matériau fritté ou des poudres utilisées dans le mélange du procédé de fabrication dudit matériau sont normalement obtenues par diffraction des rayons X et analyse de Rietveld. En particulier les pourcentages respectifs de phase SiC alpha et béta peuvent etre déterminés à l'aide de l'équipement D8 Endeavor de BRUKER en utilisant la configuration suivante : The composition in polytypes of SiC and the presence of other phases of the sintered material or of the powders used in the mixture of the manufacturing process of said material are normally obtained by X-ray diffraction and Rietveld analysis. In particular, the respective percentages of alpha and beta SiC phase can be determined using BRUKER's D8 Endeavor equipment using the following configuration:
-Acquisition : d5f80 : de 5° à 80° en 2Q, pas de 0,01°,-Acquisition: d5f80: from 5° to 80° in 2Q, step of 0.01°,
0,34s/pas, durée 46min 0.34s/step, duration 46min
-Optique avant : Fente primaire 0,3° ; Fente de Soller 2,5° -Porte échantillon : Rotation 5tours/min couteau automatique -Optique arrière : Fente de Soller : 2,5° ; filtre nickel- Front optic: Primary slit 0.3°; Soller slit 2.5° -Sample holder: Rotation 5 rpm automatic knife -Rear optic: Soller slit: 2.5°; nickle filter
0,0125mm ; PSD : 4°. Détecteur 1D (Current values). 0.0125mm; PSD: 4°. 1D detector (Current values).
Les diffractogrammes peuvent être analysés qualitativement avec le logiciel EVA et la base de données ICDD2016, puis quantitativement avec le logiciel HighScore Plus selon un affinement Rietveld. The diffractograms can be analyzed qualitatively with the EVA software and the ICDD2016 database, then quantitatively with HighScore Plus software according to a Rietveld refinement.
Les pourcentages volumiques de grains du matériau fritté sous forme alpha ou béta et leur diamètre peuvent être déterminés par analyse d'images issues d'observations par diffraction d'électrons rétrodiffusés EBSD (ou «électron électron backscatter diffraction» en anglais. L'installation peut être par exemple composée d'un microscope électronique à balayage (MEB) muni d'un détecteur EBSD et d'une de spectrométrie avec spectrométrie dispersive en énergie à rayons X (EDX). Le détecteurs EBSD et EDX sont contrôlés par le logiciel ESPRIT (version 2.1). Des images de fort contraste cristallographique et/ou fort contraste de densité peuvent être collectées à l'aide des logiciels disponibles. Le diamètre équivalent d'un grain correspond au diamètre du disque de même surface que celle dudit grain observé selon un plan de coupe du matériau. Par des observations différentes sections de matériau selon au moins deux plans perpendiculaires il est possible d'avoir une très bonne représentation de la distribution volumique des différents diamètres équivalents des grains et d'en déduire la diamètre équivalent médian (ou percentile D50) desdits grains en volume.. Dans la présente demande, le pourcentage volumique des grains frittés constitutifs du matériau est exprimé par rapport au volume de matériau hormis sa porosité. The volume percentages of grains of the sintered material in alpha or beta form and their diameter can be determined by analyzing images from observations by electron backscatter diffraction EBSD (or "electron electron backscatter diffraction"). The installation can be for example composed of a scanning electron microscope (SEM) equipped with an EBSD detector and a spectrometry with energy dispersive X-ray spectrometry (EDX).The EBSD and EDX detectors are controlled by the ESPRIT software ( version 2.1). Images of high crystallographic contrast and/or high density contrast can be collected using available software. The equivalent diameter of a grain corresponds to the diameter of the disk with the same surface as that of the said grain observed according to a cutting plane of the material By observing different sections of material along at least two perpendicular planes, it is possible to have a very good representation of the volume distribution of the different equivalent diameters of the grains and to deduce therefrom the median equivalent diameter (or percentile D50) of said grains by volume. apart from its porosity.
Ce diamètre médian (ou percentile D50) de grains correspond au diamètre divisant les grains en première et deuxième populations égales, ces première et deuxième populations ne comportant que des grains présentant un diamètre équivalent supérieur, ou inférieur respectivement, au diamètre médian. Par la même méthode que précédemment décrite, il est aussi possible de calculer le volume des phases intergranulaires éventuellement présentes. La porosité totale (ou volume total de pores) du matériau selon l'invention correspond à la somme totale du volume de pores fermés et ouverts divisé par le volume du matériau. Elle est calculée selon le rapport exprimé en pourcentage de la masse volumique apparente mesurée selon IS018754 sur la masse volumique absolue mesurée selon ISO5018. This median diameter (or percentile D50) of grains corresponds to the diameter dividing the grains into first and second equal populations, these first and second populations comprising only grains having an equivalent diameter greater, or less, respectively, than the median diameter. Using the same method as previously described, it is also possible to calculate the volume of any intergranular phases present. The total porosity (or total volume of pores) of the material according to the invention corresponds to the total sum of the volume of closed and open pores divided by the volume of the material. It is calculated according to the ratio expressed as a percentage of the apparent density measured according to IS018754 on the absolute density measured according to ISO5018.
Le diamètre médian des particules (ou la « taille » médiane) des particules constituant une poudre, peut être obtenu par une caractérisation de distribution granulométrique, en particulier au moyen d'un granulomètre laser. La caractérisation de distribution granulométrique est réalisée classiquement avec un granulomètre laser conformément à la norme ISO 13320-1. Le granulomètre laser peut être, par exemple, un Partica LA-950 de la société HORIBA. The median particle diameter (or the median "size") of the particles constituting a powder can be obtained by characterization of the particle size distribution, in particular by means of a laser particle sizer. The characterization of the particle size distribution is conventionally carried out with a laser particle sizer in accordance with the ISO 13320-1 standard. The laser particle sizer can be, for example, a Partica LA-950 from the company HORIBA.
Au sens de la présente description et sauf mention contraire, le diamètre médian des particules désigne respectivement le diamètre des particules au-dessous duquel se trouve 50% en masse de la population.On appelle « diamètre médian » ou « taille médiane » d'un ensemble de particules, en particulier d'une poudre, le percentile Dso, c'est-à-dire la taille divisant les particules en première et deuxième populations égales en volume, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure, ou inférieure respectivement, à la taille médiane. Within the meaning of the present description and unless otherwise stated, the median diameter of the particles designates respectively the diameter of the particles below which there is 50% by mass of the population. set of particles, in particular of a powder, the percentile Dso, i.e. the size dividing the particles into first and second populations equal in volume, these first and second populations comprising only particles having a larger size , or less respectively, than the median size.
La surface spécifique est mesurée par la méthode B.E.T. (Brunauer Emmet Teller), décrite par exemple dans le Journal of American Chemical Society 60 (1938), pages 309 à 316.The specific surface is measured by the B.E.T. (Brunauer Emmet Teller), described for example in the Journal of American Chemical Society 60 (1938), pages 309 to 316.
Il est entendu par une poudre de particules de carbure de silicium sous forme cristalline beta une poudre pour laquelle la forme cristallographique 3C ou cubique représente plus de 95% en masse de carbure de silicium. Les formes cristallographiques alpha du SiC étant principalement les phases hexagonales ou rhomboédriques : 3H ; 4H ; 6H et 15R. Sauf indication contraire, dans la présente description, tous les pourcentages sont des pourcentages massiques. A powder of silicon carbide particles in beta crystalline form is understood to mean a powder for which the 3C or cubic crystallographic form represents more than 95% by mass of silicon carbide. The alpha crystallographic forms of SiC being mainly the hexagonal or rhombohedral phases: 3H; 4H; 6H and 15R. Unless otherwise indicated, in the present description, all the percentages are mass percentages.
Figures : La figure 1 est une image prise au microscope à balayage d'une section polie du matériau fritté de l'exemple 3 selon 1'invention. Figures: Figure 1 is an image taken under a scanning microscope of a polished section of the sintered material of example 3 according to the invention.
Exemples de réalisation On donne ci-après un exemple non limitatif permettant la réalisation d'un matériau selon l'invention, bien évidemment non limitatif également des procédés permettant d'obtenir un tel matériau et du procédé selon la présente invention.Examples of embodiments A non-limiting example allowing the production of a material according to the invention is given below, obviously also non-limiting of the methods allowing such a material to be obtained and of the method according to the present invention.
On donne également ci-après des exemples comparatifs démontrant les avantages de la présente invention. Comparative examples demonstrating the advantages of the present invention are also given below.
Dans tous les exemples qui suivent, des corps céramiques sous la forme de cylindres de diamètre 30 mm et d'épaisseur 10 mm, ont été initialement réalisés par coulage dans un moule plâtre d'une barbotine selon différentes formulations reportées dans le tableau 1 ci-après à partir des matières premières suivantes : In all the following examples, ceramic bodies in the form of cylinders with a diameter of 30 mm and a thickness of 10 mm were initially made by casting a slip into a plaster mold according to different formulations given in Table 1 below. afterwards from the following raw materials:
1°)une poudre de particules de carbure de silicium Sic sous forme cristallographique beta, qui présente une distribution bimodale avec un premier pic dont le maximum est situé à 0,3 micromètres et un deuxième pic de hauteur sensiblement deux fois plus élevé que le premier et dont le maximum est situé à 3 micromètres, selon une distribution non cumulée de taille mesurée par granulomètre laser en nombre. Le diamètre médian de la poudre bimodale est de 1,5 ym. Cette poudre de Sic présente les teneurs massiques élémentaires suivantes :1°) a powder of Sic silicon carbide particles in beta crystallographic form, which has a bimodal distribution with a first peak whose maximum is located at 0.3 micrometers and a second peak of height substantially twice as high as the first and whose maximum is located at 3 micrometers, according to a non-cumulative size distribution measured by number laser granulometer. The median diameter of the bimodal powder is 1.5 µm. This Sic powder has the following elementary mass contents:
-Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu <0,5% -Azote (N) <0,2% ; Na+K+Ca+Mg <0,2% ; Aluminium (Al)<0,1% -Fer(Fe) <0,05% ; Titane(Ti) <0,05% ; -Sc+Y+La+Ce+Pr+Nd+Pm+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu <0.5% -Nitrogen (N) <0.2%; Na+K+Ca+Mg<0.2%; Aluminum (Al)<0.1% - Iron(Fe) <0.05%; Titanium(Ti) <0.05%;
- Molybdène(Mo) <0,05% ; -Zr <0,1 ; Hf <0,1 - Molybdenum (Mo) <0.05%; -Zr<0.1; H f <0.1
Ses teneurs massiques en Carbone, Silice et Silicium libres sont respectivement inférieures à 2,0%, à 1,0% et 0,1%. Sa teneur massique en phase beta SiC est supérieure à 95%. 2°)une poudre de noir de carbone (carbon black) fournie parIts mass contents of free Carbon, Silica and Silicon are respectively less than 2.0%, 1.0% and 0.1%. Its mass content of beta SiC phase is greater than 95%. 2°) a powder of carbon black (carbon black) supplied by
Timcal sous le grade C65 de surface spécifique BET 62 m2/g. 3°)une poudre de carbure de bore fournie par H.C. Starck sous le grade HD-15 de diamètre médian 0,8 ym. Timcal under grade C65 with BET specific surface area of 62 m 2 /g. 3°) a boron carbide powder supplied by HC Starck under grade HD-15 with a median diameter of 0.8 μm.
4°)une poudre de zircone fournie par Saint-Gobain Zirpro sous le grade CY3Z-RA de diamètre médian 0,3 ym. 4°) a zirconia powder supplied by Saint-Gobain Zirpro under the grade CY3Z-RA with a median diameter of 0.3 μm.
5°)une poudre d'oxyde de titane fournie par Sigma-Aldrich sous le grade de diamètre médian 0,1 ym. 5°) a titanium oxide powder supplied by Sigma-Aldrich under the grade with a median diameter of 0.1 μm.
6°) une poudre de nitrure d'aluminium fournie par Nanografi sous le grade de diamètre médian 0,06 ym. Des pastilles ainsi réalisées sont séchées à 50°C sous air. Les pastilles des exemples 1 et 2 (comparatifs) sont frittées dans un four sous Argon à une température de 2150°C pendant 2h sans pression ni charge. Les pastilles de l'exemple 3 (selon l'invention) et de l'exemple 5 (comparatif) sont chargées dans un équipement pour procéder à un frittage de type SPS à 2000°C sous une charge de 85 Mpa (mégapascals) sous atmosphère de diazote. A la différence de l'exemple 3, le frittage des pastilles de l'exemple 4 (comparatif) est effectué sous vide. L'exemple 6 selon l'invention est réalisé dans les mêmes conditions que l'exemple 5, maisla poudre de carbure de bore est remplacée par une poudre de zircone, tout comme dans l'exemple 8 (également selon l'invention)A la différence de l'exemple 6, dans l'exemple 7 (selon l'invention) l'ajout est réalisé sous forme d'une poudre d'oxyde de titane. Dans les exemples 9 et 10 (comparatifs) à la différence de l'exemple 7, l'ajout consiste en une poudre de nitrure d'aluminium. Le frittage des exemples 9 et 10 est respectivement le même que celui de l'exemple 7 (frittage sous charge et sous N2) et celui de l'exemple 4 (frittage sous charge et sous vide). 6°) an aluminum nitride powder supplied by Nanografi under the grade with a median diameter of 0.06 μm. Pellets thus produced are dried at 50° C. in air. The pellets of Examples 1 and 2 (comparative) are sintered in an oven under Argon at a temperature of 2150° C. for 2 hours without pressure or load. The pellets of Example 3 (according to the invention) and of Example 5 (comparative) are loaded into equipment to carry out SPS-type sintering at 2000° C. under a load of 85 MPa (megapascals) under atmosphere of nitrogen. Unlike Example 3, the sintering of the pellets of Example 4 (comparative) is carried out under vacuum. Example 6 according to the invention is carried out under the same conditions as example 5, but the boron carbide powder is replaced by a zirconia powder, just as in example 8 (also according to the invention) difference from Example 6, in Example 7 (according to the invention) the addition is made in the form of a titanium oxide powder. In Examples 9 and 10 (comparative) unlike Example 7, the addition consists of an aluminum nitride powder. The sintering of examples 9 and 10 is respectively the same as that of example 7 (sintering under load and under N2) and that of Example 4 (sintering under load and under vacuum).
La porosité totale du matériau obtenu est calculée en faisant la différence entre 100 et le rapport exprimé en pourcentage de la masse volumique apparente mesurée selon IS018754 sur la masse volumique absolue mesurée selon ISO5018. La teneur en silice libre (SiCt) est mesurée par attaque HF. Les teneurs en carbone libre, en oxygène et azote sont mesurées par LECO. La teneur en Silicium libre est mesurée par attaque à l'eau régale, suivie d'un titrage. Les autres teneurs élémentaires sont mesurées par fluorescence X et ICP. Le pourcentage de Sic sous forme beta et le ratio de forme cristallographique b/a du SiC sont déterminés par analyse de diffraction aux rayons X selon la méthode décrite précédemment. The total porosity of the material obtained is calculated by taking the difference between 100 and the ratio expressed as a percentage of the apparent density measured according to IS018754 on the absolute density measured according to ISO5018. The free silica (SiCt) content is measured by HF attack. Free carbon, oxygen and nitrogen contents are measured by LECO. The free silicon content is measured by aqua regia attack, followed by titration. The other elementary contents are measured by X-ray fluorescence and ICP. The percentage of Sic in beta form and the b/a crystallographic form ratio of SiC are determined by X-ray diffraction analysis according to the method described previously.
La résistivité électrique est mesurée à la température ambiante (20°C) selon la méthode Van der Pauw à 4 points sur échantillon de diamètre 20-30 mm et d'épaisseur de 2,5mm. Les pourcentages volumiques de grains du matériau fritté sous forme alpha ou béta et leur diamètre ont été déterminés par analyse d'images issues d'observations EBSD. L'installation est composée d'un microscope électronique à balayage (MEB) muni d'un détecteur EBSD Bruker e-FlashHR+ équipé du système d'imagerie FSE/BSE Argus et d'un détecteur EDX Bruker XFlash® 4010 possédant une surface active de 10 mm2 . Le détecteur EBSD est monté sur un des ports arrière du MEB FEI Nova NanoSEM 230 à canon à émission de champ avec un angle d'inclinaison de 10,6° par rapport à l'horizontale afin d'accroitre à la fois le signal EBSD et le signal EDX. Dans ces conditions, la distance de travail optimale WD (i.e., distance entre la pièce polaire du MEB et la zone analysée de l'échantillon) est d'environ 13 mm. Les détecteurs EBSD et EDS sont contrôlés par le logiciel ESPRIT (version 2.1). Des images FSE (à fort contraste cristallographique) et/ou BSE (à fort contraste de densité) ont été collectées à l'aide du système Argus en positionnant la caméra EBSD à une distance DD (distance détecteur échantillon) de 23 mm afin d'être moins sensible à la topographie de l'échantillon. Les mesures EBSD ont été effectuées en mode ponctuel et/ou cartographie. Pour cela, la caméra EBSD a été positionnée une distance DD de 17 mm afin d'augmenter le signal collecté. The electrical resistivity is measured at ambient temperature (20° C.) according to the Van der Pauw method at 4 points on a sample with a diameter of 20-30 mm and a thickness of 2.5 mm. The volume percentages of grains of the sintered material in alpha or beta form and their diameter were determined by analyzing images from EBSD observations. The installation is composed of a scanning electron microscope (SEM) equipped with a Bruker e-FlashHR+ EBSD detector equipped with the FSE/BSE Argus imaging system and a Bruker XFlash® 4010 EDX detector with an active surface of 10 mm 2 . The EBSD detector is mounted on one of the rear ports of the FEI Nova NanoSEM 230 field emission gun SEM with a tilt angle of 10.6° from the horizontal in order to increase both the EBSD signal and the EDX signal. Under these conditions, the optimum working distance WD (ie, distance between the pole piece of the SEM and the analyzed zone of the sample) is approximately 13 mm. The EBSD and EDS detectors are controlled by ESPRIT software (version 2.1). FSE (high contrast) images crystallographic) and/or BSE (high density contrast) were collected using the Argus system by positioning the EBSD camera at a DD distance (sample detector distance) of 23 mm in order to be less sensitive to the topography of the sample. EBSD measurements were performed in point and/or mapping mode. For this, the EBSD camera was positioned at a DD distance of 17 mm in order to increase the signal collected.
Le diamètre équivalent d'un grain correspond au diamètre du disque de même surface que celle dudit grain observé selon un plan de coupe du matériau. Par des observations différentes sections de matériau selon au moins deux plans perpendiculaires il a été possible de déterminer la distribution des différents diamètres équivalents des grains dans le volume du matériau et en déduire la diamètre équivalent médian des dits grains en volume. The equivalent diameter of a grain corresponds to the diameter of the disk with the same surface as that of said grain observed according to a cutting plane of the material. By observing different sections of material along at least two perpendicular planes, it was possible to determine the distribution of the different equivalent diameters of the grains in the volume of the material and to deduce therefrom the median equivalent diameter of the said grains in volume.
Les caractéristiques et les propriétés obtenues selon les exemples 1 à 6 sont données dans le tableau 1 ci-après. Tableau 1 : The characteristics and properties obtained according to Examples 1 to 6 are given in Table 1 below. Table 1:
NM = Non mesuré NM = Not measured
La comparaison des exemples 3 et 6 à 8 selon l'invention avec les autres exemples comparatifs montre qu'il est possible d'obtenir, selon les conditions précises et uniques de l'invention, un matériau de carbure de silicium cristallisé peu poreux et peu voire très peu résistif électriquement, c'est à dire en partant d'un mélange pur de SiC sous forme béta, d'une très faible quantité voire pas d'additif de frittage et/ou de carbone et d'un frittage sous pression en présence d'une atmosphère azotée. Les exemples 9 et 10 montrent que l'ajout d'aluminium conduit à une résistivité beaucoup plus élevée quel que soit le mode de frittage. The comparison of examples 3 and 6 to 8 according to the invention with the other comparative examples shows that it is possible to obtain, according to the precise and unique conditions of the invention, a crystallized silicon carbide material with low porosity and low even very little electrically resistive, i.e. starting from a pure mixture of SiC in beta form, a very small quantity or even no sintering additive and/or carbon and sintering under pressure in the presence of a nitrogenous atmosphere. Examples 9 and 10 show that the addition of aluminum leads to a much higher resistivity regardless of the sintering mode.

Claims

REVENDICATIONS
1. Matériau céramique polycristallin constitué de grains frittés de diamètre équivalent médian compris entre 0,5 et 5 micromètres, ledit matériau comprenant en masse plus de 95% de carbure de Silicium (SiC) et présentant la composition élémentaire suivante, en masse : 1. Polycrystalline ceramic material consisting of sintered grains with a median equivalent diameter of between 0.5 and 5 micrometers, said material comprising by mass more than 95% of silicon carbide (SiC) and having the following elementary composition, by mass:
-moins de 1,5% de silicium sous une autre forme que le SiC, - less than 1.5% silicon in a form other than SiC,
-moins de 2,5% de carbone sous une autre forme que le SiC, -moins de 1,0% d'oxygène (O), - less than 2.5% carbon in a form other than SiC, - less than 1.0% oxygen (O),
-moins de 0,5% d'aluminium (Al) - less than 0.5% aluminum (Al)
-moins de 0,5% au total des éléments Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb et Lu,- less than 0.5% in total of the elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
-moins de 0,5% d'éléments alcalins, - less than 0.5% alkaline elements,
-moins de 0,5% d'alcalino-terreux, - less than 0.5% alkaline earth metal,
-entre 0,05 et 1% d'azote (N), -between 0.05 and 1% nitrogen (N),
-les autres éléments formant le complément à 100%, dans lequel : - the other elements forming the 100% complement, in which:
-le rapport massique de la teneur en SiC sous forme cristallographique alpha (a) sur la teneur en SiC sous forme cristallographique beta (b) dudit matériau est inférieur à 0,1, - the mass ratio of the SiC content in alpha crystallographic form (a) to the SiC content in beta crystallographic form (b) of said material is less than 0.1,
-la porosité totale représente moins de 15%, en pourcentage volumique dudit matériau. the total porosity represents less than 15%, in volume percentage of said material.
2. Matériau céramique polycristallin selon la revendication précédente, présentant la composition élémentaire suivante, en masse : 2. Polycrystalline ceramic material according to the preceding claim, having the following elementary composition, by mass:
-moins de 0,5% d'oxygène (O) et/ou -moins de 0,2% de bore (B). -less than 0.5% oxygen (O) and/or -less than 0.2% boron (B).
3. Matériau céramique polycristallin selon la revendication précédente, dans lequel la teneur élémentaire totale de Sodium (Na) + Potassium (K) + Calcium (Ca), en cumulé, est inférieure à 0,5% de la masse dudit matériau. 3. Polycrystalline ceramic material according to the preceding claim, in which the total elemental content of Sodium (Na) + Potassium (K) + Calcium (Ca), cumulatively, is less than 0.5% of the mass of said material.
4. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel la teneur élémentaire en azote est inférieure à 0,5 % de la masse dudit matériau. 4. Polycrystalline ceramic material according to one of the preceding claims, wherein the elemental nitrogen content is less than 0.5% of the mass of said material.
5. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel la teneur élémentaire en Fer (Fe) représente moins de 0,5% de la masse dudit matériau. 5. Polycrystalline ceramic material according to one of the preceding claims, in which the elemental content of iron (Fe) represents less than 0.5% of the mass of said material.
6. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel la teneur élémentaire d'un élément choisi dans le groupe constitué par le zirconium, le titane, l'hafnium est supérieure à 0,02% et inférieure à 1%. 6. Polycrystalline ceramic material according to one of the preceding claims, wherein the elemental content of an element selected from the group consisting of zirconium, titanium, hafnium is greater than 0.02% and less than 1%.
7. Matériau céramique polycristallin selon l'une des revendications précédentes dans lequel la teneur élémentaire cumulée en Zr, Hf et Ti est comprise entre 0,05% et 1%. 7. Polycrystalline ceramic material according to one of the preceding claims, in which the cumulative elemental content of Zr, Hf and Ti is between 0.05% and 1%.
8. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel le SiC représente plus de 97%, de préférence plus de 98% de la masse dudit matériau. 8. Polycrystalline ceramic material according to one of the preceding claims, in which the SiC represents more than 97%, preferably more than 98% of the mass of said material.
9. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel en volume dudit matériau hormis sa porosité, plus de 90% des grains ont un diamètre équivalent compris entre 0,5 et 5 micromètres. 9. Polycrystalline ceramic material according to one of the preceding claims, wherein by volume of said material apart from its porosity, more than 90% of the grains have an equivalent diameter of between 0.5 and 5 micrometers.
10. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel en volume dudit matériau hormis sa porosité, plus de 90% des grains dudit matériau sont des grains de carbure de silicium sous forme cristalline beta. 10. Polycrystalline ceramic material according to one of the preceding claims, wherein by volume of said material apart from its porosity, more than 90% of the grains of said material are grains of silicon carbide in beta crystalline form.
11. Matériau céramique polycristallin selon l'une des revendications précédentes, dans lequel le diamètre équivalent des grains de carbure de silicium sous forme cristallographique alpha est inférieur à 10 micromètres. 11. Polycrystalline ceramic material according to one of the preceding claims, in which the diameter equivalent of silicon carbide grains in alpha crystallographic form is less than 10 micrometers.
12. Matériau céramique polycristallin selon l'une des revendications précédentes présentant une résistivité électrique, mesurée à 20°C et à la pression atmosphérique, inférieure à 50 milliOhm.cm. 12. Polycrystalline ceramic material according to one of the preceding claims having an electrical resistivity, measured at 20° C. and at atmospheric pressure, of less than 50 milliOhm.cm.
13. Procédé de fabrication du matériau céramique fritté polycristallin selon l'une des revendications précédentes, comprenant les étapes suivantes : a. préparation d'une charge de départ comprenant en masse:13. Process for manufacturing the polycrystalline sintered ceramic material according to one of the preceding claims, comprising the following steps: a. preparation of a starting charge comprising by mass:
-au moins 95% d'une poudre de particules de carbure de silicium de taille médiane comprise entre 0,1 et 5 micromètres, dont la teneur en carbure de silicium sous forme cristalline beta est d'au moins 95% en masse, et -de préférence moins de 0,2% d'un additif de frittage en phase solide, ledit additif comprenant avantageusement du bore, et -at least 95% of a powder of silicon carbide particles with a median size of between 0.1 and 5 micrometers, the silicon carbide content of which in beta crystalline form is at least 95% by mass, and - preferably less than 0.2% of a solid phase sintering additive, said additive advantageously comprising boron, and
- moins de 3% de carbone ou d'un précurseur de carbone, dont le diamètre médian est inférieur à 1 micromètre, - moins de 2% de silicium ou d'un précurseur de silicium dont le diamètre médian est inférieur à 5 micromètres. b. mise en forme de la charge de départ sous la forme d'une préforme, de préférence par coulage. c. frittage en phase solide de ladite préforme sous une pression supérieure à 60MPa et à une température supérieure à 1800°C et inférieure à 2100°C sous atmosphère azotée.- less than 3% carbon or a carbon precursor, the median diameter of which is less than 1 micrometer, - less than 2% silicon or a silicon precursor, the median diameter of which is less than 5 micrometers. b. shaping of the starting charge in the form of a preform, preferably by casting. vs. solid phase sintering of said preform under a pressure greater than 60 MPa and at a temperature greater than 1800° C. and less than 2100° C. in a nitrogenous atmosphere.
14. Procédé de fabrication selon la revendication précédente, dans lequel ladite poudre de particules carbure de silicium présente une teneur massique en carbone libre ou résiduel inférieure à 3%, en silice libre ou résiduelle inférieure à 2%, en silicium libre ou résiduel inférieure à 0,5%, et une teneur massique élémentaire totale en contaminants ou impuretés inférieure à 1%. 14. Manufacturing process according to the preceding claim, in which said powder of silicon carbide particles has a mass content of free or residual carbon of less than 3%, of free or residual silica of less than 2%, of free or residual silicon of less than 0.5%, and a total elementary mass content of contaminants or impurities of less than 1%.
15. Procédé de fabrication selon la revendication précédente, dans lequel la charge de départ comporte moins de 0,2% d'un additif de frittage en phase solide comprenant de préférence du bore. 15. Manufacturing process according to the preceding claim, in which the starting charge comprises less than 0.2% of a solid-phase sintering additive preferably comprising boron.
16. Procédé de fabrication selon l'une des revendications 13 à 15, dans lequel la charge de départ comporte au moins 0,05% d'un additif de frittage en phase solide, de préférence du zirconium et/ou du titane et/ou de l'hafnium, ledit additif étant de préférence une poudre métallique, d'oxyde, de nitrure, de carbure, de borure ou de fluorure d'un de ces éléments. 16. Manufacturing process according to one of claims 13 to 15, in which the starting charge comprises at least 0.05% of a solid-phase sintering additive, preferably zirconium and/or titanium and/or hafnium, said additive preferably being a metal, oxide, nitride, carbide, boride or fluoride powder of one of these elements.
17. Procédé de fabrication selon l'une revendications 13 à 16, dans lequel la charge de départ ne comprend pas ne comprend pas de silicium ou de précurseur de silicium, et/ou ne comprend pas d'aluminium ou de précurseur d'aluminium 17. Manufacturing process according to one of claims 13 to 16, in which the starting charge does not comprise does not comprise silicon or a silicon precursor, and/or does not comprise aluminum or an aluminum precursor.
18. Dispositif comprenant le matériau selon l'une des revendications 1 à 12, ledit dispositif étant choisi parmi : une turbine, une pompe, une valve ou un système de conduite de fluide, un échangeur de chaleur ; un absorbeur solaire ou un dispositif pour récupérer la chaleur ou réfléchir la lumière, un revêtement réfractaire de four, un support de cuisson, un creuset pour fusion de métal ou de métalloïde, une pièce de protection contre l'abrasion, un outil de coupe, une plaquette ou un disque de frein, , un revêtement ou un support de traitement thermochimique, un substrat pour dépôt de couches actives destiné à l'industrie de l'optique et/ou de l'électronique ; un élément ou une résistance chauffants ; un capteur de température ou de pression ; un allumeur; un suscepteur magnétique. 18. Device comprising the material according to one of claims 1 to 12, said device being chosen from: a turbine, a pump, a valve or a fluid conduit system, a heat exchanger; a solar absorber or a device for recovering heat or reflecting light, a refractory furnace lining, a firing support, a crucible for melting metal or metalloid, a piece of protection against abrasion, a cutting tool, a brake pad or disc, a thermochemical treatment coating or support, a substrate for depositing active layers intended for the optics and/or electronics industry; a heating element or resistor; a temperature or pressure sensor; an igniter; a magnetic susceptor.
EP22727955.1A 2021-04-30 2022-04-29 Dense sintered material of silicon carbide with very low electrical resistivity Pending EP4330210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104577A FR3122423B3 (en) 2021-04-30 2021-04-30 DENSE SINTERED SILICON CARBIDE MATERIAL WITH VERY LOW ELECTRICAL RESISTIVITY
PCT/FR2022/050831 WO2022229577A1 (en) 2021-04-30 2022-04-29 Dense sintered material of silicon carbide with very low electrical resistivity

Publications (1)

Publication Number Publication Date
EP4330210A1 true EP4330210A1 (en) 2024-03-06

Family

ID=77710829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22727955.1A Pending EP4330210A1 (en) 2021-04-30 2022-04-29 Dense sintered material of silicon carbide with very low electrical resistivity

Country Status (6)

Country Link
EP (1) EP4330210A1 (en)
JP (1) JP2024515855A (en)
KR (1) KR20240004649A (en)
CN (1) CN117580814A (en)
FR (1) FR3122423B3 (en)
WO (1) WO2022229577A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US3974106A (en) 1974-05-22 1976-08-10 Norton Company Ceramic electrical resistance igniter
DE2927226A1 (en) * 1979-07-05 1981-01-08 Kempten Elektroschmelz Gmbh Dense molded body made of polycrystalline beta-silicon carbide and process for its production by hot pressing
US5045237A (en) 1984-11-08 1991-09-03 Norton Company Refractory electrical device
US5085804A (en) 1984-11-08 1992-02-04 Norton Company Refractory electrical device
JPS62288167A (en) * 1986-06-05 1987-12-15 信越化学工業株式会社 Manufacture of silicon carbide sintered body
JPH04270173A (en) * 1991-02-22 1992-09-25 Toshiba Corp Sintered sic

Also Published As

Publication number Publication date
CN117580814A (en) 2024-02-20
FR3122423B3 (en) 2023-09-08
JP2024515855A (en) 2024-04-10
WO2022229577A1 (en) 2022-11-03
KR20240004649A (en) 2024-01-11
FR3122423A3 (en) 2022-11-04

Similar Documents

Publication Publication Date Title
EP0626358B1 (en) Electrically conductive high strength dense ceramic
JP5981452B2 (en) Boron carbide-based material and method for producing the material
US20090121197A1 (en) Sintered Material, Sinterable Powder Mixture, Method for Producing Said Material and Use Thereof
EP3330240A1 (en) Method for surface silicidation of graphite
JP6908248B2 (en) SiC ceramics using coated SiC nanoparticles and their manufacturing method
MÖLLER et al. Sintering of ultrafine silicon powder
EP4330210A1 (en) Dense sintered material of silicon carbide with very low electrical resistivity
WO2022229578A1 (en) Method for producing high-purity, dense sintered sic material
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP2008297134A (en) Boron carbide based sintered compact and protective member
TW201838954A (en) Paste composition, carbide sintered body, method for producing same, and refractory member
JP2008105936A (en) Carbide powder
CN115298149B (en) Cr-Si sintered compact, sputtering target, and method for producing thin film
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
JP4069610B2 (en) Surface-coated silicon nitride sintered body
WO2023057716A1 (en) Process for synthesising a titanium diboride powder
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
JP2017193479A (en) Method for producing aluminum nitride sintered body and aluminum nitride sintered body
WO2016051093A1 (en) Refractive material and molten alumina grains
KR102414539B1 (en) A SiC powder, SiC sintered body and Manufacturing method of the same
KR20210097643A (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
FR2621910A1 (en) CERAMIC MATERIAL HAVING A HIGH THERMAL DISSIPATION POWER, METHOD OF MANUFACTURING THE SAME AND ITS APPLICATIONS IN PARTICULAR IN THE ELECTRONIC INDUSTRY
JP2022051194A (en) Silicide based alloy thin film and manufacturing method of the same
JPH09227234A (en) Crucible for vapor depositing metal nickel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR