EP4313366A1 - Method for increasing the fresh filtration of gasoline particle filters - Google Patents

Method for increasing the fresh filtration of gasoline particle filters

Info

Publication number
EP4313366A1
EP4313366A1 EP22720306.4A EP22720306A EP4313366A1 EP 4313366 A1 EP4313366 A1 EP 4313366A1 EP 22720306 A EP22720306 A EP 22720306A EP 4313366 A1 EP4313366 A1 EP 4313366A1
Authority
EP
European Patent Office
Prior art keywords
wall
filter
powder
exhaust gas
flow filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22720306.4A
Other languages
German (de)
French (fr)
Inventor
Jan Schoenhaber
Naina DEIBEL
Joerg-Michael Richter
Michael Schiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of EP4313366A1 publication Critical patent/EP4313366A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • the present invention is directed to a wall flow filter. This contains a powder coating, which only increases the filtration efficiency when it is fresh. Also claimed is an exhaust system which has such a wall-flow filter.
  • the exhaust gas from internal combustion engines in motor vehicles typically contains the pollutant gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO x ) and possibly sulfur oxides (SO x ), as well as particles, which largely consist of solid carbonaceous particles and possibly adhering organic agglomerates . These are referred to as primary emissions.
  • CO, HC and particles are products of the incomplete combustion of fuel in the engine's combustion chamber.
  • Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the combustion temperatures exceed 1200°C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small amounts in non-synthetic fuels.
  • the flow-through or wall-flow honeycomb bodies just described are also referred to as catalyst carriers, carriers or substrate monoliths, since they carry the catalytically active coating on their surface or in the walls forming this surface.
  • the catalytically active coating is often applied to the catalyst support in a so-called coating process in the form of a suspension. Many such processes are in the past of automotive catalytic converter manufacturers been published on this (EP1064094B1, EP2521618B1, W010015573A2,
  • the operating mode of the internal combustion engine is decisive for the possible methods of pollutant conversion in the catalytic converter.
  • Diesel engines are usually operated with excess air, most petrol engines with a stoichiometric mixture of intake air and fuel. Stoichiometric means that on average there is just as much air available to burn the fuel in the cylinder as is required for complete combustion.
  • the combustion air ratio l (A/F ratio; air/fuel ratio) relates the air mass mi_,tats actually available for combustion to the stoichiometric air mass mi_,st:
  • lean-burn motor vehicle engines Insofar as lean-burn motor vehicle engines are mentioned in the present text, reference is hereby mainly made to diesel engines and predominantly lean-burn Otto engines on average.
  • the latter are predominantly gasoline engines operated with an average lean A/F (air/fuel) ratio.
  • most gasoline engines are mainly operated with a combustion mixture that is stoichiometric on average.
  • This change in the air ratio l is essential for the exhaust gas cleaning result.
  • the exhaust gas can therefore be described as “on average” stoichiometric. So that these deviations do not have a negative impact on the exhaust gas cleaning result when the exhaust gas is transferred via the Affect three-way catalyst, the oxygen storage materials contained in the three-way catalyst compensate for these deviations by absorbing oxygen from the exhaust gas as required or releasing it into the exhaust gas (R.
  • the pollutant gases carbon monoxide and hydrocarbons can be rendered harmless from a lean exhaust gas by oxidation on a suitable oxidation catalytic converter.
  • all three pollutant gases HC, CO and NOx
  • all three pollutant gases can be eliminated via a three-way catalytic converter.
  • the reduction of nitrogen oxides to nitrogen (“denitrification" of the exhaust gas) is more difficult due to the high oxygen content of a lean-burn engine.
  • a well-known method here is the selective catalytic reduction of nitrogen oxides (Selective Catalytic Reduction; SCR) on a suitable catalyst, called SCR catalyst for short. This method is currently considered to be preferred for the denitrification of lean-burn engine exhaust gases.
  • the nitrogen oxides contained in the exhaust gas are reduced in the SCR process with the aid of a reducing agent dosed into the exhaust line from an external source.
  • Ammonia is used as a reducing agent, which converts the nitrogen oxides in the exhaust gas to nitrogen and water in the SCR catalytic converter.
  • the ammonia used as a reducing agent can be made available by metering an ammonia precursor compound, such as urea, ammonium carbamate or ammonium formate, into the exhaust system and subsequent hydrolysis.
  • Diesel particle filters (DPF) or petrol particle filters (GPF)/otton particle filters (OPF) with and without an additional catalytically active coating are suitable units for removing particle emissions.
  • DPF diesel particle filters
  • GPF petrol particle filters
  • OPF otton particle filters
  • a particulate filter - whether catalytically coated or not - leads to a noticeable increase in exhaust back pressure compared to a flow carrier of the same dimensions and thus to a reduction in engine torque or possibly increased fuel consumption.
  • the quantities of oxidic support materials for the catalytically active elements of the catalyst or oxidic catalyst materials are generally applied in smaller quantities in a filter than in a flow carrier.
  • the catalytic effectiveness of a coated particle filter is often inferior to that of a flow monolith of the same size.
  • the catalytically active coating is not located as a layer on the wall of a porous wall-flow filter, but instead permeates the wall of the filter with the catalytically active material (WO2005016497A1, JPH01-151706, EP1789190B1).
  • the particle size of the catalytic coating is chosen so that the particles penetrate into the pores of the wall flow filter and can be fixed there by calcination.
  • a filtration layer (“discriminating layer”) is created on the walls of the flow channels on the inlet side by depositing ceramic particles via a particle aerosol.
  • the layers consist of oxides of zirconium, aluminum or silicon, preferably in the form of fibers from 1 nm to 5 ⁇ m and have a layer thickness of more than 10 ⁇ m, generally 25 ⁇ m to 75 ⁇ m.
  • a coating within the pores of a wall flow filter unit by means of atomizing dry particles is described in US Pat. No. 8,388,721 B2.
  • the powder should penetrate deep into the pores. 20% to 60% of the surface of the wall should be accessible to soot particles, i.e. remain open.
  • soot particles i.e. remain open.
  • a more or less strong powder gradient can be set between the inlet and outlet side.
  • aluminum oxide particles containing gas stream Derge stalt coated that the complete particles having a particle size of 0.1 pm to 5 pm deposited as a porous filling in the pores of the wall flow filter who the.
  • the particles themselves can implement a further functionality of the filter in addition to the filter effect.
  • these particles are deposited in the pores of the filter in an amount of more than 80 g/l based on the filter volume. They fill 10% to 50% of the volume of the filled pores in the canal walls. Both with soot and without soot, this filter has an improved filtration efficiency compared to the untreated filter with a lower exhaust back pressure of the filter loaded with soot.
  • EP2502661A1 and EP2502662B1 further processes for the application of powder coating to filters are mentioned.
  • Corresponding apparatuses for subjecting the filter to a powder-gas aerosol are also shown there, in which the powder applicator and the wall-flow filter are each separated in such a way that air is sucked in through this space during coating.
  • a membrane (“trapping layer”) is produced on the surfaces of the inlet channels of filters to increase the filtration efficiency of catalytically inactive wall-flow filters is described in patent specification US8277880B2.
  • the filtration membrane on the surfaces of the inlet channels is realized by sucking through a gas flow loaded with ceramic particles (e.g. silicon carbide, cordierite).
  • the honeycomb body is fired at temperatures above 1000°C in order to increase the adhesive strength of the powder layer on the channel walls.
  • WO2011151711 A1 describes a method with which a non-coated or catalytically coated filter is exposed to a dry aerosol.
  • the aerosol is provided by dispersing a powdered high-melting metal oxide with an average particle size of 0.2 ⁇ m to 5 ⁇ m and guided by means of a gas stream over the inlet side of a wall-flow filter.
  • the individual particles agglomerate to form a bridged network of particles and are deposited as a layer on the surface of the individual inlet channels running through the wall flow filter.
  • the typical loading of a filter with the powder is between 5 g and 50 g per liter of filter volume. It is expressly pointed out that that it is not desirable to coat the pores of the wall-flow filter with the metal oxide.
  • GPF gasoline particulate filters
  • OPF gasoline particulate filters
  • Such Fil ter usually have a particularly high exhaust back pressure, which - as ge says - can lead to reduced engine performance and / or increased fuel consumption. Oil ash and soot particles that are deposited during operation inevitably lead to a further increase in exhaust back pressure and filtration performance (Fig. 2 for stable powder).
  • Claim 8 relates to an exhaust system according to the invention.
  • the subclaims dependent on these claims are directed to preferred embodiments of the wall-flow filter or the exhaust gas system according to the invention.
  • thermolabile powder on and/or in its input surface, which increases the filtration efficiency of the filter when it is fresh and its surface or volume when properly Operation of the filter decreases in such a way that an increase in the exhaust back pressure compared to a filter that has not been treated with the thermolabile powder by a maximum of 10% after an equivalent exposure to particulate exhaust gas components is recorded, this can be achieved very easily and elegantly, but not for that less surprising to solve the task.
  • the thermal load on the filter in normal operation and during regeneration phases reduces the surface area and volume of the thermolabile powder, so that the proportion of the powder coating in the total back pressure slowly decreases over time. Since the filter at the same time, for example If oil ash accumulates, the filtration performance remains largely unchanged, despite the decrease in surface area and volume of the thermolabile powder (Fig. 1/2).
  • Porous wall flow filter substrates made of cordierite, silicon carbide or aluminum titanate are preferably used. These wall-flow filter substrates have inflow and outflow channels, with the outflow-side ends of the inflow channels and the inflow-side ends of the outflow channels being offset from one another and sealed with gas-tight “plugs”.
  • the exhaust gas to be cleaned which flows through the filter substrate, is forced to pass through the porous wall between the inflow and outflow channels, which results in an excellent particle filter effect.
  • the filtration properties for particles can be designed through the porosity, pore/radius distribution and thickness of the wall.
  • the porosity of the uncoated wall flow filter is usually more than 40%, generally from 40% to 75%, especially from 50% to 70% [measured according to DIN 66133 - latest version on the filing date].
  • the average pore size of the uncoated filters is at least 7 ⁇ m, e.g. B. from 7 pm to 34 pm, preferably more than 10 pm, in particular more preferably from 10 pm to 25 pm or very preferably from 15 pm to 20 pm [measured according to DIN 66134 latest version on the filing date].
  • the finished filters with a pore size of typically 10 ⁇ m to 20 ⁇ m and a porosity of 50% to 65% are particularly preferred.
  • thermolabile means the property of exhibiting instability under the influence of elevated temperatures.
  • the powder Before lying a thermolabile powder is used.
  • the powder therefore consists of a solid which undergoes a transformation under the action of sufficient heat energy in such a way that its density increases.
  • the volume and surface area of the powder decreases as a result of this heat effect.
  • the powder presents less volume or surface area to the incoming exhaust gas. Therefore, the exhaust back pressure of the filter decreases as described above. This decrease in exhaust back pressure is compensated for by the oil ash that accumulates in the filter over time and cannot be removed.
  • thermolability - ie the speed at which the powder loses its volume and surface - should correspond to this ideal as closely as possible.
  • the thermolabile powder should therefore preferably show a reduction in surface area of 15-50%, preferably 20-40% and most preferably 25-35% after aging for 6 hours in the oven in the presence of air at 1000°C.
  • thermolabile powder in the present invention runs counter to the trend that normally high surface area carrier substances for catalytically active metals are used in car exhaust gas catalysts, which have a surface which is as thermostable as possible. Because the more stable the surface, the less subject a catalyst is to thermally induced aging through sintering of the carrier oxide. In the present case, however, it is a question of allowing such a high-surface area powder to age thermally in a targeted manner.
  • the same substances can be used for the present inventions that also serve as normal carrier oxides in car exhaust gas catalysts, provided they are in a form that has a thermal stability as characterized above.
  • the powder is preferably high-surface oxides of metals, for example those selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium dioxide or mixtures or mixed oxides (solid solutions) thereof.
  • the oxides are preferably not doped with other metals, which leads to better stability.
  • the thermolabile powder is more preferably aluminum oxide, very preferably an undoped aluminum oxide or mixed oxides of aluminum oxide and silicon oxide, such as zeolites.
  • zeolites can be selected or synthesized in a way that is tailor-made for the problem at hand in terms of their structure.
  • oxides with a high surface area this means oxides with a BET surface area of more than 10 m 2 /g, preferably more than 30 m 2 /g and very particularly preferably more than 50 m 2 /g .
  • BET surface area of more than 10 m 2 /g, preferably more than 30 m 2 /g and very particularly preferably more than 50 m 2 /g .
  • the person skilled in the art knows how to obtain such oxides.
  • the filter according to the invention can be manufactured according to methods which are described above as prior art.
  • a metal oxide powder for example, is generally mixed with a gas (http://www.tsi.com/Aerosolgeneratoren-und-disperqierer/; https://www.palas.de/de/product/aerosolgeneratorssolidparticles).
  • This mixture of the gas and the powder produced in this way is then advantageously conducted via a gas flow into the inlet side of the wall-flow filter.
  • the part of the filter formed by the inflow channels/inlet channels is seen on the inlet side.
  • the entrance surface is defined by the wall surfaces of the inflow ducts/entrance ducts formed on the inlet side of the wall flow filter. The same applies to the outlet side.
  • gases suitable for the person skilled in the art for the present purpose can be used as gases for the production of the aerosol and for the introduction into the filter.
  • air is very particularly preferred.
  • other reaction gases can also be used which can develop either an oxidizing (e.g. O2, NO2) or a reducing (e.g. H2) activity towards the powder used.
  • inert gases e.g. N2
  • noble gases e.g. He
  • the aerosol preferably has a speed of 5 m/s to 50 m/s, more preferably 10 m/s to 40 m/s and very particularly preferably 15 m/s up to 35 m/s is sucked through the filter. This also achieves advantageous adhesion of the applied powder.
  • a wall-flow filter manufactured according to the method outlined above should preferably have the powder in the large pores, since these are mainly responsible for the poor filtration efficiency of the filter. For this purpose it is preferred if the powder does not fall below a certain particle size (measured according to the latest ISO 13320-1 on the filing date).
  • the D50 values of the powder are usually between 1 and 5 ⁇ m, preferably between 2 and 4 ⁇ m and very particularly preferably around 3 ⁇ m. This preferably blocks the large pores of the filter, so that it has a significantly increased filtration performance, but also a greater back pressure than the raw substrate.
  • the filtration efficiency of the filter containing powder should correspond as closely as possible to that which results after the oil ash has been deposited after proper operation.
  • the filtration efficiency of the filter containing powder in the fresh state is between 85% and 99.9%, preferably >87% and most preferably >90%.
  • Those skilled in the art know how to determine filtration efficiency.
  • Another key factor in how this filtration efficiency can be achieved is the amount of powder to be separated in the wall flow filter. It should not be too high in order not to create excessive exhaust gas back pressure of the filter when fresh, but it should be high enough to achieve the targeted fresh filtration efficiency.
  • the powder should be applied to the filter in an amount of 1-40 g/l, preferably 1.5-30 g/l and very preferably 2-25 g/l.
  • the comparison envisaged according to the invention with regard to the exhaust gas back pressure of a wall flow filter treated according to the invention with thermolabile powder and an untreated filter of the same type in which the exhaust gas back pressure increases by a maximum of 10%, preferably a maximum of 7% and particularly preferably a maximum of 5% increase should be done after a period of proper operation of the filter.
  • the filter has then already undergone several filter regenerations and the applied powder should no longer change its volume or its surface due to the effect of heat at this point.
  • the filter regenerations can also be artificially simulated in appropriate systems. Before geous way, the increase in the exhaust back pressure for the specified comparison is determined immediately after 10 active soot regenerations. Temperatures of approx.
  • 700 - 800 °C act on the filter for 5 - 10 minutes during each regeneration. This should be sufficient to allow maximum sintering of powder in the pores of the wall flow filter.
  • the test to be assessed here is advantageously based on 10 filter regenerations, each lasting 10 minutes and during which the filter is exposed to a temperature of at least 800°C for 5 minutes. In the case of artificially induced tests, the amount of ash must therefore be dimensioned accordingly so that such a temperature curve can be ensured.
  • the filter can have been catalytically coated before being subjected to the powder/gas aerosol.
  • catalytic coating means the ability to convert harmful components of the exhaust gas from internal combustion engines into less harmful ones.
  • the exhaust gas components NOx, CO and HC as well as particles should be mentioned here.
  • this catalytic activity is provided by coating the wall-flow filter with a catalytically active material.
  • coating is accordingly understood to mean the application of catalytically active materials to the wall flow filter. The coating takes on the actual catalytic function.
  • the coating is carried out by applying a correspondingly low-viscosity aqueous suspension—also called a washcoat—or a solution of the catalytically active components to the wall-flow filter, see e.g. B. according to EP1789190B1.
  • a correspondingly low-viscosity aqueous suspension also called a washcoat
  • a solution of the catalytically active components to the wall-flow filter, see e.g. B. according to EP1789190B1.
  • the wall-flow filter is dried and, if necessary, calcined at elevated temperature.
  • the catalytically coated filter preferably has a loading of 20 g/l to 200 g/l, preferably 30 g/l to 150 g/l.
  • the most suitable loading level of a wall-coated filter depends on its cell density, wall thickness and porosity.
  • the preferred load is 20 g/l to 50 g/l (related to the outer volume of the filter substrate).
  • Highly porous filters (>60% porosity) with, for example, 300 cpsi and 8 mil have a preferred loading amount of 25 g/l to 150 g/l, particularly preferably 50 g/l to 100 g/l.
  • the catalytic coating of the filter can preferably be selected from the group consisting of a three-way catalytic converter, SCR catalytic converter, nitrogen oxide storage catalytic converter, oxidation catalytic converter, and soot ignition coating.
  • a catalytically active coating comprising at least one metal ion-exchanged zeolite, cerium/zirconium mixed oxide, aluminum oxide and palladium, rhodium or platinum or combinations of these noble metals.
  • the present invention also relates to an exhaust system having a wall flow filter according to the invention and at least one other unit for reducing harmful exhaust gas components selected from the group consisting of oxidation catalyst, three-way catalyst, SCR catalyst, hydrocarbon trap and ammonia blocking catalyst.
  • the use of an exhaust gas system is particularly preferred which has a three-way catalytic converter close to the engine and a wall-flow filter according to the invention, also positioned close to the engine and provided with a three-way catalytic coating. It is also preferred if the exhaust gas system has a wall flow filter according to the invention provided with a three-way catalytic coating located in the underbody of the vehicle downstream of the close-coupled three-way catalytic converter.
  • close-coupled is an arrangement of the catalytic converter at a distance from the exhaust gas outlet of the cylinder of the engine of less than 120 cm, preferably less than 100 cm and very particularly preferably less than 50 cm.
  • the catalytic converter close to the engine is preferably arranged directly after the exhaust manifold is merged into the exhaust pipe.
  • Alumina stabilized with lanthana was combined with a first oxygen storage component comprising 40% by weight ceria, zirconia, lanthana and praseodymia and a second oxygen storage component comprising 24% by weight ceria, zirconia, lanthana and yttria. suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of alumina and oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring. The resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, with the coating being introduced into the porous filter wall over 100% of the substrate length.
  • the total loading of this filter was 75 g/l, the total precious metal loading was 1.986 g/l with a ratio of palladium to rhodium of 5:1.
  • the coated filter obtained in this way was dried and then calcined. It is hereinafter referred to as VGPF1.
  • Alumina stabilized with lanthana was combined with a first oxygen storage component comprising 40% by weight ceria, zirconia, lanthana and praseodymia and a second oxygen storage component comprising 24% by weight ceria, zirconia, lanthana and yttria. suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of alumina and oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring. The resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, with the coating being introduced into the porous filter wall over 100% of the substrate length.
  • the total loading of this filter was 75 g/l, the total precious metal loading was 1.986 g/l with a ratio of palladium to rhodium of 5:1.
  • the coated filter obtained in this way was dried and then calcined.
  • This filter was then sprayed with an aerosol (powder-gas mixture) coated, in which 7 g/l aluminum oxide were deposited on the filter.
  • This filter is hereinafter referred to as GPF1.
  • the VGPFl and the GPFl were then characterized with regard to their physical properties, filtration efficiency and back pressure behavior.
  • the back pressure of the two filters was measured on the cold gas test stand at a volume flow of 600 m 3 /h.
  • the filter VGPF1 had a pressure loss of 36.4 mbar, while the filter GPF1 according to the invention had a correspondingly higher back pressure of 42 mbar. This difference corresponds to a 15% increase in the back pressure of GPF1 over VGPF1, which is due to the deposition of the alumina.
  • the two filters were then examined on the engine test bench with regard to their filtration performance.
  • the filters were installed in the exhaust system in a position close to the engine, on the downstream side of a conventional three-way catalytic converter, and measured between two particle counters in the so-called WLTP cycle.
  • the filter VGPF1 showed a filtration efficiency of 60%, while the filter according to the invention had a filtration efficiency of 76% due to the filtration efficiency-increasing coating.
  • the filter GPF1 was then tempered for 10 hours at 1100°C in an air atmosphere and then measured again. It was found that after the temperature exposure on the cold gas test stand, the filter had a back pressure of only 37.1 mbar with the same volume flow as before. This corresponds to a back pressure increase of only 2% compared to the VGPF1. Although the back pressure of the filter has decreased after the temperature treatment, the filter still has an unchanged high filtration performance. This method is therefore ideally suited for providing filters that have an initially increased filtration performance and maintain this during continuous operation and at the same time have an ever-decreasing back pressure during operation due to the sintering of the filtration efficiency material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a wall-flow filter. Said wall-flow filter contains a powder coating which increases the filtration efficiency only in the fresh state. An exhaust gas system comprising such a wall-flow filter is also claimed.

Description

Verfahren zur Erhöhung der Frischfiltration von Benzinpartikelfiltern Process for increasing the fresh filtration of gasoline particle filters
Beschreibung description
Die vorliegende Erfindung ist auf einen Wandflussfilter gerichtet. Dieser enthält eine Pul- verbeschichtung, welche die Filtrationseffizienz nur im frischen Zustand erhöht. Eben falls beansprucht ist ein Abgassystem, welches einen derartigen Wandflussfilter auf weist. The present invention is directed to a wall flow filter. This contains a powder coating, which only increases the filtration efficiency when it is fresh. Also claimed is an exhaust system which has such a wall-flow filter.
Das Abgas von Verbrennungsmotoren in Kraftfahrzeugen enthält typischerweise die Schadgase Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC), Stickoxide (NOx) und gegebenenfalls Schwefeloxide (SOx), sowie Partikel, die weitgehend aus festen kohlen stoffhaltigen Teilchen und gegebenenfalls anhaftenden organischen Agglomeraten be stehen. Diese werden als Primäremissionen bezeichnet. CO, HC und Partikel sind Pro dukte der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Motors. Stick oxide entstehen im Zylinder aus Stickstoff und Sauerstoff der Ansaugluft, wenn die Ver- brennungstemperaturen 1200°C überschreiten. Schwefeloxide resultieren aus der Ver brennung organischer Schwefelverbindungen, die in nicht-synthetischen Kraftstoffen im mer in geringen Mengen enthalten sind. Die Einhaltung künftig in Europa, China, Nord amerika und Indien geltender gesetzlicher Abgasgrenzwerte für Kraftfahrzeuge erfordert die weitgehende Entfernung der genannten Schadstoffe aus dem Abgas. Zur Entfernung dieser für Umwelt und Gesundheit schädlichen Emissionen aus den Abgasen von Kraft fahrzeugen sind eine Vielzahl katalytischer Abgasreinigungstechnologien entwickelt worden, deren Grundprinzip üblicherweise darauf beruht, dass das zu reinigende Abgas über einen Durchfluss- (flow-through) oder einen Wandfluss- (wall-flow) -wabenkörper mit einer darauf aufgebrachten katalytisch aktiven Beschichtung geleitet wird. Der Kata- lysator fördert die chemische Reaktion verschiedener Abgaskomponenten unter Bildung unschädlicher Produkte wie beispielsweise Kohlendioxid, Wasser und Stickstoff. The exhaust gas from internal combustion engines in motor vehicles typically contains the pollutant gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO x ) and possibly sulfur oxides (SO x ), as well as particles, which largely consist of solid carbonaceous particles and possibly adhering organic agglomerates . These are referred to as primary emissions. CO, HC and particles are products of the incomplete combustion of fuel in the engine's combustion chamber. Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the combustion temperatures exceed 1200°C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small amounts in non-synthetic fuels. Compliance with future legal exhaust emission limits for motor vehicles in Europe, China, North America and India requires the extensive removal of the pollutants mentioned from the exhaust gas. To remove these emissions, which are harmful to the environment and health, from the exhaust gases of motor vehicles, a large number of catalytic exhaust gas cleaning technologies have been developed, the basic principle of which is usually based on the fact that the exhaust gas to be cleaned is passed through a flow (flow-through) or a wall flow (wall flow) flow) honeycomb body is passed with a catalytically active coating applied thereto. The catalytic converter promotes the chemical reaction of various exhaust gas components with the formation of harmless products such as carbon dioxide, water and nitrogen.
Die eben beschriebenen Durchfluss- oder Wandflusswabenkörper werden auch als Ka talysatorträger, Träger oder Substratmonolithe bezeichnet, tragen sie doch die kataly tisch aktive Beschichtung auf ihrer Oberfläche bzw. in den diese Oberfläche bildenden Wänden. Die katalytisch aktive Beschichtung wird häufig in einem sogenannten Be schichtungsvorgang in Form einer Suspension auf den Katalysatorträger aufgebracht. Viele derartige Prozesse sind in der Vergangenheit von Autoabgaskatalysatorherstellern hierzu veröffentlicht worden (EP1064094B1, EP2521618B1, W010015573A2,The flow-through or wall-flow honeycomb bodies just described are also referred to as catalyst carriers, carriers or substrate monoliths, since they carry the catalytically active coating on their surface or in the walls forming this surface. The catalytically active coating is often applied to the catalyst support in a so-called coating process in the form of a suspension. Many such processes are in the past of automotive catalytic converter manufacturers been published on this (EP1064094B1, EP2521618B1, W010015573A2,
EP1136462B1, US6478874B1, US4609563A, WO9947260A1, JP5378659B2,EP1136462B1, US6478874B1, US4609563A, WO9947260A1, JP5378659B2,
EP2415522A1 , JP2014205108A2). EP2415522A1, JP2014205108A2).
Für die jeweils möglichen Methoden der Schadstoffumwandlung im Katalysator ist die Betriebsart des Verbrennungsmotors entscheidend. Dieselmotoren werden meist mit Luftüberschuss betrieben, die meisten Ottomotoren mit einem stöchiometrischen Ge misch aus Ansaugluft und Kraftstoff. Stöchiometrisch heißt, dass im Mittel genau so viel Luft zur Verbrennung des im Zylinder vorhandenen Kraftstoffs zur Verfügung steht, wie für eine vollständige Verbrennung benötigt wird. Das Verbrennungsluftverhältnis l (A/F- Verhältnis; Luft/Kraftstoffverhältnis) setzt die tatsächlich für eine Verbrennung zur Verfü gung stehende Luftmasse mi_,tats ins Verhältnis zur stöchiometrischen Luftmasse mi_,st: The operating mode of the internal combustion engine is decisive for the possible methods of pollutant conversion in the catalytic converter. Diesel engines are usually operated with excess air, most petrol engines with a stoichiometric mixture of intake air and fuel. Stoichiometric means that on average there is just as much air available to burn the fuel in the cylinder as is required for complete combustion. The combustion air ratio l (A/F ratio; air/fuel ratio) relates the air mass mi_,tats actually available for combustion to the stoichiometric air mass mi_,st:
Ist l < 1 (z. B. 0,9) bedeutet dies „Luftmangel“, man spricht von einem fetten Abgasge misch, l > 1 (z. B. 1,1) bedeutet „Luftüberschuss“ und das Abgasgemisch wird als mager bezeichnet. Die Aussage l = 1,1 bedeutet, dass 10% mehr Luft vorhanden ist, als zur stöchiometrischen Reaktion notwendig wäre. If l < 1 (e.g. 0.9) this means "lack of air", one speaks of a rich exhaust gas mixture, l > 1 (e.g. 1.1) means "excess air" and the exhaust gas mixture is referred to as lean . The statement l = 1.1 means that 10% more air is present than would be necessary for the stoichiometric reaction.
Sofern im vorliegenden Text von mager verbrennenden Kraftfahrzeugmotoren die Rede ist, so wird hiermit hauptsächlich auf Dieselmotoren und überwiegend im Mittel mager verbrennende Ottomotoren Bezug genommen. Letztere sind überwiegend im Mittel mit magerem A/F-Verhältnis (Luft/Kraftstoff-Verhältnis) betriebene Benzinmotoren. Dage gen werden die meisten Benzinmotoren überwiegend mit im Mittel stöchiometrischem Verbrennungsgemisch betrieben. Der Ausdruck „im Mittel“ nimmt dabei Rücksicht auf die Tatsache, dass moderne Benzinmotoren nicht statisch bei einem festen Luft/Kraft stoffverhältnis (A/F-Verhältnis; l-Wert) betrieben werden. Vielmehr wird durch die Mo torsteuerung ein Gemisch mit einem diskontinuierlichen Verlauf der Luftzahl l um l = 1 ,0 vorgegeben, wodurch sich ein periodischer Wechsel von oxidierenden und reduzie renden Abgasbedingungen ergibt. Dieser Wechsel der Luftzahl l ist wesentlich für das Abgasreinigungsergebnis. Hierzu wird der l-Wert des Abgases mit sehr kurzer Zyklen zeit (ca. 0,5 bis 5 Hertz) und einer Amplitude Dl von 0,005 < Dl < 0,07 um den Wert l = 1.0 geregelt. Im Durchschnitt ist in solchen Betriebszuständen daher das Abgas als „im Mittel“ stöchiometrisch zu bezeichnen. Damit sich diese Abweichungen nicht nachteilig auf das Abgasreinigungsergebnis bei Überleiten des Abgases über den Dreiwegkatalysator auswirken, gleichen die im Dreiwegkatalysator enthaltenen Sauer stoffspeichermaterialien diese Abweichungen aus, indem sie Sauerstoff nach Bedarf aus dem Abgas aufnehmen oder ins Abgas abgeben (R. Heck et al., Catalytic Air Pollution Control - Commercial Technology, Wiley, 2. Auflage 2002, Seite 87). Aufgrund der dy namischen Betriebsweise des Motors im Fahrzeug treten zeitweise jedoch weitere Ab weichungen von diesem Zustand auf. Zum Beispiel bei starken Beschleunigungen oder im Schubbetrieb können Betriebszustände des Motors und damit des Abgases einge stelltwerden, die im Mittel über- oder unterstöchiometrisch sein können. Stöchiometrisch verbrennende Ottomotoren weisen daher ein Abgas auf, welches überwiegend, d.h. in der überwiegenden Zeit des Verbrennungsbetriebs ein im Mittel stöchiometrisches Luft/Kraftstoffverhältnis verbrennt. Insofar as lean-burn motor vehicle engines are mentioned in the present text, reference is hereby mainly made to diesel engines and predominantly lean-burn Otto engines on average. The latter are predominantly gasoline engines operated with an average lean A/F (air/fuel) ratio. On the other hand, most gasoline engines are mainly operated with a combustion mixture that is stoichiometric on average. The expression "on average" takes into account the fact that modern petrol engines are not operated statically at a fixed air/fuel ratio (A/F ratio; l value). Rather, the engine control system specifies a mixture with a discontinuous course of the air ratio l around l=1.0, resulting in a periodic alternation of oxidizing and reducing exhaust gas conditions. This change in the air ratio l is essential for the exhaust gas cleaning result. For this purpose, the l value of the exhaust gas is regulated around the value l = 1.0 with a very short cycle time (approx. 0.5 to 5 Hertz) and an amplitude Dl of 0.005 < Dl < 0.07. On average, in such operating states, the exhaust gas can therefore be described as “on average” stoichiometric. So that these deviations do not have a negative impact on the exhaust gas cleaning result when the exhaust gas is transferred via the Affect three-way catalyst, the oxygen storage materials contained in the three-way catalyst compensate for these deviations by absorbing oxygen from the exhaust gas as required or releasing it into the exhaust gas (R. Heck et al., Catalytic Air Pollution Control - Commercial Technology, Wiley, 2nd edition 2002, page 87). Due to the dynamic mode of operation of the engine in the vehicle, however, further deviations from this state occur at times. For example, when accelerating sharply or when overrun, the engine and thus the exhaust gas operating conditions can be set, which can be over- or under-stoichiometric on average. Otto engines that burn stoichiometrically therefore have an exhaust gas which burns predominantly, ie for most of the time during combustion operation, at an air/fuel ratio that is on average stoichiometric.
Die Schadgase Kohlenmonoxid und Kohlenwasserstoffe können aus einem mageren Abgas durch Oxidation an einem geeigneten Oxidationskatalysator unschädlich ge macht werden. Bei einem stöchiometrisch betriebenen Verbrennungsmotor können alle drei Schadgase (HC, CO und NOx) über einen Dreiwegkatalysator beseitigt werden. Die Reduktion der Stickoxide zu Stickstoff („Entstickung“ des Abgases) ist wegen des hohen Sauerstoffgehaltes eines mager verbrennenden Motors schwieriger. Ein bekanntes Ver fahren ist hier die selektive katalytische Reduktion der Stickoxide (Selective Catalytic Reduction; SCR) an einem geeigneten Katalysator, kurz SCR-Katalysator genannt. Die ses Verfahren gilt gegenwärtig für die Entstickung von Magermotorenabgasen als be vorzugt. Die Verminderung der im Abgas enthaltenden Stickoxide erfolgt im SCR-Ver- fahren unter Zuhilfenahme eines aus einer externen Quelle in den Abgasstrang eindo sierten Reduktionsmittels. Als Reduktionsmittel wird Ammoniak eingesetzt, welches die im Abgas vorhandenen Stickoxide am SCR-Katalysator zu Stickstoff und Wasser um setzt. Das als Reduktionsmittel verwendete Ammoniak kann durch Eindosieren einer Ammoniakvorläuferverbindung, wie beispielsweise Harnstoff, Ammoniumcarbamat oder Ammoniumformiat, in den Abgasstrang und anschließende Hydrolyse verfügbar ge macht werden. The pollutant gases carbon monoxide and hydrocarbons can be rendered harmless from a lean exhaust gas by oxidation on a suitable oxidation catalytic converter. In a stoichiometrically operated internal combustion engine, all three pollutant gases (HC, CO and NOx) can be eliminated via a three-way catalytic converter. The reduction of nitrogen oxides to nitrogen ("denitrification" of the exhaust gas) is more difficult due to the high oxygen content of a lean-burn engine. A well-known method here is the selective catalytic reduction of nitrogen oxides (Selective Catalytic Reduction; SCR) on a suitable catalyst, called SCR catalyst for short. This method is currently considered to be preferred for the denitrification of lean-burn engine exhaust gases. The nitrogen oxides contained in the exhaust gas are reduced in the SCR process with the aid of a reducing agent dosed into the exhaust line from an external source. Ammonia is used as a reducing agent, which converts the nitrogen oxides in the exhaust gas to nitrogen and water in the SCR catalytic converter. The ammonia used as a reducing agent can be made available by metering an ammonia precursor compound, such as urea, ammonium carbamate or ammonium formate, into the exhaust system and subsequent hydrolysis.
Zur Entfernung der Partikelemissionen sind Dieselpartikelfilter (DPF) bzw. Benzinparti kelfilter (GPF)/Ottopartikelfilter (OPF) mit und ohne zusätzliche katalytisch aktive Be schichtung geeignete Aggregate. Zur Erfüllung der gesetzlichen Normen ist es für die aktuellen und zukünftigen Applikationen zur Abgasnachbehandlung von Verbrennungs motoren aus Kostengründen aber auch aus Bauraumgründen ggf. wünschenswert, Par tikelfilter mit anderen katalytisch aktiven Funktionalitäten zu kombinieren. Der Einsatz eines Partikelfilters - ob katalytisch beschichtet oder nicht - führt zu einer im Vergleich zu einem Durchflussträger gleicher Abmessungen merklichen Erhöhung des Abgasge gendrucks und damit zu einer Verringerung des Drehmoments des Motors oder mög licherweise vermehrtem Kraftstoffverbrauch. Um den Abgasgegendruck nicht noch wei ter zu erhöhen, werden die Mengen an oxidischen Trägermaterialien für die katalytisch aktiven Elemente des Katalysators bzw. oxidischen Katalysatormaterialien bei einem Fil ter in der Regel in geringeren Mengen aufgebracht als bei einem Durchflussträger. Dadurch ist die katalytische Wirksamkeit eines beschichteten Partikelfilters einem gleich groß dimensionierten Durchflussmonolithen häufig unterlegen. Diesel particle filters (DPF) or petrol particle filters (GPF)/otton particle filters (OPF) with and without an additional catalytically active coating are suitable units for removing particle emissions. In order to meet the legal standards, it may be desirable for current and future applications for exhaust gas aftertreatment of internal combustion engines to combine particle filters with other catalytically active functionalities for cost reasons but also for space reasons. The use A particulate filter - whether catalytically coated or not - leads to a noticeable increase in exhaust back pressure compared to a flow carrier of the same dimensions and thus to a reduction in engine torque or possibly increased fuel consumption. In order not to further increase the exhaust gas back pressure, the quantities of oxidic support materials for the catalytically active elements of the catalyst or oxidic catalyst materials are generally applied in smaller quantities in a filter than in a flow carrier. As a result, the catalytic effectiveness of a coated particle filter is often inferior to that of a flow monolith of the same size.
Es hat schon einige Anstrengungen gegeben, Partikelfilter bereitzustellen, die eine gute katalytische Aktivität durch eine aktive Beschichtung aufweisen und dennoch möglichst geringen Abgasgegendruck aufweisen. Zum einen hat es sich als günstig erwiesen, wenn die katalytisch aktive Beschichtung nicht als Schicht auf der Wand eines porösen Wandflussfilters befindlich ist, sondern die Wand des Filters mit dem katalytisch aktiven Material zu durchsetzen (W02005016497A1, JPH01-151706, EP1789190B1). Hierfür wird die Partikelgröße der katalytischen Beschichtung so gewählt, dass die Partikel in die Poren der Wandflussfilter eindringen und dort durch Kalzinieren fixiert werden kön nen. Some efforts have already been made to provide particle filters which have good catalytic activity due to an active coating and yet have the lowest possible exhaust gas back pressure. On the one hand, it has proven to be advantageous if the catalytically active coating is not located as a layer on the wall of a porous wall-flow filter, but instead permeates the wall of the filter with the catalytically active material (WO2005016497A1, JPH01-151706, EP1789190B1). For this purpose, the particle size of the catalytic coating is chosen so that the particles penetrate into the pores of the wall flow filter and can be fixed there by calcination.
Eine weitere Funktionalität des Filters, die durch eine Beschichtung verbessert werden kann, ist seine Filtrationseffizienz, also die Filterwirkung selbst. Die Erhöhung der Filtra tionseffizienz von katalytisch nicht aktiven Filtern wird in der W02012030534A1 be schrieben. Hierbei wird auf den Wänden der Strömungskanäle der Einlassseite eine Filt rationsschicht („discriminating layer“) durch Ablagerung von keramischen Partikel über ein Partikelaerosol erzeugt. Die Schichten bestehen aus Oxiden von Zirkon, Aluminium oder Silicium, bevorzugt in Faserform von 1 nm bis 5 pm und haben eine Schichtdicke von mehr als 10 pm, in der Regel 25 pm bis 75 pm. Nach dem Beschichtungsprozess werden die aufgetragenen Pulverpartikel in einem Wärmeprozess kalziniert. Another functionality of the filter that can be improved by a coating is its filtration efficiency, ie the filter effect itself. Increasing the filtration efficiency of catalytically inactive filters is described in WO2012030534A1. A filtration layer (“discriminating layer”) is created on the walls of the flow channels on the inlet side by depositing ceramic particles via a particle aerosol. The layers consist of oxides of zirconium, aluminum or silicon, preferably in the form of fibers from 1 nm to 5 μm and have a layer thickness of more than 10 μm, generally 25 μm to 75 μm. After the coating process, the applied powder particles are calcined in a heat process.
Eine Beschichtung innerhalb der Poren eines Wandflussfilteraggregats mittels Ver- düsung von trockenen Partikeln wird in der US8388721 B2 beschrieben. Hier soll aller dings das Pulver tief in die Poren eindringen. 20 % bis 60 % der Oberfläche der Wand soll für Rußpartikel zugänglich, demnach offenbleiben. Abhängig von der Strömungsge schwindigkeit des Pulver-Gas-Gemisches kann ein mehr oder minder starker Pulvergra dient zwischen Einlass- und Auslassseite eingestellt werden. Ebenfalls wird die Einbringung des Pulvers in die Poren, z. B. mithilfe eines Aerosolge nerators, in der EP2727640A1 beschrieben. Hier wird ein nicht katalytisch beschichteter Wandflussfilter mit einem z. B. Aluminiumoxidpartikel enthaltenden Gasstroms derge stalt beschichtet, dass die kompletten Partikel, die eine Partikelgröße von 0,1 pm bis 5 pm aufweisen, als poröse Füllung in den Poren des Wandflussfilters abgeschieden wer den. Die Partikel selber können eine weitere Funktionalität des Filters zusätzlich zu der Filterwirkung realisieren. Beispielhaft werden diese Partikel in einer Menge von mehr als 80 g/l bezogen auf das Filtervolumen in den Poren des Filters abgeschieden. Sie füllen dabei 10 % bis 50 % des Volumens der gefüllten Poren in den Kanalwänden aus. Dieser Filter weist sowohl mit Ruß beladen wie auch ohne Ruß eine gegenüber dem unbehan delten Filter verbesserte Filtrationseffizienz bei einem geringeren Abgasgegendruck des mit Ruß beladenen Filters auf. A coating within the pores of a wall flow filter unit by means of atomizing dry particles is described in US Pat. No. 8,388,721 B2. Here, however, the powder should penetrate deep into the pores. 20% to 60% of the surface of the wall should be accessible to soot particles, i.e. remain open. Depending on the flow rate of the powder-gas mixture, a more or less strong powder gradient can be set between the inlet and outlet side. Also, the introduction of the powder into the pores, z. B. using an aerosol generator, described in EP2727640A1. Here a non-catalytically coated wall flow filter with a z. B. aluminum oxide particles containing gas stream Derge stalt coated that the complete particles having a particle size of 0.1 pm to 5 pm deposited as a porous filling in the pores of the wall flow filter who the. The particles themselves can implement a further functionality of the filter in addition to the filter effect. For example, these particles are deposited in the pores of the filter in an amount of more than 80 g/l based on the filter volume. They fill 10% to 50% of the volume of the filled pores in the canal walls. Both with soot and without soot, this filter has an improved filtration efficiency compared to the untreated filter with a lower exhaust back pressure of the filter loaded with soot.
In der EP2502661A1 und EP2502662B1 werden weitere Verfahren zur Aufwandbe schichtung von Filtern durch Pulverapplikation erwähnt. Dort werden auch entspre chende Apparaturen zur Beaufschlagung des Filters mit einem Pulver-Gas-Aerosol ge zeigt, bei dem der Pulverapplikator und der Wandflussfilter jeweils dergestalt separiert sind, dass durch diesen Zwischenraum während des Beschichtens Luft eingesaugt wird. Ein weiteres Verfahren bei dem zur Erhöhung der Filtrationseffizienz von katalytisch nicht aktiven Wandflussfiltern eine Membran („Trapping layer“) auf den Oberflächen der Einlasskanäle von Filtern erzeugt wird, ist in der Patentschrift US8277880B2 beschrie ben. Die Filtrationsmembran auf den Oberflächen der Einlasskanäle wird durch Durch saugen eines mit Keramikpartikeln (z. B. Siliciumcarbid, Cordierit) beladenen Gasstroms realisiert. Der Wabenkörper wird nach dem Aufbringen der Filterschicht bei Temperatu ren von größer 1000°C gebrannt um die Haftfestigkeit der Pulverschicht auf den Kanal wänden zu erhöhen. In EP2502661A1 and EP2502662B1 further processes for the application of powder coating to filters are mentioned. Corresponding apparatuses for subjecting the filter to a powder-gas aerosol are also shown there, in which the powder applicator and the wall-flow filter are each separated in such a way that air is sucked in through this space during coating. Another method in which a membrane (“trapping layer”) is produced on the surfaces of the inlet channels of filters to increase the filtration efficiency of catalytically inactive wall-flow filters is described in patent specification US8277880B2. The filtration membrane on the surfaces of the inlet channels is realized by sucking through a gas flow loaded with ceramic particles (e.g. silicon carbide, cordierite). After the filter layer has been applied, the honeycomb body is fired at temperatures above 1000°C in order to increase the adhesive strength of the powder layer on the channel walls.
In der WO2011151711 A1 wird eine Methode beschrieben, mit der ein nicht beschichteter oder katalytisch beschichteter Filter mit einem trockenen Aerosol beaufschlagt wird. Das Aerosol wird durch die Verteilung eines pulverförmigen hochschmelzenden Metalloxids mit einer mittleren Partikelgröße von 0,2 pm bis 5 pm bereitgestellt und mittels eines Gasstroms über die Einlassseite eines Wandflussfilters geführt. Hierbei agglomerieren die einzelnen Partikel zu einem verbrückten Netzwerk an Partikeln und werden als Schicht auf der Oberfläche der einzelnen den Wandflussfilter durchziehenden Einlass kanäle abgeschieden. Die typische Beladung eines Filters mit dem Pulver beträgt zwi schen 5 g und 50 g pro Liter Filtervolumen. Es wird ausdrücklich darauf hingewiesen, dass es nicht erwünscht ist, mit dem Metalloxid eine Beschichtung in den Poren des Wandflussfilters zu erreichen. WO2011151711 A1 describes a method with which a non-coated or catalytically coated filter is exposed to a dry aerosol. The aerosol is provided by dispersing a powdered high-melting metal oxide with an average particle size of 0.2 μm to 5 μm and guided by means of a gas stream over the inlet side of a wall-flow filter. The individual particles agglomerate to form a bridged network of particles and are deposited as a layer on the surface of the individual inlet channels running through the wall flow filter. The typical loading of a filter with the powder is between 5 g and 50 g per liter of filter volume. It is expressly pointed out that that it is not desirable to coat the pores of the wall-flow filter with the metal oxide.
Bedingt durch die Einführung von Partikelgrenzwerten und der zeitgleichen Implemen tierung der Realfahremissionsprüfung als Bestandteil des Typengenehmigungsverfah rens (RDE) besteht akuter Bedarf an Benzinpartikelflltern (GPF, Ottopartikelfilter; OPF), die sich durch eine besonders hohe Frischfiltrationseffizienz auszeichnen. Derartige Fil ter weisen üblicherweise einen besonders hohen Abgasgegendruck auf, was - wie ge sagt - zu verringerter Motorleistung und/oder erhöhtem Kraftstoffverbrauch führen kann. Durch sich im Betrieb ablagernde Ölasche und Rußpartikel, kommt es zwangsläufig zu einer weiteren Erhöhung des Abgasgegendrucks und der Filtrationsleistung (Fig. 2 für stabiles Pulver). Due to the introduction of particulate limit values and the simultaneous implementation of the real driving emissions test as part of the type approval process (RDE), there is an acute need for gasoline particulate filters (GPF, gasoline particulate filters; OPF), which are characterized by a particularly high fresh filtration efficiency. Such Fil ter usually have a particularly high exhaust back pressure, which - as ge says - can lead to reduced engine performance and / or increased fuel consumption. Oil ash and soot particles that are deposited during operation inevitably lead to a further increase in exhaust back pressure and filtration performance (Fig. 2 for stable powder).
Die Aufgabe der vorliegenden Erfindung war es daher, Partikelfilter mit einer ausrei chend hohen Frischfiltrationseffizienz bereitzustellen, welche allerdings keinen oder nur einen geringen Anstieg des Abgasgegendrucks während des sachgemäßen Betriebs aufweisen. Diese und weitere Aufgaben, welche sich für den Fachmann aus dem Stand der Technik in naheliegender Weise ergeben, werden durch einen Wandflussfilter ge mäß vorliegendem Anspruch 1 gelöst. Anspruch 8 bezieht sich auf ein erfindungsgemä ßes Abgassystem. Die von diesen Ansprüchen abhängigen Unteransprüche sind auf bevorzugte Ausführungsformen des erfindungsgemäßen Wandflussfilters bzw. des Ab gassystems gerichtet. The object of the present invention was therefore to provide particle filters with a sufficiently high fresh filtration efficiency, which, however, have little or no increase in the exhaust gas back pressure during proper operation. These and other objects, which are obvious to a person skilled in the art from the prior art, are solved by a wall-flow filter according to present claim 1. Claim 8 relates to an exhaust system according to the invention. The subclaims dependent on these claims are directed to preferred embodiments of the wall-flow filter or the exhaust gas system according to the invention.
Dadurch, dass man einen Wandflusspartikelfilter zur Reinigung der Abgase eines Otto motors zur Verfügung stellt, bei dem dieser auf und/oder in seiner Eingangsoberfläche ein thermolabiles Pulver enthält, welches die Filtrationseffizienz des Filters im frischen Zustand erhöht und dessen Oberfläche bzw. Volumen während des sachgemäßen Be triebs des Filters dergestalt abnimmt, dass eine Erhöhung des Abgasgegendrucks ge genüber einem nicht mit dem thermolabilen Pulver behandelten Filter nach einer äqui valenten Beaufschlagung mit partikulären Abgasbestandteilen um max. 10% zu ver zeichnen ist, gelangt man sehr einfach und elegant, dafür aber nicht minder überra schend zur Lösung der gestellten Aufgabe. Durch die thermische Belastung des Filters im Normalbetrieb und während Regenerationsphasen verringert sich die Oberfläche und das Volumen des thermolabilen Pulvers, sodass der Anteil der Pulverbeschichtung am Gesamtgegendruck mit der Zeit langsam zurückgeht. Da der Filter zeitgleich z.B. Ölasche ansammelt, bleibt die Filtrationsleistung, trotz der Oberflächen- und Volumen abnahme des thermolabilen Pulvers, weitgehend unverändert (Fig. 1/2). By providing a wall-flow particle filter for cleaning the exhaust gases of an Otto engine, in which it contains a thermolabile powder on and/or in its input surface, which increases the filtration efficiency of the filter when it is fresh and its surface or volume when properly Operation of the filter decreases in such a way that an increase in the exhaust back pressure compared to a filter that has not been treated with the thermolabile powder by a maximum of 10% after an equivalent exposure to particulate exhaust gas components is recorded, this can be achieved very easily and elegantly, but not for that less surprising to solve the task. The thermal load on the filter in normal operation and during regeneration phases reduces the surface area and volume of the thermolabile powder, so that the proportion of the powder coating in the total back pressure slowly decreases over time. Since the filter at the same time, for example If oil ash accumulates, the filtration performance remains largely unchanged, despite the decrease in surface area and volume of the thermolabile powder (Fig. 1/2).
Als Wandflussmonolithe oder Wandflussfilter können alle im Stand der Technik üblichen keramischen Materialien eingesetzt werden. Bevorzugt werden poröse Wandflussfil tersubstrate aus Cordierit, Siliziumcarbid oder Aluminiumtitanat eingesetzt. Diese Wand flussfiltersubstrate weisen An- und Abströmkanäle auf, wobei jeweils die abströmseitigen Enden der Anströmkanäle und die anströmseitigen Enden der Abströmkanäle gegenei nander versetzt mit gasdichten „Stopfen“ verschlossen sind. Hierbei wird das zu reini gende Abgas, das das Filtersubstrat durchströmt, zum Durchtritt durch die poröse Wand zwischen An- und Abströmkanal gezwungen, was eine exzellente Partikelfilterwirkung bedingt. Durch die Porosität, Poren-/Radienverteilung, und Dicke der Wand kann die Filtrationseigenschaft für Partikel ausgelegt werden. Die Porosität der unbeschichteten Wandflussfilter beträgt in der Regel mehr als 40 %, generell von 40 % bis 75 %, beson ders von 50 % bis 70 % [gemessen nach DIN 66133 - neueste Fassung am Anmeldetag]. Die durchschnittliche Porengröße der unbeschichteten Filter beträgt wenigstens 7 pm, z. B. von 7 pm bis 34 pm, bevorzugt mehr als 10 pm, insbesondere mehr bevorzugt von 10 pm bis 25 pm oder ganz bevorzugt von 15 pm bis 20 pm [gemessen nach DIN 66134 neueste Fassung am Anmeldetag]. Die fertiggestellten Filter mit einer Porengröße von in der Regel 10 pm bis 20 pm und einer Porosität von 50 % bis 65 % sind besonders bevorzugt. All ceramic materials customary in the prior art can be used as wall-flow monoliths or wall-flow filters. Porous wall flow filter substrates made of cordierite, silicon carbide or aluminum titanate are preferably used. These wall-flow filter substrates have inflow and outflow channels, with the outflow-side ends of the inflow channels and the inflow-side ends of the outflow channels being offset from one another and sealed with gas-tight “plugs”. The exhaust gas to be cleaned, which flows through the filter substrate, is forced to pass through the porous wall between the inflow and outflow channels, which results in an excellent particle filter effect. The filtration properties for particles can be designed through the porosity, pore/radius distribution and thickness of the wall. The porosity of the uncoated wall flow filter is usually more than 40%, generally from 40% to 75%, especially from 50% to 70% [measured according to DIN 66133 - latest version on the filing date]. The average pore size of the uncoated filters is at least 7 µm, e.g. B. from 7 pm to 34 pm, preferably more than 10 pm, in particular more preferably from 10 pm to 25 pm or very preferably from 15 pm to 20 pm [measured according to DIN 66134 latest version on the filing date]. The finished filters with a pore size of typically 10 μm to 20 μm and a porosity of 50% to 65% are particularly preferred.
Im Rahmen der Erfindung wird unter dem Begriff „thermolabil“ demnach die Eigenschaft verstanden, eine Instabilität unter dem Einfluss erhöhter Temperaturen zu zeigen. Vor liegend wird ein thermolabiles Pulver eingesetzt. Das Pulver besteht daher erfindungs gemäß aus einem Feststoff, der unter der Einwirkung von ausreichend Wärmeenergie eine Wandlung dergestalt erfährt, dass sich seine Dichte erhöht. Insbesondere nimmt durch diese Wärmeeinwirkung das Volumen und die Oberfläche des Pulvers ab. Man kann von einem Sintern des thermolabilen Pulvers sprechen. Demzufolge stellt das Pul ver nach der Wärmeeinwirkung dem ankommenden Abgas weniger Volumen bzw. Ober fläche entgegen. Daher sinkt der Abgasgegendruck des Filters wie oben beschrieben. Diese Abnahme des Abgasgegendrucks wird durch die mit der Zeit im Filter sich ansam melnde und nicht entfernbare Ölasche ausgeglichen. Durch die Auswahl eines geeigne ten Pulvers kann daher idealerweise während des gesamten Betriebs des Filters seine ursprüngliche Filtrationseffizienz und sein Abgasgegendruck in gewissen Bahnen kon stant gehalten werden. Die Thermolabilität - also die Geschwindigkeit, mit der das Pulver sein Volumen und die Oberfläche verliert, - sollte diesem Ideal möglichst genau entspre chen. Das thermolabile Pulver sollte daher vorzugsweise eine Reduktion der Oberfläche um 15-50 %, bevorzugt 20-40 % und ganz bevorzugt 25-35 % nach Alterung für 6 Stun den im Ofen in Gegenwart von Luft bei 1000 °C zeigen. In the context of the invention, the term “thermolabile” means the property of exhibiting instability under the influence of elevated temperatures. Before lying a thermolabile powder is used. According to the invention, the powder therefore consists of a solid which undergoes a transformation under the action of sufficient heat energy in such a way that its density increases. In particular, the volume and surface area of the powder decreases as a result of this heat effect. One can speak of sintering of the thermolabile powder. As a result, after the heat has been applied, the powder presents less volume or surface area to the incoming exhaust gas. Therefore, the exhaust back pressure of the filter decreases as described above. This decrease in exhaust back pressure is compensated for by the oil ash that accumulates in the filter over time and cannot be removed. By selecting a suitable powder, its original filtration efficiency and its exhaust back pressure can ideally be kept constant within certain ranges during the entire operation of the filter. The thermolability - ie the speed at which the powder loses its volume and surface - should correspond to this ideal as closely as possible. The thermolabile powder should therefore preferably show a reduction in surface area of 15-50%, preferably 20-40% and most preferably 25-35% after aging for 6 hours in the oven in the presence of air at 1000°C.
Der Einsatz eines thermolabilen Pulvers in der vorliegenden Erfindung läuft dem Trend zuwider, dass in Autoabgaskatalysatoren normalerweise hochoberflächige Trägersub stanzen für katalytisch aktive Metalle eingesetzt werden, die eine möglichst thermos tabile Oberfläche besitzen. Denn je stabiler die Oberfläche ist, desto weniger unterliegt ein Katalysator der thermisch induzierten Alterung durch Sinterung des Trägeroxids. Vorliegend jedoch geht es darum ein derartiges hochoberflächiges Pulver gezielt ther misch altern zu lassen. Im Prinzip können die gleichen Stoffe für die vorliegende Erfin dung herangezogen werden, die auch als normale Trägeroxide in Autoabgaskatalysato ren dienen, sofern sie in einer Form vorliegen, die eine wie oben charakterisierte Ther- molabilität aufweisen. Bei dem Pulver handelt es sich bevorzugt um hochoberflächige Oxide von Metallen, z.B. solche ausgewählt aus der Gruppe bestehend aus Alumini umoxid, Siliziumdioxid, Ceroxid, Zirkonoxid, Titandioxid oder Mischungen oder Mischoxide (feste Lösungen) derselben. Die Oxide besitzen vorzugsweise keine Dotie rung mit anderen Metallen, die zu einer besseren Stabilität führt. Mehr bevorzugt handelt es sich bei dem thermolabilen Pulver um Aluminiumoxid, ganz bevorzugt um ein undo tiertes Aluminiumoxid oder Mischoxide aus Aluminiumoxid und Siliziumoxid, wie z.B. Ze olithe. Insbesondere zeolithe können von ihrem Aufbau her maßgeschneidert für das vorliegende Problem ausgewählt bzw. synthetisiert werden. Sofern in der vorliegenden Erfindung von hochoberflächigen Oxiden die Rede ist, dann sind damit Oxide mit einer BET-Oberfläche von mehr als 10 m2/g, bevorzugt mehr als 30 m2/g und ganz besonders bevorzugt mehr als 50 m2/g gemeint. Der Fachmann weiß, wie er derartiger Oxide hab haft werden kann. The use of a thermolabile powder in the present invention runs counter to the trend that normally high surface area carrier substances for catalytically active metals are used in car exhaust gas catalysts, which have a surface which is as thermostable as possible. Because the more stable the surface, the less subject a catalyst is to thermally induced aging through sintering of the carrier oxide. In the present case, however, it is a question of allowing such a high-surface area powder to age thermally in a targeted manner. In principle, the same substances can be used for the present inventions that also serve as normal carrier oxides in car exhaust gas catalysts, provided they are in a form that has a thermal stability as characterized above. The powder is preferably high-surface oxides of metals, for example those selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium dioxide or mixtures or mixed oxides (solid solutions) thereof. The oxides are preferably not doped with other metals, which leads to better stability. The thermolabile powder is more preferably aluminum oxide, very preferably an undoped aluminum oxide or mixed oxides of aluminum oxide and silicon oxide, such as zeolites. In particular, zeolites can be selected or synthesized in a way that is tailor-made for the problem at hand in terms of their structure. If the present invention refers to oxides with a high surface area, this means oxides with a BET surface area of more than 10 m 2 /g, preferably more than 30 m 2 /g and very particularly preferably more than 50 m 2 /g . The person skilled in the art knows how to obtain such oxides.
Der erfindungsgemäße Filter kann nach Verfahren hergestellt werden, die weiter vorne als Stand der Technik beschrieben sind. Hierzu wird gemeinhin z.B. ein Metalloxidpulver mit einem Gas vermischt (http://www.tsi.com/Aerosolgeneratoren-und-disperqierer/; https://www.palas.de/de/product/aerosolgeneratorssolidparticles). Dieses so herge stellte Gemisch aus dem Gas und dem Pulver wird dann vorteilhafter Weise über einen Gasstrom in die Einlassseite des Wandflussfilters geführt. Unter Einlassseite wird der durch die Anströmkanäle/Eingangskanäle gebildete Teil des Filters gesehen. Die Ein gangsoberfläche wird durch die Wandoberflächen der Anströmkanäle/Eingangskanäle auf der Eingangsseite des Wandflussfilters gebildet. Für die Auslassseite gilt entspre chendes. The filter according to the invention can be manufactured according to methods which are described above as prior art. For this purpose, a metal oxide powder, for example, is generally mixed with a gas (http://www.tsi.com/Aerosolgeneratoren-und-disperqierer/; https://www.palas.de/de/product/aerosolgeneratorssolidparticles). This mixture of the gas and the powder produced in this way is then advantageously conducted via a gas flow into the inlet side of the wall-flow filter. The part of the filter formed by the inflow channels/inlet channels is seen on the inlet side. The entrance surface is defined by the wall surfaces of the inflow ducts/entrance ducts formed on the inlet side of the wall flow filter. The same applies to the outlet side.
Als Gase zur Herstellung des Aerosols und zum Einträgen in den Filter können alle dem Fachmann für den vorliegenden Zweck infrage kommende Gase herangezogen werden. Ganz besonders bevorzugt ist der Einsatz von Luft. Es können jedoch auch andere Re aktionsgase herangezogen werden, die entweder eine oxidierende (z.B. O2, NO2) oder eine reduzierende (z.B. H2) Aktivität gegenüber dem eingesetzten Pulver entwickeln kön nen. Ebenfalls kann sich bei bestimmten Pulvern der Einsatz von Inertgasen (z.B. N2) oder Edelgasen (z.B. He) als vorteilhaft erweisen. Auch Mischungen der aufgezählten Gase sind vorstellbar. All gases suitable for the person skilled in the art for the present purpose can be used as gases for the production of the aerosol and for the introduction into the filter. The use of air is very particularly preferred. However, other reaction gases can also be used which can develop either an oxidizing (e.g. O2, NO2) or a reducing (e.g. H2) activity towards the powder used. The use of inert gases (e.g. N2) or noble gases (e.g. He) can also prove advantageous for certain powders. Mixtures of the listed gases are also conceivable.
Um das Pulver ausreichend gut auf der Oberfläche der Filterwand auf der Einlassseite des Filters abscheiden zu können, ist eine gewisse Saugleistung von Nöten. Der Fach mann kann sich hier in orientierenden Versuchen für den jeweiligen Filter und das jewei lige Pulver selbst ein Bild machen. Es hat sich herausgestellt, dass das Aerosol (Pulver- Gas-Gemisch) vorzugsweise mit einer Geschwindigkeit von 5 m/s bis 50 m/s, mehr be vorzugt 10 m/s bis 40 m/s und ganz besonders bevorzugt 15 m/s bis 35 m/s durch den Filter gesaugt wird. Hierdurch wird ebenfalls eine vorteilhafte Adhäsion des applizierten Pulvers erreicht. In order to be able to separate the powder sufficiently well on the surface of the filter wall on the inlet side of the filter, a certain suction power is required. The specialist can form his own picture here in orienting tests for the respective filter and the respective powder. It has been found that the aerosol (powder-gas mixture) preferably has a speed of 5 m/s to 50 m/s, more preferably 10 m/s to 40 m/s and very particularly preferably 15 m/s up to 35 m/s is sucked through the filter. This also achieves advantageous adhesion of the applied powder.
Ein nach dem oben skizzierten Verfahren hergestellter Wandflussfilter sollte vorzugs weise das Pulver in den großen Poren vorliegen haben, da hauptsächlich diese für die eine schlechte Filtrationseffizienz des Filters verantwortlich sind. Dazu ist es bevorzugt, wenn das Pulver eine bestimmte Partikelgröße (gemessen gemäß neuester ISO 13320- 1 am Anmeldetag) nicht unterschreitet. Gewöhnlich liegen die D50-Werte des Pulvers zwischen 1 und 5 pm, bevorzugt zwischen 2 und 4 pm und ganz besonders bevorzugt um 3 pm. Hierdurch werden vorzugsweise die großen Poren des Filters blockiert, sodass dieser eine signifikant erhöhte Filtrationsleistung, aber auch einen größeren Gegendruck aufweist, als das Rohsubstrat. A wall-flow filter manufactured according to the method outlined above should preferably have the powder in the large pores, since these are mainly responsible for the poor filtration efficiency of the filter. For this purpose it is preferred if the powder does not fall below a certain particle size (measured according to the latest ISO 13320-1 on the filing date). The D50 values of the powder are usually between 1 and 5 μm, preferably between 2 and 4 μm and very particularly preferably around 3 μm. This preferably blocks the large pores of the filter, so that it has a significantly increased filtration performance, but also a greater back pressure than the raw substrate.
Die Filtrationsleistung oder anders ausgedrückt die Filtrationseffizienz des Pulver ent haltenden Filters sollte im frischen Zustand möglichst der entsprechen, die nach entspre chendem sachgemäßen Betrieb nach Ablagerung der Ölasche resultiert. In der Regel beträgt die Filtrationseffizienz des Pulver enthaltenden Filters im frischen Zustand zwi schen 85% - 99,9%, vorzugsweise > 87% und ganz besonders bevorzugt > 90%. Der Fachmann weiß, wie er die Filtrationseffizienz bestimmen kann. Ein weiterer wesentlicher Faktor, wie diese Filtrationseffizienz erreicht werden kann, ist die Menge an im Wandflussfilter abzuscheidendem Pulver. Sie sollte nicht zu hoch sein, um nicht einen zu hohen Abgasgegendruck des Filters im frischen Zustand zu kreieren, sollte aber groß genug sein, die anvisierte Frischfiltrationseffizienz zu erreichen. Für die hier ins Auge gefassten Wandflussfilter sollte das Pulver in einer Menge von 1 - 40 g/l, vorzugsweise 1 ,5 - 30 g/l und ganz bevorzugt 2 - 25 g/l auf dem Filter appliziert vorlie gen. The filtration performance or, to put it another way, the filtration efficiency of the filter containing powder should correspond as closely as possible to that which results after the oil ash has been deposited after proper operation. As a rule, the filtration efficiency of the filter containing powder in the fresh state is between 85% and 99.9%, preferably >87% and most preferably >90%. Those skilled in the art know how to determine filtration efficiency. Another key factor in how this filtration efficiency can be achieved is the amount of powder to be separated in the wall flow filter. It should not be too high in order not to create excessive exhaust gas back pressure of the filter when fresh, but it should be high enough to achieve the targeted fresh filtration efficiency. For the wall flow filter considered here, the powder should be applied to the filter in an amount of 1-40 g/l, preferably 1.5-30 g/l and very preferably 2-25 g/l.
Der erfindungsgemäß anvisierte Vergleich hinsichtlich des Abgasgegendrucks von ei nem erfindungsgemäß mit thermolabilen Pulver behandelten Wandflussfilter und einem unbehandelten gleichen Filter, bei dem nach einer äquivalenten Beaufschlagung mit par tikulären Abgasbestandteilen sich der Abgasgegendruck um max. 10%, vorzugsweise max. 7% und besonders bevorzugt max. 5% erhöht, sollte nach einer gewissen Zeit des sachgemäßen Betriebs des Filters erfolgen. Der Filter hat dann schon mehrere Filterre generationen hinter sich und das applizierte Pulver sollte zu diesem Zeitpunkt sein Vo lumen bzw. seine Oberfläche durch Wärmeeinwirkung nicht mehr ändern. Die Filterre generationen können auch künstlich in entsprechenden Anlagen simuliert werden. Vor teilhafter Weise wird die Erhöhung des Abgasgegendrucks für den angegebenen Ver gleich nach 10 aktiven Rußregenerationen bestimmt. Hierbei wirken auf den Filter wäh rend jeder Regeneration Temperaturen von ca. 700 - 800 °C für 5 - 10 Minuten ein. Dies sollte ausreichen, dass Pulver in den Poren des Wandflussfilters maximal sintern zu las sen. Der hier zu veranschlagende Test geht vorteilhafterweise von 10 Filterregeneratio nen aus, die jeweils 10 Minuten dauern und bei denen der Filter einer Temperatur von mindestens 800°C für 5 Minuten ausgesetzt ist. Bei künstlich herbeigeführten Tests ist die Aschemenge daher entsprechend zu dimensionieren, damit ein derartiger Tempera turverlauf sichergestellt werden kann. The comparison envisaged according to the invention with regard to the exhaust gas back pressure of a wall flow filter treated according to the invention with thermolabile powder and an untreated filter of the same type in which the exhaust gas back pressure increases by a maximum of 10%, preferably a maximum of 7% and particularly preferably a maximum of 5% increase should be done after a period of proper operation of the filter. The filter has then already undergone several filter regenerations and the applied powder should no longer change its volume or its surface due to the effect of heat at this point. The filter regenerations can also be artificially simulated in appropriate systems. Before geous way, the increase in the exhaust back pressure for the specified comparison is determined immediately after 10 active soot regenerations. Temperatures of approx. 700 - 800 °C act on the filter for 5 - 10 minutes during each regeneration. This should be sufficient to allow maximum sintering of powder in the pores of the wall flow filter. The test to be assessed here is advantageously based on 10 filter regenerations, each lasting 10 minutes and during which the filter is exposed to a temperature of at least 800°C for 5 minutes. In the case of artificially induced tests, the amount of ash must therefore be dimensioned accordingly so that such a temperature curve can be ensured.
In einer bevorzugten Ausführungsform kann der Filter vor der Beaufschlagung mit dem Pulver-Gas-Aerosol katalytisch beschichtet worden sein. Unter katalytischer Beschich tung wird vorliegend die Fähigkeit verstanden, schädlich Bestandteile des Abgases von Verbrennungsmotoren in weniger schädliche zu verwandeln. Insbesondere sind hier die Abgasbestandteile NOx, CO und HC sowie Partikel zu nennen. Diese katalytische Akti vität wird nach Maßgabe des Fachmanns durch eine Beschichtung des Wandflussfilters mit einem katalytisch aktiven Material bereitgestellt. Unter dem Begriff des Beschichtens wird demgemäß das Aufbringen von katalytisch aktiven Materialien auf den Wandfluss filter verstanden. Die Beschichtung übernimmt die eigentliche katalytische Funktion. Vorliegend erfolgt die Beschichtung durch das Aufbringen einer entsprechend wenig vis kosen wässrigen Suspension - auch Washcoat genannt - oder Lösung der katalytisch aktiven Komponenten auf den Wandflussfilter, siehe z. B. gemäß EP1789190B1. Nach dem Aufbringen der Suspension/Lösung wird der Wandflussfilter getrocknet und gege benenfalls bei erhöhter Temperatur kalziniert. Der katalytisch beschichtete Filter besitzt vorzugsweise eine Beladung von 20 g/l bis 200 g/l, vorzugsweise 30 g/l bis 150 g/l. Die geeignetste Beladungsmenge eines in der Wand beschichteten Filters hängt von seiner Zelldichte, seiner Wandstärke und der Porosität ab. Bei gängigen mittelporösen Filtern (<60% Porosität) mit z.B. 200 cpsi Zelldichte und 8 mil Wandstärke liegt die bevorzugte Beladung bei 20 g/l bis 50 g/l (bezogen auf das äußere Volumen des Filtersubstrats). Hochporöse Filter (>60% Porosität) mit z.B. 300 cpsi und 8 mil haben eine bevorzugte Beladungsmenge von 25 g/l bis 150 g/l besonders bevorzugt von 50 g/l bis 100 g/l.In a preferred embodiment, the filter can have been catalytically coated before being subjected to the powder/gas aerosol. In the present context, catalytic coating means the ability to convert harmful components of the exhaust gas from internal combustion engines into less harmful ones. In particular, the exhaust gas components NOx, CO and HC as well as particles should be mentioned here. According to the expert, this catalytic activity is provided by coating the wall-flow filter with a catalytically active material. The term coating is accordingly understood to mean the application of catalytically active materials to the wall flow filter. The coating takes on the actual catalytic function. In the present case, the coating is carried out by applying a correspondingly low-viscosity aqueous suspension—also called a washcoat—or a solution of the catalytically active components to the wall-flow filter, see e.g. B. according to EP1789190B1. After the suspension/solution has been applied, the wall-flow filter is dried and, if necessary, calcined at elevated temperature. The catalytically coated filter preferably has a loading of 20 g/l to 200 g/l, preferably 30 g/l to 150 g/l. The most suitable loading level of a wall-coated filter depends on its cell density, wall thickness and porosity. In the case of common medium-porous filters (<60% porosity) with, for example, 200 cpsi cell density and 8 mil wall thickness, the preferred load is 20 g/l to 50 g/l (related to the outer volume of the filter substrate). Highly porous filters (>60% porosity) with, for example, 300 cpsi and 8 mil have a preferred loading amount of 25 g/l to 150 g/l, particularly preferably 50 g/l to 100 g/l.
Im Prinzip sind alle dem Fachmann für den Autoabgasbereich bekannten Beschichtun gen für die vorliegende Erfindung geeignet. Bevorzugt kann die katalytische Beschich tung des Filters ausgewählt sein aus der Gruppe bestehend aus Dreiwegkatalysator, SCR-Katalysator, Stickoxidspeicherkatalysator, Oxidationskatalysator, Rußzündbe schichtung. Hinsichtlich der einzelnen in Frage kommenden katalytischen Aktivitäten und deren Erklärung wird auf die Ausführungen in der WO2011151711A1 verwiesen. Besonders vorteilhaft besitzt dieser eine katalytisch aktive Beschichtung aufweisend mindestens einen metallionenausgetauschten Zeolithen, Cer/Zirkoniummischoxid, Alu miniumoxid und Palladium, Rhodium oder Platin oder Kombinationen dieser Edelme talle. In principle, all coatings known to those skilled in the art for the automotive exhaust sector are suitable for the present invention. The catalytic coating of the filter can preferably be selected from the group consisting of a three-way catalytic converter, SCR catalytic converter, nitrogen oxide storage catalytic converter, oxidation catalytic converter, and soot ignition coating. With regard to the individual possible catalytic activities and their explanation, reference is made to the statements in WO2011151711A1. Particularly advantageously, this has a catalytically active coating comprising at least one metal ion-exchanged zeolite, cerium/zirconium mixed oxide, aluminum oxide and palladium, rhodium or platinum or combinations of these noble metals.
Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Abgassystem aufweisend ei nen erfindungsgemäßen Wandflussfilter und mindestens ein weiteres Aggregat zur Min derung schädlicher Abgasbestandteile ausgewählt aus der Gruppe bestehend aus Oxi dationskatalysator, Dreiwegkatalysator, SCR-Katalysator, Kohlenwasserstofffalle und Ammoniaksperrkatalysator. Ganz besonders bevorzugt ist der Einsatz eines Abgassys tems, welches einen motornahen Dreiwegkatalysator und einen abstromseitig, ebenfalls motornah positionierten mit einer dreiwegkatalytischen Beschichtung versehenen erfin dungsgemäßen Wandflussfilter aufweist. Auch bevorzugt ist, wenn das Abgassystem nach dem motornahen Dreiwegkatalysator einen im Unterboden des Fahrzeugs befind lichen mit einer dreiwegkatalytischen Beschichtung versehenen erfindungsgemäßen Wandflussfilter aufweist. Sofern im Text von Unterboden (uf) die Rede ist, so bezieht sich dies im Zusammenhang mit der vorliegenden Erfindung auf einen Bereich im Fahrzeug, bei dem der Katalysator im Abstand von 0,2 - 3,5 m, mehr bevorzugt 0,5 - 2 m und ganz besonders bevorzugt 0,7 - 1,5 m nach Ende des ersten motornahen Katalysators der wenigstens 2 Katalysa- toren, vorzugsweise unter der Fahrerkabine angebracht ist (Fig. 1). The present invention also relates to an exhaust system having a wall flow filter according to the invention and at least one other unit for reducing harmful exhaust gas components selected from the group consisting of oxidation catalyst, three-way catalyst, SCR catalyst, hydrocarbon trap and ammonia blocking catalyst. The use of an exhaust gas system is particularly preferred which has a three-way catalytic converter close to the engine and a wall-flow filter according to the invention, also positioned close to the engine and provided with a three-way catalytic coating. It is also preferred if the exhaust gas system has a wall flow filter according to the invention provided with a three-way catalytic coating located in the underbody of the vehicle downstream of the close-coupled three-way catalytic converter. Where the word underbody (uf) is mentioned in the text, this refers in connection with the present invention to an area in the vehicle in which the catalytic converter is at a distance of 0.2 - 3.5 m, more preferably 0.5 - 2 m and very particularly preferably 0.7-1.5 m after the end of the first close-coupled catalytic converter of the at least 2 catalytic converters, preferably under the driver's cab (FIG. 1).
Als motornah (cc) wird im Rahmen dieser Erfindung eine Anordnung des Katalysators in einem Abstand vom Abgasauslass der Zylinder des Motors von weniger als 120 cm, bevorzugt weniger als 100 cm und ganz besonders bevorzugt weniger als 50 cm be zeichnet. Bevorzugt ist der motornahe Katalysator direkt nach der Zusammenführung der Abgaskrümmer in die Abgasleitung angeordnet. In the context of this invention, close-coupled (cc) is an arrangement of the catalytic converter at a distance from the exhaust gas outlet of the cylinder of the engine of less than 120 cm, preferably less than 100 cm and very particularly preferably less than 50 cm. The catalytic converter close to the engine is preferably arranged directly after the exhaust manifold is merged into the exhaust pipe.
Die Erfindung wird in den nachstehenden Beispielen näher erläutert. The invention is explained in more detail in the following examples.
Nicht erfindungsgemäßes Vergleichsbeispiel VGPF1 : Comparative example VGPF1 not according to the invention:
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase odymoxid umfasste, und einer zweiten Sauerstoffspeicher-komponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicherkomponenten wurden zu gleichen Teilen eingesetzt. Das Ge wichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Be schichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wand flussfiltersubstrats eingesetzt, wobei die Beschichtung über 100% der Substratlänge in die poröse Filterwand eingebracht wurde. Die Gesamtbeladung dieses Filters betrug 75 g/l, die Gesamtedelmetallbeladung 1 ,986 g/l mit einem Verhältnis von Palladium zu Rho dium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Er wird nachstehend als VGPF1 bezeichnet. Alumina stabilized with lanthana was combined with a first oxygen storage component comprising 40% by weight ceria, zirconia, lanthana and praseodymia and a second oxygen storage component comprising 24% by weight ceria, zirconia, lanthana and yttria. suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of alumina and oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring. The resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, with the coating being introduced into the porous filter wall over 100% of the substrate length. The total loading of this filter was 75 g/l, the total precious metal loading was 1.986 g/l with a ratio of palladium to rhodium of 5:1. The coated filter obtained in this way was dried and then calcined. It is hereinafter referred to as VGPF1.
Erfindungsgemäßes Vergleichsbeispiel GPF1 : Comparative example GPF1 according to the invention:
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase odymoxid umfasste, und einer zweiten Sauerstoffspeicher-komponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicherkomponenten wurden zu gleichen Teilen eingesetzt. Das Ge wichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Be schichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wand flussfiltersubstrats eingesetzt, wobei die Beschichtung über 100% der Substratlänge in die poröse Filterwand eingebracht wurde. Die Gesamtbeladung dieses Filters betrug 75 g/l, die Gesamtedelmetallbeladung 1 ,986 g/l mit einem Verhältnis von Palladium zu Rho dium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Anschließend wurde dieser Filter mit einem Aerosol (Pulver-Gas-Gemisch) beschichtet, bei dem 7 g/l Aluminiumoxid auf dem Filter abgeschieden wurden. Dieser Filter wird im Folgenden als GPF1 bezeichnet. Alumina stabilized with lanthana was combined with a first oxygen storage component comprising 40% by weight ceria, zirconia, lanthana and praseodymia and a second oxygen storage component comprising 24% by weight ceria, zirconia, lanthana and yttria. suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of alumina and oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring. The resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, with the coating being introduced into the porous filter wall over 100% of the substrate length. The total loading of this filter was 75 g/l, the total precious metal loading was 1.986 g/l with a ratio of palladium to rhodium of 5:1. The coated filter obtained in this way was dried and then calcined. This filter was then sprayed with an aerosol (powder-gas mixture) coated, in which 7 g/l aluminum oxide were deposited on the filter. This filter is hereinafter referred to as GPF1.
Anschließend wurden der VGPFl und der GPFl bezüglich ihrer physikalischen Eigen schaften Filtrationseffizienz und Gegendruckverhalten charakterisiert. Zunächst wurden die beiden Filter am Kaltgasprüfstand bei einem Volumenstrom von 600 m3/h bezüglich des Gegendrucks vermessen. Dabei wies der Filter VGPF1 ein Druckverlust von 36,4 mbar auf, während der erfindungsgemäße Filter GPF1 einen entsprechenden höheren Gegendruck von 42 mbar aufwies. Dieser Unterschied entspricht einer Erhöhung des Gegendrucks von GPF1 gegenüber VGPF1 von 15%, was auf die Abscheidung des Alu miniumoxids zurückzuführen ist. Anschließend wurden die beiden Filter am Motorprüf stand bezüglich ihrer Filtrationsleistung untersucht. Hierzu wurden die Filter in Motorna her Position, abströmseitig eines herkömmlichen Dreiwegekatalysator, in den Abgas strang eingebaut und im sogenannten WLTP Zyklus zwischen zwei Partikelzählern ver messen. Hierbei zeigte der Filter VGPF1 eine Filtrationseffizienz von 60% während der erfindungsgemäße Filter, aufgrund der filtrationseffizienzerhöhenden Beschichtung, eine Filtrationseffizienz von 76% aufwies. The VGPFl and the GPFl were then characterized with regard to their physical properties, filtration efficiency and back pressure behavior. First, the back pressure of the two filters was measured on the cold gas test stand at a volume flow of 600 m 3 /h. The filter VGPF1 had a pressure loss of 36.4 mbar, while the filter GPF1 according to the invention had a correspondingly higher back pressure of 42 mbar. This difference corresponds to a 15% increase in the back pressure of GPF1 over VGPF1, which is due to the deposition of the alumina. The two filters were then examined on the engine test bench with regard to their filtration performance. For this purpose, the filters were installed in the exhaust system in a position close to the engine, on the downstream side of a conventional three-way catalytic converter, and measured between two particle counters in the so-called WLTP cycle. Here, the filter VGPF1 showed a filtration efficiency of 60%, while the filter according to the invention had a filtration efficiency of 76% due to the filtration efficiency-increasing coating.
Im weiteren Verlauf wurde der Filter GPF1 für 10h bei 1100°C unter Luftatmosphäre getempert und anschließend erneut vermessen. Dabei zeigte sich, dass der Filter nach der Temperaturexposition am Kaltgasprüfstand, bei dem selben Volumenstrom wie zu vor, einen Gegendruck von nur noch 37,1 mbar aufwies. Dies entspricht einer Gegen druckerhöhung gegenüber dem VGPF1 von lediglich 2%. Obwohl sich der Gegendruck des Filters nach der Temperaturbehandlung verringert hat, weist der Filter weiterhin eine unverändert hohe Filtrationsleistung auf. Somit ist diese Methode bestens dafür geeignet Filter bereitzustellen, die eine initial erhöhte Filtrationsleistung aufweisen und diese auch im Dauerbetrieb beibehalten und die zugleich im laufenden Betrieb einen immer kleiner werdenden Gegendruck, durch die Sinterung des Filtrationseffizienzmaterials, aufwei sen. The filter GPF1 was then tempered for 10 hours at 1100°C in an air atmosphere and then measured again. It was found that after the temperature exposure on the cold gas test stand, the filter had a back pressure of only 37.1 mbar with the same volume flow as before. This corresponds to a back pressure increase of only 2% compared to the VGPF1. Although the back pressure of the filter has decreased after the temperature treatment, the filter still has an unchanged high filtration performance. This method is therefore ideally suited for providing filters that have an initially increased filtration performance and maintain this during continuous operation and at the same time have an ever-decreasing back pressure during operation due to the sintering of the filtration efficiency material.

Claims

Patentansprüche patent claims
1. Wandflusspartikelfilter zur Reinigung der Abgase eines Ottomotors, dadurch gekennzeichnet, dass dieser auf und/oder in seiner Eingangsoberfläche ein thermolabiles Pulver ent- hält, welches die Filtrationseffizienz des Filters im frischen Zustand erhöht und dessen Oberfläche bzw. Volumen während des sachgemäßen Betriebs des Fil ters dergestalt abnimmt, dass eine Erhöhung des Abgasgegendrucks gegenüber einem nicht mit dem thermolabilen Pulver behandelten Filter nach einer äquiva lenten Beaufschlagung mit partikulären Abgasbestandteilen um max. 10% zu verzeichnen ist. 1. Wall-flow particle filter for cleaning the exhaust gases of a gasoline engine, characterized in that it contains a thermolabile powder on and/or in its input surface, which increases the filtration efficiency of the filter when fresh and whose surface or volume during proper operation of the fil ters decreases in such a way that an increase in the exhaust gas back pressure compared to a filter not treated with the thermolabile powder after an equivalent exposure to particulate exhaust gas components by a maximum of 10% is recorded.
2. Wandflussfilter nach Anspruch 1, dadurch gekennzeichnet, dass das thermolabile Pulver eine Reduktion der Oberfläche um 15-50% nach Alte rung für 6 Stunden im Ofen bei 1000 °C zeigt. 2. Wall-flow filter according to claim 1, characterized in that the thermolabile powder shows a reduction in surface area by 15-50% after aging for 6 hours in an oven at 1000°C.
3. Wandflussfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als thermolabiles Pulver ein undotiertes Metalloxid ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Siliziumdioxid, Ceroxid, Zirkonoxid, Titandioxid oder Mischungen oder Mischoxide (feste Lösungen) derselben verwendet wird. 3. Wall-flow filter according to one of the preceding claims, characterized in that an undoped metal oxide selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium dioxide or mixtures or mixed oxides (solid solutions) thereof is used as the thermolabile powder.
4. Wandflussfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Filtrationseffizienz des Pulver enthaltenden Filters im frischen Zustand zwi schen 85 - 99,9 % beträgt. 4. Wall-flow filter according to one of the preceding claims, characterized in that the filtration efficiency of the filter containing powder in the fresh state is between 85-99.9%.
5. Wandflussfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Pulver in einer Menge von 1 - 40 g/l auf den Filter appliziert wird. 5. Wall-flow filter according to one of the preceding claims, characterized in that the powder is applied to the filter in an amount of 1-40 g/l.
6. Wandflussfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erhöhung des Abgasgegendrucks für den angegebenen Vergleich nach 10 aktiven Rußregenerationen bestimmt wird. 6. Wall-flow filter according to one of the preceding claims, characterized in that the increase in the exhaust gas back pressure for the specified comparison is determined after 10 active soot regenerations.
7. Wandflussfilter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Filter vor der Beaufschlagung mit dem thermolabilen Pulver katalytisch be schichtet worden ist. 7. Wall-flow filter according to one of the preceding claims, characterized in that the filter has been catalytically coated before being acted upon with the thermolabile powder.
8. Abgassystem aufweisend einen Wandflussfilter gemäß einem der vorhergehen den Ansprüche und mindestens einem weiteren Aggregat zur Minderung schädli cher Abgasbestandteile ausgewählt aus der Gruppe bestehend aus Oxidations katalysator, Dreiwegkatalysator, SCR-Katalysator, Kohlenwasserstofffalle und Ammoniaksperrkatalysator.Abgassystem nach Anspruch 8, dadurch gekennzeichnet, dass dieses einen motornahen Dreiwegkatalysator aufweist und einen im Unterboden des Fahrzeugs befindlichen mit einer dreiwegkatalytischen Beschichtung verse henen Wandflussfilter gemäß einem der Ansprüche 1 - 7. 8. Exhaust system having a wall flow filter according to one of the preceding claims and at least one further unit for reducing harmful exhaust gas components selected from the group consisting of oxidation catalytic converter, three-way catalytic converter, SCR catalytic converter, hydrocarbon trap and ammonia blocking catalytic converter.Exhaust gas system according to claim 8, characterized in that this has a close-coupled three-way catalytic converter and a wall-flow filter according to one of claims 1 - 7 which is located in the underbody of the vehicle and is provided with a three-way catalytic coating.
EP22720306.4A 2021-03-23 2022-03-22 Method for increasing the fresh filtration of gasoline particle filters Pending EP4313366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021107130.5A DE102021107130B4 (en) 2021-03-23 2021-03-23 Device for increasing the fresh filtration of petrol particle filters
PCT/EP2022/057428 WO2022200311A1 (en) 2021-03-23 2022-03-22 Method for increasing the fresh filtration of gasoline particle filters

Publications (1)

Publication Number Publication Date
EP4313366A1 true EP4313366A1 (en) 2024-02-07

Family

ID=81454635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22720306.4A Pending EP4313366A1 (en) 2021-03-23 2022-03-22 Method for increasing the fresh filtration of gasoline particle filters

Country Status (5)

Country Link
US (1) US20240159175A1 (en)
EP (1) EP4313366A1 (en)
CN (1) CN117083118A (en)
DE (1) DE102021107130B4 (en)
WO (1) WO2022200311A1 (en)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609563A (en) 1985-02-28 1986-09-02 Engelhard Corporation Metered charge system for catalytic coating of a substrate
JPH01151706A (en) 1987-12-08 1989-06-14 Toyota Central Res & Dev Lab Inc Catalyst and filter for removing combustible fine particles and nitrogen oxide
GB9805815D0 (en) 1998-03-19 1998-05-13 Johnson Matthey Plc Manufacturing process
US6478874B1 (en) 1999-08-06 2002-11-12 Engelhard Corporation System for catalytic coating of a substrate
DE10014547B4 (en) 2000-03-23 2005-09-29 Umicore Ag & Co. Kg Method of partially coating a support body
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
DE102004040551A1 (en) 2004-08-21 2006-02-23 Umicore Ag & Co. Kg Process for coating a wall-flow filter with a coating composition
EP2106835B1 (en) 2006-11-30 2019-06-19 Hitachi Metals, Ltd. System comprising a ceramic honeycomb filter and method for manufacturing the same
JP5378659B2 (en) 2007-06-07 2013-12-25 株式会社キャタラー Precious metal loading method
KR101663329B1 (en) 2008-08-06 2016-10-06 바스프 에스이 Positioning device and method with rotary indexing table for monolith-based automobile and chemical catalysts
EP2363206B1 (en) 2008-11-21 2018-08-15 Nissan Motor Co., Ltd. Particulate substance removing material, particulate substance removing filter catalyst using particulate substance removing material, and method for regenerating particulate substance removing filter catalyst
CN102387862B (en) 2009-04-03 2014-05-28 株式会社科特拉 Method and device for manufacturing exhaust emission control catalyst and nozzle used for the device
GB201000019D0 (en) 2010-01-04 2010-02-17 Johnson Matthey Plc Coating a monolith substrate with catalyst component
JP5524696B2 (en) 2010-04-22 2014-06-18 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
GB201100595D0 (en) 2010-06-02 2011-03-02 Johnson Matthey Plc Filtration improvements
JP5782124B2 (en) 2010-09-01 2015-09-24 ダウ グローバル テクノロジーズ エルエルシー Method of applying discriminating layer on porous ceramic filter by prefabricated porous aggregate mounted on gas
JP5597153B2 (en) 2011-03-24 2014-10-01 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
JP5643692B2 (en) 2011-03-25 2014-12-17 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
DE102012220181A1 (en) 2012-11-06 2014-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. particulate Filter
JP6177570B2 (en) 2013-04-12 2017-08-09 株式会社キャタラー Slurry coating device
DE102018108346A1 (en) * 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Coated wall flow filter
DE102018110804B4 (en) * 2018-05-04 2024-06-27 Umicore Ag & Co. Kg Coated wall flow filter
DE102018127953A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Wall flow filter with high filtration efficiency
GB201911702D0 (en) * 2019-08-15 2019-10-02 Johnson Matthey Plc Particulate filters

Also Published As

Publication number Publication date
US20240159175A1 (en) 2024-05-16
WO2022200311A1 (en) 2022-09-29
DE102021107130B4 (en) 2022-12-29
DE102021107130A1 (en) 2022-09-29
CN117083118A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
DE102018110804B4 (en) Coated wall flow filter
EP1789161B1 (en) Catalytically coated particle filter and method for producing the same and its use
DE102010002425B4 (en) filter
EP2319606B2 (en) Diesel particulate filter with improved back pressure properties
WO2020094760A1 (en) Catalytically active particle filter with a high degree of filtration efficiency
EP3774036A1 (en) Coated wall-flow filter
DE102014105736A1 (en) A spark-ignition engine and exhaust system comprising a catalyzed zoned filter substrate
DE102014117672A1 (en) WALL CURRENT FILTER CONTAINING A CATALYTIC WASHCOAT
EP3877634B1 (en) High-filtration efficiency wall-flow filter
DE102016111766A1 (en) CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE
WO2020141190A1 (en) Method for producing catalytically active wall flow filters
WO2022129010A1 (en) Catalytically active particle filter with a high degree of filtration efficiency
WO2022129027A1 (en) Catalytically active particulate filter with a high degree of filtering efficiency
EP3946692A1 (en) Catalytically active particulate filter
WO2022129023A1 (en) Catalytically active particulate filter having a high degree of filtering efficiency
DE102021107130B4 (en) Device for increasing the fresh filtration of petrol particle filters
WO2022129014A1 (en) Catalytically active particulate filter having a high degree of filtering efficiency
WO2022069465A1 (en) Bismut containing dieseloxidation catalyst
WO2024028197A1 (en) Catalytically active particulate filter with a high degree of filtration efficiency and oxidation function
WO2023052580A1 (en) Catalytically active particle filter with a high degree of filtration efficiency
WO2021032702A1 (en) Catalyst for reducing ammonia emissions
EP4313376A1 (en) Particle filter for exhaust gas of gasoline engines
WO2022112376A1 (en) Exhaust gas purification system for stoichiometric-combustion engines
DE102021112955A1 (en) Coating process for a wall flow filter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UMICORE AG & CO. KG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)