EP4302897A1 - Method for producing a tubular component - Google Patents

Method for producing a tubular component Download PDF

Info

Publication number
EP4302897A1
EP4302897A1 EP22183429.4A EP22183429A EP4302897A1 EP 4302897 A1 EP4302897 A1 EP 4302897A1 EP 22183429 A EP22183429 A EP 22183429A EP 4302897 A1 EP4302897 A1 EP 4302897A1
Authority
EP
European Patent Office
Prior art keywords
die
tube
relative movement
counterforce element
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22183429.4A
Other languages
German (de)
French (fr)
Inventor
Marcel Wellpott
Sandor Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Steel/tube & Co Kg GmbH
Original Assignee
Benteler Steel Tube GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Steel Tube GmbH filed Critical Benteler Steel Tube GmbH
Priority to EP22183429.4A priority Critical patent/EP4302897A1/en
Publication of EP4302897A1 publication Critical patent/EP4302897A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/04Reducing; Closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/063Making machine elements axles or shafts hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the invention relates to a method for producing a pipe component according to the features of patent claim 1.
  • the outer diameter of the pipe end is often reduced using axial forming.
  • the procedure is also known as retraction.
  • an external tool with a smaller inner diameter is moved axially over the end of the pipe. This process automatically results in an increase in the pipe wall thickness when drawn in, i.e. H. in the area with reduced diameter.
  • the invention is based on the object of demonstrating a cost-effective method that can be carried out with little manufacturing effort for producing a pipe component with an end region of reduced diameter, the increase in wall thickness in the end region being greater than that which results from the mere drawing in during axial cold forming .
  • the method according to the invention for producing a pipe component includes providing a pipe or a piece of pipe made of steel with a first end and a second end.
  • the outside diameter of the first end should be reduced. This is done by means of a relative movement between the tube and a die that accommodates the inside of the tube.
  • the die has an effective inside diameter that is smaller than the outside diameter of the pipe.
  • the relative movement for forming the tube takes place in the axial direction of the tube.
  • the relative movement can be achieved by moving the die relative to the stationary tube or by moving the tube relative to one fixed matrix.
  • the term relative movement also covers the movement of both components.
  • the term effective inside diameter refers to the inside diameter that comes into effective engagement with the pipe.
  • the effective inner diameter can decrease in the further course, particularly starting from an opening of the die.
  • the shape of the inner diameter is particularly funnel-shaped on the mouth side of the die.
  • the forming takes place using a single forming stroke.
  • the forming stroke corresponds to the relative movement of the second end of the tube with respect to the die.
  • the first end of the tube to be formed carries out a relative movement with respect to the die that deviates from this relative movement.
  • the second end of the pipe is guided. This second relative movement is a guided relative movement.
  • the relative movement of the first end is unguided in a first forming phase and is guided in a second forming phase that immediately follows.
  • the outside diameter of the first end is reduced to the smallest effective inside diameter in the die with free relative movement. This means that one face of the first end has passed through a funnel-shaped mouth and has reached the narrowest point of the die.
  • the outer diameter is reduced while increasing the wall thickness of the first end by the relative movement of the tube in the second forming phase taking place against a counterforce element in the die.
  • the counterforce element is preferably located at a short distance from the funnel-shaped mouth area of the die and is ready for contact with the approaching end face of the first end in order to exert said force upon contact and to influence the deformation of the first end through its braking effect. It is moved so that a certain axial relative movement of the first end is continued until the forming stroke is completed. The relative movement of the first end is guided in this forming phase.
  • the method according to the invention therefore provides for retraction in combination with a counterforce.
  • the retracted end of the tube is typically elongated slightly and the wall thickness increases slightly.
  • the pipe When pulled in with counterforce, the pipe hardly elongates, but the wall thickness is significantly increased.
  • the counterforce element presses on the face of the retracted end.
  • the process can be carried out in one step and cold, i.e. the area to be formed is preferably not heated locally. Compared to hot forming processes, the entire forming process is significantly simpler and places fewer demands on production technology. In addition, due to the lack of heating, energy is saved and scaling of the surface and subsequent blasting are avoided.
  • the method according to the invention cannot be assigned to axial cold extrusion, since the resulting increase in wall thickness does not occur because a mandrel delimiting the inside diameter of the reduced end is inserted into the pipe, but because the inside diameter is formed exclusively by applying a force to the end face of the first end is exercised.
  • the counterforce element does not intervene in the inside diameter of the tube in a shaping manner, i.e. either not at all or at least not with the aim of coming into contact with the inside of the first tube end in order to define or limit the inside diameter during shaping.
  • the effort required to pull in the pipe end is significantly lower than if the pipe end is completely plasticized at comparatively high degrees of deformation.
  • a manufacturing technology that is cheaper than cold extrusion and is also less complex can be used.
  • the increase in wall thickness occurs without shaping contact of the counterforce element with an inside of the first pipe end.
  • the counterforce element has a radially central region that projects into the end to be formed, but not in order to limit a radially inner mold cavity or to influence the wall thickness.
  • the wall thickness is formed without any internal contact. i.e. the material of the pipe is not moved from radially outside to radially inside against a shaping element Internal mandrel pressed, but only limited in its flow movement in the axial direction. This limitation in the axial direction causes compression.
  • the position of the counterforce element within the die is regulated or controlled during the relative movement of the tube, so that increasing the wall thickness and reducing the outside diameter can be carried out in a one-step process step.
  • a counterforce according to the invention that is well coordinated with the pulling-in process results in the wall thickness of the pipe increasing significantly beyond the natural dimension during the pulling-in process.
  • the additional increase in wall thickness can be controlled via the level of the counterforce.
  • the movement of the counterforce element can be force-controlled, that is, depending on the force with which it presses on the end face.
  • the die when pulling in the pipe end, the die is moved axially over the first end of the pipe. Meanwhile, the movement of the counterforce element is decoupled from the movement of the die. Preferably, the movement of the counterforce element takes place in such a way that the counterforce element presses against the end face of the tube with a constant force.
  • the force with which the counterforce element pushes is smaller than the driving force with which the tube is moved relative to the die.
  • the driving force is always greater because this force simultaneously presses against a shoulder of the die to reduce the pipe diameter.
  • constant force means a force that does not fluctuate more than +/-20% around a nominal force during reduction.
  • a force that is variable over the forming time or the forming path is specifically set in order to set defined wall thickness profiles or to even out the wall thickness profile.
  • the outside diameter at the first end is preferably reduced by at least 10%.
  • the outside diameter is not reduced to such an extent that the end of the pipe is closed. It remains permeable in the axial direction, only the outer diameter in the retracted area of the first end should be reduced. However, according to the invention, it is not excluded that the tube is completely closed in further processing steps in other tools.
  • a conical transition area is created between the first end, which has a reduced outside diameter, and the second end of the pipe.
  • the tube is in particular circular cylindrical.
  • the outside diameter is uniformly reduced at the first end. Uniform means that the outer diameter is reduced evenly over the entire outer circumference.
  • the matrices are also circular.
  • the counterforce element preferably has a contact surface that runs parallel to the end face of the pipe end. In this case, all areas of the end face are evenly subjected to the force of the counterforce element.
  • the end face of the tube is also preferably arranged perpendicular to the axial direction, so that there is a uniform compression over the entire circumference of the tube.
  • the compression should increase the wall thickness in some areas by at least 10%. Increasing the wall thickness occurs without internal support.
  • the wall thickness can vary in areas over the axial length of the first end. At least in one length range, the wall thickness should be increased by at least 5%, preferably at least 8%, in particular at least 10% compared to the initial thickness. This means that a smaller increase in wall thickness can occur in other areas of the first pipe end, particularly in the immediate vicinity of the counterforce element, ie in the area of the end face of the pipe. Tests have shown that a greater increase in wall thickness can occur at a distance from the counterforce element by pushing the pipe and the greater plasticization there than at the end face. The degrees of deformation in the first pipe end are therefore greater at a distance from the end face than at the end face itself. This results in a non-constant axial wall thickness progression in the area of the first pipe end, which has a reduced diameter.
  • the method according to the invention is carried out in particular with pipes made of tempered martensitic steel, or also with pipes made of hardenable steel alloys, which are hardened or tempered in particular after the forming described above.
  • Further process steps can include hardening or tempering before reducing, surface hardening or coating after reducing for the purpose of corrosion protection.
  • the process is particularly suitable for producing rotor shafts.
  • Figure 1 shows, according to the prior art, a pipe 1 with a first end 2 and a second end 3.
  • the pipe 1 is made of steel.
  • the tube 1 has an original outside diameter AD1 and, after pushing a die 4 onto the first tube end 2, a reduced outside diameter AD2.
  • the first end is now retracted, i.e. reduced in outside diameter.
  • the original inside diameter ID1 was reduced to the reduced inside diameter ID2 at the first end 2.
  • the original wall thickness WD1 increased to the wall thickness WD2 within the first end 2.
  • the first end 2 was compressed. The compression was carried out without any counterforce from tools within the die but only by axially displacing the tube 1 against a funnel-shaped or conical insertion funnel 5 of the die 4.
  • the exemplary embodiment of the Figure 2 shows the method according to the invention.
  • the tube 1 is also inserted into the die 4, but there is a counterforce element 6 in the die 4, which in a second forming phase exerts a force F1 on an end face 7 of the first end 2 of the tube element 1.
  • the second forming phase begins when the end face 7 touches the counterforce element 6.
  • the previous first forming phase which is characterized by the lack of contact with the counterforce element 6, ends at this point in time.
  • the forming is not stopped between these two forming phases, but is continued continuously.
  • the wall thickness WD2 in the area of the first end 2 increases more due to the compression by means of the force F1 than during free forming without a counterforce element 6, as shown in Figure 1 is shown.
  • the increase in wall thickness occurs without shaping internal parts that protrude into the tube, ie the mold cavity is open radially inwards.
  • An inside 8 of the first end 2 of the tube 1 is not contacted by the counterforce element 6 for shaping.
  • the counterforce element 6 is displaceable within the die 4 in the axial direction of the tube 1. Its outer diameter is adapted to the inner diameter ID3 of the die 4.
  • the invention assumes that both the tube 1 and the die 4 are circular cylindrical.
  • the invention further provides that the outer diameter AD1 of the pipe 1 is reduced by at least 10% and, in addition, the wall thickness WD2 in the circumferential area shown is increased by at least 10% compared to the initial wall thickness WD1.
  • the position of the counterforce element 6 within the die 4 is controlled so that the counterforce element 6 presses against the end face 7 of the first end 2 of the tube 1 with a predetermined force F1.
  • the force F1 is smaller than the driving force FA with which the tube 1 is pressed into the die 4 against the insertion funnel 5.
  • the Figures 3 - 6 show a possible production sequence.
  • the cold tube 1 is inserted into the dies 4 ( Figure 3 ).
  • the outside diameter is reduced ( Figure 4 ).
  • the counterforce element 6 is located at a distance from the narrowest point of the insertion funnel 5 of the die 4. Therefore the counterforce element 6 is not initially touched by the partially retracted tube 1.
  • the counterforce element 6 is displaced in the same direction as the tube 1, ie to the left in the image plane into the die 4, ie in the forming direction.
  • the displacement takes place in such a way that a sufficiently large counterforce is built up so that the retracted end 2 of the tube 1 is compressed and the wall thickness increases to the desired extent.
  • the Figure 6 shows the final position of the counterforce element 6 after the forming has been completed.
  • the Figures 3 to 6 show that the tube 1 is displaced relative to the die 4.
  • the invention includes that the die 4 with the counterforce element is pushed over a stationary tube 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Extraction Processes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Rohrbauteils mit folgenden Schritten:
a. Bereitstellen eines Rohrs 1 aus Stahl mit einem ersten Ende 2 und mit einem zweiten Ende 3;
b. Reduzieren des Außendurchmessers des ersten Endes 2 mittels einer Relativbewegung zwischen dem Rohr 1 und einer das Rohr 1 innen aufnehmenden Matrize 4 , wobei die Matrize 4 einen Innendurchmesser ID3 besitzt, der kleiner ist als der Außendurchmesser AD1 des Rohrs 1, und wobei die Relativbewegung zur Umformung des Rohrs 1 in Axialrichtung des Rohrs 1erfolgt;
c. Das Reduzieren des Außendurchmessers AD1 erfolgt unter Zunahme der Wanddicke WD1 des ersten Endes 2, indem die Relativbewegung des Rohrs 1 gegen ein Gegenkraftelement 6 in der Matrize 4 erfolgt, das eine Kraft F1 ausschließlich auf eine Stirnseite 7 des ersten Endes 2 ausübt.

Figure imgaf001
The invention relates to a method for producing a pipe component with the following steps:
a. Providing a pipe 1 made of steel with a first end 2 and with a second end 3;
b. Reducing the outer diameter of the first end 2 by means of a relative movement between the tube 1 and a die 4 internally receiving the tube 1, the die 4 having an inner diameter ID3 that is smaller than the outer diameter AD1 of the tube 1, and the relative movement for forming of the tube 1 in the axial direction of the tube 1;
c. The outer diameter AD1 is reduced by increasing the wall thickness WD1 of the first end 2 by the relative movement of the tube 1 against a counterforce element 6 in the die 4, which exerts a force F1 exclusively on an end face 7 of the first end 2.
Figure imgaf001

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Rohrbauteils gemäß den Merkmalen des Patentanspruchs 1.The invention relates to a method for producing a pipe component according to the features of patent claim 1.

Im Rahmen der Weiterverarbeitung von Stahlrohren wird häufig der Außendurchmesser des Rohrendes mittels Axialumformung reduziert. Das Verfahren wird auch als Einziehen bezeichnet. Hierbei wird ein Außenwerkzeug kleineren Innendurchmessers axial über das Rohrende verfahren. Durch diesen Prozess ergibt sich automatisch eine Erhöhung der Rohrwanddicke im eingezogenen, d. h. in dem im Durchmesser reduzierten Bereich.As part of the further processing of steel pipes, the outer diameter of the pipe end is often reduced using axial forming. The procedure is also known as retraction. Here, an external tool with a smaller inner diameter is moved axially over the end of the pipe. This process automatically results in an increase in the pipe wall thickness when drawn in, i.e. H. in the area with reduced diameter.

Es gibt Anwendungsfälle, z.B. Rotorwellen, bei denen eine deutliche Erhöhung der Wanddicke im Bereich der eingezogenen Enden erforderlich ist. Die geforderte Erhöhung der Wanddicke kann über der Wanddicke liegen, welche sich durch das Einziehen ergibt. Mittels der partiellen Warmumformung lässt sich dieses Ziel erreichen. Hierbei wird der umzuformende Bereich lokal erwärmt, insbesondere auf Temperaturen über 800°C und dann umgeformt. Neben der zusätzlichen Energieeinbringung ist ein Warmumformprozess in der Regel deutlich komplexer und stellt höhere Anforderungen an die Fertigungstechnik im Vergleich zur Kaltumformung.There are applications, such as rotor shafts, where a significant increase in wall thickness in the area of the retracted ends is required. The required increase in wall thickness can be greater than the wall thickness resulting from the Pulling in results. This goal can be achieved using partial hot forming. Here, the area to be formed is heated locally, in particular to temperatures above 800°C, and then formed. In addition to the additional energy input, a hot forming process is usually significantly more complex and places higher demands on the production technology compared to cold forming.

Ein anderer denkbarer Lösungsansatz ist das Kaltfließpressen. Charakteristisch hierbei ist, dass in der letzten von mehreren Umformstufen das Werkzeug das Negativ des fertigen Bauteils bildet. In dieser letzten Stufe wird unter Einsatz hoher Umformkräfte die geforderte Kontur des Werkstücks erzeugt. Da hierbei das gesamte Werkstück plastifiziert wird, sind hohe Umformgrade möglich. Die notwendige Fertigungstechnik ist aufgrund der hohen benötigten Umformkräfte komplex und kostenintensiv.Another possible solution is cold extrusion. What is characteristic here is that in the last of several forming stages, the tool forms the negative of the finished component. In this final stage, the required contour of the workpiece is created using high forming forces. Since the entire workpiece is plasticized, high degrees of deformation are possible. The necessary manufacturing technology is complex and cost-intensive due to the high forming forces required.

Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges und mit einem geringen fertigungstechnischen Aufwand durchführbares Verfahren zur Herstellung eines Rohrbauteils mit einem im Durchmesser reduzierten Endbereich aufzuzeigen, wobei die Zunahme der Wanddicke im Endbereich größer ist, als sie sich durch das bloße Einziehen bei axialer Kaltumformung ergibt.The invention is based on the object of demonstrating a cost-effective method that can be carried out with little manufacturing effort for producing a pipe component with an end region of reduced diameter, the increase in wall thickness in the end region being greater than that which results from the mere drawing in during axial cold forming .

Diese Aufgabe ist bei einem Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst.This task is solved in a method with the features of patent claim 1.

Die Unteransprüche betreffen vorteilhafte Weiterbildungen der Erfindung.The subclaims relate to advantageous developments of the invention.

Das erfindungsgemäße Verfahren zur Herstellung eines Rohrbauteils umfasst das Bereitstellen eines Rohrs bzw. eines Stückes eines Rohrs aus Stahl mit einem ersten Ende und einem zweiten Ende vor. Der Außendurchmesser des ersten Endes soll reduziert werden. Dies erfolgt mittels einer Relativbewegung zwischen dem Rohr und einer das Rohr innen aufnehmenden Matrize. Die Matrize besitzt einen wirksamen Innendurchmesser, der kleiner ist als der Außendurchmesser des Rohrs. Die Relativbewegung zur Umformung des Rohrs erfolgt in Axialrichtung des Rohrs. Die Relativbewegung kann durch eine Bewegung der Matrize gegenüber dem feststehenden Rohr oder durch eine Bewegung des Rohrs relativ zu einer feststehenden Matrize erfolgen. Der Begriff Relativbewegung erfasst auch die Bewegung beider Komponenten.The method according to the invention for producing a pipe component includes providing a pipe or a piece of pipe made of steel with a first end and a second end. The outside diameter of the first end should be reduced. This is done by means of a relative movement between the tube and a die that accommodates the inside of the tube. The die has an effective inside diameter that is smaller than the outside diameter of the pipe. The relative movement for forming the tube takes place in the axial direction of the tube. The relative movement can be achieved by moving the die relative to the stationary tube or by moving the tube relative to one fixed matrix. The term relative movement also covers the movement of both components.

Der Begriff wirksamer Innendurchmesser bezeichnet den Innendurchmesser, der mit dem Rohr in Wirkeingriff gelangt. Der wirksame Innendurchmesser kann insbesondere von einer Mündung der Matrize ausgehend im weiteren Verlauf abnehmen. Der Verlauf des Innendurchmessers ist mündungsseitig der Matrize insbesondere trichterförmig.The term effective inside diameter refers to the inside diameter that comes into effective engagement with the pipe. The effective inner diameter can decrease in the further course, particularly starting from an opening of the die. The shape of the inner diameter is particularly funnel-shaped on the mouth side of the die.

Die Umformung erfolgt mittels eines einzigen Umformhubes. Der Umformhub entspricht der Relativbewegung des zweiten Endes des Rohrs bezogen auf die Matrize. Das umzuformende erste Ende des Rohrs führt eine von dieser Relativbewegung abweichende Relativbewegung bezogen auf die Matrize aus. Das zweite Rohrende ist steht geführt. Diese zweite Relativbewegung ist eine geführte Relativbewegung.The forming takes place using a single forming stroke. The forming stroke corresponds to the relative movement of the second end of the tube with respect to the die. The first end of the tube to be formed carries out a relative movement with respect to the die that deviates from this relative movement. The second end of the pipe is guided. This second relative movement is a guided relative movement.

Die Relativbewegung des ersten Endes ist in einer ersten Umformphase ungeführt und in einer sich zeitlich unmittelbar anschließend zweiten Umformphase geführt.The relative movement of the first end is unguided in a first forming phase and is guided in a second forming phase that immediately follows.

In der ersten Umformphase wird der Außendurchmesser des ersten Endes mit freier Relativbewegung auf den kleinsten wirksamen Innendurchmesser in der Matrize reduziert. Das bedeutet, dass eine Stirnseite des ersten Endes eine trichterförmige Mündung passiert hat und die engste Stelle der Matrize erreicht hat.In the first forming phase, the outside diameter of the first end is reduced to the smallest effective inside diameter in the die with free relative movement. This means that one face of the first end has passed through a funnel-shaped mouth and has reached the narrowest point of the die.

Erfindungsgemäß ist vorgesehen, dass das Reduzieren des Außendurchmessers unter Zunahme der Wanddicke des ersten Endes erfolgt, indem die Relativbewegung des Rohrs in der zweiten Umformphase gegen ein Gegenkraftelement in der Matrize erfolgt. Das Gegenkraftelement befindet sich bevorzugt in geringem Abstand zu dem trichterförmigen Mündungsbereich der Matrize und steht für den Kontakt mit der sich nähernden Stirnseite des ersten Endes bereit, um bei Kontakt die besagte Kraft auszuüben und durch seine Bremswirkung Einfluss auf die Verformung des ersten Endes zu nehmen. Es wird dabei bewegt, so dass eine gewisse axiale Relativbewegung des ersten Endes fortgeführt wird, bis der Umformhub abgeschlossen ist. Die Relativbewegung des ersten Endes ist in dieser Umformphase geführt.According to the invention, it is provided that the outer diameter is reduced while increasing the wall thickness of the first end by the relative movement of the tube in the second forming phase taking place against a counterforce element in the die. The counterforce element is preferably located at a short distance from the funnel-shaped mouth area of the die and is ready for contact with the approaching end face of the first end in order to exert said force upon contact and to influence the deformation of the first end through its braking effect. It is moved so that a certain axial relative movement of the first end is continued until the forming stroke is completed. The relative movement of the first end is guided in this forming phase.

Das erfindungsgemäße Verfahren sieht mithin das Einziehen in Kombination mit einer Gegenkraft vor. Bei einem Einziehen ohne Gegenkraft wird das eingezogene Ende des Rohrs typischerweise etwas gelängt und die Wanddicke erhöht sich leicht. Bei einem Einziehen mit Gegenkraft längt sich das Rohr kaum, allerdings wird die Wanddicke deutlich erhöht.The method according to the invention therefore provides for retraction in combination with a counterforce. When retracting without counterforce, the retracted end of the tube is typically elongated slightly and the wall thickness increases slightly. When pulled in with counterforce, the pipe hardly elongates, but the wall thickness is significantly increased.

Das Gegenkraftelement drückt auf die Stirnseite des eingezogenen Endes. Das Verfahren kann einstufig und kalt durchgeführt werden, d.h. der umzuformende Bereich wird bevorzugt nicht lokal erwärmt. Im Vergleich zu Warmumformprozessen ist der gesamte Umformvorgang deutlich einfacher und stellt geringere Anforderungen an die Fertigungstechnik. Zudem wird mangels Erwärmung Energie eingespart und ein Verzundern der Oberfläche und ein nachfolgendes Strahlen vermieden.The counterforce element presses on the face of the retracted end. The process can be carried out in one step and cold, i.e. the area to be formed is preferably not heated locally. Compared to hot forming processes, the entire forming process is significantly simpler and places fewer demands on production technology. In addition, due to the lack of heating, energy is saved and scaling of the surface and subsequent blasting are avoided.

Das erfindungsgemäße Verfahren ist nicht dem axialen Kaltfließpressen zuzuordnen, da die sich einstellende Zunahme der Wanddicke nicht dadurch erfolgt, dass ein den Innendurchmesser des reduzierten Endes begrenzender Dorn in das Rohreingeführt wird, sondern weil sich der Innendurchmesser ausschließlich dadurch ausformt, dass eine Kraft auf die Stirnseite des ersten Endes ausgeübt wird. Das Gegenkraftelement greift nicht formgebend in den Innendurchmesser des Rohrs ein, d.h. entweder gar nicht oder zumindest nicht mit dem Ziel, mit der Innenseite des ersten Rohrendes in Kontakt zu kommen, um den Innendurchmesser bei der Formgebung zu definieren oder zu begrenzen. Dadurch ist der Kraftaufwand zum Einziehen des Rohrendes deutlich geringer als bei kompletter Plastifizierung des Rohrendes bei vergleichsweise hohen Umformgraden. Im Ergebnis kann eine im Vergleich zum Kaltfließpressen günstigere Fertigungstechnik eingesetzt werden, die zudem weniger komplex ist. Die Zunahme der Wanddicke erfolgt bei dem erfindungsgemäßen Verfahren ohne formgebenden Kontakt des Gegenkraftelements mit einer Innenseite des ersten Rohrendes.The method according to the invention cannot be assigned to axial cold extrusion, since the resulting increase in wall thickness does not occur because a mandrel delimiting the inside diameter of the reduced end is inserted into the pipe, but because the inside diameter is formed exclusively by applying a force to the end face of the first end is exercised. The counterforce element does not intervene in the inside diameter of the tube in a shaping manner, i.e. either not at all or at least not with the aim of coming into contact with the inside of the first tube end in order to define or limit the inside diameter during shaping. As a result, the effort required to pull in the pipe end is significantly lower than if the pipe end is completely plasticized at comparatively high degrees of deformation. As a result, a manufacturing technology that is cheaper than cold extrusion and is also less complex can be used. In the method according to the invention, the increase in wall thickness occurs without shaping contact of the counterforce element with an inside of the first pipe end.

Die Erfindung schließt nicht aus, dass das Gegenkraftelement einen radial mittleren Bereich aufweist, der in das umzuformende Ende ragt, allerdings nicht, um einen radial inneren Formhohlraum zu begrenzen oder um Einfluss auf die Wanddicke zu nehmen. Die Ausbildung der Wanddicke erfolgt ohne innenseitigen Kontakt. D. h. das Material des Rohrs wird nicht von radial außen nach radial innen gegen einen formgebenden Innendorn gedrückt, sondern lediglich in seiner Fließbewegung in Axialrichtung begrenzt. Diese Begrenzung in Axialrichtung bewirkt ein Stauchen.The invention does not rule out that the counterforce element has a radially central region that projects into the end to be formed, but not in order to limit a radially inner mold cavity or to influence the wall thickness. The wall thickness is formed without any internal contact. i.e. the material of the pipe is not moved from radially outside to radially inside against a shaping element Internal mandrel pressed, but only limited in its flow movement in the axial direction. This limitation in the axial direction causes compression.

Die Position des Gegenkraftelements innerhalb der Matrize wird während der Relativbewegung des Rohrs geregelt oder gesteuert, so dass die Zunahme der Wanddicke und das Reduzieren des Außendurchmessers in einem einstufigen Verfahrensschritt durchgeführt werden kann. Eine gut auf den Einziehprozess abgestimmte Gegenkraft entsprechend der Erfindung führt dazu, dass sich die Wanddicke des Rohrs während des Einziehens deutlich über das natürliche Maß hinaus erhöht. Über die Höhe der Gegenkraft lässt sich die zusätzliche Erhöhung der Wanddicke steuern. Die Bewegung des Gegenkraftelements kann kraftgesteuert erfolgen, das heißt in Abhängigkeit von der Kraft, mit der es auf die Stirnseite drückt.The position of the counterforce element within the die is regulated or controlled during the relative movement of the tube, so that increasing the wall thickness and reducing the outside diameter can be carried out in a one-step process step. A counterforce according to the invention that is well coordinated with the pulling-in process results in the wall thickness of the pipe increasing significantly beyond the natural dimension during the pulling-in process. The additional increase in wall thickness can be controlled via the level of the counterforce. The movement of the counterforce element can be force-controlled, that is, depending on the force with which it presses on the end face.

Es ist möglich, Werkstückkonturen herzustellen, welche anderenfalls nur durch den Einsatz deutlich komplexerer Umformwerkzeuge (Warmumformung, Kaltfließpressen etc.) umsetzbar wären. Der Prozess und die notwendige Technik des Einziehens eines Rohrendes mit Gegenkraft sind zwar etwas komplexer als das einfache Einziehen ohne Gegenkraftelement, jedoch deutlich weniger aufwändig als die alternativ genannten Umformkonzepte.It is possible to produce workpiece contours that would otherwise only be possible by using significantly more complex forming tools (hot forming, cold extrusion, etc.). The process and the necessary technology for pulling in a pipe end with counterforce are somewhat more complex than simply pulling in without a counterforce element, but are significantly less complex than the alternatively mentioned forming concepts.

Typischerweise wird beim Einziehen des Rohrendes die Matrize axial über das erste Ende des Rohrs verfahren. Währenddessen ist die Bewegung des Gegenkraftelements von der Bewegung der Matrize entkoppelt. Vorzugsweise erfolgt die Bewegung des Gegenkraftelementes derart, dass das Gegenkraftelement mit konstanter Kraft gegen die Stirnseite des Rohrs drückt. Die Kraft, mit der das Gegenkraftelement drückt, ist kleiner als die Antriebskraft, mit der das Rohr relativ zur Matrize bewegt wird. Die Antriebskraft ist stets größer, da diese Kraft gleichzeitig gegen eine Schulter der Matrize drückt, um den Rohrdurchmesser zu reduzieren. Im Rahmen der Erfindung bedeutet konstante Kraft, eine Kraft die nicht mehr als um +/-20% um eine Nennkraft während des Reduzierens schwankt.Typically, when pulling in the pipe end, the die is moved axially over the first end of the pipe. Meanwhile, the movement of the counterforce element is decoupled from the movement of the die. Preferably, the movement of the counterforce element takes place in such a way that the counterforce element presses against the end face of the tube with a constant force. The force with which the counterforce element pushes is smaller than the driving force with which the tube is moved relative to the die. The driving force is always greater because this force simultaneously presses against a shoulder of the die to reduce the pipe diameter. In the context of the invention, constant force means a force that does not fluctuate more than +/-20% around a nominal force during reduction.

Es ist aber auch vorstellbar, dass gezielt eine über die Umformzeit oder den Umformweg variable Kraft eingestellt wird, um definierte Wanddickenverläufe einzustellen oder den Wanddickenverlauf zu vergleichmäßigen.However, it is also conceivable that a force that is variable over the forming time or the forming path is specifically set in order to set defined wall thickness profiles or to even out the wall thickness profile.

Der Außendurchmesser an dem ersten Ende wird vorzugsweise um mindestens 10% reduziert. Der Außendurchmesser wird nicht so weit reduziert, dass das Rohr endseitig geschlossen wird. Es bleibt in Axialrichtung durchlässig, lediglich der Außendurchmesser im eingezogenen Bereich des ersten Endes soll reduziert werden. Es ist erfindungsgemäß aber nicht ausgeschlossen, dass in weiteren Bearbeitungsschritten in anderen Werkzeugen das Rohr vollständig verschlossen wird. Beim Einziehen des Rohrendes entsteht im Übrigen ein konischer Übergangsbereich zwischen dem im Außendurchmesser reduzierten ersten Ende und dem zweiten Ende des Rohrs. Das Rohr ist insbesondere kreiszylindrisch.The outside diameter at the first end is preferably reduced by at least 10%. The outside diameter is not reduced to such an extent that the end of the pipe is closed. It remains permeable in the axial direction, only the outer diameter in the retracted area of the first end should be reduced. However, according to the invention, it is not excluded that the tube is completely closed in further processing steps in other tools. When the pipe end is pulled in, a conical transition area is created between the first end, which has a reduced outside diameter, and the second end of the pipe. The tube is in particular circular cylindrical.

Vorzugsweise wird der Außendurchmesser an dem ersten Ende einheitlich reduziert. Einheitlich bedeutet, dass der Außendurchmesser über den ganzen Außenumfang gleichmäßig reduziert wird. Bei im Querschnitt kreisrunden Rohren sind die Matrizen auch kreisrund. Bevorzugt weist das Gegenkraftelement eine Kontaktfläche auf, die parallel zur Stirnseite des Rohrendes verläuft. In diesem Fall werden alle Bereiche der Stirnseite gleichmäßig mit der Kraft des Gegenkraftelements beaufschlagt. Auch ist vorzugsweise die Stirnseite des Rohrs senkrecht zur Axialrichtung angeordnet, so dass es zu einem gleichmäßigen Stauchen über den gesamten Umfang des Rohrs kommt.Preferably, the outside diameter is uniformly reduced at the first end. Uniform means that the outer diameter is reduced evenly over the entire outer circumference. In the case of pipes with a circular cross-section, the matrices are also circular. The counterforce element preferably has a contact surface that runs parallel to the end face of the pipe end. In this case, all areas of the end face are evenly subjected to the force of the counterforce element. The end face of the tube is also preferably arranged perpendicular to the axial direction, so that there is a uniform compression over the entire circumference of the tube.

Das Stauchen soll eine Erhöhung der Wanddicke bereichsweise um mindestens 10% bewirken. Das Erhöhen der Wanddicke erfolgt ohne innere Abstützung. Die Wanddicke kann über die axiale Länge des ersten Endes bereichsweise variieren. Mindestens in einem Längenbereich soll die Wanddicke um mindestens 5%, vorzugsweise mindestens 8%, insbesondere mindestens 10% gegenüber der Ausgangsdicke erhöht werden. Das bedeutet, dass in anderen Bereichen des ersten Rohrendes eine geringere Zunahme der Wanddicke erfolgen kann, insbesondere in unmittelbarer Nachbarschaft des Gegenkraftelements, d. h. im Bereich der Stirnseite des Rohrs. Versuche habe gezeigt, dass im Abstand vom Gegenkraftelement durch das Nachschieben des Rohrs und die dortige größere Plastifizierung eine größere Wanddickenzunahme erfolgen kann als an der Stirnseite. Die Umformgrade im ersten Rohrende sind mithin im Abstand zur Stirnseite größer als an der Stirnseite selbst. Daraus resultiert ein nicht konstanter axialer Wanddickenverlauf im Bereich des im Durchmesser reduzierten ersten Rohrendes.The compression should increase the wall thickness in some areas by at least 10%. Increasing the wall thickness occurs without internal support. The wall thickness can vary in areas over the axial length of the first end. At least in one length range, the wall thickness should be increased by at least 5%, preferably at least 8%, in particular at least 10% compared to the initial thickness. This means that a smaller increase in wall thickness can occur in other areas of the first pipe end, particularly in the immediate vicinity of the counterforce element, ie in the area of the end face of the pipe. Tests have shown that a greater increase in wall thickness can occur at a distance from the counterforce element by pushing the pipe and the greater plasticization there than at the end face. The degrees of deformation in the first pipe end are therefore greater at a distance from the end face than at the end face itself. This results in a non-constant axial wall thickness progression in the area of the first pipe end, which has a reduced diameter.

Das erfindungsgemäße Verfahren wird insbesondere bei Rohren aus einem vergüteten martensitischen Stahl durchgeführt, oder auch bei Rohren aus härtbaren Stahllegierungen, die insbesondere zeitlich nach der vorstehend beschriebenen Umformung gehärtet oder vergütet werden.The method according to the invention is carried out in particular with pipes made of tempered martensitic steel, or also with pipes made of hardenable steel alloys, which are hardened or tempered in particular after the forming described above.

Weitere Verfahrensschritte können ein Härten oder Vergüten vor dem Reduzieren, ein Randschichthärten oder ein Beschichten nach dem Reduzieren zum Zwecke des Korrosionsschutzes beinhalten.Further process steps can include hardening or tempering before reducing, surface hardening or coating after reducing for the purpose of corrosion protection.

Das Verfahren eignet sich insbesondere zur Herstellung von Rotorwellen.The process is particularly suitable for producing rotor shafts.

Die Erfindung wird nachfolgend anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen erläutert. Es zeigen:

Figur 1
einen Längsschnitt durch eine Matrize mit einem umgeformten Endbereich eines Rohrs gemäß dem Stand der Technik;
Figur 2
einen Längsschnitt durch eine Matrize mit einem umgeformten Endbereich eines Rohrs gemäß der Erfindung und
Figuren 3 bis 6
Längsschnitte durch eine Matrize mit einem Endbereich eines Rohrs bei 0%, 30%, 50% und 100% Fortschritt der Umformung.
The invention is explained below using exemplary embodiments shown schematically in the drawings. Show it:
Figure 1
a longitudinal section through a die with a formed end region of a tube according to the prior art;
Figure 2
a longitudinal section through a die with a formed end region of a tube according to the invention and
Figures 3 to 6
Longitudinal sections through a die with an end region of a tube at 0%, 30%, 50% and 100% progress of the forming.

Figur 1 zeigt gemäß dem Stand der Technik ein Rohr 1 mit einem ersten Ende 2 und einem zweiten Ende 3. Das Rohr 1 besteht aus Stahl. Das Rohr 1 besitzt einen ursprünglichen Außendurchmesser AD1 und nach dem Aufschieben einer Matrize 4 auf das erste Rohrende 2 einen reduzierten Außendurchmesser AD2. Das erste Ende ist nun eingezogen, d.h. im Außendurchmesser reduziert. Figure 1 shows, according to the prior art, a pipe 1 with a first end 2 and a second end 3. The pipe 1 is made of steel. The tube 1 has an original outside diameter AD1 and, after pushing a die 4 onto the first tube end 2, a reduced outside diameter AD2. The first end is now retracted, i.e. reduced in outside diameter.

Der ursprüngliche Innendurchmesser ID1 wurde auf den reduzierten Innendurchmesser ID2 am ersten Ende 2 vermindert. Die ursprüngliche Wanddicke WD1 nahm dabei innerhalb des ersten Endes 2 auf die Wanddicke WD2 zu. Das erste Ende 2 wurde gestaucht. Das Stauchen erfolgte ohne jegliche Gegenkraft durch Werkzeuge innerhalb der Matrize sondern nur durch das axiale Verlagern des Rohrs 1 gegen einen trichterförmigen bzw. konischen Einführtrichter 5 der Matrize 4.The original inside diameter ID1 was reduced to the reduced inside diameter ID2 at the first end 2. The original wall thickness WD1 increased to the wall thickness WD2 within the first end 2. The first end 2 was compressed. The compression was carried out without any counterforce from tools within the die but only by axially displacing the tube 1 against a funnel-shaped or conical insertion funnel 5 of the die 4.

Das Ausführungsbeispiel der Figur 2 zeigt das erfindungsgemäße Verfahren. Auch bei dem erfindungsgemäßen Verfahren wird das Rohr 1 in die Matrize 4 eingeführt, allerdings befindet sich in der Matrize 4 ein Gegenkraftelement 6, das in einer zweiten Umformphase eine Kraft F1 auf eine Stirnseite 7 des ersten Endes 2 des Rohrelements 1 ausübt. Die zweite Umformphase beginnt, wenn die Stirnseite 7 das Gegenkraftelement 6 berührt. Die vorangegangene erste Umformphase, die sich durch den fehlenden Kontakt zum Gegenkraftelement 6 auszeichnet, endet zu diesem Zeitpunkt. Die Umformung wird zwischen diesen beiden Umformphasen nicht gestoppt, sondern kontinuierlich fortgeführt. Die Wanddicke WD2 im Bereich des ersten Endes 2 nimmt durch die Stauchung mittels der Kraft F1 stärker zu als bei der freien Umformung ohne Gegenkraftelement 6, wie sie in Figur 1 dargestellt ist. Die Zunahme der Wanddicke erfolgt ohne formgebende Innenteile, die in das Rohr hineinragen, d.h. der Formhohlraum ist nach radial innen offen. Eine Innenseite 8 des ersten Endes 2 des Rohrs 1 wird nicht zur Formgebung von dem Gegenkraftelement 6 kontaktiert. Das Gegenkraftelement 6 ist innerhalb der Matrize 4 in axialer Richtung des Rohrs 1 verlagerbar. Sein Außendurchmesser ist an den Innendurchmesser ID3 der Matrize 4 angepasst.The exemplary embodiment of the Figure 2 shows the method according to the invention. In the method according to the invention, the tube 1 is also inserted into the die 4, but there is a counterforce element 6 in the die 4, which in a second forming phase exerts a force F1 on an end face 7 of the first end 2 of the tube element 1. The second forming phase begins when the end face 7 touches the counterforce element 6. The previous first forming phase, which is characterized by the lack of contact with the counterforce element 6, ends at this point in time. The forming is not stopped between these two forming phases, but is continued continuously. The wall thickness WD2 in the area of the first end 2 increases more due to the compression by means of the force F1 than during free forming without a counterforce element 6, as shown in Figure 1 is shown. The increase in wall thickness occurs without shaping internal parts that protrude into the tube, ie the mold cavity is open radially inwards. An inside 8 of the first end 2 of the tube 1 is not contacted by the counterforce element 6 for shaping. The counterforce element 6 is displaceable within the die 4 in the axial direction of the tube 1. Its outer diameter is adapted to the inner diameter ID3 of the die 4.

Bei der Erfindung wird davon ausgegangen, dass sowohl das Rohr 1 als auch die Matrize 4 kreiszylindrisch sind. Bei der Erfindung ist ferner vorgesehen, dass der Außendurchmesser AD1 des Rohrs 1 um mindestens 10% reduziert wird und zudem die Wanddicke WD2 in dem dargestellten Umfangsbereich um mindestens 10% gegenüber der Ausgangswanddicke WD1 erhöht ist.The invention assumes that both the tube 1 and the die 4 are circular cylindrical. The invention further provides that the outer diameter AD1 of the pipe 1 is reduced by at least 10% and, in addition, the wall thickness WD2 in the circumferential area shown is increased by at least 10% compared to the initial wall thickness WD1.

In nicht näher dargestellter Weise wird die Position des Gegenkraftelements 6 innerhalb der Matrize 4 so gesteuert, dass das Gegenkraftelement 6 mit vorgegebener Kraft F1 gegen die Stirnseite 7 des ersten Endes 2 des Rohrs 1 drückt. Die Kraft F1 ist kleiner als die Antriebskraft FA, mit welcher das Rohr 1 in die Matrize 4 gegen den Einführtrichter 5 gedrückt wird.In a manner not shown in detail, the position of the counterforce element 6 within the die 4 is controlled so that the counterforce element 6 presses against the end face 7 of the first end 2 of the tube 1 with a predetermined force F1. The force F1 is smaller than the driving force FA with which the tube 1 is pressed into the die 4 against the insertion funnel 5.

Die Figuren 3 - 6 zeigen eine mögliche die Fertigungsabfolge. Zu Beginn des Fertigungsvorgangs wird das kalte Rohr 1 in die Matrizen 4 eingeführt (Figur 3). Der Außendurchmesser wird dabei reduziert (Figur 4). Das Gegenkraftelement 6 befindet sich im Abstand von der engsten Stelle des Einführtrichters 5 der Matrize 4. Daher wird das Gegenkraftelement 6 von dem teilweise eingezogenen Rohr 1 zunächst nicht berührt. Sobald das Rohr 1 das Gegenkraftelement 6 berührt, wird das Gegenkraftelement 6 in die gleiche Richtung wie das Rohr 1 verlagert, d. h. in der Bildebene nach links in die Matrize 4 hinein, d.h. in Umformrichtung. Die Verlagerung erfolgt derart, dass eine hinreichend große Gegenkraft aufgebaut wird, so dass das eingezogene Ende 2 des Rohrs 1 gestaucht wird und die Wanddicke in den gewünschten Umfang zunimmt. Die Figur 6 zeigt die finale Position des Gegenkraftelements 6 nach Abschluss der Umformung.The Figures 3 - 6 show a possible production sequence. At the beginning of the manufacturing process, the cold tube 1 is inserted into the dies 4 ( Figure 3 ). The outside diameter is reduced ( Figure 4 ). The counterforce element 6 is located at a distance from the narrowest point of the insertion funnel 5 of the die 4. Therefore the counterforce element 6 is not initially touched by the partially retracted tube 1. As soon as the tube 1 touches the counterforce element 6, the counterforce element 6 is displaced in the same direction as the tube 1, ie to the left in the image plane into the die 4, ie in the forming direction. The displacement takes place in such a way that a sufficiently large counterforce is built up so that the retracted end 2 of the tube 1 is compressed and the wall thickness increases to the desired extent. The Figure 6 shows the final position of the counterforce element 6 after the forming has been completed.

Für das nächste Rohr 1 wird das Gegenkraftelement 6 in die Ausgangslage gemäß der Figuren 3 und 4 verlagert.For the next pipe 1, the counterforce element 6 is in the starting position according to Figures 3 and 4 relocated.

Die Figuren 3 bis 6 zeigen, dass das Rohr 1 relativ zur Matrize 4 verlagert wird. Die Erfindung schließt ein, dass die Matrize 4 mit dem Gegenkraftelement über ein feststehendes Rohr 1 geschoben wird.The Figures 3 to 6 show that the tube 1 is displaced relative to the die 4. The invention includes that the die 4 with the counterforce element is pushed over a stationary tube 1.

Bezugszeichen:Reference symbol:

1 -1 -
RohrPipe
2 -2 -
erstes Ende von 1first end of 1
3 -3 -
zweites Ende von 1second end of 1
4 -4 -
Matrizedie
5 -5 -
EinführtrichterIntroductory funnel
6 -6 -
GegenkraftelementCounter force element
7 -7 -
Stirnseitefront side
8 -8th -
Innenseiteinside
AD1 -AD1 -
Außendurchmesserouter diameter
AD2 -AD2 -
Außendurchmesserouter diameter
F1 -F1 -
KraftPower
FA -FA -
AntriebskraftDriving force
ID1 -ID1 -
InnendurchmesserInner diameter
ID2 -ID2 -
InnendurchmesserInner diameter
ID3 -ID3 -
wirksamer Innendurchmesser von 4effective inner diameter of 4
WD1 -WD1 -
WanddickeWall thickness
WD2 -WD2 -
WanddickeWall thickness

Claims (12)

Verfahren zur Herstellung eines Rohrbauteils mit folgenden Schritten: a. Bereitstellen eines Rohrs (1) aus Stahl mit einem ersten Ende (2) und mit einem zweiten Ende (3); b. Reduzieren des Außendurchmessers (AD1) des ersten Endes (2) mittels einer Relativbewegung zwischen dem Rohr (1) und einer das Rohr (1) innen aufnehmenden Matrize (4), wobei die Matrize (4) einen wirksamen Innendurchmesser (ID3) besitzt, der kleiner ist als der Außendurchmesser (AD1) des Rohrs (1), und wobei die Relativbewegung in Axialrichtung des Rohrs (1) erfolgt, so dass das erste Ende (2) eine sich aus der Umformung ergebende freie erste Relativbewegung innerhalb der Matrize (4) relativ zur Matrize (4) aufweist und dass das zweite Ende (3) eine geführte zweite Relativbewegung außerhalb der und relativ zu der Matrize (4) aufweist; c. in einer ersten Umformphase eines Umformhubes wird der Außendurchmesser (AD1) des ersten Endes (2) mit freier Relativbewegung auf den kleinsten wirksamen Innendurchmesser (ID3) in der Matrize (4) reduziert; d. in einer sich unmittelbar an die erste Umformphase anschließenden zweiten Umformphase desselben Umformhubes wird die weitere Relativbewegung des ersten Endes (2) durch ein Gegenkraftelement (6) in der Matrize (4) geführt, wobei das Gegenkraftelement (6) eine Kraft (F1) auf eine Stirnseite (7) des ersten Endes (2) ausübt, um die Wanddicke (WD1) des ersten Endes (2) zu erhöhen. Method for producing a pipe component with the following steps: a. Providing a steel tube (1) having a first end (2) and a second end (3); b. Reducing the outside diameter (AD1) of the first end (2) by means of a relative movement between the tube (1) and a die (4) which accommodates the inside of the tube (1), the die (4) having an effective inside diameter (ID3). is smaller than the outer diameter (AD1) of the tube (1), and the relative movement takes place in the axial direction of the tube (1), so that the first end (2) has a free first relative movement within the die (4) resulting from the forming. relative to the die (4) and that the second end (3) has a guided second relative movement outside of and relative to the die (4); c. in a first forming phase of a forming stroke, the outside diameter (AD1) of the first end (2) is reduced to the smallest effective inside diameter (ID3) in the die (4) with free relative movement; d. In a second forming phase of the same forming stroke, which immediately follows the first forming phase, the further relative movement of the first end (2) is guided by a counterforce element (6) in the die (4), the counterforce element (6) applying a force (F1) to a End face (7) of the first end (2) exerts to increase the wall thickness (WD1) of the first end (2). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gegenkraftelement (6) in dieselbe Richtung bewegt wird, wie das erste Ende (2).Method according to claim 1, characterized in that the counterforce element (6) is moved in the same direction as the first end (2). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gegenkraftelement (6) eine Kraft (F1) ausschließlich auf die Stirnseite (7) ausübt.Method according to claim 1 or 2, characterized in that the counterforce element (6) exerts a force (F1) exclusively on the end face (7). Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zunahme der Wanddicke (WD2) des ersten Endes ohne Kontakt des Gegenkraftelements (6) mit einer Innenseite (8) des ersten Endes (2) erfolgt.Method according to one of claims 1 to 3, characterized in that the increase in the wall thickness (WD2) of the first end occurs without contact of the counterforce element (6) with an inside (8) of the first end (2). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Position des Gegenkraftelements (6) innerhalb der Matrize (4) während der Relativbewegung des Rohrs (1) geregelt oder gesteuert wird, so dass die Zunahme der Wanddicke (WD2) und das Reduzieren des Außendurchmessers (AD1) in einem einzigen Umformhub erfolgt.Method according to one of claims 1 to 4, characterized in that the position of the counterforce element (6) within the die (4) is regulated or controlled during the relative movement of the tube (1), so that the increase in wall thickness (WD2) and that Reducing the outside diameter (AD1) takes place in a single forming stroke. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Bewegung des Gegenkraftelements (6) von der Bewegung der Matrize (4) entkoppelt ist.Method according to one of claims 1 to 5, characterized in that the movement of the counterforce element (6) is decoupled from the movement of the die (4). Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gegenkraftelement (6) in Abhängigkeit von der Kraft (F1), mit der es gegen die Stirnseite (7) drückt, verlagert wird.Method according to one of claims 1 to 6, characterized in that the counterforce element (6) is displaced depending on the force (F1) with which it presses against the end face (7). Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kraft (F1), mit der das Gegenkraftelement (6) gegen das erste Ende (2) drückt, kleiner ist als die Antriebkraft (FA), mit der das Rohr (1) relativ zur Matrize (4) bewegt wird.Method according to one of claims 1 to 7, characterized in that the force (F1) with which the counterforce element (6) presses against the first end (2) is smaller than the driving force (FA) with which the pipe (1 ) is moved relative to the die (4). Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Außendurchmesser (AD1) an dem ersten Ende (2) um mindestens 10 % reduziert wird.Method according to one of claims 1 to 8, characterized in that the outer diameter (AD1) at the first end (2) is reduced by at least 10%. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Außendurchmesser (AD1) an dem ersten Ende (2) einheitlich reduziert wird.Method according to one of claims 1 to 9, characterized in that the outer diameter (AD1) is uniformly reduced at the first end (2). Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Wanddicke (WD2) an dem ersten Ende (2) bereichsweise um mindestens 5% bevorzugt mindestens 8% erhöht wird.Method according to one of claims 1 to 10, characterized in that the wall thickness (WD2) at the first end (2) is increased in some areas by at least 5%, preferably at least 8%. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Rohr (1) aus einem vergüteten martensitischen Stahl besteht, oder aus einer härtbaren Stahllegierung besteht und nach dem Reduzieren des Außendurchmessers (AD1) gehärtet und/oder vergütet wird.Method according to one of claims 1 to 11, characterized in that the tube (1) consists of a tempered martensitic steel, or of a hardenable steel alloy and is hardened and/or tempered after reducing the outer diameter (AD1).
EP22183429.4A 2022-07-06 2022-07-06 Method for producing a tubular component Pending EP4302897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22183429.4A EP4302897A1 (en) 2022-07-06 2022-07-06 Method for producing a tubular component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22183429.4A EP4302897A1 (en) 2022-07-06 2022-07-06 Method for producing a tubular component

Publications (1)

Publication Number Publication Date
EP4302897A1 true EP4302897A1 (en) 2024-01-10

Family

ID=82399331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22183429.4A Pending EP4302897A1 (en) 2022-07-06 2022-07-06 Method for producing a tubular component

Country Status (1)

Country Link
EP (1) EP4302897A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR896994A (en) * 1942-05-12 1945-03-08 Mannesmann Roehren Werke Ag Tube end upsetting process
FR920506A (en) * 1942-10-30 1947-04-10 Ti Group Services Ltd Device for manufacturing tubular metal parts
GB1328483A (en) * 1970-01-22 1973-08-30 Creuzet R A Apparatus and process for shaping tubular metallic components
JPH07214148A (en) * 1994-02-03 1995-08-15 Sango Co Ltd Method for thickening metallic pipe
DE102012112133A1 (en) * 2012-12-12 2014-06-12 Sergei Nicolaewich Belov Method for transferring heat to end of pipe that is used as functional devices for fluid transportation in wide areas of machine and equipment construction, involves determining heat conduction between tube section and mold
DE102018133034A1 (en) * 2018-12-20 2020-06-25 Benteler Steel/Tube Gmbh Process for producing a pipe and pipe product
DE102020132822A1 (en) * 2020-12-09 2022-06-09 Benteler Steel/Tube Gmbh Process for manufacturing an internal stop in a tubular component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR896994A (en) * 1942-05-12 1945-03-08 Mannesmann Roehren Werke Ag Tube end upsetting process
FR920506A (en) * 1942-10-30 1947-04-10 Ti Group Services Ltd Device for manufacturing tubular metal parts
GB1328483A (en) * 1970-01-22 1973-08-30 Creuzet R A Apparatus and process for shaping tubular metallic components
JPH07214148A (en) * 1994-02-03 1995-08-15 Sango Co Ltd Method for thickening metallic pipe
DE102012112133A1 (en) * 2012-12-12 2014-06-12 Sergei Nicolaewich Belov Method for transferring heat to end of pipe that is used as functional devices for fluid transportation in wide areas of machine and equipment construction, involves determining heat conduction between tube section and mold
DE102018133034A1 (en) * 2018-12-20 2020-06-25 Benteler Steel/Tube Gmbh Process for producing a pipe and pipe product
DE102020132822A1 (en) * 2020-12-09 2022-06-09 Benteler Steel/Tube Gmbh Process for manufacturing an internal stop in a tubular component

Similar Documents

Publication Publication Date Title
DE4103082C2 (en)
DE3874811T2 (en) METHOD FOR PRODUCING BOX-SHAPED ITEMS.
DE60036608T2 (en) METHOD AND DEVICE FOR COMPACTING METAL POWDER PREFORMS
DE10120392B4 (en) Process for producing rotationally symmetrical components
EP0347369A2 (en) Method and apparatus for hydraulically enlarging hollow profiles
DE2557764C3 (en) Method and device for forming a drop center rim blank
WO2010037551A2 (en) Method and device for the non-cutting production of an outside thread on hollow metal work pieces
DE69710640T2 (en) Process for increasing the wall thickness of metal pipes
DE102019103926A1 (en) Method and device for the axial forming of a pipe
DE60106812T2 (en) Method for producing metallic bellows
DE2642743A1 (en) METHOD AND DEVICE FOR MANUFACTURING A MULTIPLE CURVED PIPE
EP1909990B1 (en) Method and device for producing metal rings
CH618111A5 (en)
DE102007002228A1 (en) Method for preparing pipes with internal profiles, involves surrounding pipe from outside, by template, where rotating tool presses on pipe wall for producing different wall thickness wall areas in longitudinal direction of pipe
EP3013493A1 (en) Tool for preforming a tube for subsequent internal high pressure forming, as well as a method for producing such a tool and for producing a component by means of internal high pressure forming
DE3105538A1 (en) METAL CONTAINER
EP4302897A1 (en) Method for producing a tubular component
DE102013104038A1 (en) Upset process for pipes
EP1024913B1 (en) Method and device for producing a shaft from a tubular workpiece
DE4032424C2 (en) Method and device for producing folded pipes
EP3221068B1 (en) Method for manufacturing a rotationally symmetrical shaped article
EP1611973B1 (en) Method for forming pipes and for manufacturing hollow shafts
EP3737514B1 (en) Process and device for manufacturing hollow, internally cooled valves
DE202008017196U1 (en) Device for tube forming
EP3345694B1 (en) Method and device for locally thickening a hollow body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER STEEL/TUBE GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240709