EP4301534A1 - Removing the support structure by means of a laser beam integrated on a robot arm - Google Patents

Removing the support structure by means of a laser beam integrated on a robot arm

Info

Publication number
EP4301534A1
EP4301534A1 EP22711201.8A EP22711201A EP4301534A1 EP 4301534 A1 EP4301534 A1 EP 4301534A1 EP 22711201 A EP22711201 A EP 22711201A EP 4301534 A1 EP4301534 A1 EP 4301534A1
Authority
EP
European Patent Office
Prior art keywords
radiation
supporting function
functional area
manufactured object
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22711201.8A
Other languages
German (de)
French (fr)
Inventor
Tammuz NOBEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Publication of EP4301534A1 publication Critical patent/EP4301534A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to an additively manufactured object with at least one functional area with a supporting function, which is removed with a tool after manufacture.
  • Such an additively manufactured object can be, for example, a part of a centrifugal pump, to a certain extent an impeller or a pump housing or a part of a fitting, for example a shut-off body or a valve housing.
  • the object in question is built up layer by layer from a construction material that is placed on a substrate.
  • the building material is usually in powder form.
  • the powdery material is completely melted locally at the respective points by means of radiation and forms a solid layer of material after solidification.
  • the base plate on which the powdered material is located is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made.
  • the finished item is cleaned of excess powder.
  • the data for guiding the radiation are generated using software on the basis of a 3D CAD body.
  • radiation for example, a laser beam to come into action.
  • An electron beam (EBM) can also be used as an alternative to selective laser melting.
  • the areas that form the structures of the object are selectively melted.
  • the radiation melts up to three layers below, which then fuse with the top layer during the rapid cooling process.
  • a support structure also known as a support structure.
  • the support structure also serves for controlled heat dissipation and thus contributes to process reliability. Since the construction material, which is in powder form, has an insulating effect, overheating in the component could otherwise occur.
  • the support structure also prevents the component from warping as a result of process-related stresses that occur as a result of rapid heating and subsequent cooling.
  • the support structure Since the support structure is not part of the actual object, it must be removed after the manufacturing process. This turns out to be extremely difficult and time-consuming, especially in the case of support structures that are difficult to reach. In some cases, the support structure can no longer be 100% removed due to massive attachments to the object, so that the surfaces to which the support structure was attached are of inferior quality.
  • the strategically sensible placement of the support structure, the correct orientation in the construction space in order to get by with as few support structures as possible, and the subsequent removal of the support represent one of the greatest time factors and thus a main cost driver of generative processes.
  • DE 102 19 983 B4 describes a method for producing metallic or non-metallic products by free-form laser sintering.
  • the products are built up vertically in layers from a powdered material on a substrate plate using a data-controlled laser beam.
  • At least one support is built up between the substrate plate and the outer surface of the product, which is connected to the outer surface of the product via a predetermined breaking point.
  • the breaking point is formed by reducing the strength of the support along the outer contour of the product. In this case, the cross section of the support is reduced to reduce the strength.
  • DE 10 2007 033434 A1 describes a method for producing three-dimensional components.
  • an auxiliary structure is additionally formed beyond an extent of the component.
  • Predetermined breaking points are provided at connection points between the component and the auxiliary structure.
  • DE 10 2013 011 630 A1 describes a method for calculating one or more support struts for a three-dimensional object on a platform, which is built up from layers using a manufacturing method.
  • the support elements not only form stable connection points, but also have predetermined breaking points.
  • the support structure should be able to be detached easily from the object without craters appearing on the object's surface.
  • a flow-guiding component with different functional areas is produced additively.
  • different functional areas are formed from a powdery metallic material.
  • the object of the invention is to provide an additively manufactured object that can be manufactured without manual rework.
  • the surfaces of the generatively manufactured object should be visually appealing and particularly be wear-resistant. It should be possible to dispense with post-processing of the surfaces of the generatively manufactured object.
  • the generatively manufactured object should be characterized by a long service life and reliable use. Furthermore, the component should be easily recyclable.
  • this object is achieved by a generatively manufactured object and a method for its production.
  • Preferred variants can be found in the subclaims, the description and the drawings.
  • the functional area with a supporting function of a generatively manufactured object is removed with a radiation source.
  • a laser beam or an electron beam and their devices for generating the radiation can be used, for example, as a radiation source or as radiation.
  • the data for guiding the radiation is generated on the basis of the 3D CAD body of the generatively manufactured object using the process software.
  • the functional area with a supporting function and the surfaces of the generatively manufactured object are known exactly.
  • the support structures that are no longer required can be removed and the morphology of the surface can be changed so that it is modified to be visually appealing and ideal for later use.
  • manual post-processing can be dispensed with entirely.
  • the generatively manufactured object is manufactured using a process in which a layer of a building material is first applied to a substrate.
  • the building material for producing the generatively manufactured object is preferably metallic powder particles.
  • iron-containing and/or cobalt-containing powder particles are used for this purpose. These can contain additives such as chromium, molybdenum or nickel.
  • the metallic structure material is applied in powder form in a thin layer to a plate. Then the powdered material is applied by means of radiation completely melted locally at the desired points and a solid layer of material is formed after solidification.
  • the base is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made and the finished object is formed.
  • different functional areas of the object are formed, in particular the functional area with a supporting function.
  • An electron beam is a technically generated beam of electrons. Electron beams interact strongly with matter. For example, a solid body, in particular a metallic solid body, heats up when it is irradiated with electron beams. This is used, among other things, to melt metal construction material, for example in electron beam melting. Structures in the micrometer to nanometer range can be easily influenced by appropriate beam guidance. In metalworking, high-power electron beams are used for melting, hardening, annealing, engraving and welding. Machining with an electron beam is preferably done in a vacuum.
  • Morphology is a term from metallurgy and crystallography and describes the shape of a metal lattice or crystal that consists of geometrically defined surfaces, edges and corners.
  • the surface of the generatively manufactured object which is uneven and rough after the removal of the functional area with a supporting function, is optimized with the aid of the radiation source.
  • the smoothness and roughness of the surface of the object are adapted to the optical requirements on the one hand and to the usage requirements on the other.
  • the hardness of the surface can be increased, for example when used as a functional area in contact with abrasive media, in order to create a wear-resistant contact surface.
  • the functional area with a supporting function, in particular the supporting structures is removed in layers.
  • the data for guiding the radiation is available in the form of a 3D CAD body that is created layer by layer by melting powder granulate. It is precisely this data that forms the basis for removing the support structures, which is also done in layers.
  • the layer-by-layer removal is particularly ideal because it works extremely precisely and is precisely layer-defined. This makes the work much more accurate and gentle compared to manually removing the support structure, resulting in a high quality product.
  • the morphology of the generatively manufactured object is changed immediately upon removal of the functional area with a supporting function.
  • the generative manufacturing of an object convinces with the complete and immediate completion of the object, which means that manual rework or a subsequent processing step with corresponding machine preparation can be completely dispensed with.
  • a generatively manufactured object is formed in an integrative manufacturing process.
  • the 3D shape of the object is stored in software as a data set.
  • a robotic arm which has tools for different generative assembly processes at its disposal, acts and forms the functional areas of the object layer by layer, in particular the functional area with a supporting function.
  • the appropriate build-up process for each build-up material can be carried out for each layer in succession or simultaneously, so that a complex object is also created from different materials, the areas of which are optimally adapted to the requirements of later use.
  • functional areas of the object are produced in layers, also in the form of a lattice structure, with a fused layer tool of the generative manufacturing process in which fusible like plastic, a grid of dots is applied to a surface.
  • a stable structure in particular in the form of a lattice and/or in the form of honeycombs, is produced by extrusion using a nozzle and subsequent hardening by cooling at the desired position.
  • the supporting area of an object is created, for example, in a cavity-forming manner with a particularly load-bearing structure, an object has enormous strength while at the same time having a very low mass.
  • An object is usually built up by repeatedly moving along a working plane line by line and then stacking the working plane upwards so that the object with its functional areas, in particular with the functional area with a supporting function, is created.
  • the generatively manufactured object is produced from a structural material by successive melting and hardening of layers by means of radiation.
  • the different properties of the functional areas of an additively manufactured object are generated by variations in the radiation, the radiation energy and the radiation intensity.
  • a modification of the material properties is already carried out during the construction of the generatively manufactured object. This makes it possible to produce zones and structures of different material states of a chemically homogeneous material and thus different properties in one area of the object, in particular in the morphology of the surface.
  • the metallic structure material is applied in powder form in a thin layer to a plate.
  • the powdery material is completely locally melted at the desired points by means of radiation and forms a solid material layer after solidification.
  • This base plate is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made.
  • the excess powder is vacuumed from the finished item using the integrative manufacturing tool.
  • the functional area with a supporting function which is essential for overhanging objects in particular, is then removed layer by layer by exposure to radiation.
  • the radiation source of the laser of the integrative manufacturing tool is guided through the data set of the 3D CAD body, as a result of which the functional areas with a supporting function of the generatively manufactured object are removed with extreme precision.
  • the morphology of the surface of the generatively manufactured object is optimized simultaneously and immediately when removing the functional area with a supporting function by varying the radiation energy, the radiation intensity and the scanning speed of the radiation.
  • the production of the generatively manufactured object can be fully carried out in an integrative manufacturing unit.
  • the cost of additive manufacturing of an object is significantly reduced, the use of manpower for post-processing is completely reduced, and the surface quality of the finished object is vastly improved.
  • Fig. 2 another generatively manufactured object with a rich functional area with a supporting function.
  • the generatively manufactured object 1 shows a generatively manufactured object 1 which has at least one functional area with a supporting function 2 .
  • the generatively manufactured object 1 is in the form of a split ring and the functional area with a supporting function 2 is in the form of a support structure.
  • the support structure is necessary to to form the generatively manufactured object 1 in its shape during the layered construction and also to keep it.
  • the support structure is removed in layers by the radiation.
  • the surface 3 of the object 1, in particular the surface 3 onto which the support structure was previously formed, is optimized in terms of its morphology by the radiation immediately when the support structure is removed. Manual rework, manual removal of the support structure and improvement of the generatively manufactured object 1 can be dispensed with.
  • the generatively manufactured object 1 shows another generatively manufactured object 1 with a functional area with a supporting function 2 .
  • the generatively manufactured object 1 is designed as a wall-shaped component and the functional area with a supporting function 2 is designed as a supporting structure.
  • the support structure is removed in layers by the radiation, while the surface 3 of the generatively manufactured object is optimized in terms of its morphology for the application of the object 1 immediately upon removal of the support structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a generatively manufactured object (1) having at least one functional region with supporting function (2), which is removed after the manufacture with a tool. The functional region with supporting function (2) is removed by means of a radiation source.

Description

Beschreibung description
Entfernen der Stützstruktur mit einem auf einem Roboterarm integrierten Laserstrahl Removal of the support structure with a laser beam integrated on a robotic arm
Die Erfindung betrifft einen generativ gefertigten Gegenstand mit mindestens einem Funktionsbereich mit stützender Funktion, der nach der Fertigung mit einem Werkzeug entfernt wird. The invention relates to an additively manufactured object with at least one functional area with a supporting function, which is removed with a tool after manufacture.
Bei einem solchen generativ gefertigten Gegenstand kann es sich beispielsweise um einen Teil einer Kreiselpumpe, gewissermaßen um ein Laufrad oder ein Pumpenge häuse bzw. um einen Teil einer Armatur, beispielhaft um einen Absperrkörper oder ein Ventilgehäuse, handeln. Such an additively manufactured object can be, for example, a part of a centrifugal pump, to a certain extent an impeller or a pump housing or a part of a fitting, for example a shut-off body or a valve housing.
Bei der generativen Fertigung von Gegenständen wird der jeweilige Gegenstand Schicht für Schicht aus einem Aufbaumaterial aufgebaut, das auf eine Unterlage aufge bracht wird. Der Aufbauwerkstoff liegt meist in Pulverform vor. Der pulverförmige Werk stoff wird mittels Strahlung an den jeweiligen Stellen lokal vollständig aufgeschmolzen und bildet nach einer Erstarrung eine feste Materialschicht. Anschließend wird die Grundplatte, auf der sich der pulverförmige Werkstoff befindet, um den Betrag einer Schichtdicke abgesenkt und es wird erneut Pulver aufgetragen. Dieser Zyklus wird so lange wiederholt, bis alle Schichten hergestellt sind. Der fertige Gegenstand wird vom überschüssigen Pulver gereinigt. In the generative manufacturing of objects, the object in question is built up layer by layer from a construction material that is placed on a substrate. The building material is usually in powder form. The powdery material is completely melted locally at the respective points by means of radiation and forms a solid layer of material after solidification. The base plate on which the powdered material is located is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made. The finished item is cleaned of excess powder.
Die Daten zur Führung der Strahlung werden auf der Grundlage eines 3D-CAD-Körpers mittels einer Software erzeugt. Als Strahlung kann beispielsweise ein Laserstrahl zum Einsatz kommen. Alternativ zu einem selektiven Laserschmelzen kann ebenfalls ein Elektronenstrahl (EBM) zum Einsatz kommen. The data for guiding the radiation are generated using software on the basis of a 3D CAD body. As radiation, for example, a laser beam to come into action. An electron beam (EBM) can also be used as an alternative to selective laser melting.
Pro Schicht werden selektiv die Bereiche aufgeschmolzen, welche die Strukturen des Gegenstands bilden. Um im nächsten Schritt die darunterliegende Schicht mit der dar über liegenden Schicht zu verbinden, schmilzt die Strahlung bis zu drei darunterlie gende Schichten auf, die anschließend beim raschen Abkühlprozess mit der obersten Schicht fusionieren. For each layer, the areas that form the structures of the object are selectively melted. In the next step, in order to connect the layer below with the layer above, the radiation melts up to three layers below, which then fuse with the top layer during the rapid cooling process.
Dieser Vorgang führt dazu, dass neue Schichten in der Regel nur auf bereits existieren den Schichten platziert werden können. Andernfalls kann es dazu kommen, dass der Laser Bereiche aufschmilzt, die nicht zum Gegenstand gehören. An der Unterseite ei nes Überhangs kann es beispielsweise zu sehr rauen Flächen kommen. Bei besonders steileren Überhängen können massive Fehlbildungen im Bauteil auftreten, da die dar über liegende Schicht auf einer Schicht aufbauen muss, die zu uneben ist. As a result of this process, new layers can generally only be placed on layers that already exist. Otherwise, the laser may melt areas that do not belong to the object. On the underside of an overhang, for example, there can be very rough surfaces. In the case of particularly steep overhangs, massive deformities can occur in the component, since the layer above has to build on a layer that is too uneven.
Es ist daher wichtig, dass solche Überhänge mit einer Stützstruktur, die auch als Sup portstruktur bezeichnet wird, gestützt werden. Weiterhin dient die Stützstruktur auch ei ner kontrollierten Wärmeabfuhr und trägt somit zur Prozesssicherheit bei. Da das in Pul verform vorliegende Aufbaumaterial isolierend wirkt, könnte es andernfalls bei zu star ken Erwärmungen im Bauteil zu Überhitzungen kommen. Außerdem verhindert die Sup portstruktur, dass sich das Bauteil durch prozessbedingte Spannungen, die durch das rasche Aufheizen und anschließende Abkühlen auftreten, verzieht. It is therefore important that such overhangs are supported with a support structure, also known as a support structure. Furthermore, the support structure also serves for controlled heat dissipation and thus contributes to process reliability. Since the construction material, which is in powder form, has an insulating effect, overheating in the component could otherwise occur. The support structure also prevents the component from warping as a result of process-related stresses that occur as a result of rapid heating and subsequent cooling.
Da die Supportstruktur nicht zum eigentlichen Gegenstand gehört, muss diese nach dem Fertigungsprozess entfernt werden. Dies stellt sich insbesondere bei schwer er reichbaren Supportstrukturen als äußerst schwierig und zeitaufwändig dar. Zum Teil ist die Supportstruktur durch massive Anbindungen am Gegenstand auch nicht mehr zu 100 % entfernbar, sodass die Oberflächen, an denen die Supportstruktur befestigt war, minderwertige Qualitäten aufweisen. Die strategisch sinnvolle Platzierung der Stützstruktur, die richtige Orientierung im Bau raum, um mit möglichst wenig Stützstrukturen auszukommen, sowie die anschließende Entfernung des Supports stellen einen der größten Zeitfaktoren und somit einen Haupt kostenträger von generativen Verfahren dar. Since the support structure is not part of the actual object, it must be removed after the manufacturing process. This turns out to be extremely difficult and time-consuming, especially in the case of support structures that are difficult to reach. In some cases, the support structure can no longer be 100% removed due to massive attachments to the object, so that the surfaces to which the support structure was attached are of inferior quality. The strategically sensible placement of the support structure, the correct orientation in the construction space in order to get by with as few support structures as possible, and the subsequent removal of the support represent one of the greatest time factors and thus a main cost driver of generative processes.
Die DE 102 19 983 B4 beschreibt ein Verfahren zum Herstellen metallischer oder nicht metallischer Produkte durch Freiform-Lasersintern. Dabei werden die Produkte mittels eines datengesteuert geführten Laserstrahls aus einem pulverförmigen Werkstoff auf einer Substratplatte schichtweise senkrecht aufgebaut. Zwischen der Substratplatte und der Außenfläche des Produkts wird mindestens eine Stütze aufgebaut, die über eine Sollbruchstelle mit der Außenfläche des Produkts verbunden ist. Die Sollbruchstelle wird durch eine Verringerung der Festigkeit der Stütze entlang der Außenkontur des Produkts gebildet. Dabei wird zur Verringerung der Festigkeit der Querschnitt der Stütze verringert. DE 102 19 983 B4 describes a method for producing metallic or non-metallic products by free-form laser sintering. The products are built up vertically in layers from a powdered material on a substrate plate using a data-controlled laser beam. At least one support is built up between the substrate plate and the outer surface of the product, which is connected to the outer surface of the product via a predetermined breaking point. The breaking point is formed by reducing the strength of the support along the outer contour of the product. In this case, the cross section of the support is reduced to reduce the strength.
In der DE 10 2007 033434 A1 wird ein Verfahren zum Herstellen dreidimensionaler Bauteile beschrieben. Dabei wird bei einem Aufbau von Bauteilen über eine Erstre ckung des Bauteils hinaus zusätzlich eine Hilfsstruktur ausgebildet. An Verbindungsstel len zwischen dem Bauteil und der Hilfsstruktur werden Sollbruchstellen vorgesehen. DE 10 2007 033434 A1 describes a method for producing three-dimensional components. In this case, when components are built up, an auxiliary structure is additionally formed beyond an extent of the component. Predetermined breaking points are provided at connection points between the component and the auxiliary structure.
Die DE 10 2013 011 630 A1 beschreibt ein Verfahren zum Berechnen einer oder meh rerer Stützstreben für ein dreidimensionales Objekt auf einer Plattform, das durch ein Fertigungsverfahren aus Schichten aufgebaut wird. Die Stützelemente bilden dabei nicht nur stabile Verbindungspunkte, sondern weisen auch Sollbruchstellen auf. Die Stützstruktur soll leicht vom Objekt abgelöst werden können, ohne dass an der Objekt oberfläche Krater entstehen. DE 10 2013 011 630 A1 describes a method for calculating one or more support struts for a three-dimensional object on a platform, which is built up from layers using a manufacturing method. The support elements not only form stable connection points, but also have predetermined breaking points. The support structure should be able to be detached easily from the object without craters appearing on the object's surface.
Die für den Aufbau eines Gegenstands notwendigen Stützstrukturen müssen nach der Fertigung im generativen Verfahren händisch und mechanisch entfernt werden. Dies führt zu einem erheblichen personellen und finanziellen Aufwand, der die Implementie- rung generativer Fertigung in der großindustriellen Fertigung hemmen kann. Ein gene ratives Fertigungsverfahren mit manueller Nachbearbeitung steht hier in Konkurrenz zu hoch ausgereiften und ökonomisch optimierten, konventionellen Fertigungsprozessen. The supporting structures required for the construction of an object have to be removed manually and mechanically after production using the generative process. This leads to a considerable personnel and financial effort, which the implementation development of generative manufacturing in large-scale industrial production. A generative manufacturing process with manual post-processing is in competition with highly sophisticated and economically optimized conventional manufacturing processes.
Die DE 10 2015 218 753 A1 beschreibt ein Verfahren zur additiven Fierstellung eines Bauteils, bei dem mithilfe eines Energiestrahls unterschiedliche Pulver zu Schichten verschmolzen werden. Zur maschinellen Fertigung ist das Verfahren um eine Saugvor richtung erweitert, um überschüssiges Pulver zu entfernen. Dieser Ansatz kann zu einer Reduktion von manuellen Nacharbeiten führen. DE 10 2015 218 753 A1 describes a method for the additive manufacture of a component, in which different powders are fused into layers with the aid of an energy beam. For machine production, the process has been expanded to include a suction device to remove excess powder. This approach can lead to a reduction in manual rework.
Einen anderen Ansatz beschreibt die DE 10 2019 002 292 A1 . Um auf Stützstrukturen und deren händische Entfernung komplett zu verzichten, werden die Aufbauschichten auf einer Basissegmentplatte gedruckt. Dies funktioniert bei Laufrädern für Kreiselpum pen, da hier keine Überhänge aufgebracht werden müssen. Der Aufbau findet in diesem Beispiel nur auf der Fläche der Basissegmentplatte statt. DE 10 2019 002 292 A1 describes another approach. In order to completely dispense with support structures and their manual removal, the build-up layers are printed on a base segment plate. This works for impellers for centrifugal pumps because no overhangs have to be applied here. In this example, the construction only takes place on the surface of the base segment plate.
Unabhängig vom manuellen Aufwand der Entfernung der Stützstrukturen, sind die über bleibenden Oberflächen der generativ erzeugten Gegenstände sowohl optisch nicht im mer ansprechend als auch nicht für die spätere Verwendung optimal ausgestaltet. Hier erfolgt oftmals ein weiterer Bearbeitungsschritt zur Aufbereitung der Oberflächen des generativ gefertigten Gegenstands, der sich wiederum ökonomisch nachteilig auf die Konkurrenzfähigkeit der generativen Fertigung auswirkt. Irrespective of the manual effort involved in removing the support structures, the remaining surfaces of the generatively produced objects are not always visually appealing and are not optimally designed for later use. A further processing step often takes place here to prepare the surfaces of the generatively manufactured object, which in turn has an economically disadvantageous effect on the competitiveness of generative manufacturing.
Ein entwicklungsfähiger Ansatz beschreibt die DE 102015 202 417 A1. Ein strömungs führendes Bauteil mit unterschiedlichen Funktionsbereichen wird generativ gefertigt. Durch Variation der Strahlung und des Energieeintrags werden unterschiedliche Funkti onsbereiche aus einem pulverförmigen metallischen Werkstoff ausgebildet. DE 102015 202 417 A1 describes a viable approach. A flow-guiding component with different functional areas is produced additively. By varying the radiation and the energy input, different functional areas are formed from a powdery metallic material.
Aufgabe der Erfindung ist es, einen generativ gefertigten Gegenstand anzugeben, der ohne manuelle, händische Nacharbeit gefertigt werden kann. Dabei sollen die Oberflä chen des generativ gefertigten Gegenstands optisch ansprechend und besonders ver- schleißbeständig ausgebildet sein. Auf eine Nachbearbeitung der Oberflächen des ge nerativ gefertigten Gegenstands soll verzichtet werden können. Der generativ gefertigte Gegenstand soll sich durch eine lange Lebensdauer und eine zuverlässige Verwen dungsweise auszeichnen. Weiterhin soll das Bauteil gut recycelfähig sein. The object of the invention is to provide an additively manufactured object that can be manufactured without manual rework. The surfaces of the generatively manufactured object should be visually appealing and particularly be wear-resistant. It should be possible to dispense with post-processing of the surfaces of the generatively manufactured object. The generatively manufactured object should be characterized by a long service life and reliable use. Furthermore, the component should be easily recyclable.
Diese Aufgabe wird erfindungsgemäß durch einen generativ gefertigten Gegenstand gelöst und einem Verfahren zu dessen Erzeugung. Bevorzugte Varianten sind den Un teransprüchen, der Beschreibung und den Zeichnungen zu entnehmen. According to the invention, this object is achieved by a generatively manufactured object and a method for its production. Preferred variants can be found in the subclaims, the description and the drawings.
Erfindungsgemäß wird der Funktionsbereich mit stützender Funktion eines generativ gefertigten Gegenstands mit einer Strahlungsquelle entfernt. According to the invention, the functional area with a supporting function of a generatively manufactured object is removed with a radiation source.
Als Strahlungsquelle bzw. als Strahlung kann beispielsweise ein Laserstrahl oder ein Elektronenstrahl und dessen Geräte zur Erzeugung der Strahlung zum Einsatz kom men. Die Daten zur Führung der Strahlung werden auf Grundlage des 3D-CAD-Körpers des generativ gefertigten Gegenstands mithilfe der Verfahrenssoftware erzeugt. A laser beam or an electron beam and their devices for generating the radiation can be used, for example, as a radiation source or as radiation. The data for guiding the radiation is generated on the basis of the 3D CAD body of the generatively manufactured object using the process software.
Dadurch sind der Funktionsbereich mit stützender Funktion und die Oberflächen des generativ gefertigten Gegenstandes exakt bekannt. Vorteilhafterweise kann man mit eben diesen Daten und der gleichen Strahlungsquelle bzw. Strahlung die nicht mehr be nötigten Stützstrukturen entfernen und die Morphologie der Oberfläche verändern, so dass sie optisch ansprechend und ideal für die spätere Verwendung modifiziert ist. Auf eine manuelle Nachbearbeitung kann bei dem erfindungsgemäßen Gegenstand und durch das erfindungsgemäße Verfahren gänzlich verzichtet werden. As a result, the functional area with a supporting function and the surfaces of the generatively manufactured object are known exactly. Advantageously, with the same data and the same radiation source or radiation, the support structures that are no longer required can be removed and the morphology of the surface can be changed so that it is modified to be visually appealing and ideal for later use. With the object according to the invention and the method according to the invention, manual post-processing can be dispensed with entirely.
Beim selektiven Laserschmelzen wird der generativ gefertigte Gegenstand nach einem Verfahren hergestellt, bei dem zunächst eine Schicht eines Aufbaumaterials auf eine Unterlage aufgebracht wird. Vorzugsweise handelt es sich bei dem Aufbaumaterial zur Herstellung des generativ gefertigten Gegenstands um metallische Pulverteilchen. Bei einer Variante der Erfindung werden dazu eisenhaltige und/oder kobalthaltige Pulver partikel eingesetzt. Diese können Zusätze wie Chrom, Molybdän oder Nickel enthalten. Der metallische Aufbauwerkstoff wird in Pulverform in einer dünnen Schicht auf eine Platte aufgebracht. Dann wird der pulverförmige Werkstoff mittels einer Strahlung an den jeweils gewünschten Stellen lokal vollständig aufgeschmolzen und es bildet sich nach der Erstarrung eine feste Materialschicht. Anschließend wird die Unterlage um den Betrag einer Schichtdicke abgesenkt und es wird erneut Pulver aufgetragen. Dieser Zyklus wird solange wiederholt, bis alle Schichten hergestellt sind und der fertige Ge genstand entstanden ist. Erfindungsgemäß werden dabei unterschiedliche Funktionsbe reiche des Gegenstands ausgebildet, insbesondere auch der Funktionsbereich mit stüt zender Funktion. With selective laser melting, the generatively manufactured object is manufactured using a process in which a layer of a building material is first applied to a substrate. The building material for producing the generatively manufactured object is preferably metallic powder particles. In a variant of the invention, iron-containing and/or cobalt-containing powder particles are used for this purpose. These can contain additives such as chromium, molybdenum or nickel. The metallic structure material is applied in powder form in a thin layer to a plate. Then the powdered material is applied by means of radiation completely melted locally at the desired points and a solid layer of material is formed after solidification. The base is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made and the finished object is formed. According to the invention, different functional areas of the object are formed, in particular the functional area with a supporting function.
Ein Elektronenstrahl ist ein technisch erzeugtes Strahlenbündel aus Elektronen. Elektro nenstrahlen wechselwirken stark mit Materie. So erhitzt sich beispielsweise ein Festkör per, insbesondere ein metallischer Festkörper, wenn er mit Elektronenstrahlen bestrahlt wird. Ausgenutzt wird dies unter anderem zum Aufschmelzen von metallischem Aufbau material, beispielsweise beim Elektronenstrahlschmelzen. Über eine entsprechende Strahlführung lassen sich Strukturen im Mikrometer- bis Nanometerbereich leicht beein flussen. In der Metallbearbeitung werden Elektronenstrahlen mit hoher Leistung zum Schmelzen, Härten, Glühen, Gravieren und Schweißen eingesetzt. Die Bearbeitung mit einem Elektronenstrahl geschieht vorzugsweise im Vakuum. An electron beam is a technically generated beam of electrons. Electron beams interact strongly with matter. For example, a solid body, in particular a metallic solid body, heats up when it is irradiated with electron beams. This is used, among other things, to melt metal construction material, for example in electron beam melting. Structures in the micrometer to nanometer range can be easily influenced by appropriate beam guidance. In metalworking, high-power electron beams are used for melting, hardening, annealing, engraving and welding. Machining with an electron beam is preferably done in a vacuum.
Gemäß der Erfindung wird die Oberfläche des generativ gefertigten Bauteils in ihrer Morphologie verändert. Die Morphologie ist ein Begriff aus der Metallurgie und der Kris- tallografie und beschreibt die Form eines Metallgitters bzw. Kristalls, der aus geomet risch bestimmten Flächen, Kanten und Ecken besteht. According to the invention, the morphology of the surface of the generatively manufactured component is changed. Morphology is a term from metallurgy and crystallography and describes the shape of a metal lattice or crystal that consists of geometrically defined surfaces, edges and corners.
Vorteilhafterweise wird die Oberfläche des generativ gefertigten Gegenstands, der nach dem Entfernen des Funktionsbereichs mit stützender Funktion uneben und rau ausge bildet ist, mithilfe der Strahlungsquelle optimiert. Insbesondere die Glattheit und Rauig keit der Gegenstandsoberfläche werden einerseits den optischen Anforderungen und andererseits an die Verwendungsansprüche angepasst. Advantageously, the surface of the generatively manufactured object, which is uneven and rough after the removal of the functional area with a supporting function, is optimized with the aid of the radiation source. In particular, the smoothness and roughness of the surface of the object are adapted to the optical requirements on the one hand and to the usage requirements on the other.
Idealerweise kann die Härte der Oberfläche beispielsweise bei der Verwendung als Funktionsbereich mit Kontakt zu abrasiven Medien gesteigert werden, um eine ver- schleißbeständige Kontaktfläche zu erzeugen. Erfindungsgemäß wird der Funktionsbereich mit stützender Funktion, insbesondere die Stützstrukturen, schichtweise abgetragen. Die Daten zur Führung der Strahlung liegen in Form eines 3D-CAD-Körpers vor, der schichtweise durch Aufschmelzen von Pulver granulat erzeugt wird. Eben diese Daten sind Grundlage für das Entfernen der Stütz strukturen, das ebenfalls schichtweise erfolgt. Die schichtweise Entfernung ist beson ders ideal, weil sie äußerst präzise und exakt schichtdefiniert arbeitet. Dadurch lässt sich im Vergleich zur manuellen Entfernung der Stützstruktur viel genauer und schonen der arbeiten, was zu einem hochwertigen Qualitätsprodukt führt. Ideally, the hardness of the surface can be increased, for example when used as a functional area in contact with abrasive media, in order to create a wear-resistant contact surface. According to the invention, the functional area with a supporting function, in particular the supporting structures, is removed in layers. The data for guiding the radiation is available in the form of a 3D CAD body that is created layer by layer by melting powder granulate. It is precisely this data that forms the basis for removing the support structures, which is also done in layers. The layer-by-layer removal is particularly ideal because it works extremely precisely and is precisely layer-defined. This makes the work much more accurate and gentle compared to manually removing the support structure, resulting in a high quality product.
In einer besonders vorteilhaften Variante der Erfindung wird die Morphologie des gene rativ gefertigten Gegenstandes unmittelbar beim Entfernen des Funktionsbereichs mit stützender Funktion verändert. Dabei überzeugt die generative Fertigung eines Gegen stands mit der vollständigen und unmittelbaren Fertigstellung des Gegenstands, wodurch auf eine händische Nacharbeit oder einen anschließenden Bearbeitungsschritt mit entsprechender Maschinenvorbereitung komplett verzichtet werden kann. In a particularly advantageous variant of the invention, the morphology of the generatively manufactured object is changed immediately upon removal of the functional area with a supporting function. The generative manufacturing of an object convinces with the complete and immediate completion of the object, which means that manual rework or a subsequent processing step with corresponding machine preparation can be completely dispensed with.
Erfindungsgemäß wird ein generativ gefertigter Gegenstand in einem integrativen Ferti gungsverfahren gebildet. Die 3D-Form des Gegenstands ist in einer Software als Da tensatz hinterlegt. An den Stellen, an denen der Gegenstand ausgebildet werden soll, wirkt ein Roboterarm, der über Werkzeuge unterschiedlicher generativer Aufbaupro zesse verfügt und bildet Schicht für Schicht die Funktionsbereiche des Gegenstands, insbesondere den Funktionsbereich mit stützender Funktion, aus. Vorteilhafterweise kann für jede Schicht nacheinander oder gleichzeitig der geeignete Aufbauprozess für jedes Aufbaumaterial ausgeführt werden, so dass ein komplexer Gegenstand auch aus unterschiedlichen Werkstoffen entsteht, dessen Bereiche optimal an die Anforderungen des späteren Einsatzes angepasst sind. According to the invention, a generatively manufactured object is formed in an integrative manufacturing process. The 3D shape of the object is stored in software as a data set. At the points where the object is to be formed, a robotic arm, which has tools for different generative assembly processes at its disposal, acts and forms the functional areas of the object layer by layer, in particular the functional area with a supporting function. Advantageously, the appropriate build-up process for each build-up material can be carried out for each layer in succession or simultaneously, so that a complex object is also created from different materials, the areas of which are optimally adapted to the requirements of later use.
In einer Variante der Erfindung ist vorstellbar, dass Funktionsbereiche des Gegen stands schichtweise, auch in Form einer Gitterstruktur, mit einem Schmelzschicht-Werk zeug des generativen Fertigungsverfahrens erzeugt werden, bei dem aus schmelzfähi- gern Kunststoff ein Raster von Punkten auf eine Fläche aufgetragen wird. Durch Extru dieren mittels einer Düse sowie einer anschließenden Erhärtung durch Abkühlung an der gewünschten Position wird ein tragfähiger Aufbau, insbesondere in Form eines Git ters und/oder in Form von Waben erzeugt. Indem der stützende Bereich eines Gegen stands beispielsweise hohlraumbildend mit besonders tragfähiger Struktur erzeugt wird, weist ein Gegenstand eine enorme Festigkeit bei gleichzeitig sehr geringer Masse auf. Der Aufbau eines Gegenstands erfolgt üblicherweise, indem wiederholt jeweils zeilen weise eine Arbeitsebene abgefahren und dann die Arbeitsebene stapelnd nach oben verschoben wird, sodass der Gegenstand mit seinen Funktionsbereichen, insbesondere mit dem Funktionsbereich mit stützender Funktion, entsteht. In a variant of the invention it is conceivable that functional areas of the object are produced in layers, also in the form of a lattice structure, with a fused layer tool of the generative manufacturing process in which fusible like plastic, a grid of dots is applied to a surface. A stable structure, in particular in the form of a lattice and/or in the form of honeycombs, is produced by extrusion using a nozzle and subsequent hardening by cooling at the desired position. If the supporting area of an object is created, for example, in a cavity-forming manner with a particularly load-bearing structure, an object has enormous strength while at the same time having a very low mass. An object is usually built up by repeatedly moving along a working plane line by line and then stacking the working plane upwards so that the object with its functional areas, in particular with the functional area with a supporting function, is created.
In einer besonders vorteilhaften Variante der Erfindung wird der generativ gefertigte Ge genstand aus einem Aufbaumaterial durch aufeinanderfolgendes Schmelzen und Er starren von Schichten mittels Strahlung hergestellt. Die unterschiedlichen Eigenschaf ten der Funktionsbereiche eines generativ gefertigten Gegenstands werden dabei durch Variationen der Strahlung, der Strahlungsenergie und der Strahlungsintensität generiert. Durch gezielte Steuerung der lokalen Wärmeeinbringung, auch über die Scangeschwin digkeit der Strahlung, wird bereits beim Aufbau des generativ gefertigten Gegenstands eine Modifizierung der Werkstoffeigenschaften vorgenommen. Dadurch gelingt es in ei nem Bereich des Gegenstands, insbesondere in der Morphologie der Oberfläche, Zo nen und Gefüge unterschiedlicher Werkstoffzustände eines chemisch-homogenen Werkstoffs und damit unterschiedlicher Eigenschaften zu erzeugen. In a particularly advantageous variant of the invention, the generatively manufactured object is produced from a structural material by successive melting and hardening of layers by means of radiation. The different properties of the functional areas of an additively manufactured object are generated by variations in the radiation, the radiation energy and the radiation intensity. Through targeted control of the local heat input, also via the scanning speed of the radiation, a modification of the material properties is already carried out during the construction of the generatively manufactured object. This makes it possible to produce zones and structures of different material states of a chemically homogeneous material and thus different properties in one area of the object, in particular in the morphology of the surface.
Der metallische Aufbauwerkstoff wird in Pulverform in einer dünnen Schicht auf eine Platte aufgebracht. Der pulverförmige Werkstoff wird mittels Strahlung an den jeweils gewünschten Stellen lokal vollständig aufgeschmolzen und bildet nach der Erstarrung eine feste Materialschicht. Anschließend wird diese Grundplatte um den Betrag einer Schichtdicke abgesenkt und es wird erneut Pulver aufgetragen. Dieser Zyklus wird so lange wiederholt, bis alle Schichten hergestellt sind. Das überschüssige Pulver wird vom fertigen Gegenstand mithilfe des integrativen Fertigungswerkzeugs abgesaugt. Im Anschluss wird der Funktionsbereich mit stützender Funktion, der insbesondere für überhängend gefertigte Gegenstände unabdinglich ist, schichtweise durch Einwirken von Strahlung abgetragen. Erfindungsgemäß wird die Strahlungsquelle des Lasers des integrativen Fertigungswerkzeugs durch den Datensatz des 3D-CAD-Körpers geführt, wodurch äußerst präzise die Funktionsbereiche mit stützender Funktion des generativ gefertigten Gegenstands abgetragen werden. The metallic structure material is applied in powder form in a thin layer to a plate. The powdery material is completely locally melted at the desired points by means of radiation and forms a solid material layer after solidification. This base plate is then lowered by the amount of one layer thickness and powder is applied again. This cycle is repeated until all layers are made. The excess powder is vacuumed from the finished item using the integrative manufacturing tool. The functional area with a supporting function, which is essential for overhanging objects in particular, is then removed layer by layer by exposure to radiation. According to the invention, the radiation source of the laser of the integrative manufacturing tool is guided through the data set of the 3D CAD body, as a result of which the functional areas with a supporting function of the generatively manufactured object are removed with extreme precision.
Vorteilhafterweise wird gleichzeitig und unmittelbar beim Entfernen des Funktionsbe reichs mit stützender Funktion durch Variation der Strahlungsenergie, der Strahlungsin tensität und der Scangeschwindigkeit der Strahlung die Morphologie der Oberfläche des generativ gefertigten Gegenstands optimiert. Idealerweise kann die Fertigung des gene rativ gefertigten Gegenstands in einer integrativen Fertigungseinheit vollständig ausge führt werden. Dadurch werden die Kosten für die generative Fertigung eines Gegen stands erheblich gesenkt, der Einsatz von Arbeitskräften für eine Nachbearbeitung voll ständig reduziert und die Oberflächenqualität des fertigen Gegenstands enorm verbes sert. Advantageously, the morphology of the surface of the generatively manufactured object is optimized simultaneously and immediately when removing the functional area with a supporting function by varying the radiation energy, the radiation intensity and the scanning speed of the radiation. Ideally, the production of the generatively manufactured object can be fully carried out in an integrative manufacturing unit. As a result, the cost of additive manufacturing of an object is significantly reduced, the use of manpower for post-processing is completely reduced, and the surface quality of the finished object is vastly improved.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispiels anhand der Zeichnung und aus der Zeichnung selbst. Further features and advantages of the invention result from the description of an exemplary embodiment based on the drawing and from the drawing itself.
Dabei zeigt: It shows:
Fig. 1 einen generativ gefertigten Gegenstand mit einem Funktionsbereich mit stützender Funktion, 1 an additively manufactured object with a functional area with a supporting function,
Fig. 2 einen weiteren generativ gefertigten Gegenstand mit einem Funktionsbe reich mit stützender Funktion. Fig. 2 another generatively manufactured object with a rich functional area with a supporting function.
In der Fig. 1 ist ein generativ gefertigter Gegenstand 1 dargestellt, der über mindestens einen Funktionsbereich mit stützender Funktion 2 verfügt. In diesem Ausführungsbei spiel sind der generativ gefertigte Gegenstand 1 als Spaltring und der Funktionsbereich mit stützender Funktion 2 als Stützstruktur ausgebildet. Die Stützstruktur ist nötig, um den generativ gefertigten Gegenstand 1 in seiner Form beim schichtweisen Aufbau zu bilden und ebenfalls zu halten. Die Stützstruktur wird nach der Ausbildung des generativ gefertigten Gegenstands 1 schichtweise durch die Strahlung abgetragen. Die Oberflä che 3 des Gegenstands 1 , insbesondere die Oberfläche 3 an die zuvor die Stützstruktur angeformt war, wird durch die Strahlung unmittelbar beim Entfernen der Stützstruktur in ihrer Morphologie optimiert. Auf eine händische Nacharbeit, ein manuelles Entfernen der Stützstruktur und eine Verbesserung des generativ gefertigten Gegenstands 1 kann verzichtet werden. In der Fig. 2 ist ein weiterer generativ gefertigter Gegenstand 1 mit einem Funktionsbe reich mit stützender Funktion 2 dargestellt. In diesem Ausführungsbeispiel sind der ge nerativ gefertigte Gegenstand 1 als wandförmiges Bauteil und der Funktionsbereich mit stützender Funktion 2 als Stützstruktur ausgebildet. Die Stützstruktur wird nach der Ausbildung des generativ gefertigten Gegenstands 1 schichtweise durch die Strahlung abgetragen, während unmittelbar beim Entfernen der Stützstruktur die Oberfläche 3 des generativ gefertigten Gegenstands in ihrer Morphologie für die Anwendung des Gegen stands 1 optimiert wird. 1 shows a generatively manufactured object 1 which has at least one functional area with a supporting function 2 . In this exemplary embodiment, the generatively manufactured object 1 is in the form of a split ring and the functional area with a supporting function 2 is in the form of a support structure. The support structure is necessary to to form the generatively manufactured object 1 in its shape during the layered construction and also to keep it. After the generatively manufactured object 1 has been formed, the support structure is removed in layers by the radiation. The surface 3 of the object 1, in particular the surface 3 onto which the support structure was previously formed, is optimized in terms of its morphology by the radiation immediately when the support structure is removed. Manual rework, manual removal of the support structure and improvement of the generatively manufactured object 1 can be dispensed with. 2 shows another generatively manufactured object 1 with a functional area with a supporting function 2 . In this exemplary embodiment, the generatively manufactured object 1 is designed as a wall-shaped component and the functional area with a supporting function 2 is designed as a supporting structure. After the formation of the generatively manufactured object 1, the support structure is removed in layers by the radiation, while the surface 3 of the generatively manufactured object is optimized in terms of its morphology for the application of the object 1 immediately upon removal of the support structure.

Claims

Patentansprüche patent claims
1. Generativ gefertigter Gegenstand (1) mit mindestens einem Funktionsbereich mit stützender Funktion (2), der nach der Fertigung mit einem Werkzeug entfernt wird, dadurch gekennzeichnet, dass der Funktionsbereich mit stützender Funktion (2) mit einer Strahlungsquelle entfernt wird. 1. Additively manufactured object (1) with at least one functional area with a supporting function (2), which is removed with a tool after production, characterized in that the functional area with a supporting function (2) is removed with a radiation source.
2. Generativ gefertigter Gegenstand (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Funktionsbereich mit stützender Funktion (2) schichtweise abgetragen wird. 2. Additively manufactured object (1) according to claim 1, characterized in that the functional area with a supporting function (2) is removed in layers.
3. Generativ gefertigter Gegenstand (1) nach Anspruch 1 oder 2, dadurch gekenn zeichnet, dass die Morphologie der Oberfläche (3) des generativ gefertigten Bau- teiles (1 ) unmittelbar beim Entfernen des Funktionsbereichs mit stützender Funk tion (2) verändert wird. 3. Additively manufactured object (1) according to claim 1 or 2, characterized in that the morphology of the surface (3) of the additively manufactured component part (1) is changed immediately upon removal of the functional area with supporting function (2).
4. Verfahren zur Fertigung eines generativen Gegenstands (1) mit folgenden Schrit ten: selektives Einwirken einer Strahlung auf ein Aufbaumaterial,4. A method of manufacturing a generative article (1) comprising the following steps: selectively exposing a build material to radiation,
Bildung von Funktionsbereichen des Gegenstands (1), formation of functional areas of the object (1),
Selektives Einwirken einer Strahlung auf die Funktionsbereiche. Selective exposure to radiation on the functional areas.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Funktionsbereich mit stützender Funktion (2) schichtweise durch Einwirken von Strahlung abgetra gen wird. 5. The method according to claim 4, characterized in that the functional area with a supporting function (2) is removed in layers by the action of radiation.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass es sich bei der Strahlung um einen datengeführten Laserstrahl handelt. 6. The method according to claim 4 or 5, characterized in that the radiation is a data-guided laser beam.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die7. The method according to any one of claims 4 to 6, characterized in that the
Energie, die Intensität und die Scangeschwindigkeit der Strahlung zum Verändern der Morphologie der Oberfläche (3) des generativ gefertigten Gegenstands (1) va riiert werden. Energy, the intensity and the scanning speed of the radiation to change the morphology of the surface (3) of the generatively manufactured object (1) are va riated.
EP22711201.8A 2021-03-04 2022-03-02 Removing the support structure by means of a laser beam integrated on a robot arm Pending EP4301534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021105228.9A DE102021105228A1 (en) 2021-03-04 2021-03-04 Removal of the support structure with a laser beam integrated on a robotic arm
PCT/EP2022/055231 WO2022184758A1 (en) 2021-03-04 2022-03-02 Removing the support structure by means of a laser beam integrated on a robot arm

Publications (1)

Publication Number Publication Date
EP4301534A1 true EP4301534A1 (en) 2024-01-10

Family

ID=80786514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22711201.8A Pending EP4301534A1 (en) 2021-03-04 2022-03-02 Removing the support structure by means of a laser beam integrated on a robot arm

Country Status (6)

Country Link
US (1) US20240139814A1 (en)
EP (1) EP4301534A1 (en)
JP (1) JP2024508919A (en)
CN (1) CN116917067A (en)
DE (1) DE102021105228A1 (en)
WO (1) WO2022184758A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116000318A (en) * 2022-12-29 2023-04-25 西安航天发动机有限公司 Method for quickly removing metal support formed by selective laser melting

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446733B2 (en) 2000-10-05 2003-09-16 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object
DE10219983B4 (en) 2002-05-03 2004-03-18 Bego Medical Ag Process for manufacturing products using free-form laser sintering
DE102007033434A1 (en) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Method for producing three-dimensional components
DE102013011630B4 (en) 2013-07-12 2021-09-02 Delcam, Ltd. Method for calculating support structures
DE102015202417A1 (en) 2015-02-11 2016-08-11 Ksb Aktiengesellschaft Stömungsführendes component
DE102015218753B4 (en) 2015-09-29 2024-07-25 KSB SE & Co. KGaA Process for producing a component
DE102016206804A1 (en) 2016-04-21 2017-10-26 Airbus Defence and Space GmbH 3D printing process for the additive production of metal components
DE102016219037A1 (en) * 2016-09-30 2018-04-05 Ford Global Technologies, Llc Additive manufacturing process
DE102017101834A1 (en) 2017-01-31 2018-08-16 Amsis Gmbh Automated separation of support structures from a powder bed-based additive-fabricated component
WO2019195062A1 (en) * 2018-04-06 2019-10-10 Velo3D, Inc. Three-dimensional printing of three-dimesional objects
DE102019002292A1 (en) 2019-03-29 2020-10-01 KSB SE & Co. KGaA Method and device for additive manufacturing of a component

Also Published As

Publication number Publication date
JP2024508919A (en) 2024-02-28
WO2022184758A1 (en) 2022-09-09
DE102021105228A1 (en) 2022-09-08
US20240139814A1 (en) 2024-05-02
CN116917067A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
EP1341664B1 (en) Method for producing a part and device for carrying out this method
DE69206357T2 (en) Method and device for producing three-dimensional objects by welding layers.
EP2300218B1 (en) Dual method for the small-scale manufacture of products
EP0790875B1 (en) Process and device for making metal workpieces
DE69427305T2 (en) THREE-DIMENSIONAL PROTOTYPE QUICK BUILDING PROCESS
EP1230055B1 (en) Method for producing shaped bodies or applying coatings
DE19853978C1 (en) Apparatus for selective laser smelting comprises a roller that moves over the processing surface using an element to distribute powder
EP1137504A1 (en) Process chamber for selective laser fusion
EP3216546A1 (en) Micro-forging in a generative production method
EP2493650A2 (en) Method and device for producing a component of a turbomachine
EP2384882A1 (en) Method for generative creation of a three dimensional object with spatial elements and method for producing a corresponding data set
WO2012152259A1 (en) Method for the production, reparation or replacement of a component, including a compacting step using pressure
EP3321011B1 (en) Method for improving the surface quality of components made by additive manufacturing
EP1397222B1 (en) Procedure for the production of a work piece with exact geometry .
DE102017200152A1 (en) Additive manufacturing process
EP3248719B1 (en) Method and apparatus for additive manufacture of at least one component area of a component
EP3338918A1 (en) Layered construction device and layered construction method for additive manufacture of at least one component area of a component
DE102016209618A1 (en) Method and device for the additive production of at least one component region of a component
DE102010046467A1 (en) Device, useful for manufacturing, repairing and/or replacing component, preferably aircraft component by powder solidifiable by radiation energy of radiation energy source, comprises fixed construction platform with frame
EP4301534A1 (en) Removing the support structure by means of a laser beam integrated on a robot arm
EP3175941B1 (en) Method and apparatus for additive manufacture of at least one component area of a component
EP4149707A1 (en) Method and system for processing a powder material for additive production of a workpiece
DE102021131372A1 (en) Process for manufacturing a workpiece
EP3416813A1 (en) Processing tool and method for production thereof by means of a generative layer construction process
WO2023213690A1 (en) Method and device for generating irradiation control data for a device for additive manufacturing of a component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)