EP4268946A1 - Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt - Google Patents
Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt Download PDFInfo
- Publication number
- EP4268946A1 EP4268946A1 EP22170596.5A EP22170596A EP4268946A1 EP 4268946 A1 EP4268946 A1 EP 4268946A1 EP 22170596 A EP22170596 A EP 22170596A EP 4268946 A1 EP4268946 A1 EP 4268946A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- starting materials
- housing
- continuous
- screw shaft
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007858 starting material Substances 0.000 title claims abstract description 89
- 239000007788 liquid Substances 0.000 title claims abstract description 86
- 239000013590 bulk material Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000007787 solid Substances 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000004898 kneading Methods 0.000 claims description 31
- 239000010409 thin film Substances 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000010924 continuous production Methods 0.000 claims description 3
- 229910001867 inorganic solvent Inorganic materials 0.000 claims description 3
- 239000003049 inorganic solvent Substances 0.000 claims description 3
- 235000013305 food Nutrition 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 14
- 238000005292 vacuum distillation Methods 0.000 description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 9
- 238000010923 batch production Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000008240 homogeneous mixture Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000011363 dried mixture Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000012018 catalyst precursor Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011552 falling film Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012803 melt mixture Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/53—Mixing liquids with solids using driven stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/57—Mixing high-viscosity liquids with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/80—After-treatment of the mixture
- B01F23/806—Evaporating a carrier, e.g. liquid carbon dioxide used to dissolve, disperse, emulsify or other components that are difficult to be mixed; Evaporating liquid components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/40—Mixers with shaking, oscillating, or vibrating mechanisms with an axially oscillating rotary stirrer
- B01F31/401—Mixers with shaking, oscillating, or vibrating mechanisms with an axially oscillating rotary stirrer for material flowing continuously axially therethrough
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B11/00—Machines or apparatus for drying solid materials or objects with movement which is non-progressive
- F26B11/12—Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices
- F26B11/16—Machines or apparatus for drying solid materials or objects with movement which is non-progressive in stationary drums or other mainly-closed receptacles with moving stirring devices the stirring device moving in a vertical or steeply-inclined plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/18—Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
- F26B3/22—Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
- F26B3/24—Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration the movement being rotation
Definitions
- the present invention relates to a process and plant for continuously producing a homogenous bulk material from two or more different starting materials having a high liquid content.
- the production of a homogenous bulk material having a low liquid content from two or more different starting materials, which in sum have a high liquid content is typically performed in a batch process.
- liquids are water, an organic solvent, such as acetone, ethanol, benzene or the like, or an inorganic solvent, such as ammonia, carbon disulfide, hydrogen fluoride, sulfuric acid and the like.
- Such a batch processes typically uses a heatable static or dynamic mixer having a large heat exchange surface area, which allows to efficiently remove the liquid contained in the starting materials over the time.
- the deliquefied mixture obtained in the mixer is already a bulk material. Otherwise, i.e. when at least one of the starting materials is not in the powdery or granular form, such as flaky form, and/or if the starting agglomerates in the mixer during its operation to larger aggregates, the deliquefied mixture obtained in the mixer has to be crushed after its removal from the mixer in a crushing machine, such as in a pulverizer, to bulk material.
- batch processes have the drawback of requiring significant dead times for emptying, cleaning and loading the mixer, which reduces the throughput of the respective machines. Furthermore, such batch processes do not lead reliably to a constant product quality.
- Another disadvantages of batch processes in comparison to continuous processes are that the batch processes usually require - for the same throughput - larger machines and such higher investment costs as well as higher operational costs.
- Continuously working mixers are known but are not suitable to continuously producing a homogenous bulk material from two or more different starting materials having a high liquid content with an acceptable throughput and with acceptable machine investment costs as well as acceptable operational costs, especially when a very intense mixing of the components is required before the evaporation of the liquid and when the viscosity of the mixture is high.
- Typical examples are the fine dispersion of particles like a fine powder in a viscous phase, or when a low viscous liquid must be homogenized with a very high viscous phase.
- rotor and/or screw shaft-based mixers such as single screw extruders, twin screw extruders or screw shaft-based mixers comprising a screw shaft rotating and simultaneously moving translationally back and forth in the axial direction during the operation, are used for continuously mixing different starting materials of solids, different starting materials of solids and melts or different starting materials of melts. Since the rotating screw shafts transport the material within the mixers in the axial direction, such screw shaft-based mixers are well suited for continuous mixing processes. They may be in particular used for two or more different starting materials leading upon mixing and homogenization to viscous mixtures, such as viscous melt mixtures, which are otherwise very difficult to mix and to homogenize.
- heatable mixers are used, which allow to adjust a suitable temperature and in particular a suitable temperature profile over various sections of the mixers, and/or to generate the required temperature within the mixer by applying shear forces to the mixture.
- the rotor and/or screw shaft-based mixers are suited for mixing two or more different starting materials, which do not include any liquid or which only have a low liquid content, to a homogenous mixture. Since the aforementioned mixers are usually temperature controllable, they may remove in principle liquid from the mixture by evaporation, but only to a limited extent. This is, among others, due to an insufficient heat exchange surface area especially in larger machines, to a limited heat transfer coefficient and to the comparable short residence time in such rotor and/or mixers.
- the object underlying the present invention is to provide a process for continuously producing a homogenous bulk material having a low liquid content from two or more different starting materials, which in sum have a high liquid content, wherein the process is able for starting materials and/or mixtures having a high viscosity as well as for starting materials and/or mixtures having a low viscosity, and wherein the process has comparable low capital expenses, low operational costs and a high throughput.
- this object is satisfied by providing a continuous process for producing a homogenous bulk material from two or more different starting materials, wherein at least one of the starting materials has a vapor pressure between 0.1 to 1,000 hPa at 23°C, wherein the liquid content of the starting materials based on the sum of liquid and solid content is at least 5% by weight, wherein the process comprises the steps of i) continuously feeding the starting materials into a continuous dynamic mixer comprising at least one rotating shaft and preferably rotating screw shaft and mixing the starting materials therein, and of ii) continuously transferring the mixture obtained in step i) into a continuous evaporator and processing the mixture therein so as to obtain a bulk material having, at 23°C, a liquid content of less than 3% by weight.
- a continuous rotor and/or screw-based mixer may be used in a process for continuously producing a homogenous bulk material from two or more different starting materials having a high liquid content, wherein the process has comparable low capital expenses, low operational costs and a high throughput, when the continuous rotor and/or screw-based mixer is only used for the compounding or mixing, respectively, of the starting materials, wherein the evaporation and, if necessary, bulk material generation, for instance by pulverizing, is performed in a separate step in a continuous evaporator.
- a further crushing or pulverization step is not necessary.
- the process in accordance with the present invention may be not only used for starting materials and/or mixtures having a high viscosity, but also for starting materials and/or mixtures having a low viscosity.
- Continuous rotor and/or screw shaft-based mixers and in particular continuous screw shaft-based mixers comprising a screw shaft rotating and simultaneously moving translationally back and forth in the axial direction during the operation are suitable for processing and mixing mixtures having a high viscosity, in particular since these mixers allow to introduce high shear forces into a viscous mixture allowing to optimize the mixing effect and the evaporation extent.
- such mixers may for low liquid contents effect an evaporation, but only to a limited extent.
- the process in accordance with the present invention has comparable low capital expenses, low operational costs and a high throughput. Also in advantage to the known batch processes, the process in accordance with the present invention is characterized by significantly reduced capital expenses and operational costs, since much smaller mixers may be applied. Moreover, dead times, as required by batch processes for emptying, cleaning and loading the mixer, are not at all required in the process in accordance with the present invention.
- the present invention is not particularly limited concerning the kind of continuous dynamic mixer comprising at least one rotating shaft and preferably rotating screw shaft, i.e. the continuous rotor and/or screw shaft-based continuous dynamic mixer.
- the continuous dynamic mixer may be a single-screw extruder or a twin-screw extruder.
- it may be a multi-screw extruder comprising more than 2 screws.
- An example therefore is a planetary screw extruder comprising a rotating central base screw shaft and 2 to 15 rotating planetary screws shafts being arranged around the central base screw shaft.
- Another example therefore is a ring extruder comprising a fixed central base screw shaft and 2 to 15 rotating planetary screws shafts being arranged around the central base screw shaft.
- Another example therefore is a continuous twin-rotor extruder.
- the continuous dynamic mixer contains one screw shaft, which comprises at least two blade elements extending radially outwards from the screw shaft, wherein the screw shaft rotates and simultaneously moves translationally back and forth in the axial direction of the continuous dynamic mixer during its operation.
- the screw shaft comprises a shaft rod, onto the surface of which the blade elements are arranged so as to extending radially outwards from the shaft rod.
- the combination of the shaft rod and the blade elements is the screw shaft.
- a screw shaft which comprises at least two blade elements extending radially outwards from the screw shaft.
- Such a continuous dynamic mixer allows a particularly efficient homogenization of a mixture and even of a mixture having a particularly high viscosity or which is on account of other reasons very difficult to mix, since the oscillating screw shaft, i.e. the screw shaft rotating and simultaneously moving translationally back and forth in the axial direction of the continuous dynamic mixer, allows to incorporate high shear forces into the mixture and this homogenously over the whole surface of the screw shaft.
- the continuous dynamic mixer comprises:
- kneading elements which are for instance in the form of kneading bolts, allows to even improve the homogenization efficiency of the mixer, since the kneading elements also allow to incorporate high shear forces into the mixture and this homogenously over the whole hollow interior of the housing .
- the screw shaft, on which the blade elements are arranged has a circular cross-section.
- the blade elements are arranged to be spaced apart from one another on the surface of the screw shaft, wherein the blade elements are arranged on the circumferential surface of the screw shaft, at least in one section extending in the axial direction of the screw shaft, in two, three, four or six rows extending in the axial direction of the screw shaft, wherein preferably all of the at least two rows each comprise at least three, preferably at least ten and more preferably at least 20 blade elements.
- the receptacles and thus the kneading elements are arranged at least in one section extending in the axial direction of the of the inner peripheral surface of the housing in two, three, four or or six rows extending in the axial direction over at least one section of the inner peripheral surface of the housing, wherein preferably all of the at least two rows each comprise at least three, preferably at least ten and more preferably at least 20 receptacles, in which kneading elements are fixed.
- the number of rows of the receptacles in the housing preferably is the same as the number of rows of the blades on the screw shaft.
- the blade elements of the screw shaft may have an elliptic, oval or biconvex outer peripheral surface in the top view.
- each of the blade elements of the at least one section extending in the axial direction of the screw shaft may have a longitudinal extension L, which extends at an angle of 45° to 135°, preferably 60° to 120°, particularly preferably 80° to 100°, very particularly preferably from 85° to 95°, and most preferably of about 90° to the axial direction of the screw shaft.
- the at least one section extending in the axial direction of the screw shaft in which the blade elements are arranged in two, three, four or six rows extending in the axial direction of the screw shaft as well as the at least one section extending in the axial direction of the inner peripheral surface of the housing, in which the receptables and the kneading elements are arranged in two, three, four or six rows extending in the axial direction of the inner peripheral surface of the housing, is at least 0.2 D, preferably at least 0.5 D, particularly preferably at least 1 D and very particularly preferably at least 5 D of the length of the screw shaft.
- each of the blade elements of the at least one section extends - as seen in the cross-section of the screw shaft - over an angular distance of 20° to less than 160°, preferably of 45° to 135°, particularly preferably of 60° to 120°, further preferably of 70° to 110°, very particularly preferably of 80° to 100°, and most preferably of 85° to 95° of the circumferential surface of the screw shaft.
- each of the blade elements of the at least one section extending in the axial direction of the screw shaft - as seen in the cross-section of the screw shaft - extends over the same angular distance of the circumferential surface of the screw shaft.
- the blade elements are arranged on the surface of the screw shaft in the at least one section in three rows extending in the axial direction of the screw shaft, wherein each of the blade elements of the at least one section extends - as seen in the cross-section of the screw shaft - over an angular distance of 20° to 175° of the circumferential surface of the screw shaft.
- each of the blade elements of the at least one section extending in the axial direction of the screw shaft - as seen in the cross-section of the screw shaft - extends over the same angular distance of the circumferential surface of the screw shaft.
- the blade elements are arranged on the surface of the screw shaft in the at least one section in four rows extending in the axial direction of the screw shaft, wherein each of the blade elements of the at least one section extends - as seen in the cross-section of the screw shaft - over an angular distance of 10° to 125° and preferably of 20 to 80° of the circumferential surface of the screw shaft.
- each of the blade elements of the at least one section extending in the axial direction of the screw shaft - as seen in the cross-section of the screw shaft - extends over the same angular distance of the circumferential surface of the screw shaft.
- the blade elements are arranged on the surface of the screw shaft in the at least one section in six rows extending in the axial direction of the screw shaft, wherein each of the blade elements of the at least one section extends - as seen in the cross-section of the screw shaft - over an angular distance of 5° to 90° and preferably of 10 to 60° of the circumferential surface of the screw shaft.
- each of the blade elements of the at least one section extending in the axial direction of the screw shaft - as seen in the cross-section of the screw shaft - extends over the same angular distance of the circumferential surface of the screw shaft.
- the two or more different starting materials are continuously fed into the continuous dynamic mixer.
- Starting materials means in this context not necessarily educts to be reacted, but materials as they are provided at the beginning of the process. Thus, the starting materials may react during the mixing in step a), but must not. For most of the applications, the starting materials do not react during the mixing in step a).
- the different starting materials may be already fed into the continuous dynamic mixer as a pre-mixture. Preferably, however, the two or more different starting materials are fed separately from each other at different locations into the continuous dynamic mixer.
- the liquid content of the starting materials, at 23°C, based on the sum of liquid and solid content is at least 5% by weight.
- a mixture of the starting materials in the ratio as that with which the starting materials are continuously fed into the continuous dynamic mixer has a liquid content of at least 5% by weight.
- the liquid content is that of a mixture of materials A and B in a weight ratio of 1 to 2.
- the liquid content of the starting materials based on the sum of liquid and solid content is at least 6% by weight, more preferably at least 8% by weight, yet more preferably at least 10% by weight, still more preferably at least 15% by weight, still more preferably at least 20% by weight, still more preferably at least 25% by weight and most preferably at least 30% by weight.
- the liquid content of the starting material, at 23°C may be for instance determined by vacuum distillation being performed with 10 grams of the mixture of the starting materials in the ratio as that with which the starting materials being continuously fed into the continuous dynamic mixer, wherein firstly at 23°C the pressure in the vacuum distillation vessel is decreased from atmospheric pressure to 100 Pa with a rate of 50 Pa/minute and secondly, when the pressure of 100 Pa is obtained and after one minute waiting, the temperature in the vacuum distillation vessel is increased, at 100 Pa, from 23°C to 120°C with a heating rate of 1°C/minute.
- the vacuum distillation is performed in a rotating evaporator.
- the weight difference between the mixture of the starting materials in the ratio as that with which the starting materials are continuously fed into the continuous dynamic mixer before starting the vacuum distillation and the weight of the solid residue being present after the vacuum distillation is the liquid content of the starting materials, at 23°C.
- the weight of the solid residue being present after the vacuum distillation is the solid content of the bulk material, at 23°C.
- the vapor pressure of a liquid is preferably measured at 23°C according to DIN EN 13016-3.
- the starting materials comprise at least one starting material being liquid at the temperature at which the mixing is performed in step a) and/or being liquid at ambient temperature or 23°C, respectively.
- a liquid starting material are the organic solvents acetone, alcohols, benzene, benzene derivates, N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, water, ammonia and the like.
- the liquid has, at 23°C, a dynamic viscosity of at most 100 Pa ⁇ s, preferably of at most 10 Pa-s, more preferably of at most 1 Pa ⁇ s, even more preferably of at most 0,1 Pa ⁇ s and most preferably of at most 0,01 Pa ⁇ s, such as between 0.1 and 1,000 m Pa ⁇ s.
- the process in accordance with the present invention is particularly suitable for processing starting materials with a high liquid content, it is suitable, if at least one of the starting materials is a liquid, a mixture of two or more liquids or a dispersion of solids in a liquid, preferably of solids in water, or in an organic solvent, such as acetone, ethanol, benzene, N-methyl-2-pyrrolidone or the like, or an inorganic solvent, such as ammonia, carbon disulfide, hydrogen fluoride, sulfuric acid and the like.
- an organic solvent such as acetone, ethanol, benzene, N-methyl-2-pyrrolidone or the like
- an inorganic solvent such as ammonia, carbon disulfide, hydrogen fluoride, sulfuric acid and the like.
- the process in accordance with the present invention is also particularly suitable for starting materials with a comparable low viscosity.
- at least one of the starting materials has, measured at 23°C, a dynamic viscosity of 0.01 to 100 mPa ⁇ s, preferably of 0.02 to 50 mPa ⁇ s and more preferably of 0.05 to 20 mPa ⁇ s.
- At least one of the starting materials is, at 23°C, a solid, such as a solid powder, a solid composed of granules or a solid composed of flakes.
- solid starting materials examples include thermoplastic polymers or oligomers, such as polyolefins, copolymers, block-copolymers, polyamides, polycarbonates, grafted polymers and the like.
- Other suitable examples for solid starting materials are small organic molecules, inorganic Powders, such as hydrated minerals, calcium carbonate, carbon black and the like, natural fibers, such as those being made from HEMP, algae, cotton, cellulosic, silk, wool, hair and the like, synthetic fibers, such as those being made from glass, carbon and the like, inorganic solids , such as silica, glass, sand, minerals and the like and additives, such as UV stabilizers, dyes, antioxidants and the like.
- the starting materials comprise at least one of the starting material which is, at 23°C, a solid, and at least one of the starting material which is at the temperature at which the mixing is performed in step a) a liquid and/or which is, at 23°C, a liquid.
- the starting materials are mixed in the continuous dynamic mixer at a temperature of 20 to 400°C, such as exemplarily of 150 to 300°C.
- the process in accordance with the present invention is also particularly suitable for mixtures with a comparable high viscosity.
- the mixture has at the outlet of the dynamic mixer a dynamic viscosity of 1 to 50,000 Pa ⁇ s and more preferably of 10 to 15,000 Pa ⁇ s.
- the process in accordance with the present invention is not particularly limited, as long as it is a continuously working evaporator being able to evaporate liquid in the required extent.
- a continuous evaporator may be also denoted as continuous dryer.
- the evaporator or dryer, respectively transforms as much of the liquid contained in the mixture into its gaseous form. If the mixture transferred from the continuous dynamic mixer into the continuous evaporator is not already a bulk material, but for instance a viscous mass, the continuous evaporator also needs to be able to form bulk material thereof, i.e. to be able to pulverize the mixture or the like.
- the continuous evaporator may be a shell and tube evaporator, in particular if the mixtures generated in the continuous dynamic mixer has a very high liquid content and is already present as bulk material.
- Suitable examples for a continuous evaporator are a falling film evaporator and a forced circulation evaporator.
- a suitable continuous evaporator in particular for mixtures generated in the continuous dynamic mixer having a very high liquid content and being already present as bulk material, is a short path evaporator, which is especially suitable for mixtures including high boiling compounds, since it is possible to be operated at a very low vacuum, and for mixtures including for sensitive materials.
- a suitable continuous evaporator is an evaporator forming during its operation a hot mechanically fluidized bed, wherein the mixture obtained in the continuous dynamic mixer is continuously distributed into this fluidized bed.
- the fluidization of the bed may be achieved by a rotating paddle system.
- the mixture having a certain liquid content being continuously fed into the fluidized bed is evenly distributed throughout the fluidized bed so that the volatiles evaporate instantly.
- the continuous evaporator is a thin film evaporator.
- Thin film evaporators are also designated as scraped surface heat exchanger or swept surface evaporator.
- the thin film evaporator may be a vertical thin film evaporator.
- the vertical thin film evaporator comprises a hollow cylindrical, vertically arranged body including a heating jacket and inside its hollow interior a rotor being equipped with rows of blades all over the length of the rotor.
- the blades can be connected to the rotor with or without hinges.
- the blades spread the mixture to be dried in a thin layer over the heated wall, thereby evaporating the volatile components.
- the blades are designed with a minimum gap to prevent fouling of the heating surface by product, but is not in contact with the heated wall. Therefore, the blades breaks the dried mixture up to powder, i.e. a bulk material.
- the mixture to be dried is fed through an inlet located at the top into the vertical thin film evaporator, whereas the dried bulk material leaves the vertical thin film evaporator through an outlet at its bottom.
- the continuous evaporator is a horizontal thin film evaporator.
- a horizontal thin film evaporator works essentially as the aforementioned vertical thin film evaporator, except that the body of the evaporator is arranged horizontally and that the inlet and outlet are on the same horizontal level on the opposite sites of the body of the evaporator.
- the continuous evaporator comprises a housing, in which a hollow interior being limited by the inner peripheral surface of the housing is designed, wherein the housing comprises at its opposite sides an inlet and an outlet and further comprises a heated inner wall and in its hollow interior a rotating rotor comprising blades extending radially outwards from the rotor.
- the mixture obtained in the continuous dynamic mixer is continuously fed through the inlet into the interior of the housing, picked up by the rotor blades and applied onto the heated inner wall and simultaneously conveyed towards and through the outlet.
- the blades of the horizontal thin film evaporator breaks the dried mixture up to powder, i.e. a bulk material, because the blades are designed with a minimum gap to prevent fouling of the heating surface by product, but is not in contact with the heated wall.
- the generated gas(es) are streaming counter-currently to the solid and dried mixture and leave the dryer at the side of the inlet for the mixture.
- the evaporation may be performed, as needed, at atmospheric pressure, under vacuum or at overpressure.
- the residence time of the mixture within the horizontal thin film evaporator may be between 10 seconds and 60 minutes and preferably between 20 seconds and 10 minutes.
- the process in accordance with the present invention leads to bulk material having, at 23°C, a liquid content of less than 3%.
- the bulk material obtained in the continuous evaporator has, at 23°C, a liquid content of at most 2.5%, more preferably of at most 2.0%, even more preferably of at most 1.5%, yet more preferably of at most 1.0%, still more preferably of at most 0.5% and most preferably of at most 0.25% by weight.
- the liquid content of the bulk material is determined by vacuum distillation being performed at 100 Pa with 10 grams of the bulk material being continuously fed into the continuous dynamic mixer, wherein firstly at 23°C the pressure in the vacuum distillation vessel is decreased from atmospheric pressure to 100 Pa with a rate of 50 Pa/minute and secondly, when the pressure of 100 Pa is obtained and after one minute waiting, the temperature in the vacuum distillation vessel is increased, at 100 Pa, from 23°C to 120°C with a heating rate of 1°C/minute.
- the vacuum distillation is performed in a rotating evaporator.
- the weight difference between the bulk material before starting the vacuum distillation and the weight of the solid residue being present after the vacuum distillation is the liquid content of the bulk material, at 23°C, whereas the weight of the solid residue being present after the vacuum distillation is the solid content of the bulk material, at 23°C.
- Bulk material means in accordance with the present invention (dry) material, i.e. material having any of the above mentioned liquid contents, wherein the (dry) material has preferably an angle of repose of at most 75°, more preferably of at most 65°, yet more preferably of at most 60°, still more preferably of at most 55° and most preferably of at most 50°, such as of 25° to 40°.
- the angle of repose of the (dry) material is measured in accordance with ISO 4324.
- the bulk material is present in powdery or granular form, such as in flaky form.
- the process in accordance with the present invention is in particular suitable to produce powdery or granular bulk material, which has preferably a dso-particle size of 0.1 ⁇ m to 10 mm, more preferably of 0.1 ⁇ m to 5 mm, even more preferably of 0.2 ⁇ m to 3 mm and most preferably of 0.5 ⁇ m to 1 mm.
- Powder and granular material comprises fine particles, which may have a spherical, ellipsoidal, cuboidal, flaky, similar and irregular form.
- the term powder is used for finer particles and the term granular material is used for larger particles.
- both terms are used here together to describe material in the above form with the above particle sizes.
- the dso-particle size is the corresponding particle size when the cumulative percentage reaches 50%, i.e. 50% of the particles of the powder are larger than the dso-particle size and 50%, of the particles of the powder are smaller than the d50-particle size.
- the d50-particle size may be measured - in particular, but not exclusively for very fine powders - by light scattering in accordance with ISO 22412:2017 or - in particular, but not exclusively for very fine powders - by laser diffraction in accordance with ISO 13320:2020 or - in particular, but not exclusively for very fine powders - by dynamic image analysis in accordance with ISO 13322:2021.
- the process in accordance with the present invention is suitable to produce bulk material in form of flakes.
- Flakes means in this connection particles having an aspect ratio of the average particle length divided by the average particle thickness of at least 2, preferably of at least and more preferably of at least 10, wherein length means the longest extension of the particle surface and the thickness means the smallest extension of the particle surface.
- the average length of the flaky particles is 100 ⁇ m to 20 mm and preferably 500 ⁇ m to 10 mm
- the average thickness of the particles is 10 ⁇ m to 2 mm and preferably 100 ⁇ m to 1 mm.
- the flakes may be plate-like particles, i.e. particles having a length, a width and a thickness.
- the length means the longest extension of the flaky particle surface, the width the largest extension of a line being oriented in a 90° angle to the length and the thickness means the extension of the particle in the plane being in a 90° angle to the plane spanned by the length and width of the particle.
- the bulk material obtained with the aforementioned process may be a heterogenous catalyst, which is prepared by mixing zeolite microspheres with a binder and a liquid containing the catalyst precursor. A very intense mixing is required to ensure a good contact of the microsphere with the catalyst precursor. After that, the liquid is evaporated and thereby the solid containing the catalyst precursor is pulverized to a powder.
- the bulk material obtained with the aforementioned process for the electrode manufacturing such as for lithium-ion-batteries.
- the present invention relates to a plant for producing a bulk material from two or more different starting materials, wherein at least one of the starting materials has a vapor pressure between 0.1 to 1,000 hPa at 23°C, wherein the liquid content of the starting materials based on the sum of liquid and solid content is at least 5% by weight, comprising:
- the continuous dynamic mixer is a single-screw extruder or a twin-screw extruder.
- the continuous dynamic mixer contains one screw shaft, which comprises at least two blade elements extending radially outwards from the screw shaft, wherein the screw shaft rotates and simultaneously moves translationally back and forth in the axial direction of the continuous dynamic mixer during its operation.
- the continuous dynamic mixer comprises:
- the screw shaft has a circular cross-section and the blade elements are arranged to be spaced apart from one another, wherein the blade elements are arranged on the circumferential surface of the screw shaft, at least in one section extending in the axial direction of the screw shaft, in two, three, four or six rows extending in the axial direction of the screw shaft.
- the continuous evaporator is i) a shell and tube evaporator, preferably a falling film evaporator or a forced circulation evaporator, or ii) a short path evaporator.
- the continuous evaporator is a thin film evaporator.
- the continuous evaporator is a horizontal thin film evaporator, which comprises a housing, in which a hollow interior being limited by the inner peripheral surface of the housing is designed, wherein the housing comprises at its opposite sides an inlet and an outlet and further comprises a heated inner wall and in its hollow interior a rotating rotor comprising blades extending radially outwards from the rotor.
- the plant 2 for producing a bulk material with a low liquid content from two or more different starting materials having a high liquid content shown in figure 1 as schematic plan view a continuous dynamic mixer 4 and downstream thereof a continuous evaporator 6.
- the continuous dynamic mixer 4 comprises a drive block, which in turn comprises a motor as well as a gearbox, a filling funnel 10 for introducing a solid into the continuous dynamic mixer 4 and a liquid inlet 12 for introducing a liquid or dispersion of a solid in a liquid into the continuous dynamic mixer 4.
- the continuous dynamic mixer 4 is connected with the continuous evaporator 6 via a connection line 14 functioning as outlet line for the continuous dynamic mixer 4 and as inlet line for the continuous evaporator 6.
- the continuous evaporator 6 comprises an outlet line 16 for withdrawing the produced bulk material with low liquid content from the continuous evaporator 6.
- the continuous dynamic mixer 4 comprises a housing 18.
- the housing 18 comprises two housing halves 28, 28', which are clad inside with a so-called housing shell 30, which is composed of multiple housing shell parts 32, 32', 32" arranged in an axially adjoining manner.
- the housing shell 30 is thereby considered to be part of the housing 18.
- the inner circumferential surface of the housing 18 borders a cylindrical hollow interior, in which a rotating screw shaft 34 is arranged.
- the screw shaft 34 comprises a shaft rod 36, on whose circumferential surface blade elements 38 are arranged.
- Kneading elements 40 which are designed as kneading bolts 40, are provided on the inner circumferential surface of the two housing halves 28, 28'. Each of these kneading elements is arranged and fixed in a receptacle 42 provided in each case in the wall of the housing 18, said receptacle 42 extending from the inner circumferential surface of the housing shell 30 through the wall of the housing 18.
- each receptacle 42 can be designed having a square cross-section, wherein each kneading bolt 40 has an end fitting perfectly into the square-designed radial inner end of the receptacles 42 and is thereby fixed in the utilized state in a non-rotatable manner in the receptacle 42.
- Each of the kneading bolts 40 is evenly spaced apart from each other and extend into each of the two housing halves 28, 28', when viewed in the axial direction, in the form of three rows 44, 44', 44".
- the housing 18 is preferably temperature-controlled by means of one or more thermo-devices or heatable using electric heat cartridges or heating plates attached outside on the housing, and is water- or air-cooled, if necessary also cooled by a different fluid, such as an oil or another liquid or a special gas.
- the housing of the continuous dynamic mixer is subdivided in the axial direction into multiple process steps 46, 46', 46", wherein each process step 46, 46', 46" is adapted to the function of the individual process steps 46, 46', 46" in terms of the number of kneading bolts 40 as well as the number and dimension of the blade elements 38 on the shaft rod 34.
- the continuous evaporator 6 of the plant 2 of this embodiment is a horizontal thin film evaporator 6.
- the thin film evaporator 6 comprises a housing 48, in which a hollow interior being limited by the inner peripheral surface of the housing is designed, wherein the housing comprises at its opposite sides an inlet 50 and an outlet 52 and further comprises a heated inner wall 64 and in its hollow interior a rotating rotor 54 comprising blades 56 extending radially outwards from the rotor.
- the rotor and the rotor blades are in more detail shown in figure 3b .
- the housing 48 is connected with a heating medium inlet 58 and a heating medium outlet 60.
- the continuous evaporator 6 comprises at its upstream end a drive block 62.
- a solid starting material is continuously fed via the filling funnel 10 and a liquid starting material is continuously fed via the liquid inlet 12 into the continuous dynamic mixer 4, in which the starting materials are heated to an appropriate temperature and mixed with each other, wherein the so formed homogeneous mixture is continuously transported to and removed via the outlet into the connection line 14.
- the homogeneous mixture is continuously fed into the continuous evaporator 6, in which the homogeneous mixture is spread by the blades 56 in a thin layer over the heated inner wall 64 of the continuous evaporator 6, thereby evaporating the volatile components.
- FIG 4 This is in more detail schematically shown in figure 4 , which does not correspond exactly to the design of the continuous evaporator 6 shown in figures 3a and 3b , but which is a simplified schematic drawing illustrating the working principle of a continuous evaporator.
- the blades 56 are designed with a minimum gap to prevent fouling of the heating surface of the heated inner wall 64 by the mixture, but is not in contact with the heated inner wall 64. Therefore, the blades 56 breaks the dried mixture up to powder, i.e. a bulk material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22170596.5A EP4268946A1 (de) | 2022-04-28 | 2022-04-28 | Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt |
PCT/EP2023/060702 WO2023208868A1 (en) | 2022-04-28 | 2023-04-24 | Process and plant for continuously producing a bulk material from two or more different starting materials having a high liquid content |
TW112115987A TW202408653A (zh) | 2022-04-28 | 2023-04-28 | 用二或多種具有高含液量的不同起始材料來連續式生產散裝材料的流程與設備 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22170596.5A EP4268946A1 (de) | 2022-04-28 | 2022-04-28 | Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4268946A1 true EP4268946A1 (de) | 2023-11-01 |
Family
ID=81392947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22170596.5A Withdrawn EP4268946A1 (de) | 2022-04-28 | 2022-04-28 | Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4268946A1 (de) |
TW (1) | TW202408653A (de) |
WO (1) | WO2023208868A1 (de) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788609A (en) * | 1971-07-01 | 1974-01-29 | S Toczyski | Mixing apparatus and method |
GB2118834A (en) * | 1979-01-12 | 1983-11-09 | Chisso Corp | Powder for fire extinguishers |
AT392919B (de) * | 1989-07-21 | 1991-07-10 | Oesterr Forsch Seibersdorf | Verfahren und einrichtung zur stoffbehandlung bzw. -reaktion |
EP0947540A2 (de) * | 1998-04-01 | 1999-10-06 | Geoline S.r.l. | Pigmentreiches trockenes Farbmasterbatch und Herstellungsverfahren |
US20180007950A1 (en) * | 2015-01-21 | 2018-01-11 | Clextral | Process and facility for producing a powdered porous product |
-
2022
- 2022-04-28 EP EP22170596.5A patent/EP4268946A1/de not_active Withdrawn
-
2023
- 2023-04-24 WO PCT/EP2023/060702 patent/WO2023208868A1/en unknown
- 2023-04-28 TW TW112115987A patent/TW202408653A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788609A (en) * | 1971-07-01 | 1974-01-29 | S Toczyski | Mixing apparatus and method |
GB2118834A (en) * | 1979-01-12 | 1983-11-09 | Chisso Corp | Powder for fire extinguishers |
AT392919B (de) * | 1989-07-21 | 1991-07-10 | Oesterr Forsch Seibersdorf | Verfahren und einrichtung zur stoffbehandlung bzw. -reaktion |
EP0947540A2 (de) * | 1998-04-01 | 1999-10-06 | Geoline S.r.l. | Pigmentreiches trockenes Farbmasterbatch und Herstellungsverfahren |
US20180007950A1 (en) * | 2015-01-21 | 2018-01-11 | Clextral | Process and facility for producing a powdered porous product |
Non-Patent Citations (1)
Title |
---|
THOMMEN H: "ERWEITERTE HOCHLEISTUNGS-BAUREIHE DES KO-KNETERS", PLASTVERARBEITER, HUETHIG GMBH, HEIDELBERG, DE, vol. 43, no. 10, 1 October 1992 (1992-10-01), pages 97 - 98, 100,, XP000310015, ISSN: 0032-1338 * |
Also Published As
Publication number | Publication date |
---|---|
TW202408653A (zh) | 2024-03-01 |
WO2023208868A1 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1370355B1 (de) | Flüssigphasenreaktor sowie verfahren zum mischen oder homogenisieren von komponenten unter verwendung eines dergestalten reaktors | |
US20040094862A1 (en) | Multi-screw extruder and method for treating and/or processing elastomers with added filler | |
EP1425145B1 (de) | Verfahren und vorrichtung zur herstellung von elastomermischungen für die gummiherstellung | |
US6125549A (en) | Radiant heater system for thermally processing flowable materials | |
KR20210044287A (ko) | 생성물의 기계적, 화학적 및/또는 열적 공정을 수행하기 위한 장치 | |
JP2016215145A (ja) | 微細分散複合化装置及び微細分散複合化方法 | |
CA2207525A1 (en) | Continuous dry granulation of powdered carbon black | |
EP2049317B1 (de) | Verfahren zur herstellung von pigmentgranulat mittels doppelextrusion | |
EP4268946A1 (de) | Verfahren und anlage zur kontinuierlichen herstellung eines schüttguts aus zwei oder mehreren unterschiedlichen ausgangsmaterialien mit hohem flüssigkeitsgehalt | |
CA2256639C (en) | Carbon black pellets and a process for the production thereof | |
EP2915652A1 (de) | Methode und Vorrichtung zur Herstellung von Masterbatch-Granulaten aus Resttoner. | |
JP5826175B2 (ja) | モノマー、プレポリマー、ポリマー又はそれらの混合物を処理する方法及びその設備 | |
EP2915837B1 (de) | Verfahren und vorrichtung zur herstellung eines masterbatches aus abfalltonerpulvern | |
US7358328B2 (en) | Method and device for increasing the intrinsic viscosity of polyester material by means of solid phase polymerisation | |
EP1432560B1 (de) | Kontinuierliche herstellung von elastomermischungen für die gummiherstellung | |
RU175347U1 (ru) | Установка для получения модифицированного резинового регенерата | |
CA2514333C (en) | Method for the continuous phase transformation of a product | |
RU2649439C1 (ru) | Способ получения модифицированного резинового регенерата и установка для реализации способа | |
Patel et al. | Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers | |
KR102547741B1 (ko) | 정량공급장치가 포함된 양극재혼합장치, 정량공급장치가 포함된 양극재 혼합장치를 이용한 양극재 제조방법, 리튬이온 이차전지 양극재 | |
KR102547744B1 (ko) | 회전체 기밀장치가 포함된 양극재혼합장치, 회전체 기밀장치가 포함된 양극재혼합장치를 이용한 양극재 제조방법, 리튬이온 이차전지 양극재 | |
JPH04503471A (ja) | 均一な微細分離粒子混合物の製造方法 | |
Zhou | Dryers | |
RU2200739C1 (ru) | Способ обработки полимерного материала и устройство для его осуществления | |
WO2010061416A1 (en) | Machine for the continuous mixing of agglomerate composite stone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240503 |