EP4266897A1 - Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen - Google Patents

Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen

Info

Publication number
EP4266897A1
EP4266897A1 EP21824478.8A EP21824478A EP4266897A1 EP 4266897 A1 EP4266897 A1 EP 4266897A1 EP 21824478 A EP21824478 A EP 21824478A EP 4266897 A1 EP4266897 A1 EP 4266897A1
Authority
EP
European Patent Office
Prior art keywords
product
nozzle
opening
slot
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21824478.8A
Other languages
English (en)
French (fr)
Inventor
Erich Windhab
Joel Zink
Cédric SAX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102020007892.3A external-priority patent/DE102020007892A1/de
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Publication of EP4266897A1 publication Critical patent/EP4266897A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • A23J3/227Meat-like textured foods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/24Working-up of proteins for foodstuffs by texturising using freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/40Foaming or whipping
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/16Extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/31Mechanical treatment

Definitions

  • the invention relates to a foamed, elastic, protein-based product.
  • the invention relates to a method for producing such a product with a defined degree of pore opening.
  • the invention also relates to a device for carrying out the method according to the invention.
  • the invention relates to the use of the product according to the invention as the main component for producing meat analogs based on plant proteins.
  • Viscous masses can be foamed in extruders, in which gas is metered in under atmospheric or excess pressure, mixed/dispersed and/or partially or completely dissolved under excess pressure, is then released again by pressure relief and remains partially or completely incorporated in the viscous mass to form a foam /1,2 /.
  • foaming agents which form a gas as a result of a chemical/physicochemical and/or thermal reaction, which is also partly or completely incorporated into the viscous mass with the aid of mixing/dispersing processes to form a foam.
  • Corresponding viscous masses can be of a synthetic and/or biological nature or also consist of mixtures of such and can be the basis or component of products in the food, cosmetics, pharmaceuticals, building materials or plastics industries.
  • viscous masses foamed in this way are conveyed by the extruder screws and pressed through an extruder die.
  • the aim is for a material strand with a defined shape to emerge from the extruder nozzle, since the product is also typically shaped by means of the extruder nozzle.
  • the dimensional accuracy of such products is often also an important quality measure. This is achieved, among other things, by realizing a uniform laminar flow in the nozzle, which corresponds to a planar layered flow. If a foamed fluid system is moved in such a nozzle flow, there is increased shearing of the fluid system at the nozzle wall due to the typical parabolic flow profile, whereas no shearing occurs in the middle of the nozzle channel. Cross-mixing of the fluid system flowing in this way does not occur (parallel layered flow) provided the nozzle channel does not have any flow obstacles.
  • the maximum wall shear rate present in the fluid layer in contact with the wall usually causes the formation of a boundary layer close to the wall. If the fluid system contains disperse components, these are set in rotation as a result of the wall shear rate effective in the fluid layer close to the wall under consideration and experience a dynamic buoyancy force (lift force), which causes the disperse components to separate away from the wall in the center of the nozzle channel. This applies in principle to solid particles /3/ but also to gas bubbles /4/ and leads to a depletion of the fluid layer close to the wall of such disperse components.
  • HMEC High Moisture Extrusion Cooking
  • HMEC High Moisture Extrusion Cooking
  • protein denaturation takes place in the form of protein fibrils that form, which are oriented in the direction of flow in the extruder nozzle inlet flow as a result of stretching flow components that are effective there and as a result of subsequent cooling (to approx. 60°C) in a long (> approx. 1 m) extruder cooling nozzle in this oriented structural state.
  • the cooled product emerges from the extruder nozzle as a smooth strand with typically laminar nozzle flow.
  • the oriented protein fibrils give the product a meaty fibrous texture /5/ As a result of the slow cooling of the product in d
  • the extruder nozzle suppresses a sudden release of water vapor and thus does not disturb the formation of the structure.
  • US20050003071 A1, WO2016150834 A1 and US 10,716,319 B2 are comprehensively described.
  • US 10,716,319 B2 (Method of making a structured protein composition) is considered from a technological point of view as the closest description (closest state of the art) to the technology according to the invention described in this patent application: (Translated abstract from US 10,716,319 B2): “The fibrous composition obtained in the extruder leaves the extruder at a temperature of the composition that is higher than the applicable boiling point of water (e.g. 100 °C at atmospheric pressure or lower if one vacuum port is used). It is believed that this leads to expansion and subsequent collapse of the textured product.
  • the applicable boiling point of water e.g. 100 °C at atmospheric pressure or lower if one vacuum port is used
  • the extrudate according to the invention is infused into the moist product obtained by extrusion.
  • the extrudate of the present invention does not require drying and rehydration. It remains substantially moist and is then further filled with water or other aqueous composition by infusion.
  • the extrudate preferably has a water content of from 55% to 70% by weight.
  • the structured vegetable protein composition resulting from infusion with an aqueous liquid preferably has a water content of from 70% to 90% by weight.
  • the above-mentioned infusion can be enhanced (ie drain more quickly and/or allow more water to be incorporated) by an aqueous liquid if the extrudate has been frozen first (and then thawed prior to infusion).
  • the freezing temperature is below -5°C and -15°C.”
  • microfoaming of highly viscous and viscoelastic, dough-like, protein and non-protein-based masses by means of extrusion processes is described in WO 2017/081271 A1.
  • a foamed product can also lead to a product with a better controlled foam structure by means of gas metering and gas dispersion or gas dissolution and renucleation of gas bubbles.
  • gas metering and gas dispersion or gas dissolution and renucleation of gas bubbles typically have closed pores and, as they flow through the extruder die, form a skin layer largely free of foam bubbles and pores as a result of the maximum shear near the wall.
  • the invention is initially based on the object of producing a foamed product with a high bound water content, in the case of extruded meat analogy based on a concentrated vegetable protein melt with > 30% by weight vegetable protein content and > 5% by weight vegetable fiber content and a gas volume content in the end product of > 10 vol. % to create, whereby the gas volume is in the form of pores/bubbles, which should be present in an adjustable proportion as pores open to the product surface, e.g. in order to accelerate further liquid absorption, with sensory and/or nutritionally relevant components contained in this liquid in the to ensure product.
  • the new, foamed products according to the invention allow, via the setting of the foam pore opening degree, a coupled setting of certain sensory and nutritional attributes as "intrinsic" properties of these products, which have not been possible for conventional products of this category or only to a small extent through additional products (sauces, toppings, etc.). ) could be achieved.
  • the (a) sensory quality attributes that are relevant for the consumer: tenderness, juiciness, crispiness, meat taste/aroma (b) nutritional functionalities (e.g. through the introduction of bioavailable iron and B -Vitamins) and (c) convenience properties by enabling or improving the ability to cook, roast and grill, made available in a way that can be adjusted.
  • a closed foam pore structure enhances the sensory texture impressions of (i) tenderness but also (ii) gumminess in the case of solid structures of the Foam lamellae surrounding gas bubbles and (iii) creaminess (creaminess) in the case of fluid foam lamellae properties.
  • Open-pored, spongy foam structures allow the sensory textural attributes (iv) crunchyness but also (v) brittleness to come to the fore with firm foam lamellar properties.
  • the case of fluid foam lamellar properties is irrelevant for open-pored product systems, since deliquescence of the matrix material leads to a foam with closed pores.
  • foamed meat analog products with at least partially open pores
  • their sensory, nutritional and preparation convenience properties can be significantly expanded in that the pores of the foamed base product are partially or completely filled with functional or functionalized fluids, such fluids after pore filling can also solidify.
  • functional or functionalized fluids such fluids after pore filling can also solidify.
  • the subject of the invention is based on a HMEC technology as described above for the preferred production of plant protein-based meat analogues, with this technology being significantly supplemented by a combination with a micro-foaming process, which takes place in the extruder and in a comparable manner, based on the production of foamed baked goods was described in 121.
  • a defined amount of gas e.g. N2, CO2
  • N2, CO2 is first dissolved in the aqueous protein melt in the extruder under the high pressure set there and then released again by reducing the pressure in the extruder cooling nozzle. Gas bubbles are nucleated at the beginning of the extruder nozzle and enlarged as the nozzle flow progresses with progressive pressure release, thus forming a foam structure.
  • the (i) high shear of the cooling, foamed protein melt in the vicinity of the nozzle wall supports in addition to the named effect of (ii) improved gas solubility, a (iii) reduction in gas bubbles due to flow effects (dynamic buoyancy forces) in the nozzle wall zone.
  • the "skin layer" of the extruded, foamed meat-analog strand which is partially or completely depleted of gas bubbles, shields inner foam pores from the environment.
  • a product skin layer formed as described remains closed. For the micro-foamed products this means the presence of a closed foam pore system.
  • the subject of the invention addresses a technology for adjusting the ratio of closed pores/bubbles to open pores/pore channels that are open towards the product surface. In principle, this can also be achieved mechanically by connecting originally closed foam bubbles/pores, provided that these can be brought to coalescence or the formation of connecting channels between them and to the product surface in a defined manner, without significant loss of the total gas volume fraction and fine pores.
  • the characteristics of the pore channels formed in the direction of pressure release and their opening outwards towards the surface of the extruded strand is decisively determined by the rheological properties of the extruded product at the time it emerges from the extruder die. Lower viscosity (or elasticity) allows more pronounced material deformation under the effect of the relaxation pressure gradient and, as a result, more pronounced pore channel formation.
  • the embodiment of the geometry of the adjustable slot nozzle device (VSDA) according to the invention enables a different geometric shaping of the course of the flow cross section in the direction of flow.
  • the constriction is preferably abrupt (approx. 90°), which forces the formation of a secondary flow of the extrusion strand fluid in the zone of the widening again of the flow channel cross section.
  • the static pressure is significantly lowered and, on the other hand, a roller-like secondary flow is generated, which causes the strand fluid to be mixed transversely to its direction of flow in the vertical direction of the slot nozzle channel.
  • the "inside-out turn" of the extrusion strand material depends on the intensity of the secondary därstrom and their rotation frequency.
  • Claim 2 describes a product in which the protein content is 10-95% by weight in its dry substance
  • claim 3 describes a product in which the protein content is 0-100% by weight of vegetable protein.
  • the product in claim 4 is characterized in that the protein in the product is in partially to fully denatured form and has a fibrillar structure, while the product according to claim 5 is characterized in that the denatured form has an oriented fibrillar structure.
  • Claims 6 to 8 take into account ingredients and their quantities which are of particular importance for the setting of the sensory and nutritional corresponding vegan meat analogues.
  • the product according to claim 6 contains a plant fiber content of 0.5 - 20
  • a product is described in which the product contains a proportion of fats or oils of 0.1 - 15% by weight, based on the dry substance, while the product in claim 8 is characterized in that it contains a proportion of flavoring and /or coloring and/or components that increase the nutritional value in addition to the plant fiber content of 0.1 - 5% by weight, based on the dry substance.
  • claim 9 proposes a product which, after drying to a residual water content of ⁇ 5% by weight and spoilage-free, moisture-controlled storage for several months under room temperature conditions, when brought into contact with water or a water-containing fluid system, is restored to its original volume and texture, without loss of dry substance .
  • Claim 10 describes a product which, after drying to a residual water content of ⁇ 5% by weight and spoilage-free, moisture-controlled storage for several months under room temperature conditions, is reconstituted when it comes into contact with water or a water-containing fluid system, restoring its original volume and texture.
  • COP opening by multiple needle penetration (penetration-opening, POP), (d) opening by forced secondary mixed flow (mix-opening, MOP), and (e) opening by freeze-patterning (freeze-opening, FOP) individually or be applied in coupling, whereby the opening of gas pores trapped in the foamed product or
  • the method according to the invention and its configurations can be coupled directly to the HM EC extrusion process and the extrusion parameters to be set for structuring the protein matrix for the pore opening can be directly transferred.
  • the static pressure built up in the extruder can be maintained up to the end of the die to such an extent that a sufficiently rapid and efficient residual pressure relaxation can be realized at the pore opening.
  • part of the kinetic flow energy of the extrudate strand is used to generate a cylindrical secondary flow that also periodically oscillates for viscoelastic masses, which is transverse to the flow in the vertical direction of the extruder Slot nozzle causes a thorough mixing, which elongates closed foam pores, moves them towards the surface of the strand and "tears open” the surface structure in such a way that the intensity can be adjusted, so that a part of the correspondingly treated pores, which can also be adjusted, is opened towards the product surface.
  • MOP forced secondary mixed flow
  • the adjustability of the degree of pore opening is based on the adjustability of the intensity of the mixed secondary flow, which in turn can be adjusted within wide limits by adjusting a local slot nozzle height reduction and the transport speed of the extrudate strand (e) for pore opening by freeze structuring is used according to the invention on foam structures in order to penetrate primarily large ice crystals for penetrating material partitions between closed pores at a preferably slow freezing rate and thus convert them into open pores.
  • the high water content (up to 60% by weight) of the plant protein-based meat analogues considered as preferred helps to support the formation of ice crystals.
  • the pore-opening processes are detailed in their technical implementation by means of mechanisms (a)-(e), (a) mobilizes compressive forces to break open pore boundaries outwards towards the product surface. (b) uses targeted incisions to expose the pore openings, (c) creates connecting channels between the closed product pores and outwards to the product surface through needle penetration, (d) refers to the generation of secondary flows in the extruder cooling nozzle in order to create largely closed flows in the laminar slot nozzle flow Breaking up product skin layers by cross-mixing in the height coordinate direction of the nozzle channel and creating additional superficial transverse channels/channels.
  • an additional flow-dynamic feature of viscoelastic fluid systems can be advantageously used according to the invention.
  • the so-called elastic turbulence effect arises as a result of the elastic deformation energy storage in the converging inlet flow of a slot nozzle aperture (VSDA) designed according to the invention and arranged in a defined manner in the nozzle channel and adjustable with regard to slot channel constriction.
  • VSDA slot nozzle aperture
  • variable slot die aperture (VSDA) device according to the invention is installed in the extruder cooling die, typically in the first two thirds of its length. In this way, the elastically-turbulently mixed product strand is partially evened out again in a defined manner in the laminar layer flow that is restored after the aperture and crack formations in the structure are gradually healed again, if desired.
  • the degree of OSMS adjustable via the VSDA as described and the length of the extruder nozzle in the aperture wake are matched according to the invention or calibrated specifically for the material system.
  • Claims 22 and 23 refer to the possibility of drying the products after the pore opening has taken place according to one or a combination of methods (a)-(e) in order thereby to achieve an extended shelf life at ambient temperature storage.
  • the opening of the pores advantageously accelerates the transport of water during drying and also during reconstitution.
  • patent claims 24 and 25 the basic conditions for the accuracy of setting the degree of pore opening and the underlying total gas pore volume in the product, which should have or should have an open connection to the product surface, are specified.
  • the resulting bandwidth from (i) a minimum of 10% by volume total gas content (in pore form) with 5% open to (ii) a maximum of 80% by volume total gas content (in pore form) with 90% open is relevant for foamed meat analogues, for example in case (i), for example, to achieve easy penetration with intensively flavoring substances in fluid form, and in case (ii), for example, to homogeneously penetrate 72% of the product volume with a fluid phase that gives consistency/texture and that may solidify after pore filling.
  • application to meat analogues resulted in a scaffolding protein structure with, for example, a vegan pie/sausage filling.
  • "marbled" product structures with an adapted fat/gel insert can be realized in order to further adjust typical meat/fat/connective tissue/gel structures and associated sensory preferred texture properties.
  • the gas-filled volume fraction is limited to 80% by volume, since the pore opening mechanisms according to the invention, which are related to rather solid foam products, can no longer be transferred sufficiently non-destructively to the overall product if the foams are too fragile.
  • the pore opening mechanisms use mechanical, fluid mechanical or thermodynamic principles to open closed pores to the product surface by means of a:
  • the core element of the devices for activating the pore opening mechanisms according to (a) and (d) is a variable slot nozzle aperture (VSDA).
  • VSDA variable slot nozzle aperture
  • Their free cross-sectional area for the passage of the extrudate corresponds exactly to the dimensions of the free cross-section of the extruder slot nozzle when it is 100% open.
  • a cut, rotatably slide-mounted metal cylinder (2) is embedded in the aperture housing (1) in a sealing manner in the upper and lower walls delimiting the flow slot of the aperture device over the entire slot width, perpendicular to the direction of flow. When the aperture is fully open, the gate surfaces of these cylinders are flush with the flow channel wall (3).
  • the metal cylinders (2) can be rotated manually or by means of two servomotors in a controlled or regulated manner so that the aperture narrows on one side or is symmetrical to the longitudinal axis of the nozzle, which at a twist angle of 90° corresponds to the maximum
  • the degree of closure of the slit channel cross section corresponds to (further details, see description of the figures, FIG. 1).
  • Activation of the pore-opening mechanism d) to generate a secondary mixed flow (mix-opening, MOP) in the extruder cooling nozzle can take place solely by means of the VDSA device. In case (d), this is integrated into the nozzle at a position between 10-95% of the nozzle length measured from the nozzle exit end. In the case of a severely disintegrated extrudate structure, this ensures that this reintegrates to a part on the remaining stretch of the die after the passage through the aperture, thus preventing the extrudate strand from disintegrating at the die outlet.
  • the VDSA device is integrated into the nozzle in a position between 0-10% of the nozzle length measured from the nozzle outlet end. This ensures that the abrupt relaxation of the static residual pressure and thus the opening of the pores towards the extrudate surface only takes place shortly before the nozzle exit or directly at the nozzle exit.
  • extrudate is additionally suddenly subjected to a partial vacuum to open the pores, cut off extrudate parts are post-treated in a separate, quasi-continuously operating vacuum device directly after the nozzle outlet.
  • This additional treatment variant is preferably used for softer extrudates which, in the case of protein-based meat analogs, have a higher die outlet temperature or a higher water content.
  • a cutting/paring knife arrangement is arranged shortly before the exit or directly at the exit of the extrudate strand from the extruder nozzle.
  • the extrudate strand feed is thus used to implement the cutting forces.
  • Internal foam pores are thus opened towards the newly created product surface. This is indicated in particular when a "skin layer" with fewer foam pores has formed in the nozzle flow.
  • the opening of the pores can be carried out effectively and reproducibly by means of the devices configured according to the invention, the quality and degree of the opening of the pores still being determined by the material behavior of the extrudate. This must have a basic strength or yield point which ensures that the open pores produced are not closed again by the matrix mass flowing together. Due to the fact that the pore opening mechanisms (a)-(e) can be superimposed, which is advantageous in accordance with the invention, and the devices according to the invention provided for this purpose, a sufficient pore opening efficiency can also be ensured for critical, soft extrudates.
  • FIG. 1 shows the variable slot nozzle aperture (VSDA) according to the invention for a flat slot nozzle.
  • VSDA variable slot nozzle aperture
  • 1 aperture housing
  • 2 truncated rotatable, slide-mounted metal cylinder - 2a in O-position with free flow cross-section
  • 1 b turned clockwise
  • 2c turned counter-clockwise
  • 3 slot nozzle wall
  • 4a - 4c Aperture inlet flow for the differently rotated metal cylinder settings according to 2a-2c
  • 5a - 5c aperture outlet flow for the differently rotated metal cylinder settings according to 2a-2c
  • 6 geometric designations for positioning the metal cylinders
  • a angle of rotation of the metal cylinders
  • ß angle between metal cylinder center and edges of the gate surface of the metal cylinder.
  • a cut, rotatably slide-mounted metal cylinder (2) seals into the aperture housing (1), but is rotatable admitted.
  • the gate surfaces of these cylinders are flush with the flow channel wall (3).
  • the metal cylinders (2) can be rotated by hand or by means of two servomotors, so that the aperture narrows on one side or symmetrically to the longitudinal axis of the nozzle, which corresponds to the maximum degree of closure of the slot channel cross-section at a twist angle of 90° .
  • the mechanism for adjusting the height of the slot gap is implemented via a concentric, conical design of the inner wall of the die housing and an axially displaceable stamp with a conical tip, as shown in FIG.
  • the device according to the invention as shown in FIG. 3 is used for the additional post-treatment according to the application of the pore opening mechanism (a) for pore opening by means of a rapid drop in ambient pressure (flash opening, FOP) by means of partial vacuum application.
  • the pore opening mechanism (a) for pore opening by means of a rapid drop in ambient pressure (flash opening, FOP) by means of partial vacuum application is used for the additional post-treatment according to the application of the pore opening mechanism (a) for pore opening by means of a rapid drop in ambient pressure (flash opening, FOP) by means of partial vacuum application.
  • POT3 The device for realizing the pore opening according to mechanism (c) for multiple needle penetration (Penetration-Opening, POP) is arranged directly after the extruder nozzle exit and combines in the preferred embodiment of the device according to the invention two counter-rotating hollow needle or barb felt needle rollers, where the needles penetrating the extrudate from both sides intermesh as shown in FIG.
  • POT-4 The device for realizing the pore opening according to mechanism d) for generating a secondary mixed flow (Mix-Opening, MOP) in the extruder cooling nozzle can in principle be limited to the Adjustable Slot Nozzle Aperture (VSDA) device, for in -line control of the intensity of the set secondary mixed flow, however, the coupling with a measuring arrangement according to the invention for determining the static pressure before and after the VSDA device is indicated. This pressure measurement arrangement is shown in combination with the VDSA device in FIGS.
  • MOP Magnetic-Opening
  • FIG. 7 contains an expansion of the pressure measurement arrangement from FIG. 6 for the case of viscoelastic fluids, as are present in the case of protein melts for the production of meat analogues.
  • the aforementioned VSDA is installed according to the invention at a greater distance from the die outlet in the extruder die than in the POT-1 technology.
  • the aforementioned secondary flows as a result of adjustable channel cross-section narrowing and widening are significantly forced by the effect of elastic turbulence (relaxation of the elastic extra-normal stresses and the resulting reverse deformation of the strand). This effect can be triggered even with a slight narrowing of the slot nozzle cross-section and its expression can be set and used in a targeted manner to create an open pore structure.
  • static pressure measurements are carried out at a position in the extruder housing in front of the nozzle inlet cross section (P1) at two longitudinal positions in the extruder slot nozzle (P2, P3) after the nozzle inlet zone (after the conical narrowing), after the VSDA (P4), and (P5) in the slot nozzle channel in front of the VSDA, directly opposite (slot nozzle channel underside) to the pressure measurement position P2.
  • the arrangement according to the invention of the pressure measurement points P1-P3 and P4 means that there are separate rheological parameters for (a) the shear viscosity, (b) the elongational viscosity and (c) the elasticity of the extruded mass under the given extrusion conditions.
  • the VSDA device is adjusted with regard to the slot nozzle height reduction in such a way that the intended degree of secondary mixed flow with a correlated pore opening effect results.
  • a quantitative criterion for setting the VSDA slot opening to trigger or set a gradual expression of the forced "elastic-turbulent secondary flow mixing effect" can be determined, which leads to the pore opening according to the invention using the POT-4 technology and the thus triggered Mechanism (d) enabled in an adjustable manner.
  • LD nozzle length
  • the extrudate strand in the event of partial disintegration in the undisturbed nozzle flow, "heals” again after passing through the VSDA to such an extent that a compact, cohesive, foamed, partially open-pored product strand results without the through repeated flow-related "skin formation". destroying the pore opening effect achieved by elastic-turbulent mixing.
  • FIGS. 8-10 Exemplary representations of plant protein-based meat analog product structures and degrees of pore opening according to the invention achieved with the devices according to the invention using the method according to the invention are described below in FIGS. 8-10.
  • Material/basic recipe 52.5% water, 0.5% oil, 41.2% pea protein isolate (PPI), pea fiber 5.8% Process conditions: screw speed: 230 rpm; mass flow 37.5 kg/h; Nozzle entry temperature of the melt: 150° C.; Extruder outlet pressure: 18 - 20bar, nozzle cooling temperature: 60°C
  • Example 1 Pore opening mechanism by means of (a) sudden residual pressure relaxation and (d) superimposed forced secondary mixed flow.
  • the degree of pore opening (POG) was determined according to:
  • the surface of the extrudate shows increasing “fissures” as the height of the VSDA slot die channel increases, as a result of the imposed forced secondary mixed flow with simultaneous residual pressure relaxation. This is a typical image of the resulting product when installing the VSDA at the nozzle end.
  • Example 2 Pore opening mechanism by means of (d) forced secondary mixed flow, generated by means of an adjustable slot nozzle aperture (VSDA) installed with a nozzle length of 0.75 m from the nozzle outlet when the slot channel height reduction is set DH / % ⁇ 15%.
  • VSDA adjustable slot nozzle aperture
  • Example 3 pore opening mechanism by means of (d) forced secondary mixing flows. generated by means of an adjustable slot nozzle aperture (VSDA) installed with a nozzle length of 0.3 m from the nozzle outlet when the slot channel is set to a height reduction DH / % ⁇ 15%.
  • VSDA adjustable slot nozzle aperture
  • FIG 11 shows an enlarged image of the product surface.
  • the wavy stripe pattern structures are clearly visible.
  • (H) lighter (more foamed) and (D) darker (less foamed) areas alternate in strips.
  • the H areas originate from the inner strand foam structure, which is conveyed to the product surface by the forced secondary mixed flow.
  • the D-areas originate from the original "surface-
  • Example 4 (see FIG. 12): pore opening by means of (b) cutting/peeling mechanism produced by means of an adjustable cutting device installed at the nozzle outlet end.
  • Figure 12 shows a foamed, continuously cut strand of extrudate. Open pore structures can be detected on the cut surface. A pore opening degree of approx. 10-15% was achieved in the example shown. The extrudates on which this example is based had about 15-20% gas by volume.
  • a total volume of open pores of 2-5% is rated as sufficient for enriching the plant protein-based meat analogues described as an example with sensory (aroma, taste) and nutritional (B vitamins, minerals (Fe, Zn)).
  • sensory as an example with sensory (aroma, taste) and nutritional (B vitamins, minerals (Fe, Zn)).
  • B vitamins, minerals Fe, Zn
  • > 10% is relevant, depending on the water content of the product matrix.
  • Gap adjustment punch axial
  • Adjustment plunger guide tube 0 Tempering fluid inlet Tempering fluid outlet Tempering fluid channels a Tempering fluid ducts, inner b Tempering fluid ducts, outer c Tempering fluid ducts in the adjustment stamp Guides Nozzle gap a Nozzle gap in initial position b Narrowed gap setting through the nozzle gap Ring slot nozzles Flange Slot nozzle flow channel Laminar slot nozzle flow Cutting device Extrudate strand a Needle roller, upper b Needle roller, lower Penetration needle conveyor belt dividing device a penetration needle roller pressure dividing device, upperb penetration needle roller pressure dividing device, lower conveyor belt, partially perforated a vacuum half-shell, upper b vacuum half-shell, lower a contact pressure pneumatics, upper b contact pressure pneumatics, lower extrudate part, cut off a Piping for exhaust b Piping for exhaust Partial vacuum storage tank Vacuum pump String cutter Diaphragm pressure transducer 37 diaphragm pressure transducer
  • Diaphragm pressure transducer a Angle of rotation of the metal cylinder 2 ß Angle between the center of the metal cylinder and the edges of the cut surface of the
  • metal cylinder 2 ö angle of rotation of metal cylinder 2
  • Patent Foamed dough-based food product and apparatus and method for making the foamed dough-based food product; Patent Application No. DE 10 2016 111 518 A1

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

Die Erfindung betrifft ein Produkt mit Schaumstruktur mit eingestelltem Verhältnis von zur Produktoberfläche hin offenen zu geschlossenen Gasporen. Des Weiteren betrifft die Erfindung ein Verfahren mit vier erfindungsgemäßen Ausführungsvarianten zur definierten mechanischen Öffnung geschlossener Schaumporen. Die Erfindung betrifft außerdem eine Vorrichtung mit vier erfindungsgemäßen Ausführungsvarianten zur definierten mechanischen Öffnung geschlossener Schaumporen. Des Weiteren betrifft die Erfindung die Verwendung erfindungsgemäß gestalteter Produkte als Fleischanaloge oder pflanzenprotein-basierte texturierte, mehrphasige Lebensmittel, insbesondere Gemüse- oder Obstcomposite. Besondere Vorteile der Erfindung betreffen die gezielte Einflussnahme auf die Deformations- und Textureigenschaften geschäumter Produkte sowie deren Zugänglichkeit von außen für eine einfach und schnell vorzunehmende Füllung der offenen Poren mit Fluidsystemen, welche zusätzliche Funktionalitäten in das Produkt einbringen.

Description

Geschäumtes, elastisches, protei n-basiertes Produkt, Verfahren zur
Herstellung solcher Produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten Fleischanalogen, Vorrichtung zur Durchführung eines solchen Verfahrens sowie Verwendung des Produktes zur Herstellung von pflanzenprotein-basierten Fleischanalogen
Beschreibung Gattung
Die Erfindung betrifft ein geschäumtes, elastisches, protein-basiertes Produkt.
Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines derartigen Produktes, mit definiert eingestelltem Porenöffnungsgrad.
Außerdem betrifft die Erfindung eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
Schließlich betrifft die Erfindung eine Verwendung des erfindungsgemäßen Produktes als Hauptkomponente zum Herstellen von Pflanzenprotein basierten Fleischanalogen. Stand der Technik
Viskose Massen können in Extrudern aufgeschäumt werden, in dem unter Atmosphärenoder Überdruck Gas zudosiert, gemischt/dispergiert und/oder unter Überdruck teilweise bis vollständig gelöst, nachfolgend durch Druckentspannung wieder freigesetzt wird und in der viskosen Masse schaumbildend teilweise bis vollständig eingebunden bleibt /1 ,2/.
Eine weitere bekannte Möglichkeit bietet der Zusatz von Schäumungsmitteln, welche in Folge chemischer/physikochemischer und/oder thermischer Reaktion ein Gas bilden, welches ebenso unterstützt durch Misch-/Dispergiervorgänge in die viskose Masse schaumbildend teilweise bis vollständig eingebunden wird. Entsprechende viskose Massen können synthetischer und/oder biologischer Natur sein bzw. auch aus Mischungen solcher bestehen und Basis oder Komponente von Produkten der Lebensmittel-, Kosmetik-, Pharma-, Baustoff-, oder Kunststoffindustrie sein. In Extrudern werden derartig geschäumte viskose Massen von den Extruderschnecken gefördert und durch eine Extruderdüse gepresst. Dabei erfolgt infolge Verengung des Strömungsquerschnittes beim Übergang von Extrudergehäuse zur Extruderdüse ein statischer Druckaufbau, welcher in der Düse bei mehr oder weniger konstant gehaltenen Düsenquerschnitt über die dort herrschenden Strömungsschubspannungen infolge Wandreibung und innerer Fluidreibung wieder bis auf Atmosphärendruck am Extruderdüsenaustritt abgebaut wird. Der Druckaufbau in der Düseneinlaufzone (vor Eintritt in die Düse) komprimiert das in den Schaumblasen eingeschlossene Gas und verkleinert damit die Schaumblasen, der Druckabbau in der Extruderdüse bis auf Austritts-Atmosphärendruck lässt das Gas in den Schaumblasen wieder expandieren und vergrößert damit die Schaumblasen. Größere Gasblasen lassen sich in der Düsenströmung gegenüber kleineren Gasblasen bei kleineren Strömungsspannungen deformieren und sofern eine kritische Spannung überschritten wird aufbrechen und somit in kleinere Blasen umwandeln.
In aller Regel ist angestrebt, dass aus der Extruderdüse ein definiert geformter Materialstrang austritt, da mittels der Extruderdüse auch typischerweise die Produktformgebung erfolgt. Häufig ist die Maßhaltigkeit solcher Produkte auch ein wichtiges Qualitätsmaß. Dies wird unter anderem dadurch erreicht, dass eine gleichmäßige laminare Strömung in der Düse realisiert wird, welche einer ebenen Schichtenströmung entspricht. Wird ein geschäumtes Fluidsystem in einer solchen Düsenströmung bewegt, herrscht infolge des typischen parabolischen Strömungsprofils verstärkte Scherung des Fluidsystems an der Düsenwand, wohingegen in der Düsenkanalmitte keinerlei Scherung auftritt. Eine Quervermischung des derartig strömenden Fluidsystems erfolgt nicht (parallele Schichtenströmung), sofern der Düsenkanal keine Strömungshindernisse aufweist. Die maximale in der wandberührenden Fluidschicht vorliegende Wandschergeschwindigkeit (= Geschwindigkeit des betrachteten wandnahen Fluidfilms an seiner der Düsenkanalmitte zugewandten Seite dividiert durch die Fluidfilmdicke) bewirkt in aller Regel die Ausbildung einer wandnahen Grenzschicht. Sofern das Fluidsystem disperse Komponenten beinhaltet, werden diese infolge der in der betrachteten wandnahem Fluidschicht wirksamen Wandschergeschwindigkeit in Rotation versetzt und erfahren durch diese eine dynamische Auftriebskraft (Liftforce), welche eine von der Wand weg in Düsenkanalmitte weisende Separation der dispersen Komponenten bewirkt. Dies gilt grundsätzlich für Feststoffpartikeln /3/ aber auch Gasblasen /4/ und führt zu einer Verarmung der wandnahen Fluidschicht an ebensolchen dispersen Komponenten. Bei der Extrusion von Fleischanalogen auf Pflanzenproteinbasis wird bevorzugt der Prozess des „High Moisture Extrusion Cooking (HMEC)" eingesetzt. Dieser steht für eine unter hoher Temperatur (bis ca. 170°C) und hohen statischen Drücken (bis ca. 100 bar) erfolgende Extrusion unter Produkt-Wassergehalten von bis ca. 70 Gew.%. In einer unter diesen Konditionen erzeugten wässrigen Protein-Schmelze erfolgt Proteindenaturierung in Form sich bildender Proteinfibrillen, welche in der Extruderdüsen-Einlaufströmung in Folge dort wirksamer Dehnströmungsanteile in Strömungsrichtung orientiert und durch nachfolgende Abkühlung (auf ca. 60°C) in einer langen (> ca. 1 m) Extruder-Kühldüse in diesem orientierten Strukturzustand verfestigt werden. Das abgekühlte Produkt tritt bei typischerweise laminarer Düsenströmung als glatter Strang aus der Extruderdüse. Die orientierten Proteinfibrillen verleihen dem Produkt eine fleischartig faserige Textur /5/. In Folge der langsamen Abkühlung des Produktes in der Extruderdüse wird eine schlagartige Wasserdampfentspannung unterdrückt und die Strukturbildung somit nicht gestört.
Der Stand der Technik hinsichtlich HMEC Extrusionsverfahren zur Herstellung von pflan- zenprotein-basierten Fleischanalogen wird beispielsweise in den Patentschriften US6,635,301 B1 , WO2016/150834 A1 , EP1182937 A4, W02009075135,
US20050003071 AI , WO2016150834 A1 und US 10,716,319 B2 umfassend beschrieben. US 10,716,319 B2 (Method of making a structured protein composition) wird in technologischer Hinsicht als nächstliegende Beschreibung (closest state of the art) zur in dieser Patentapplikation beschriebenen, erfindungsgemäßen Technologie betrachtet: (Übersetzte Zusammenfassung aus US 10,716,319 B2): „Die im Extruder erhaltene faserige Zusammensetzung verlässt den Extruder bei einer Temperatur der Zusammensetzung, die höher als die anwendbare Siedetemperatur von Wasser ist (z. B. 100 °C bei atmosphärischem Druck oder niedriger, falls eine Vakuumöffnung verwendet wird). Es wird angenommen, dass dies zu einer Expansion und einem anschließenden Zusammenfallen des texturierten Produkts führt. Es wird ferner angenommen, dass die Expan- sions-/Kollabierungsbehandlung die Faserorientierung stört und somit zur Bildung einer zufälligeren Orientierung der gebildeten Fasern führt. Daneben wird angenommen, dass es zur Bildung von Lufteinschlüssen (auf Mikro- und Makroskala) im texturierten Produkt kommt. Zur Feinabstimmung des Mundgefühls (Biss), der Zartheit und der Saftigkeit kann nach dem Texturierungsprozess das extrudierte Produkt in einer wässrigen Flüssigkeit bei erhöhten Temperaturen, das heißt zwischen 40 und 150°C, bis zu einem endgültigen Feuchtigkeitsgehalt von 50 bis 95% hydratisiert werden. Schneidetests werden am häufigsten verwendet, um die Zartheit der Extrudate zu messen, beispielsweise mittels Warner Bratzler-Scherblatt / / oder Kramer-Scherzelle / /. Das Produkt der Erfindung hat eine heterogene Struktur und ein relativ großes freies Volumen. Dies trägt zu seiner relativ hohen Wasseraufnahmefähigkeit bei. Dies ist von Vorteil, da die Absorption wässriger Flüssigkeiten das Hinzufügen gewünschter Geschmackskomponenten erleichtert und es ermöglicht, das Produkt hinsichtlich Saftigkeit und Biss zu variieren. Eine Infusion in das erfindungsgemäße Extrudat erfolgt in das durch Extrusion erhaltenen feuchte Produkt. Abweichend vom Hintergrund der Technik erfordert das Extrudat der vorliegenden Erfindung kein Trocknen und Rehydratisieren. Es bleibt im Wesentlichen feucht und wird dann durch Infusion weiter mit Wasser oder einer anderen wässrigen Zusammensetzung gefüllt. Das Extrudat hat vorzugsweise einen Wassergehalt von 55 Gew.-% bis 70 Gew.-%. Die strukturierte pflanzliche Proteinzusammensetzung, die aus der Infusion mit einer wässrigen Flüssigkeit resultiert, weist vorzugsweise einen Wassergehalt von 70 Gew.-% bis 90 Gew.-% auf. Überraschenderweise kann die oben erwähnte Infusion durch eine wässrige Flüssigkeit verbessert werden (das heißt schneller ablaufen und/oder den Einbau von mehr Wasser ermöglichen), wenn das Extrudat zuerst eingefroren (und dann vor der Infusion aufgetaut) wurde. Vorzugsweise liegt die Gefriertemperatur unter -5°C und -15°C."
Die Mikroschäumung hochviskoser und viskoelastischer, teigartiger, Protein- und Nicht- protein-basierter Massen mittels Extrusionsverfahren wird in WO 2017/081271 A1 beschrieben.
Der Stand des Wissens zu Lebensmittel-Schaumsystemen wird beispielsweise in Peter J. Hailing & Pieter Walstra (1981 ) Protein-stabilized foams and emulsions, C R C Critical Reviews in Food Science and Nutrition, 15:2, 155203, DQI:10.1080 /1040839810952 7315 und in Ashley J. Wilson (1989) Foams: Physics, Chemistry and Structure; Springer- Verlag London, ISBN 978-1-4471-3809-9 beschrieben.
Die Herstellung offenporiger Schäume ist aus der Kunststoff-/Schaumstoffindustrie bekannt (N. Mills (2007); Polymer Foams Handbook; Hardcover ISBN: 9780750680 691 ;
Imprint: Butterworth-Heinemann). Herkömmliche Extrusionsverfahren, insbesondere Kochextrusionsverfahren im Bereich von Lebensmittel, Baustoff und Tierfutteranwendungen realisieren eine nur in weiten Grenzen und nicht reproduzierbare Porenbildung durch schlagartige Verdampfung von Wasser/Lösungsmittel am Extruderdüsenaustritt. Dabei erfährt das Produkt (Extrudat) die Ausbildung einer schaumartigen Struktur, welche durch die schlagartige Verdampfung des Wassers infolge des Druckabfalls realisiert wird.
Bei neueren Extrusions-ZKochextrusionsverfahren kann ein aufgeschäumtes Produkt auch mittels Gaszudosierung und Gasdispergierung bzw. Gaslösung und Renukleirung von Gasblasen zu einem in der Schaumstruktur besser kontrollierten Produkt führen. Allerdings sind solche Produkte typischerweise geschlossenporig und bilden bei der Durchströmung durch die Extruderdüse infolge der wandnahen maximalen Scherung eine weitgehend Schaumblasen-ZPoren freie Hautschicht aus.
Für die Anwendungsfälle der Schaumextrusion ist es zur Einstellung der Produkteigenschaften essentiell die Schaumporenstruktur dahin gehend zu kontrollieren, dass das Verhältnis von geschlossenen und offenen Poren eingestellt werden kann.
Offene Poren ermöglichen die in bestimmten Anwendungsfällen, z.B. bei Instantprodukten eine gewünschte schnelle Aufnahme von Flüssigkeit durch Kapillarkräfte, geschlossene Poren sind wünschenswert bei Einstellung von möglichst niedriger Produktdichte, Erhalt eines schaumigen/cremigen Mundgefühls (Lebensmittel) oder Reduktion der Aufnahmegeschwindigkeit von Fluid (Schaumblasen als Stofftransportbarrieren). Für eine bestimmte Palette an Produkten aus verschiedenen Anwendungsbereichen ist die Einstellbarkeit des Verhältnisses von geschlossenen zu offenen Poren wesentlich für die Ausprägung bestimmter Qualitätsmerkmale. Typische Beispiele dafür sind Fischfutterpellets welche in ihrer Sinkgeschwindigkeit bzw. in ihrem Schwimmverhalten auf bestimmte Fischspezies, welche typischerweise ihre Futteraufnahme vom Grund des Gewässers (aus der Schwebe in bestimmter Gewässertiefe oder schwimmend von der Oberfläche) aufnehmen.
Keine industriell relevante Lösung liegt bislang vor für Lebensmittelprodukte mit hohem Gehalt an gebundenen Wasser, wie beispielsweise pflanzenproteinbasierte Fleischanaloge, die bis zu > 60% an intermolekularer Wasserbildung aufweisen, um solche einerseits durch definiert einstellbare (i) Mikroschaumbildung und (ii) Verhältnis offener zu geschlossenen Schaumporen in ihrer Konsistenz und damit textursensorisch zu optimieren und andererseits ein einstellbares zusätzliches, insbesondere produktionsrelevant schnelles (Sekundenbereich) Fluidaufnahmevermögen zu realisieren, um z.B. Saftigkeit und bestimmte Weiterbehandlungseigenschaften in z.B. Bratprozessen/Grillprozessen sowie Geschmack-ZAroma und nutritive Funktionalitäten zu optimieren.
Aus der KR 1020200140499 A es bekannt, eine Schaumstruktur zu erzeugen, wobei zufällig Gaseinschlüsse erzeugt werden. Es wird auch vorgeschlagen mittel empirischer Rezepturänderungen eine Veränderung der Gaseinschluss-Schichten und deren Form zu beeinflussen, was aber wiederum nicht gezielt möglich ist. Am Extruderdüsenaustritt entsteht eine stochastische porösen Struktur, welche verfahrenstechnisch kaum beeinflusst werden kann, da es sich um eine unkontrollierte rapide Expansion handelt. Sofern langkettige elastische Glutenmoleküle vorliegen, wird einer solchen Dampfexpansion verstärkt entgegengewirkt und damit ein weniger expandiertes Produkt erhalten. Diese verfahrenstechnisch nicht kontrollierte Herstellung von porösen Extrudatprodukten wird auf glutenhaltige Fleischanaloge übertragen.
Aus 2020/0060310 A1 ist es vorbekannt, eine poröse Struktur durch „puffing“ zu erzeugen. Hierunter wird eine schlagartige Expansion verstanden, welche nicht hinreichend kontrollierbar ist hinsichtlich der resultierenden Porosität und erst recht nicht hinsichtlich einem definierten Porenöffnungsgrad.
Aufgaben
Der Erfindung liegt zunächst die Aufgabe zugrunde, ein geschäumtes Produkt, mit hohem gebundenen Wasseranteil, im Falle extrudierter Fleischanalogie basierend auf einer konzentrierten Pflanzenproteinschmelze mit > 30 Gew.% Pflanzenproteinanteil und > 5 Gew. % Pflanzenfaseranteil sowie einem Gasvolumenanteil im Endprodukt von > 10 Vol.% zu schaffen, wobei das Gasvolumen in Form von Poren/Blasen vorliegt, welche zu einem einstellbaren Anteil als zur Produktoberfläche hin offene Poren vorliegen sollen, um z.B. eine beschleunigte weitere Flüssigkeitsaufnahme, mit in dieser Flüssigkeit beinhalteten sensorisch und/oder nutritiv relevanten Komponenten in das Produkt zu gewährleisten.
Des Weiteren liegt der Erfindung die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem sich derartige Produkte herstellen lassen. Außerdem liegt der Erfindung die Aufgabe zugrunde, eine entsprechende, das Verfahren ermöglichende Vorrichtung bereitzustellen.
Schließlich besteht die Aufgabe ein derartiges Produkt, beispielsweise zum Herstellen von pflanzenprotein-basierten Fleischanalogen/Fleischalternativen, zu verwenden.
Lösung der Aufgabe betreffend ein Produkt
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst.
Einige Vorteile
Die erfindungsgemäßen neuen, geschäumten Produkte lassen über die Einstellung des Schaumporenöffnungsgrades eine gekoppelte Einstellung bestimmter sensorischer und nutritiver Attribute als „intrinsische" Eigenschaften dieser Produkte zu, welche für herkömmliche Produkte dieser Kategorie bislang nicht oder in geringem Umfang nur durch Zusatzprodukte (Saucen, Toppings etc.) erzielt werden konnten. Im Falle geschäumter, pflanzenproteinbasierter Fleischanaloge werden somit die für den Konsumenten maßgeblichen (a) sensorischen Qualitätsattribute: Zartheit, Saftigkeit, Knusprigkeit, Fleisch- geschmack/Aroma, (b) nutritiven Funktionalitäten (z.B. durch Einbringung von bioverfügbarem Eisen sowie B-Vitaminen) sowie (c) Convenience Eigenschaften durch Ermöglichung bzw. Verbesserung der Koch-, Brat- und Grillfähigkeit, in abstimmbar einzustellender Weise verfügbar gemacht. Die Schaumstrukturbildung in einem hochviskosen bis halbfesten Produkt lässt dessen mechanisches Verhalten maßgeblich in Richtung eines leichter deformierba- ren/weicheren Materials beeinflussen. Bei solchen Produkten im Lebensmittelbereich wie sie beispielsweise extrudierte, geschäumte pflanzenproteinbasierte Fleischanaloge darstellen, würde man eine weniger kompakte, harte bzw. „zartere" Konsistenz durch Aufschäumen konstatieren. Sofern es sich um (A) ein geschlossenporiges Schaumsystem handelt, trägt die Kompressibilität des in den Poren eingeschlossenen Gases zum Deformationsverhalten des Schaumproduktes bei. Die elastische Rückdeformation wird bei Wegnahme einer deformierenden Kraft durch die Rückexpansion des in den Poren eingeschlossenen Gases unterstützt, bei hohem Gasvolumenanteil auch dominiert. Bei (B) offenporigen Schäumen kann das in den Poren befindliche Gas bei Deformation der Schaummatrix, abhängig von der Porengröße mehr oder weniger schnell entweichen. Damit dominiert das Deformationsverhalten des die Schaumlamellen bildenden Matrixmaterials das makroskopische Deformationsverhalten des Schaumproduktes.
Bei geschäumten Lebensmitteln, welche einer maßgeblichen Deformationen durch Beißen und Kauen beim Verzehr derselben unterzogen werden, verstärkt eine geschlossene Schaumporenstruktur (A) die sensorischen Textureindrücke (i) Zartheit (tenderness) aber auch (ii) Gummiartigkeit (gumminess) im Falle fester Strukturen der die Gasblasen umgebenden Schaumlamellen sowie (iii) Kremigkeit (creaminess) im Falle fluider Schaumlamellen Eigenschaften. Offenporöse, schwammartige Schaumstrukturen (B) lassen die sensorischen Texturattribute (iv) Knusprigkeit (crunchyness) aber auch (v) Sprödigkeit (brittleness) bei festen Schaumlamelleneigenschaften in den Vordergrund treten. Der Fall fluider Schaumlamelleneigenschaften ist bei offenporigen Produktsystemen irrelevant, da ein Zerfließen des Matrixmaterials zu einem Schaum mit geschlossenen Poren führt.
Bei definiert geschäumten Matrices von pflanzenprotein-basierten Fleischanalogen, welche eine feste Struktur der die Gasblasen umgebenden Schaumlamellen aufweisen, adressieren die Konsumentenwünsche/Konsumentenvorstellungen als sensorische Texturattribute insbesondere Fasrigkeit (fibrousness) verbunden mit Zartheit (tenderness) sowie als weitere wichtige Attribute Saftigkeit (juiciness) und Knackigkeit/Biss/Knusprigkeit (crunchiness), oft auch im Kontext zu bestimmten Zubereitungsverfahren (z.B. Kochen, Braten, Grillen).
Im Falle solcher geschäumten Fleischanalog-Produkte mit zumindest teilweise offenen Poren lassen sich deren sensorische, nutritive und die Zubereitungs-Convenience betreffenden Eigenschaften maßgeblich dadurch erweitern, dass die Poren des geschäumten Basisproduktes mit funktionellen oderfunktionalisierten Fluiden teilweise oder vollständig gefüllt werden, wobei solche Fluide nach Porenbefüllung auch verfestigen können. Mittels derartiger "Fluidfüllungen" der offenporigen Fleischanalogen lassen sich bestimmte Geschmack und Aroma bezogene sensorische und/oder auch nutritive Produkteigenschaf- ten sowie gegebenenfalls die Produktstabilität über konservierende Komponenten optimieren.
Die Befüllung offener Poren kann beispielsweise durch Kapillarkräfte erfolgen, welche bei abgestimmten Benetzungseigenschaften der Füllfluidphase in Folge der Ausbildung eines kapillaren Unterdruckes das Fluid einsaugen lassen. Da sich derartige Kapillarkräfte umgekehrt proportional zum Porendurchmesser verhalten, sind kleine Porendurchmesser im Bereich < ca. 500 Mikrometer zu bevorzugen.
Der Erfindungsgegenstand legt eine wie vorab beschriebene HMEC Technologie zur bevorzugten Herstellung von pflanzenprotein-basierten Fleischanalogen zugrunde, wobei diese Technologie maßgeblich ergänzt wird durch Kombination mit einem Mikro-Schäu- mungsprozess, welcher im Extruder erfolgt und in vergleichbarer Weise, bezogen auf die Herstellung geschäumter Backwaren in 121 beschrieben wurde. Dabei wird eine definiert dosierte Gasmenge (z.B. N2, CO2) in der wässrigen Proteinschmelze im Extruder unter dem dort eingestellten hohen Druck zunächst gelöst und anschließend unter Druckabsenkung in der Extruderkühldüse wieder entspannt. Dabei werden am Anfang der Extruderdüse Gasblasen nukleiert und im weiteren Verlauf der Düsenströmung unter fortschreitender Druckentspannung vergrößert und somit eine Schaumstruktur gebildet. Im Weiteren wird in der Beschreibung des vorliegenden Erfindungsgegenstandes von dieser Aufschäumtechnologie und deren Übertragbarkeit auf die Herstellung von somit geschäumten Fleischanalogen, hergestellt mittels HMEC Technologie, ausgegangen. Der produktbezogene Fokus des nachfolgend beschriebenen Erfindungsgegenstandes liegt auf den pflanzenprotein-basierten (geschäumten) Fleischanalogen, welche durch Einsteilbarkeit des Verhältnisses von geschlossenen zu zur Produktoberfläche hin offenen Poren/Porenkanälen innovative Einstellmöglichkeiten sensorischer und nutritiver Produktcharakteristika von maßgeblicher Konsumentenrelevanz verfügbar machen.
Die bei der Herstellung von Fleischanalogen beginnende wandnahe Abkühlung des Produktstromes aus dem HMEC Extruder am Eintritt in die Extruderdüse lässt unter dem dort noch herrschenden hohen Druck und der in Düsenwandnähe bereits merklich abgesenkten Temperatur (von typischerweise ca. 140-160°C auf ca. 90°C) in Folge der bei tieferer Temperatur verbesserten Gaslöslichkeit weniger Schaumblasen in Düsenwandnähe entstehen.
Die (i) hohe Scherung der abkühlenden, geschäumten Proteinschmelze in Düsenwandnähe unterstützt zusätzlich zum benannten Effekt der (ii) verbesserten Gaslöslichkeit eine (iii) Gasblasenverarmung durch Strömungseffekte (dyn. Auftriebskräfte) in der Düsenwandzone. Die damit an Gasblasen teilweise bis gänzlich verarmte "Hautschicht" des extrudierten geschäumten Fleischanalog-Stranges schirmt innere Schaumporen von der Umgebung ab. Da in Folge der typischerweise langsamen Produktabkühlung in bei der Fleischanalog-HMEC Extrusion verwendeten langen gekühlten Extruderdüsen am Düsenaustritt keine signifikante Restdruckentspannung mehr erfolgt, bleibt eine wie beschrieben gebildete Produkthautschicht geschlossen erhalten. Für die mikro-geschäum- ten Produkte bedeutet dies das Vorliegen eines geschlossenen Schaumporensystems.
Für eine Mehrzahl von Anwendungen bzw. Produktendformaten ist es vorteilhaft, offene schwammartige Porensysteme zu erzeugen, welche in der Lage sind Flüßigkeiten durch nach außen geöffnete Poren in die poröse (schwammartige) Produktmatrix aufzunehmen. In solcher Form aufgenommene Fluide können mit der Matrixstruktur wechselwirken, Fluidcharakter beibehalten oder auch verfestigen bzw. teilverfestigen unter einzustellenden Rahmenbedingungen (z.B. Temperatur). Beispielsweise könnten für mit derartiger offenporiger Porosität ausgestattete Lebensmittelsysteme Flüßigkeiten aufnehmen, welche dem entsprechendem Lebensmittel Saftigkeit verleihen. Für Baustoffe entsprechender Porenstruktur könnten geeignete Fluidsysteme zur Imprägnierung verbesserte Beständigkeit gegen Schimmel-/Pilzbefall oder Schadinsekten bewirken. Für Anwendungen bei der Wundheilung kann entsprechend offenporig porös strukturiertes Abdeckmaterial mit Fluiden zur Desinfektion oder die Wundheilung fördernden Fluidkomponenten getränkt sein.
Vor diesem Hintergrund besteht anwendungsspezifisch großes Interesse in Extrusionsverfahren geschäumte Produktsysteme hinsichtlich ihrer Porenstruktur gezielt einzustellen. Demgemäß adressiert der erfindungsgemässe Gegenstand eine Technologie zur Einstellung des Verhältnisses von geschlossenen Poren/Blasen zu offenen zur Produktoberfläche hin geöffneten Poren/Porenkanälen. Mechanistisch kann dies grundsätzlich auch durch die Verbindung ursprünglich geschlossener Schaumblasen/Poren realisiert werden, sofern diese in definierter Weise zur Koaleszenz bzw. Ausbildung von Verbindungskanälen zwischen denselben sowie an die Produktoberfläche, ohne maßgeblichen Verlust an Gesamtgasvolumenfraktion und Feinporigkeit, gebracht werden können.
Erfindungsgemäß wird die Einstellung des Porenvolumenverhältnisses E = EOP/S (SOP = Porosität der offenen Poren; s = Gesamtporosität) einstellbar mittels verschiedener spezifischer Maßnahmen in deren einzelner oder gekoppelter Anwendung erreicht. Diese erfindungsgemäßen Porenöffnungs-Technologien POTi sind Tabelle 1 zu entnehmen und werden nachfolgend detailliert beschrieben.
POT-1 :
Eine erfindungsgemäße in der Spaltweite verstellbare Schlitz-Düsen-Apertur (VSDA) wird kurz vor Ende oder am Ende einer gegebenenfalls verkürzten Extruderschlitzdüse angeordnet und auf eine Position verengt, welche den statischen Druck vor Eintritt in den verengten Schlitzspalt auf einen Wert ca. 1 .5-2 bar des nach Austritt aus dem Schlitzspalt herrschenden statischen Druckes, welcher typischerweise Atmosphärendruck ist, einstellen lässt. Der Extrudatstrang wird bei diesem erfindungsgemäßen Vorgehen nicht direkt am Düsenaustritt abgeschnitten, sondern erst ab einer Länge von 5-10 cm. Damit beträgt die kürzere Längendistanz zwischen der Extrusionsstrangmitte und dessen Oberfläche gegenüber der extrudierten Produktstranglänge bis zu Strangschneidervorrichtung ca. 1/2 - 1/6. Dies bewirkt erfindungsgemäß eine bevorzugte Gas-Druckentspannung in der Produktquerschnittsrichtung und somit zur Produktoberfläche hin. Dies ist begründet auf Grund des in dieser Richtung realisierten deutlich größeren Druckgradienten im Vergleich zu dem in der Strang-Längenrichtung herrschenden Druckgradienten. Die Ausprägung der in der Druckentspannungsrichtung gebildeten Porenkanäle und deren Aufbruch nach Außen zur Extrusionsstrangoberfläche hin wird durch die rheologischen Eigenschaften des extrudierten Produktes zum Zeitpunkt des Austritts aus der Extruderdüse maßgeblich mitbestimmt. Niedrigere Viskosität (bzw. Elastizität) erlaubt eine stärker ausgeprägte Materialdeformation unter Wirkung des Entspannungsdruckgradienten und einhergehend eine verstärkt ausgeprägte Porenkanalbildung.
Die erfindungsgemäße Ausführung der Geometrie der verstellbaren Schlitzdüsenvorrichtung (VSDA) ermöglicht eine unterschiedliche geometrische Formgebung des Strömungsquerschnittsverlaufes in Strömungsrichtung. Die Verengung ist erfindungsgemäß vorzugsweise abrupt (ca. 90°) ausgeführt, womit die Ausbildung einer Sekundärströmung des Extrusionsstrangfluids in der Zone der Wiederaufweitung des Strömungskanalquerschnittes forciert wird. In dieser Nachlauf-Sekundärströmungszone erfolgt eine deutliche Absenkung des statischen Druckes und andererseits die Erzeugung einer walzenartigen Sekundärströmung, welche eine Durchmischung des Strangfluids quer zu dessen Strömungsrichtung in Höhenrichtung des Schlitzdüsenkanals bewirkt. Die "von Innen nach Außen Kehrung" des Extrusionsstrangmaterials hängt von der Intensität der Sekun- därströmung und deren Rotationsfrequenz ab. Da sich das Strangmaterial kurz vor dem Düsenaustritt oder auch direkt an diesem befindet, besteht keine erneute Möglichkeit der Ausbildung einer geschlossenen Hautschicht auf dem Produktstrang, welche zum erneuten Porenverschluss führte. Somit erfolgt die Bildung von bleibenden zur Extrusionsstrangoberfläche hin offenen Poren/Porenkanälen.
Die erfindungsgemäßen Produkte, hergestellt durch das erfindungsgemäße Verfahren unter Anwendung der erfindungsgemäßen Vorrichtung machen neuartige, in ihrer Schaumstruktur definiert eingestellte Extrusionsprodukte verfügbar. Diese bilden eine praxisrelevante Basis für neuartige Produktentwicklungen:
(a) mit eingestelltem Volumenverhältnis von offenen und geschlossenen Poren (Poren- Öffnungsgrad POG),
(b) ohne Haut-/Randschichtbildung beim Durchströmen der Extruderdüse
(c) mit einstellbaren Textureigenschaften (Zartheit, Knusprigkeit, Saftigkeit)
(d) mit erweiterten Möglichkeiten der Geschmacks-/Aroma-/Wirkstoff-Optimierung durch in die offenen Poren aufgenommene Fluidsysteme, welche entsprechende Geschmacks-, Aroma- oder Wirkstoffkomponenten beinhalten, die den Extrusionsprozess nicht durchlaufen, deren Funktionalitätsverminderung damit vermeiden lassen und deren Freisetzung bei Anwendung (Verzehr und Verdauung bei Lebensmitteln, Einnahme von pharmazeutischen Produkten) über die offenen Porenkanäle) beschleunigen.
(e) mit erweiterten Möglichkeiten zur „Instant-Produkt" Herstellung, welche eine beschleunigte Benetzung und Dispergierung in Flüßigkeiten zulassen Weitere erfinderische Ausgestaltungen
Weitere erfinderische Ausgestaltungen sind in den Ansprüchen 2 bis 10 beschrieben.
In den Ansprüchen 2 bis 5 wird die wichtige Rolle des Proteinanteils und der eingestellten denaturierten, gegebenenfalls anisotrop ausgebildeten Proteinstruktur hervorgehoben, da die bevorzugt in Betracht gezogenen Fleischanalog-Produkte den denaturierten, fibrillären Proteinstrukturen ihre fleischähnlichen Textureigenschaften maßgeblich verdanken.
Hierzu beschreibt Anspruch 2 ein Produkt, bei welchem der Proteinanteil 10 - 95 Gew.% in seiner Trockensubstanz beträgt, während Anspruch 3 ein Produkt beschreibt, bei welchem der Proteinanteil von 0 - 100 Gew.% aus pflanzlichem Protein besteht. .
Das Produkt in Anspruch 4 ist dadurch gekennzeichnet, dass das Protein im Produkt in teilweise bis vollständig denaturierter Form vorliegt und eine fibrilläre Struktur aufweist, während das Produkt gemäß Anspruch 5 dadurch gekennzeichnet ist, dass die denaturierte Form eine orientierte fibrilläre Struktur aufweist.
In den Ansprüchen 6 bis 8 finden Ingredienzien und deren Quantitäten Berücksichtigung, welche für die Einstellung der sensorischen und nutritiven entsprechender veganer Fleischanaloge von besonderer Bedeutung sind. Hierzu beinhaltet das Produkt nach Anspruch 6 einen Pflanzenfaseranteil von 0.5 - 20
Gew.%, bezogen auf die Trockensubstanz.
In Anspruch 7 ist ein Produkt beschrieben, bei welchem das Produkt einen Anteil an Fetten oder Ölen von 0.1 - 15 Gew.%, bezogen auf die Trockensubstanz, beinhaltet, während das Produkt in Anspruch 8 dadurch gekennzeichnet ist, dass es einen Anteil an würzenden und/oder färbenden und/oder den nutritiven Wert zusätzlich zum Pflanzenfaseranteil verstärkenden Komponenten von 0.1 - 5 Gew.%, bezogen auf die Trockensubstanz, beinhaltet.
Die Ansprüche 9 und 10 adressieren eine überraschenderweise gefundene Besonderheit der erfindungsgemäßen geschäumten Produkte mit offenem Porenanteil, welche deren Volumen, Form, Struktur und Textur bezogene Rekonstituierbarbeit nach nahezu vollständiger Trocknung darstellt. Der Einfluss des Porenöffnungsgrades ist sowohl bei der Trocknung als auch bei der Rekonstitution für die Beschleunigung des Wassertransportes aus dem feuchten Produkt bzw. in das trockene Produkt von maßgeblichem Einfluss.
Hierzu schlägt Anspruch 9 ein Produkt vor, das sich nach Trocknung auf Restwassergehalte von < 5 Gew.% und verderbfreier mehrmonatiger feuchtekontrollierter Lagerung unter Raumtemperaturbedingungen, bei in Kontaktbringung mit Wasser oder einem wasserhaltigen Fluidsystem unter Wiedereinstellung seines ursprünglichen Volumens und seiner Textur, ohne Trockensubstanzverlust, rekonstituiert. Anspruch 10 beschreibt hierzu ein Produkt, das sich nach Trocknung auf Restwassergehalte von < 5 Gew.% und verderbfreier mehrmonatiger feuchtekontrollierter Lagerung unter Raumtemperaturbedingungen, bei in Kontaktbringung mit Wasser oder einem wasserhaltigen Fluidsystem unter Wiedereinstellung seines ursprünglichen Volumens und seiner Textur, rekonstituiert.
Lösung der Aufgabe betreffend das Verfahren
Diese Aufgabe wird durch Anspruch 11 gelöst, der dadurch gekennzeichnet ist, dass das Verfahren die Öffnung von im geschäumten Produkt eingeschlossenen Gasporen oder Gasblasen zur Produktoberfläche hin in einstellbarer Weise realisiert, wobei ein Extrusionsverfahren vom Typ „Hochfeuchtes Extrusionskochen" (High Moisture Extrusion Cooking, HMEC) mit Gaseintrag, temporärer Gaslösung und kontrollierter Gasblasennukleierung sowie Schaumbildung zugrunde gelegt ist und zur Porenöffnung fünf Verfahrensvarianten: (a) Öffnung durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP), (b) Öffnung durch Zerteilen bzw. Schälen des Produktes (Cut-Opening, COP), (c) Öffnung durch multiple Nadelpenetration (Penetration-Opening, POP), (d) Öffnung durch forcierte Sekundär-Mischströmung (Mix-Opening, MOP) und (e) Öffnung durch Gefrierstrukturierung (Freeze-Opening, FOP) einzeln oder in Kopplung angewendet werden, wodurch die Öffnung von im geschäumten Produkt eingeschlossenen Gasporen oder
Gasblasen zur Produktoberfläche hin in einstellbarer Weise realisiert wird. Einige Vorteile
Das erfindungsgemäße Verfahren und seine Ausgestaltungen lassen sich mit dem HM EC-Extrusionsprozess direkt koppeln und die zur Strukturierung der Proteinmatrix einzustellenden Extrusionsparameter zur Porenöffnung direkt übertragen. So kann für den Mechanismus der (a) Porenöffnung durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP) der im Extruder aufgebaute statische Druck bis zum Düsenende so weit aufrechterhalten werden, dass eine hinreichend rapide und effiziente Restdruckentspannung zur Porenöffnung realisiert werden kann. Bei den Mechanismen (b) Porenöffnung durch Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) und (c) Porenöffnung durch multiple Nadelpenetration (Penetration-Opening, POP) wird die Bewegung bzw. kinetische Energie des Extrudatstranges am Düsenende zum Schneiden/Schälen oder zur Nadelpenetration genutzt. Zur Aktivierung des (d) Porenöffnungsmechanismus durch forcierte Sekundär-Mischströmung (Mix-Opening, MOP) wird ein Teil der kinetischen Strömungsenergie des Extrudatstranges zur Erzeugung einer walzenförmigen, für viskoelastische Massen zusätzlich periodisch oszillierenden Sekundärströmung genutzt, welche quer zur Strömung in Höhenrichtung der Extruder-Schlitzdüse eine Durchmischung bewirkt, die einhergehend geschlossene Schaumporen längt, zur Strangoberfläche hin bewegt und die Oberflächenstruktur derart, in der Intensität einstellbar „aufreißt", dass ein somit ebenfalls einstellbarer Teil der entsprechend behandelten Poren zur Produktoberfläche hin geöffnet wird. Die Einstellbarkeit des Grades der Porenöffnung basiert dabei auf der Einstellbarkeit der Intensität der Misch-Sekundärströmung, welche wiederum über die Einstellung einer lokalen Schlitzdüsen-Höhenreduktion und die Transportgeschwindigkeit des Extrudatstranges in weiten Grenzen einstellbar ist. Der Mechanismus (e) zur Porenöffnung durch Gefrierstrukturierung wird erfindungsgemäß auf Schaumstrukturen angewendet, um bei bevorzugt langsamer Gefriergeschwindigkeit vor allem große Eiskristalle zur Penetration von Materialzwischenwänden zwischen geschlossenen Poren zu penetrieren und diese damit in offene Poren umzuwandeln. Bei den präferiert betrachteten pflanzenproteinbasierten Fleischanalogen trägt der hohe Wassergehalt derselben (bis 60 Gew.%) zur Unterstützung der Eiskristallbildung bei.
Weitere erfinderische Ausgestaltungen
Weitere erfinderische Ausgestaltungen sind in den Ansprüchen 12 bis 25 beschrieben.
Gemäß den Ansprüchen 12 bis 21 werden die Porenöffnungsverfahren mittels der Mechanismen (a) - (e) in ihrer verfahrenstechnischen Umsetzung detailliert, (a) mobilisiert Druckkräfte zum nach außen zur Produktoberfläche hin gerichteten Aufbruch von Porenbegrenzungen. (b) nutzt gezielte Schnittführungen zur Freilegung der Porenöffnungen, (c) schafft durch Nadelpenetration Verbindungskanäle zwischen den geschlossenen Produktporen und nach außen zur Produktoberfläche, (d) bezieht sich auf die Erzeugung von Sekundärströmungen in der Extruderkühldüse, um in der laminaren Schlitzdüsenströmung erzeugte weitgehend geschlossene Produkt-Hautschichten durch Quervermischung in der Höhenkoordinatenrichtung des Düsenkanals aufzubrechen und zusätzliche oberflächliche Querkanäle/Querrinnen zu schaffen. Für die proteinreichen fleischanalogen Produktsysteme, welche vorrangig adressiert werden, lässt sich eine zusätzliche strömungsdynamische Besonderheit von viskoelastischen Fluidsystemen erfindungsgemäß vorteilhaft nutzen. Der sogenannte elastische Turbulenzeffekt (z.T. in der die Kunst- Stoffverarbeitung betreffenden Literatur auch als „Schmelzebruch-Phänomen" benannt) entsteht in Folge der elastischen Deformationsenergie-Speicherung in der konvergierenden Einlaufströmung einer erfindungsgemäß ausgeführten und im Düsenkanal definiert angeordneten, hinsichtlich Schlitzkanalverengung verstellbaren Schlitz-Düsen-Apertur (VSDA) - Vorrichtung. In der divergierenden Auslaufströmung nach der Verengung entspannen sich die vorab gespeicherten elastischen Zugspannungen teilweise wieder durch elastische Rückdeformation des viskoelastischen Fluids (z.B. einer Proteinschmelze entsprechend bei HMEC extrudierten Fleischanalogen). Kleine Strömungsasy- metrien bzw. die stochastische Varianz der elastischen Deformation bewirken die Ausbildung einer periodisch, sinusförmig oszillierenden walzenartigen Strömungsstörung. Wie sich überraschenderweise auf Basis rheologischer Labormessungen für eine Vielzahl an Polymerschmelzen zeigte, entwickelt sich das vorab beschriebene Sekundärströmungsphänomen bei einem Verhältnis der Ersten Normalspannungsdifferenz Ni zur Schubspannung T ab einem Wert von NV T > 1 .5 - 2 und wird in einem Bereich Ni/ T = 4- 5 besonders wirksam, um den beschriebenen erfindungsgemäßen Effekt der sinusförmig Oszillierenden Sekundär-Misch-Strömung (OSMS) im Nachlauf einer lokalen Schlitzdü- sen-Spaltverengung zur Quervermischung in der Extruderdüse für die Porenöffnung zur Produktoberfläche hin, zielführend zu nutzen. Die OSMS kann somit im Bereich 2 < TW / NI < 5 in ihrer erfindungsgemäß verfahrensrelevanten Intensität eingestellt werden, TW und Ni sowohl in rheometrischen Labormessungen mittels Kegel-Platte Scherspalt als auch in hochdruckkapillarrheometrischen Messungen messbar. Letztere werden erfindungsgemäß auch direkt auf in-line Messungen in der Extruderschlitzdüse übertragen. Dies erfolgt erfindungsgemäß mittels statischen Druckprofil-Messungen im Düsenkanal vor und nach der lokalen Schlitzdüsen-Höhenreduktion oder auch alternativ in der Extruder-seitigen Düseneintrittszone. Erfindungsgemäß vereinfacht wird die Intensität der OSMS über die Amplitude der statischen Druckschwankung im Schlitzdüsenkanal vor oder nach der lokalen Schlitzdüsen-Höhenreduktion, gemessen. Die Einstellung einer maximalen elastisch-turbulenten OSMS über eine erfindungsgemäße, verstellbare Apertur zur lokalen Schlitzdüsen-Höhenreduktion wird gegebenenfalls dadurch begrenzt, dass ein zu stark fragmentierter Produktstrang am Düsenaustritt vermieden werden soll. Dies wird dadurch erreicht, dass die erfindungsgemäße, verstellbare Schlitz-Düsen- Apertur (VSDA) Vorrichtung typischerweise in den ersten zwei Längendritteln der Extruderkühldüse in diese eingebaut wird. Damit wird der elastisch-turbulent durchmischte Produktstrang in der nach der Apertur sich wiedereinstellenden laminaren Schichtenströmung teilweise wieder definiert vergleichmäßigt und Rissbildungen in der Struktur soweit erwünscht wieder graduell ausgeheilt. Um die erneute Ausbildung einer Hautschicht des Produktstranges mit einhergehendem Porenverschluss zur Produktoberfläche hin zu vermeiden, werden erfindungsgemäß der über die VSDA wie beschrieben einstellbare Grad der OSMS und die Länge der Extruderdüse im Apertur-Nachlauf abgestimmt, bzw. materialsystemspezifisch kalibriert.
Die Ansprüche 22 und 23 nehmen Bezug auf die Möglichkeit, die Produkte nach erfolgter Porenöffnung gemäß einem oder einer Kombination der Verfahren (a)-(e) zu trocknen, um damit eine verlängerte Haltbarkeit bei Umgebungstemperatur-Lagerung zu erzielen. Die Porenöffnung wirkt sich auf den Wassertransport beim Trocknen als auch bei der Rekonstitution erfindungsgemäß vorteilhaft beschleunigend aus. Gemäß den Patentansprüchen 24 und 25 werden die Rahmenbedingungen für die Genauigkeit der Einstellung des Porenöffnungsgrades und des zugrunde gelegten Gesamt- Gasporenvolumens im Produkt, welches eine offene Verbindung zur Produktoberfläche aufweisen bzw. erhalten soll, festgelegt. Die sich daraus ergebende Bandbreite von (i) minimal 10 Vol. % Gesamtgasanteil (in Porenform) zu davon 5% geöffnet, bis (ii) maximal 80 Vol.% Gesamtgasanteil (in Porenform) zu davon 90% geöffnet ist z.B. für geschäumte Fleischanaloge relevant, um im Fall (i) z.B. eine leichte Durchdringung mit intensiv würzenden Substanzen in Fluidform zu erreichen, und im Fall (ii) z.B. 72% des Produktvolumens mit einer Konsistenz/Textur gebenden gegebenenfalls im Nachgang zur Porenbefüllung erstarrenden Fluidphase homogen zu durchdringen. Im letzteren Fall resultierte in der Anwendung auf Fleischanaloge eine gerüstgebende Proteinstruktur mit z.B. veganer Pasteten/Wurstbrät-Füllung. Im Bereich zwischen (i) und (ii) lassen sich "marmorierte" Produktstrukturen mit angepasster Fett-/Gel-Einlage realisieren, um typische Fleisch/Fett/Bindegewebe/Gel-Strukturen und verbundene sensorisch bevorzugte Textureigenschaften weitergehend einstellen.
Gemäß Anspruch 25 wird der gaserfüllte Volumenanteil auf 80 Vol.% begrenzt, da sich die erfindungsgemäßen auf eher feste Schaumprodukte bezogenen Porenöffnungsme- chanismen bei zu fragilen Schäumen nicht mehr hinreichend zerstörungsfrei für das Gesamtprodukt übertragen lassen. Lösung der Aufgabe betreffend die Vorrichtung
Diese Aufgabe wird durch Anspruch 26 gelöst, der dadurch gekennzeichnet ist, dass der Extrusionsdüse eine Abschneidevorrichtung und ein abschnittsweise mittig teilperforiertes Förderband der Kühldüse eines HMEC-Aufschäumextruders nachgeschaltet sind sowie das Förderband mit dem aufliegenden, abgeschnittenen Teil des Produktes zwischen zwei Vakuumier-Halbschalen geführt ist, welche von oben und unten gegeneinander anpressend das Förderband nebst Produkt dichtend einschließen, und wobei diese Vakuumier-Halbschalen zur schlagartigen Aufbringung eines Teilvakuums auf das geschäumte extrudierte Produkt über eine mit einem Ventil zur schnellen Öffnung versehene Vakuumleitung mit einem Vakuumspeicherbehälter und dieser mit einer Vakuumpumpe verbunden sind.
Die Porenöffnungsmechanismen nutzen mechanische, fluidmechanische oder thermodynamische Wirkprinzipe, um die Öffnung geschlossener Poren zur Produktoberfläche hin mittels einer:
(a) Vorrichtungsvariante zur Einstellung eines rapiden Umgebungsdruckabfalls (Flash- Opening, FOP),
(b) Vorrichtungsvariante zum Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) im Austrittsbereich der Extruderkühldüse,
(c) Vorrichtungsvariante zur multiplen Nadelpenetration (Penetration-Opening, POP) direkt nach Austritt des teilgekühlten Produktes aus der Extruder-Kühldüse (d) Vorrichtungsvariante zur Erzeugung einer Sekundär-Mischströmung (Mix-Opening, MOP) in der Extruderkühldüse.
(e) Vorrichtungsvariante zur Erzeugung großer Eiskristalle zur Schaumlamellen-Penet- ration mittels Gefrierstrukturierung (Freeze-Opening, FOP) in einer Nachbehandlung zur Quench-Kühlung nach Extruderkühldüsenaustritt, welche in einzelner oder gekoppelter Anwendung zu nutzen sind.
Kernelement der Vorrichtungen zur Aktivierung der Porenöffnungsmechanismen gemäß (a) und (d) ist eine Verstellbare Schlitz-Düsen-Apertur (VSDA). Deren freie Querschnittsfläche für den Durchtritt des Extrudates entspricht im zu 100% geöffnetem Zustand exakt den Massen des freien Extruder-Schlitzdüsen Querschnitts. Für den Fall eines flachen, rechtwinkligen Extruderdüsen-Schlitzkanals sind in die obere und untere den Durchströmungsschlitz der Aperturvorrichtung begrenzenden Wand über die gesamte Schlitzbreite, rechtwinklig zur Strömungsrichtung jeweils ein angeschnittener drehbar gleitgelagerter Metallzylinder (2) in das Apertur-Gehäuse (1 ) dichtend eingelassen. Die Anschnittflächen dieser Zylinder sind bei vollständiger Aperturöffnung bündig mit der Strömungskanalwand (3). Von außerhalb des Apertur-Gehäuses (1 ) sind die Metallzylinder (2) von Hand oder mittels zweier Stellmotoren gesteuert bzw. geregelt verdrehbar einzustellen, so dass eine einseitige oder zur Düsenlängsachse symmetrische Verengung der Apertur erfolgt, welche bei einem Verdrehwinkel von 90° dem maximalen Verschlussgrad des Schlitzkanalquerschnitttes entspricht (weitere Details, siehe Beschreibung der Figuren, Figur 1 ). Eine Aktivierung des Porenöffnungsmechanismus d) zur Erzeugung einer Sekundär- Mischströmung (Mix-Opening, MOP) in der Extruderkühldüse, kann alleine mittels der VDSA Vorrichtung erfolgen. Diese wird im Falle (d) in einer Position zwischen 10-95% der Düsenlänge gemessen vom Düsenaustrittsende in die Düse integriert. Dies gewährleistet im Falle einer stark desintegrierten Extrudatstruktur, dass diese auf der verbleibenden Düsenstrecke nach Aperturpassage wieder zu einem Teil reintegriert und damit ein Zerfallen des Extrudatstranges am Düsenaustritt vermieden wird.
Zur Inanspruchnahme des Porenöffnungsmechanismus (a) in Folge schlagartiger Restdruckentspannung wird die VDSA Vorrichtung in einer Position zwischen 0-10% der Düsenlänge gemessen vom Düsenaustrittsende in die Düse integriert. Damit ist gewährleistet, dass erst kurz vor dem Düsenaustritt bzw. direkt am Düsenaustritt die schlagartige Entspannung des statischen Restdruckes und somit Porenöffnung zur Extrudatoberflä- che hin erfolgt.
Für den Fall einer zusätzlichen schlagartigen Beaufschlagung des Extrudates mit partiellem Vakuum zur Porenöffnung werden abgeschnittene Extrudatteile in einer separaten quasikontinuierlich arbeitenden Vakumiervorrichtung direkt nach dem Düsenaustritt nachbehandelt. Diese Zusatz-Behandlungsvariante wird bevorzugt bei weicheren Extru- daten vorgenommen, welche im Falle von proteinbasierten Fleischanalogen eine höhere Düsenaustrittstemperatur bzw. einen höheren Wassergehalt besitzen. Bei Anwendung der Porenöffnungsvariante (c) zur multiplen Nadelpenetration (Penetra- tion-Opening, POP) direkt nach Austritt des teilgekühlten Produktes aus der Extruder- Kühldüse sind in der erfindungsgemäß bevorzugten Ausführungsform der Vorrichtung am Extrudedüsenaustritt zwei gegenläufig rotierende Hohlnadel- oder Widerhaken Filznadel-Walzen derart angebracht, dass die von beiden Seiten in das Extrudat eindringenden Nadeln ineinandergreifen und die Rotation der Nadelwalzen bevorzugt ohne Hilfsantrieb, alleine durch den Vorschub des Extrudates durch den Spalt zwischen den beiden Nadelwalzen erfolgt (weitere Details siehe Beschreibung der Figuren, Figur 5).
Bei Anwendung der Porenöffnungsvariante (c) mittels Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) im Austrittsbereich der Extruderkühldüse, wird eine Schneide-ZSchälmesser Anordnung kurz vor Austritt oder direkt am Austritt des Extrudat- stranges aus der Extruderdüse angeordnet. Damit wird der Extrudatstrangvorschub genutzt, um die Schneidekräfte zu realisieren. Innenliegende Schaumporen werden damit zur neu geschaffenen Produktoberfläche hin geöffnet. Dies ist insbesondere dann angezeigt, wenn sich in der Düsenströmung eine an Schaumporen verarmte "Hautschicht" gebildet hat.
Einige Vorteile
Mit Ausnahme der zusätzlichen Vakuumbeaufschlagung zur Aktivierung des Porenöff- nungsmechanismus (a) zur Einstellung eines rapiden Umgebungsdruckabfalis (Flash- Opening, FOP), sowie der Gefrierstrukturierung zur Aktivierung des Porenöffnungsme- chanismus (e) zur Porenwandpenetration mittels Eiskristalle (Freeze-Opening FOP) sind alle weiteren Vorrichtungen einfach aufgebaut und direkt in bzw. mit der Extruderdüse gekoppelt angeordnet. Damit resultiert der besondere Vorteil der direkten Koppelbarkeit dieser Mechanismen und der zugehörigen Vorrichtungsvarianten. Alle diese Vorrichtungen sind verschmutzungsunempfindlich, mechanisch robust und einfach voreinstellbar, so dass es keiner weiteren Manipulationen während des Produktionsablaufes bedarf.
Die Porenöffnung ist mitels der erfindungsgemäß konfigurierten Vorrichtungen effektiv und reproduzierbar vorzunehmen, wobei die Güte und der Grad der Porenöffnung noch durch das Materialverhalten des Extrudates bestimmt wird. Dieses muss eine Grundfestigkeit bzw. Fließgrenze aufweisen, welche gewährleistet, dass die erzeugten offenen Poren nicht durch ein Zusammenfließen der Matrixmasse wiederverschlossen werden. Durch die erfindungsgemäße vorteilhaft einfache Überlagerbarkeit der Porenöffnungs- mechanismen (a)-(e) und der dafür vorgesehenen erfindungsgemäßen Vorrichtungen kann auch für kritische, weiche Extrudate eine hinreichende Porenöffnungseffizienz gewährleistet werden.
Weitere erfinderische Ausgestaltungen
Weitere erfinderische Ausgestaltungen sind in den Ansprüchen 27 bis 34 beschrieben. Lösung der Aufgabe betreffend die Verwendung
Diese Aufgabe wird durch die Merkmale des Anspruch 35 gelöst, der dadurch gekennzeichnet ist, dass das resultierende geschäumte Produkt mit eingestelltem Porenöff- nungsgrad als strukturiertes Basiselement für Fleischanaloge verwendet wird, wobei die eingesetzten Proteine lediglich pflanzlichen Ursprunges sind und solche Fleischanaloge- Basiselemente in Menüs verwendet werden, welche durch komplementierte, fluide Saucen- oder Saft- oder Dressing- oder Marinaden- oder Topping-Komponenten eine graduelle bis vollständige Füllung der offenen Poren der strukturierten Basiselementes bewirken.
Weitere erfinderische Ausgestaltungen
Eine weitere vorteilhafte Verwendung bzw. Ausgestaltung wird durch die Merkmale des Anspruchs 36 beschrieben.
Einige Vorteile
Bisher mittels High Moisture Extrusion Cooking (HMEC) Technologie auf Pflanzenproteinbasis herstellbare, fibrillär strukturierte Fleischanaloge weisen eine kompakte Struktur auf, welche den umfassenden sensorischen Anforderungen der Konsumenten an wirklich vergleichbare Textur-, Geschmacks- und einigen nutritiven Eigenschaften von Fleisch nicht hinreichend nahekommen, um als wirkliche Alternative akzeptiert zu werden. Die erfindungsgemäß erzielbaren Produktstrukturen mit einstellbarem Verhältnis von geschlossenen und offenen Poren, lassen die für Fleischanaloge geforderten Attribute erfüllen, indem sie sich einerseits direkt positiv texturgebend (Zartheit, Knusprigkeit) und über die einfache Aufnahmefähigkeit von Fluidsystemen geschmacksgebend (Saftigkeit) zielführend nutzen lassen. Die grundsätzliche Nichtbeschränktheit des erfindungsgemäßen Technologiepaketes auf Fleischanaloge schafft darüber hinaus einen breiten Umsetzungshorizont für weitere geschäumte Lebensmittelsysteme. Umsetzungen auf pharmazeutische und kosmetische Produkte sowie auf Bau/Konstruktionsmaterialien sind ebenfalls avisierbare Anwendungshorizonte.
In der Zeichnung ist die Erfindung - teils schematisch - beispielsweise veranschaulicht. Es zeigen:
Figur 1 zeigt die erfindungsgemäße Verstellbare Schlitz-Düsen-Apertur (VSDA) für eine flache Schlitzdüse. In Figur 1 gelten folgende Bezeichnungen: 1 = Apertur-Gehäuse, 2 = angeschnittener drehbar gleitgelagerter Metallzylinder - 2a in O-Stellung mit freiem Strö- mungsquerschnit, 1 b in Uhrzeigerrichtung gedreht, 2c in Gegenuhrzeigerrichtung gedreht, 3 = Schlitzdüsenwand, 4a - 4c = Apertur-Einlaufströmung für die verschieden gedrehten Metallzylindereinstellungen gemäß 2a-2c, 5a - 5c = Apertur-Auslaufströmung für die verschieden gedrehten Metallzylindereinstellungen gemäß 2a-2c, 6 = Geometrische Bezeichnungen zur Positionierung der Metallzylinder, a = Drehwinkel der Metallzylinder, ß = Winkel zwischen Metallzylindermittelpunkt und Kanten der Anschnittfläche des Metallzylinders. Die Berechnungsgrundlagen zur definierten Höhenreduktion des Extruderdüsen-Flach- schlitzkanals als Funktion des Drehwinkels 5 der drehbar zu verstellenden Metallzylinder und als Funktion des Metallzylinderradius R1 sowie der Platzierung der Anschnittfläche (Winkel ß) und der damit festgelegten Mittelpunktskoordinate R1 der Metallzylinder, sind in Figur 8 ausgeführt.
Für den Fall eines flachen, rechtwinkligen Extruderdüsen-Schlitzkanals sind in die obere und untere den Durchströmungsschlitz der Aperturvorrichtung begrenzenden Wand über die gesamte Schlitzbreite, rechtwinklig zur Strömungsrichtung jeweils ein angeschnittener drehbar gleitgelagerter Metallzylinder (2) in das Apertur-Gehäuse (1 ) dichtend jedoch drehbar eingelassen. Die Anschnittflächen dieser Zylinder sind bei vollständiger Aperturöffnung bündig mit der Strömungskanalwand (3). Von außerhalb des Apertur-Gehäuses (1 ) sind die Metallzylinder (2) von Hand oder mittels zweier Stellmotoren verdrehbar einzustellen, so dass eine einseitige oder zur Düsenlängsachse symmetrische Verengung der Apertur erfolgt, welche bei einem Verdrehwinkel von 90° dem maximalen Verschlussgrad des Schlitzkanalquerschnitttes entspricht.
Für den Fall einer Ring-Schlitzdüse, welche für erhöhte Extrudatmassenströme Einsatz findet, wird der Mechanismus der Schlitzspalt-Höhenverstellung über eine konzentrische konische Ausführung von Düsengehäuse-Innenwand und einem axial verschiebbaren Stempel mit konischer Spitze, wie in Figur 2 dargestellt, realisiert. Für Figur 2 gelten die folgenden Bezeichnungen: 7 = konisches Düsengehäuse, 8 = axialer Spalt-Einstellstempel mit konischer Spitze, 9 = Einsteistempel-Führungsrohr, 10 = Temperierfluideintritt in Einstellstempel-Führungsrohr, 11 = Temperierfluidaustritt aus Einstellstempel-Führungsrohr, 12 = Temperierfluid Kanäle in inneren (12a) und äußeren (12b) Düsengehäusewänden sowie im Einstellstempel (12c), 13 = Führungen für axiales Einstellstempel-Führungsrohr, 14 = Düsenspalt in Ausgangsstellung (14a) und bei verengter Spalteinstellung (14b), 15 = Ringschlitzdüsen Innengehäuse Wandteil, 16 = Flansch zur Verbindung von Ringdüsenteilen bzw. mit Extrudergehäuse
Für die zusätzliche Nachbehandlung gemäß Anwendung des Porenöffnungsmechanis- mus (a) zur Porenöffnung durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP) mittels partieller Vakuumbeaufschlagung wird die erfindungsgemäße Vorrichtung wie in Figur 3 dargestellt, verwendet.
Für die Bezeichnungen in Figur 3 gelten: 17 = Schlitzdüsen-Strömungskanal, 21 = Extru- datstrang, 26 = teilperforiertes Förderband, 27a = obere Vakumier-Halbschale, 27b = untere Vakuumier-Halbschale, 28a = Anpressdruck-Pneumatik für obere Vakuumier-Halb- schale, 28b = Anpressdruck-Pneumatik für untere Vakuumier-Halbschale, 29 = abgeschnittenes Extrudatteil, 30 a,b = Rohrleitungen für Absaugung (Teilvakuum Übertragung), 31 = Teilvakuum Speicherbehälter, 32 = Vakuumpumpe, 33 = Strang-Abschneidevorrichtung P0T2: Die erfindungsgemäß realisierte Vorrichtung zur Porenöffnung gemäß Mechanismus (c) mittels Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) appliziert im Austrittsbereich der Extruderkühldüse eine Schneide-ZSchälmesser (gegebenenfalls Wasserstrahl- oder Laser-Schneidevorrichtungen) - Anordnung wie schematisch in Figur 4 dargestellt.
Als Bezeichnungen in Figur 4 gelten: 17 = Schlitzdüsen-Strömungskanal, 18 = Laminare Schlitzdüsenströmung, 19 = Schneidevorrichtung zur Positionierung über der Schlitzkanalhöhe H, Schneidevorrichtung zur Positionierung über der Schiitzkanalbreite \N.
POT3: Die Vorrichtung zur Realisierung der Porenöffnung gemäß Mechanismus (c) zur multiplen Nadelpenetration (Penetration-Opening, POP) ist direkt nach dem Extruderdüsenaustritt angeordnet und kombiniert in der erfindungsgemäß bevorzugten Ausführungsform der Vorrichtung zwei gegenläufig rotierende Hohlnadel- oder Widerhaken Filznadel-Walzen, wobei die von beiden Seiten in das Extrudat penetrierenden Nadeln wie in Figur 5 dargestellt, ineinandergreifen.
Als Bezeichnungen in Figur 5 gelten: 17 = Schlitzdüsen-Strömungskanai, 22a = obere Nadelwalze, 22b = untere Nadelwalze, 23 = Penetrationsnadel (Hohlnadel oder Widerhaken-Filznadel), 24 = Förderband Teilvorrichtung, 25 a, b = obere, untere Penetrationsnadelwalzen Anpress-Teilvorrichtung (pneumatisch/hydraulisch/mechanisch). POT-4: Die Vorrichtung zur Realisierung der Porenöffnung gemäß Mechanismus d) zur Erzeugung einer Sekundär-Mischströmung (Mix-Opening, MOP) in der Extruderkühldüse, kann prinzipiell auf die Verstellbare Schlitz-Düsen-Apertur (VSDA) Vorrichtung beschränkt bleiben, zur in-line Kontrolle der Intensität der eingestellten Sekundär-Mischströmung ist jedoch die Kopplung mit einer erfindungsgemäßen Messanordnung zur Ermittlung des statischen Druckes vor und nach der VSDA Vorrichtung angezeigt. Diese Druckmessanordnung ist in Kombination mit der VDSA Vorrichtung in den Figuren 6 und 7 dargestellt.
Figur 7 beinhaltet eine Erweiterung der Druckmessanordnung aus Figur 6 für den Fall viskoelastischer Fluide, wie sie im Falle von Proteinschmelzen für die Herstellung von Fleischanalogen vorliegen.
Als Bezeichnungen in den Figuren 6 und 7 gelten: 1 = Apertur-Gehäuse, 2 = angeschnittener drehbar gleitgelagerter Metallzylinder - 2b in Uhrzeigerrichtung gedreht, 3 = Schlitzdüsenwand, 4b = Apertur-Einlaufströmung für gedrehten Metallzylinder im Uhrzeigersinn (2b), 5b = Apertur-Auslaufströmung gedrehten Metallzylinder in Uhrzeigerrichtung (2b), 17 = Schlitzdüsen-Stromungskanal, 35 = Membran-Druckaufnehmer zur statischen Druckmessung P1 ; 36 = Membran-Druckaufnehmer zur statischen Druckmessung P2, 37 = Membran-Druckaufnehmer zur statischen Druckmessung P3, 38 = Membran-Druckaufnehmer zur statischen Druckmessung P4, 39 = Druckaufnehmermembranen, 40 = Verbindungsflansche, 41 = konische Düseneinlaufströmungs-Geometrie, 42 = Membran- Druckaufnehmer zur statischen Druckmessung P5, 43 = P5 - Druckmess-Kavität. Für ausgeprägt viskoelastische Extrusionsfluide wie sie beispielsweise geschäumten Proteinschmelzen entsprechen wird die vorab bezeichnete VSDA erfindungsgemäß in weiterer Distanz zum Düsenaustritt in die Extruderdüse eingebaut als bei der Technologie POT-1. Bei viskoelastischen Produktfluidsystemen werden die vorgenannten Sekundärströmungen infolge einstellbarer Kanalquerschnitts-Verengung und -Wiederaufweitung maßgeblich forciert durch den Effekt der elastischen Turbulenz (Relaxation der elastischen Extranormalspannungen und resultierende Strang-Rückdeformation). Dieser Effekt kann bereits bei geringfügiger Schlitzdüsen-Querschnittsverengung ausgelöst sowie in seiner Ausprägung zur Erzeugung einer offenen Porenstruktur zielführend eingestellt und genutzt werden.
Hierzu erfolgen erfindungsgemäß, wie in Figur 6 dargestellt, statische Druckmessungen an einer Position im Extrudergehäuse vor dem Düseneinlaufquerschnitt (P1 ) an zwei Längenpositionen in der Extruderschlitzdüse (P2, P3) nach der Düseneinlaufzone (nach konischer Verengung), nach der VSDA (P4), sowie (P5) im Schlitzdüsenkanal vor der VSDA, direkt gegenüber (Schlitzdüsenkanal-Unterseite) zur Druckmessposition P2.
Aus P2 und P3 lässt sich die lokale Schubspannung TW an der Schlitzdüsenkanalwand und in Kenntnis des am Düsenaustritt ermittelten Produktvolumenstromes dV/dt, die Produktscherviskosität q ermitteln. Unter Miteinbezug von P1 besteht die Möglichkeit einen Düseneintritts-Druckverlust APein zu ermitteln, welcher aus der Summe (i) eines viskosen Dehndruckverlustes APo.ein unter Wirkung der Dehnviskosität des extrudierten Fluids sowie (ii) einem elastischen Druckverlustanteil APE.ein in Folge elastischer Energiespeiche- rung, resultiert. Mittels der zusätzlichen statischen Druckmessung P5 kann zwischen den Messstellen für P5 und P2 aus P5-P2 eine rein elastische Kenngröße Fluidantwort durch Rückdeformation in Folge elastischer Spannungsrelaxation ermittelt werden. P2-P5 ist proportional zur sogenannten Ersten Normalspannungsdifferenz N1 , welche in rheomet- rischen Labormessungen mittels Kegel-Platte Scherspaltgeometrie gemessen und mit den in-line ermittelten Werten verglichen bzw. eine Kalibration daraus abgeleitet werden kann. Aus P2-P5 lässt sich damit die elastische Komponente DPE.ein des Düseneintrittsdruckverlustes APein ermitteln, und somit wird auch der komplementäre viskose Dehnanteil APo.ein von APein erhalten. Damit liegen durch die erfindungsgemäße Anordnung der Druckmessstellen P1-P3 und P4 separate rheologische Kennwerte für (a) die Scherviskosität, (b) die Dehnviskosität und (c) die Elastizität der extrudierten Masse unter den gegebenen Extrusionsbedingungen vor. Bei der Druckmessung P5 ist hier speziell zu beachten, dass diese nicht wie alle anderen Druckmessungen (P1-P4) über eine wandbündige Membran des Druckaufnehmers im Schlitzdüsenkanal erfolgt, sondern am Ende einer mit dem Extrusionsfluid gefüllten Kavität, welche zur Messung der Ersten Normalspannungsdifferenz aus P2-P5 einen in Strömungsrichtung erstreckten (schmalen) Rechteckquerschnitt (z.B.: bei 60 mm Düsenkanalbreite: 10 x 50 mm) aufweist. Die Druckmessung P4 erfolgt an einer Position im Schlitzdüsenkanal unmittelbar nach der mittels VSDA Vorrichtung erzeugten Verengung (Höhenreduktion des Schlitzdüsenkanals AH). Damit werden insbesondere durch eine forcierte Sekundär-Mischströmung im VSDA Nachlauf erzeugte periodische, statische Druckschwankungen DP4 (t) erfasst. Diese sind erfindungsgemäß ein Maß für die Mischintensität und die damit einherge- hende Schaumporen-Öffnungseffizienz gemäß dem vorab bezeichneten und beschriebenen Mechanismus (d).
Wie in laborrheometrischen Messungen für eine Mehrzahl an polymeren Fluidsystemen überraschenderweise gefunden wurde, zeigt sich das "Elastische Turbulenzphänomen" (in der Kunststoffindustrie auch Schmelzebruch genannt) in einem bestimmten Bereich des Verhältnisses von Erster Normalspannungsdifferenz zur Schubspannung NI(YW)/T(YW) bei an der Schlitzdüsenkanalwand wirksamen Wandschergeschwindigkeit gw. Dieser Bereich liegt bei 2 < NI(YW)/T(YW) < 5. Die erfindungsgemäß genutzte Ausprägung des elastischen Turbulenzeffektes zur Nutzung des erfindungsgemäßen Mechanismus (d) der Schaumporenöffnung durch forcierte Sekundär-Mischströmung erfolgt bevorzugt im Bereich 2 < NI(Y )/T(YW) < 3.5-5. Bei Erhöhung dieses Verhältniswertes wird der Sekundär- Mischströmungseffekt graduell gesteigert. Abhängig von (i) der Rheologie des extrudierten Fluidsystems (hier bevorzugt Pflanzenprotein-basierte Schmelze zur Fleischanalog Herstellung) sowie der mittleren Strömungsgeschwindigkeit im Schlitzdüsenkanal wird die VSDA Vorrichtung hinsichtlich der Schlitzdüsen-Höhenreduktion so eingestellt, dass der beabsichtigte Grad an Sekundärmischströmung mit korreliertem Porenöffnungseffekt resultiert. Somit kann mittels stoffsystemspezifischer Kalibrierung ein quantitatives Kriterium für die Einstellung der VSDA-Schlitzöffnung zur Auslösung bzw. Einstellung einer graduellen Ausprägung des forcierten "elastisch-turbulenten Sekundärströmungs- Mischeffektes" bestimmt werden, welches zur erfindungsgemäßen Porenöffnung mittels der POT-4 Technologie und dem damit ausgelösten Mechanismus (d) in einstellbarer Weise befähigt. Die Ausprägung des für POT-4 genutzten viskoelastischen Sekundärströmungseffektes kann zu einer nahezu vollständigen Desintegration des Extrudatstranges führen. In der Kunststofftechnik wird dieses unerwünschte elastische Phänomen auch als "Schmelzebruch" bezeichnet. Um dies zu vermeiden wird die VSDA Vorrichtung erfindungsgemäß > 0.2 LD (LD = Düsenlänge) vor dem Extruderdüsenende eingebaut. Dies hat zur Folge, dass der Extrudatstrang im Falle einer erfolgten Teildesintegration in der ungestörten Düsenströmung nach Durchtritt durch die VSDA wieder soweit "ausheilt", dass ein kompakt zusammenhängender geschäumter, teil-offenporiger Produktstrang resultiert, ohne durch eine wiederholte strömungsbedingte "Hautbildung" den durch die elastisch-turbulente Durchmischung erzielten Porenöffnungseffekt zunichte zu machen.
Beispielhafte Darstellungen mit den erfindungsgemäßen Vorrichtungen unter Anwendung des erfindungsgemäßen Verfahrens erzielter erfindungsgemäßer pflanzenproteinbasierter Fleischanalog-Produktstrukturen und Porenöffnungsgrade werden in den Figuren 8-10 nachfolgend beschrieben.
Rahmenbedingungen für die nachfolgend gegebenen Beispiele sind:
HMEC Extruder: Corotating Twin Screw BCTL Extruder der Bühler AG mit Schneckendurchmesser 42 mm und einem Extruderlängen zu Schneckendurchmesser Verhältnis von L/D = 28.
Extruder Kühldüse: L = 1.85m, W = 60 mm, H = 15 mm
Material/Basis-Rezeptur: 52.5% Wasser, 0.5% Öl, 41 .2% Erbsenprotein-Isolat (PPI), Erbsenfaser 5.8% Prozessbedingungen: Schneckendrehzahl: 230 rpm; Massenstrom 37.5 kg/h; Düseneintrittstemperatur der Schmelze: 150°C; Extruderaustrittsdruck: 18 - 20bar, Düsen Kühltemperatur: 60°C
Beispiel 1 (s. Figur 9): Porenöffnungsmechanismus mittels (a) Schlagartiger Restdruckentspannung und (d) überlagerter forcierter Sekundärmischströmung.
Unterschiedliche Grade der Porenöffnung wurden eingestellt mittels den überlagerten Porenöffnungsmechanismen durch (a) Rapiden Druckabfall (statische Restdruckentspannung) und (d) forcierte Sekundär-Mischströmunq, erzeugt mittels am Düsenaustrittsende eingebauter Verstellbarer Schlitz-Düsen-Apertur (VSDA) bei unterschiedlichen Einstellungen der Schlitzkanal Höhenreduktion AH / %:
• Abbildung A: AH = 5% / resultierender Porenöffnungsgrad POG « 3 - 5%
• Abbildung B: AH « 10% / resultierender Porenöffnungsgrad POG = 10 -12%
• Abbildung C: AH « 50% / resultierender Porenöffnungsgrad POG « 25 -30%
Die Ermittlung des Porenöffnungsgrades (POG) erfolgte gemäß:
POG = VOP Volumen der offenen Poren/VGP Gesamtporenvolumen. VOP wurde ermittelt, indem eine extrudierte Probe für 5 s in Wasser bei Raumtemperatur (25°C) eingelegt und nach Entnahme der Strangoberfläche anhaftendes freies Wasser mittels Haushaltspapier in einem definierten schnellen Handhabungs-Procedere durch beidseitig einmaliges Auflegen auf eine Lage des Papiers für jeweils 1s, oberflächlich abgetrocknet. Aus der Differenzwägung vor und nach solcher Behandlung resultierte die in zur Produktober- fläche hin offene Produktporen durch Kapillarkräfte eingesaugte Wassermasse. Die Bestimmung von VGP erfolgte durch Volumen und Masseermittlung des extrudierten Produktes, woraus im Vergleich zum nicht geschäumten Produkt der Gasvolumenanteil bzw. Overrun (= relative Volumenzunahme durch Aufschäumung) ermittelt wurde.
Wie Figur 9 zu entnehmen ist zeigt die Extrudatoberfläche mit zunehmender VSDA Schlitzdüsenkanal-Höhenreduktion eine zunehmende "Zerklüftung", in Folge der aufgeprägten forcierten Sekundär-Mischströmung bei gleichzeitiger Restdruckentspannung. Dies ist ein typisches Bild des resultierenden Produktes beim Einbau der VSDA am Düsenende.
Die in diesem Beispiel berücksichtigten hinsichtlich Porenöffnung unbehandelten Proben besassen einen Gasvolumenanteil nach Aufschäumung von ca. 25-35 Vol.% in > ca. 98 % geschlossenen inneren Schaumporen.
Beispiel 2 (s. Figur 10): Porenöffnungsmechanismus mittels (d) forcierter Sekundär- Mischströmung, erzeugt mittels bei Düsenlänge 0.75 m vom Düsenaustritt eingebauter Verstellbarer Schlitz-Düsen-Apertur (VSDA) bei Einstellung der Schlitzkanal Höhenreduktion DH / % ~ 15%.
Figur 10 zeigt eine überwiegend glatte Extrudatoberfläche mit eindeutig sichtbaren Fließmustern, welche der forcierten Sekundär-Mischströmung entstammen. Diese "heilen" in Folge der nachfolgenden Düsenströmung (hier über weitere 0.75m der Düsenlänge weitergehend aus. Dies reduziert in geringem Umfang den für das Endprodukt er- zielten Porenöffnungsgrad, lässt jedoch erfindungsgemäße in hohem Masse aus Konsumentensicht qualitätsrelevante Strukturmuster erzeugen, welche eine natürliche Verteilung von Strukturinhomogenitäten wie in Fleischprodukten wiederspiegelt (im gezeigten Beispiel: Lachs/Fisch bzw. marmorierte Wagyu-Beef Strukturen). Der erzielte Porenöffnungsgrad unter den in diesem Beispiel gewählten Randbedingungen beträgt 18-20%.
Die in diesem Beispiel berücksichtigten hinsichtlich Porenöffnung unbehandelten Proben besassen einen Gasvolumenanteil nach Aufschäumung von ca. 15 Vol.% in > ca. 98 % geschlossenen inneren Schaumporen.
Beispiel 3 (s. Figur 11): Porenöffnungsmechanismus mittels (d) forcierter Sekundär- Mischströmunq. erzeugt mittels bei Düsenlänqe 0.3 m vom Düsenaustritt eingebauter Verstellbarer Schlitz-Düsen-Apertur (VSDA) bei Einstellung der Schlitzkanal Höhenreduktion DH / % ~ 15%.
Abbildung 11 zeigt eine vergrößerte Aufnahme der Produktoberfläche. Die wellenförmigen Streifenmuster-Strukturen sind gut erkennbar. Es wechseln (H) hellere (verstärkt ausgeschäumte) und (D) dunklere (reduziert aufgeschäumte) streifenförmig angeordnete Bereiche ab. Die H-Bereiche entstammen der inneren Strang-Schaumstruktur, welche durch die forcierte Sekundär-Mischströmung an die Produktoberfläche gefördert wird. Die D-Bereiche entstammen der ursprünglichen an Schaumporen verarmten "Oberflächen-
Hautschicht". Die in diesem Beispiel berücksichtigten hinsichtlich Porenöffnung unbehandelten Proben besassen einen Gasvolumenanteil nach Aufschäumung von ca. 30 Vol.% in > ca. 98 % geschlossenen inneren Schaumporen. Der erzielte Porenöffnungsgrad (POG) beträgt ca. 18-20%.
Beispiel 4 (s. Figur 12): Porenöffnung mittels (b) Schneide-ZSchäl Mechanismus erzeugt mittels am Düsenaustrittsende eingebauter Verstellbarer Schneidevorrichtung.
Figur 12 zeigt einen geschäumten, kontinuierlich geschnittenen Extrudatstrang. Auf der Schnittfläche sind aufgeschnittene Porenstrukturen zu detektieren. Ein Porenöffnungsgrad von ca. 10-15% wurde im gezeigten Beispiel erzielt. Die diesem Beispiel zugrunde gelegten Extrudate besassen ca. 15-20% Gasvolumenanteil.
Zur Anreicherung der beispielhaft beschriebenen pflanzenproteinbasierten Fleischanaloge mit sensorisch (Aroma, Geschmack) sowie nutritiv (B-Vitamine, Mineralien (Fe, Zn)) wird ein Gesamtvolumen an offenen Poren von 2-5% als hinreichend bewertet. Für die Erhöhung der Produktsaftigkeit sind > 10%, abhängig vom Wassergehalt der Produktmatrix relevant.
Die in den Patentansprüchen und in der Beschreibung beschriebenen sowie aus der Zeichnung ersichtlichen Merkmale können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung wesentlich sein. Bezugszeichenliste
Apertur-Gehäuse
Metallzylinder
Schlitzdüsenwand a Apertur-Einlaufströmung b »j ,j c a Apertur-Auslaufströmung c » »J c
Bezeichnungen, geometrische zur Positionierung der Metallzylinder
Düsengehäuse, konisches
Spalt-Einstellstempel, axialer
Einstelstempel-Führungsrohr 0 Temperierfluideintritt Temperierfluidaustritt Temperierfluid-Kanäle a Temperierfluid-Kanäle, innere b Temperierfluid-Kanäle, äußere c Temperierfluid-Kanäle im Einstellstempel Führungen Düsenspalt a Düsenspalt in Ausgangsstellung b verengte Spalteinstellung durch Düsenspalt Ringschlitzdüsen Flansch Schlitzdüsen-Strömungskanal Laminare Schlitzdüsenströmung Schneidevorrichtung Extrudatstrang a Nadelwalze, obere b Nadelwalze, untere Penetrationsnadel Förderband-Teilvorrichtung a Penetrationsnadelwalzen-Anpress-Teilvorrichtung, obereb Penetrationsnadelwalzen-Anpress-Teilvorrichtung, untere Förderband, teilperforiertes a Vakuumier-Halbschale, obere b Vakuumier-Halbschale, untere a Anpressdruck-Pneumatik, obere b Anpressdruck-Pneumatik, untere Extrudatteil, abgeschnittenes a Rohrleitungen für Absaugung b Rohrleitungen für Absaugung Teilvakuum-Speicherbehälter Vakuumpumpe Strang-Abschneidevorrichtung Membran-Druckaufnehmer 37 Membran-Druckaufnehmer
38
39 Druckaufnehmermembranen
40 Verbindungsflansche
41 Düseneinlaufströmungs-Geometrie, konische
42 Membran-Druckaufnehmer a Drehwinkel des Metallzylinders 2 ß Winkel zwischen Metallzylindermittelpunkt und Kanten der Anschnittsfläche des
Metallzylinders 2 ö Drehwinkel des Metallzylinders 2
Ri Metallzylinderradius
LD Düsenlänge
Literaturverzeichnis
/1/ V. Lammers'! , A. Morant, J. Wemmer, E. Windhab (2017); High-pressure foaming properties of carbon dioxide-saturated emulsions; Rheol Acta (2017) 56:841-850
121 E. Windhab, V. Lammers (2017); Patent: Aufgeschäumtes teigbasiertes Lebensmittelprodukt sowie Vorrichtung und Verfahren zur Herstellung des aufgeschäumten teigbasierten Lebensmittelprodukts; Patent Application Nr. DE 10 2016 111 518 A1
/3/ L. Zeng, F. Najjar, S. Balachandar, P. Fischer (2009); Forces on a finite-sized particle located close to a wall in a linear shear flow; Physics of Fluids 21 , 033302, 2009
/4/ D. Legendre, J. Magnaudet (1998); The lift force on a spherical bubble in a viscous linear shear flow; J. Fluid Meeh. (1998), Vol. 368, pp. 81 ±126. # 1998 Cambridge University Press
/5/ P.J. Fellows (2016); Food Processing Technology: Principles and Practice; Woodhead Publishing Series in Food Science, Technology & Nutrition; Woodhead Publishing, 2016; ISBN 0081005237, 9780081005231 76/ P. J. Hailing & P. Walstra (1981 ) Protein-stabilized foams and emulsions, C R C Critical Reviews in Food Sei. & Nutrition, 15:2, 155203, DOI: 10.1080 Z1040839810952 7315
77/ Ashley J. Wilson (1989) Foams: Physics, Chemistry and Structure; Springer-Verlag London, ISBN 978-1-4471-3809-9.
78/ N. Mills (2007); Polymer Foams Handbook; Hardcover ISBN: 9780750680 691 ;
Imprint: Butterworth-Heinemann).
79/ US6,635,301 B1
710/ WO2016/150834 A1
711/ EP1182937 A4
712/ W02009075135
713/ US20050003071 A1
714/ WO2016150834 A1
715/ US 10,716,319 B2
716/ WO 2017/081271 A1
717/ KR 1020200140499 A
718/ US 2020/0060310 A1

Claims

Patentansprüche Geschäumtes, elastisches, protein-basiertes Produkt mit Trockensubstanzanteil von 20-60 Gew.%, gebundenem Wasseranteil von 40 Gew.% und Gasporenstruktur, wobei das Verhältnis von zur Produktoberfläche hin offenen gaserfüllten Poren (OP) zu im Produktvolumen eingeschlossenen, gaserfüllten Poren (GP) im Bereich von 0.05 - 0.95 eingestellt ist. Produkt nach Anspruch 1 , dadurch gekennzeichnet, dass das Produkt einen Proteinanteil von 10 - 95 Gew.% in seiner Trockensubstanz aufweist. Produkt nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Proteinanteil zu 0 - 100 Gew.% aus pflanzlichem Protein besteht. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Protein im Produkt in teilweise bis vollständig denaturierter Form vorliegt und eine fibrilläre Struktur aufweist. Produkt nach Anspruch 4, dadurch gekennzeichnet, dass die denaturierte Form eine orientierte fibrilläre Struktur aufweist. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Produkt einen Pflanzenfaseranteil von 0.5 - 20 Gew.%, bezogen auf die Trockensubstanz, beinhaltet. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Produkt einen Anteil an Fetten oder Ölen von 0.1 - 15 Gew.%, bezogen auf die Trockensubstanz, beinhaltet. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Produkt einen Anteil an würzenden und/oder färbenden und/oder den nutritiven Wert zusätzlich zum Pflanzenfaseranteil verstärkenden Komponenten von 0.1 - 5 Gew.%, bezogen auf die Trockensubstanz, beinhaltet. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass sich das Produkt nach Trocknung auf Restwassergehalte von < 5 Gew.% und verderbfreier mehrmonatiger feuchtekontrollierter Lagerung unter Raumtemperaturbedingungen, bei in Kontaktbringung mit Wasser oder ei-
54 nem wasserhaltigen Fluidsystem unter Wiedereinstellung seines ursprünglichen
Volumens und seiner Textur, ohne Trockensubstanzverlust, rekonstituiert. Produkt nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass sich das Produkt nach Trocknung auf Restwassergehalte von < 5 Gew.% und verderbfreier mehrmonatiger feuchtekontrollierter Lagerung unter Raumtemperaturbedingungen, bei in Kontaktbringung mit Wasser oder einem wasserhaltigen Fluidsystem unter Wiedereinstellung seines ursprünglichen Volumens und seiner Textur, rekonstituiert. Verfahren zur Herstellung eines Produktes nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren die Öffnung von im geschäumten Produkt eingeschlossenen Gasporen oder Gasblasen zur Produktoberfläche hin in einstellbarer Weise realisiert, wobei ein Extrusionsverfahren vom Typ „Hochfeuchtes Extrusionskochen" (High Moisture Extrusion Cooking, HMEC) mit Gaseintrag, temporärer Gaslösung und kontrollierter Gasblasennukleierung sowie Schaumbildung zugrunde gelegt ist und zur Porenöffnung fünf Verfahrensvarianten: (a) Öffnung durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP), (b) Öffnung durch Zerteilen bzw. Schälen des Produktes (Cut-Opening, COP), (c) Öffnung durch multiple Nadelpenetration (Penetration- Opening, POP), (d) Öffnung durch forcierte Sekundär-Mischströmung (Mix-Ope- ning, MOP) und (e) Öffnung durch Gefrierstrukturierung (Freeze-Opening, FOP)
55 einzeln oder in Kopplung angewendet werden, wodurch die Öffnung von im geschäumten Produkt eingeschlossenen Gasporen oder Gasblasen zur Produktoberfläche hin in einstellbarer Weise realisiert wird. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels der Öffnungsmechanismen (c) durch multiple Nadelpenetration (Penetration-Opening, POP) und (e) durch Gefrierstrukturierung nach Austritt des teilgekühlten Produktes aus der Extruder-Kühldüse, mittels den Öffnungsmechanismen (a) durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP) und (b) durch Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) im Austrittsbereich der Extruderkühldüse und dem Öff- nungsmechanismus (d) durch forcierte Sekundär-Mischströmung (Mix-Opening, MOP) in der Extruderkühldüse, erfolgen. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels (a) rapiden Umgebungsdruckabfall (Flash-Opening, FOP) durch Aufrechterhaltung des statischen Druckes bis kurz vor dem Düsenaustritt auf einem Druckniveau 2 bar mittels einer verstellbaren Schlitz-Düsen-Apertur (VSDA), welche am Extruderdüsenaustritt oder kurz (< 10 cm) vor diesem eingebaut in Abhängigkeit der Viskosität der austretenden Fluidmasse auf einen vor der VSDA herrschenden statischen Druck derart eingestellt wird, dass die Öffnung innerer Poren zur Produktoberfläche hin
56 zu einem ebenfalls produktspezifisch eingestellten Anzahlanteil der nach zur Produktoberfläche hin geöffneten Poren, bezogen auf die Gesamtanzahl an geschlossenen und offenen Poren, gegeben ist. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels (a) Porenöffnung durch rapiden Umgebungsdruckabfall (Flash-Opening, FOP) durch schlagartiges Anlegen eines partiellen Vakuums von
100 mbar'für einen Extrudatstrangteil nach dessen Abschneiden in einer quasi kontinuierlich arbeitenden Vakuumkammervorrichtung erfolgt. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels (b) Zerteilen bzw. Schälen des Produktes (CUT-Opening, COP) erfolgt, indem der Extrudatstrang über eine in der Extruderschlitzdüse an deren Ende eingebaute Schneidevorrichtung kontinuierlich aufgeschnitten wird bzw. seine Oberflächenschichten abgeschält werden. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels (c) multipler Nadelpenetration (Penetration-Opening, POP) erfolgt und dabei Verbindungskanäle mit Durchmessern von 0.1 - 2 mm zwischen inneren geschlossenen Poren oder Blasen und der Produktoberfläche erzeugt werden. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels des erfindungsgemäßen Mechanismus der (d) forcierten Se- kundär-Mischströmung (Mix-Opening, MOP) erfolgt, wobei durch lokale Querschnittsverengung der Extruderschlitzdüse mittels einer innerhalb der Extruderkühldüse eingebauten verstellbaren Schlitz-Düsen-Apertur (VSDA) über eine mit dieser vorgenommenen einstellbaren Schlitzspalthöhenreduktion im Nachlauf der erzeugten Verengung eine in ihrer Intensität und einhergehenden Mischeffizienz in Richtung der Schlitzhöhenerstreckung des Düsenspaltes damit ebenfalls einstellbare, walzenförmige Sekundärströmung erzeugt wird, mit Ausrichtung der Walzenströmungs-Rotationsachsen über die Düsenschlitzbreite quer zur Hauptströmungsrichtung. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels des erfindungsgemäßen Mechanismus der (d) forcierten Se- kundär-Mischströmung (Mix-Opening, MOP) erfolgt, wobei für viskoelastische wässrige Proteinschmeizen sowie andere viskoelastische Fluidsysteme durch lokale Querschnittsverengung der Extruderschlitzdüse mittels einer in diese einge- bauten verstellbaren Schlitz-Düsen-Apertur (VSDA) im Nachlauf einer mittels dieser einstellbar vorgenommenen Verengung durch Schlitzdüsenhöhenreduktion, eine in ihrer Intensität und einhergehenden Mischeffizienz in Richtung der Schlitzhöhenerstreckung des Düsenspaltes damit ebenfalls einstellbare walzenförmige, periodisch fluktuierende Sekundärströmung erzeugt wird, mit Ausrichtung der Walzenströmungs-Rotationsachsen über die Düsenschlitzbreite quer zur Hauptströmungsrichtung, und wobei mittels einer erfindungsgemäßen in-line Messung der Amplitude des sinusförmig oszillierenden zeitlichen, statischen Druckverlaufs vor oder nach der VSDA, der Intensitätsgrad des Sekundärströmungs-Mischeffek- tes quantitativ beschrieben und durch Verstellung der Düsenschlitzspaltweite innerhalb der VSDA Vorrichtung graduell eingestellt wird. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Spaltverengung durch Schlitzhöhenverstellung mittels der erfindungsgemäßen verstellbaren Schlitz-Düsen-Apertur (VSDA) nach Maßgabe durch in-line oder off-line in einem Kegel-Platte-Scherspalt rheometrisch gemessene viskose und elastische Materialkenngrößen der extrudierten fluiden Masse unter Extrusionsbedingungen erfolgt, wobei die viskosen Eigenschaften durch die Schubspannung T als Funktion der Schergeschwindigkeit y, die elastischen Eigenschaften durch die erste Normalspannungsdifferenz Ni als Funktion der Schergeschwindigkeit y beschrieben werden und die Schlitzdüsen-Spaltverengung derart vorgenommen wird, dass für das Verhältnis NX/T unter der im verengten
59 Schlitzdüsenspalt herrschenden scheinbaren Wandschergeschwindigkeit ySw die
Beziehung 2 < (Ni/r) < 5 gilt. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die in-line Messung des statischen Druckverlaufs vor oder nach der VSDA vereinfacht nur die Amplitude der oszillatorischen Schwankungen des statischen Druckes als Massgabe für die Einstellung der Schlitzspaltverengung, des damit in der Apertur-Nachlaufströmung erzeugten Sekundärströmungs- Mischeffektes und der damit verbundenen Öffnung innerer geschlossener Schaumporen zur Schlitzdüsenwand und somit zur Extrudatoberfläche hin sowie der Erzeugung neuer zur Produktoberfläche hin offener Porenkanäle oder Spalte, berücksichtigt. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung geschlossener Poren zur Produktoberfläche hin mittels (e) Gefrierstrukturierung erfolgt, wobei eine schnelle Kühlung des Produktes nach dem Extrusionsdüsenaustritt erfolgt und eine Kühlungsnachbehandlung im Temperaturbereich zwischen -1 und -20°C, bevorzugt unter periodischer Temperaturführung, in diesen Grenzen vorgenommen wird.
60 Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Produkt nach erfolgter teilweiser Porenöffnung schonend auf einen Restwassergehalt getrocknet wird, der die mehrmonatige feuchtekontrollierte Produktlagerung bei Raumtemperaturbedingungen erlaubt ohne mikrobiologische oder enzymatische Verderbserscheinungen auftreten zu lassen. Verfahren nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das Produkt nach erfolgter teilweiser Porenöffnung und schonender Trocknung auf einen Restwassergehalt, der die mehrmonatige feuchtekontrollierte Produktlagerung bei Raumtemperaturbedingungen erlaubt, durch Wasser- oder Fluidaufnahme rekonstituiert wird. Verfahren nach Anspruch 1 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass der Porenöffnungsgrad für Werte 0.1 mit einer Genauigkeit von +/- 0.05 eingestellt wird. Verfahren nach Anspruch 1 oder einem darauffolgenden Ansprüche, dadurch gekennzeichnet, dass der Gasvolumenanteil (= Porosität) zwischen 0.1 und 0.8 mit einer Genauigkeit von +/- 0.05 ebenfalls eingestellt wird.
61 Vorrichtung zur Durchführung des Verfahrens nach Anspruch 11 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass der Extrusionsdüse eine Abschneidevorrichtung (33) und ein abschnittsweise mittig teilperforiertes Förderband (26) der Kühldüse eines HMEC-Aufschäumextruders nachgeschaltet sind sowie das Förderband (26) mit dem aufliegenden, abgeschnittenen Teil des Produktes zwischen zwei Vakuumier-Halbschalen (27a, 27b) geführt ist, welche von oben und unten gegeneinander anpressend das Förderband (26) nebst Produkt dichtend einschließen, und wobei diese Vakuumier-Halbschalen zur schlagartigen Aufbringung eines Teilvakuums auf das geschäumte, extrudierte Produkt über eine mit einem Ventil zur schnellen Öffnung versehene Vakuumleitung mit einem Vakuumspeicherbehälter (31 ) und dieser mit einer Vakuumpumpe verbunden sind. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass im Extruderdüsenaustritt, zur Gewährleistung der Produktstrangführung in den Schlitzdüsenkanal eingelassen, Schneidemesser mit geringer Klingenbreite von 2 mm oder dünne Schneidedrähte oder Wasserstrahl oder Laser-Schneidevorrichtungen derart angeordnet sind, dass entweder (i) ein Abschneiden oder Abschälen der Oberflächenschichten mit einer Schichtdicke von < 1 mm erfolgt oder (ii) der Produktstrang in Schlitzhöhenrichtung mittig geteilt wird.
62 Vorrichtung nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass am Düsenaustritt zwei rotierbar aufgehängte Nadelwalzen (22a, 22b) bestückt mit Vollnadeln mit Widerhaken - Filznadeln - oder Hohlnadeln mit Nadeldurchmessern zwischen 0.3 - 5 mm angeordnet sind, zwischen welchen das bandförmig als Extru- datstrang (21 ) ausgebildete extrudierte Produkt geführt wird und die Nadelpenetrationstiefe produktformabhängig zwischen 1-20 mm sowie die Einstich-Anzahldichte zwischen 1- 49 / cm2 eingestellt ist. Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass eine in der Spaltweite zwischen 10-100% der Schlitzkanalhöhe der Extrusionsdüse verstellbare Schlitz-Düsen-Apertur (VSDA) im Falle (A) rein viskoser Fließeigenschaften des nicht- bzw. teilerstarrten Fluidsystems zwischen 10-50% der Düsenlänge vor dem Düsenende der gekühlten Extruderschlitzdüse und im Falle (B) viskoelastischer Fließeigenschaften des nicht- bzw. teilerstarrten Fluidsystems zwischen 5-95% der Düsenlänge vor dem Düsenende der gekühlten Extruderschlitzdüse oder direkt am Düsenende, angeordnet ist. Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die in der Spaltweite zwischen 10-100% der Schlitzkanalhöhe der Extrusionsdüse verstellbare Schlitz-Düsen-Apertur (VSDA) in deren zu 100% geöffnetem Zustand exakt den Maßen des freien Extruder-Schlitz- düsen-Querschnitts entspricht und für den Fall eines vorliegenden flachen, recht-
63 winkligen Extruderdüsen-Schlitzkanals in die obere und untere den Durchströmungsschlitz der Aperturvorrichtung begrenzenden Wand über die gesamte Schlitzbreite, rechtwinklig zur Strömungsrichtung, jeweils ein angeschnittener, drehbar gleitgelagerter Metallzylinder dichtend eingelassen ist, wobei die Anschnittflächen dieser Zylinder bei vollständiger Aperturöffnung bündig mit der Strömungskanalwand sind, sowie bei von außen von Hand oder mittels Stellmotor vorzunehmender definierter Drehung der Zylinder eine einstellbare, einseitige oder zur Düsenlängsachse symmetrische Verengung der Apertur erfolgt, welche bei einem Verdrehwinkel von 90° dem maximalen Verschlussgrad des Schlitzkanals entspricht. Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die eingesetzte in der Spaltweite zwischen 10- 100% der Schlitzkanalhöhe der Extrusionsdüse verstellbare Schlitz-Düsen-Apertur (VSDA) in deren zu 100% geöffnetem Zustand exakt den Maßen des freien Extru- der-Schlitzdüsen-Querschnitts entspricht und für den Fall einer für höhere Durchsatzleistungen vorliegenden Extruderdüse mit Ringspalt, zur Ringschlitzspaltverengung, ein kolbenartiger Stempel mit konischem Aufsatz derart angeordnet ist, dass dessen bevorzugt mittels Stellmotor erfolgendes definiertes axiales Einschieben in den zur Adaption der Extruder-Ringschlitzdüse konisch ausgeführten Extruder-Auslaufstutzen eine definierte Ringschlitzspaltverengung festlegt.
64 Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Extruderkühldüse und der Extruderdüseneinlauf erfindungsgemäß mit 4-5 Sensoren (P1-P4, P5) zur statischen Druckmessung bestückt sind, wobei bevorzugt einer der Sensoren (P1 ) vor dem Extruderdüseneinlauf wandbündig und drei der Sensoren (P2-P4) in der Extruderschlitzdüse, davon zwei (P2, P3) wandbündig vor der mittels VSAD eingestellten Schlitzkanalverengung sowie einer (P4) ebenfalls wandbündig direkt in der Auslaufströmung dieser Schlitzkanalverengung angeordnet sind, sowie im Falle viskoelastischer Fluideigenschaften ein zusätzlicher fünfter Sensor zur statischen Druckmessung (P5) direkt gegenüber dem Sensor P2 auf der Schlitzkanalgegenseite, jedoch nicht wandbündig, sondern in einer in den Boden der Schlitzkanaldüse eingesetzten Kavität (43) platziert ist, und wobei diese Kavität eine quaderförmige Ausbuchtung der Schlitzdüse bildet mit rechteckigen Querschnitt, bevorzugt in den Abmessungsbereichen (1-1 .5) x (4-6) cm sowie eine Tiefe von 3-6 cm besitzt. Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass die Sensoren zur statischen Druckmessung P1 bis P3 für die in-line Detektion scheinbarer Dehn- und Scherviskositäten in der Düseneinlaufströmung wandbündig in den Flachschlitz-Strömungskanal integriert sind sowie die Sensoren zur statischen Druckmessung P2 und P5 zur Ermittlung einer elastischen Normalspannungsdifferenz proportionalen Druckdifferenz in Strömungskanalhöhenrichtung orthogonal zur Strömungsrichtung und einander direkt gegenüberliegend, P2 wandbündig im Strömungskanal, P5 nicht wandbündig, son-
65 dem am Boden einer Kavität mit rechteckigem Querschnitt eingebaut sind und der Sensor P4 zur Messung der durch die Sekundär-Strömung verursachten oszillato- rischen Druckschwankungen, wandbündig und in Strömungsrichtung nach der verstellbaren Schlitz-Düsen-Apertur (VSDA), in den Strömungskanal integriert ist. Vorrichtung nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass der Extruderdüsenaustritt mit einem Kühltauchbad verbunden ist zur Kühlung des Extrudatstranges auf unter -20°C, bevorzugt auf unter -50°C, sowie erfindungsgemäß zwei Gefrierkammern nachgeschaltet sind zur periodischen - 1-2 h Periodendauer - Produktumlagerung, wobei diese Gefrierkammern auf konstant -1 °C sowie -20°C eingestellt sind. Verwendung des Produktes nach Anspruch 26 oder einem der darauffolgenden Ansprüche, dadurch gekennzeichnet, dass das resultierende geschäumte Produkt mit eingestelltem Porenöffnungsgrad als strukturiertes Basiselement für Fleischanaloge verwendet wird, wobei die eingesetzten Proteine lediglich pflanzlichen Ursprunges sind und solche Fleischanaloge-Basiselemente in Menüs verwendet werden, welche durch komplementierte, fluide Saucen- oder Saft- oder Dressing- oder Marinaden- oder Topping-Komponenten eine graduelle bis vollständige Füllung der offenen Poren der strukturierten Basiselementes bewirken.
66 Verwendung nach Anspruch 35, dadurch gekennzeichnet, dass das Produkt als Komponente in Käse, Süßwaren, Backwaren, Waffeln und Schokoladen-Confectio- nery verwendet wird.
67
EP21824478.8A 2020-12-23 2021-12-06 Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen Pending EP4266897A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020007887 2020-12-23
DE102020007892.3A DE102020007892A1 (de) 2020-12-23 2020-12-24 Geschäumtes, elastisches, protein-basiertes Produkt, Verfahren zur Herstellung solcher Produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten Fleischanalogen, Vorrichtung zur Durchführung eines solchen Verfahrens sowie Verwendung des Produktes zur Herstellung von pflanzenprotein-basierten Fleischanalogen
PCT/EP2021/000153 WO2022135732A1 (de) 2020-12-23 2021-12-06 Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen

Publications (1)

Publication Number Publication Date
EP4266897A1 true EP4266897A1 (de) 2023-11-01

Family

ID=78916568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21824478.8A Pending EP4266897A1 (de) 2020-12-23 2021-12-06 Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen

Country Status (4)

Country Link
US (1) US20240049750A1 (de)
EP (1) EP4266897A1 (de)
KR (1) KR20230129179A (de)
WO (1) WO2022135732A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023106026A1 (de) * 2023-03-10 2024-09-12 Nexnoa Gmbh Verfahren zum erzeugen eines texturats und extruderanordnung
DE102023106032A1 (de) * 2023-03-10 2024-09-12 Nexnoa Gmbh Verfahren zum erzeugen eines texturats und extruderanordnung
WO2024188907A1 (de) * 2023-03-10 2024-09-19 Nexnoa Gmbh Verfahren zum erzeugen eines texturats und proteinhaltiges texturat

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ044099A0 (en) 1999-05-18 1999-06-10 Effem Foods Pty Ltd Method and apparatus for the manufacture of meat analogues
US7070827B2 (en) 2003-07-03 2006-07-04 Solae, Llc Vegetable protein meat analog
JP4802181B2 (ja) 2007-12-13 2011-10-26 アイシン高丘株式会社 搬送装置及びそれを有する熱間プレス成形装置
PT2706867T (pt) 2011-05-13 2018-06-12 Ojah B V Método de fabrico de composições de proteína estruturada
US8877277B2 (en) * 2011-11-29 2014-11-04 Frito-Lay North America, Inc. Supercritical fluid extrusion method, apparatus and system for making a food product
DE102014107610A1 (de) * 2014-05-28 2015-12-03 Emsland-Stärke GmbH Verwendung eines Nahrungsmittelprodukts aus stärkehaltigen Pflanzenteilen
PT3270716T (pt) 2015-03-20 2020-07-21 Nestle Sa Processo de preparação de um produto alimentar análogo a carne
DE102016111518A1 (de) 2015-11-12 2017-05-18 ETH Zürich Aufgeschäumtes teigbasiertes Lebensmittelprodukt sowie Vorrichtung und Verfahren zur Herstellung des aufgeschäumten teigbasierten Lebensmittelprodukts
US11166477B2 (en) 2016-04-14 2021-11-09 Mycotechnology, Inc. Myceliated vegetable protein and food compositions comprising same
KR20200140499A (ko) 2019-06-07 2020-12-16 공주대학교 산학협력단 냉각사출구를 이용한 압출성형 공정에 의한 수분 조절 인조육의 제조방법
EP3782475A1 (de) * 2019-08-20 2021-02-24 Bühler AG Verfahren zur herstellung von proteinhaltigen lebensmitteln
MX2022002067A (es) * 2019-08-20 2022-03-17 Buehler Ag Metodo para la produccion de alimentos que contienen proteinas.

Also Published As

Publication number Publication date
US20240049750A1 (en) 2024-02-15
KR20230129179A (ko) 2023-09-06
WO2022135732A1 (de) 2022-06-30

Similar Documents

Publication Publication Date Title
EP4266897A1 (de) Geschäumtes, elastisches, protein-basiertes produkt, verfahren zur herstellung solcher produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten fleischanalogen, vorrichtung zur durchführung eines solchen verfahrens sowie verwendung des produktes zur herstellung von pflanzenprotein-basierten fleischanalogen
Lille et al. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing
DE102020007892A1 (de) Geschäumtes, elastisches, protein-basiertes Produkt, Verfahren zur Herstellung solcher Produkte, insbesondere von pflanzenprotein- und pflanzenfaser-basierten extrudierten Fleischanalogen, Vorrichtung zur Durchführung eines solchen Verfahrens sowie Verwendung des Produktes zur Herstellung von pflanzenprotein-basierten Fleischanalogen
DE1504390C3 (de) Vorrichtung zum Strangpressen röhrenförmiger Kollagenerzeugnisse
DE2830805A1 (de) Vorrichtung hoher leistung zur herstellung eines dichten, gleichmaessig geschichteten, fleischaehnlichen produktes
EP3923741A1 (de) Verfahren zum herstellen eines produkts aus einem oder mehreren biologischen stoffen oder mischungen derselben, ein nach diesem verfahren hergestelltes produkt und verwendung eines derartigen produkts
DE3902171A1 (de) Verfahren zum pelletieren
EP2879506B1 (de) Lebensmittelfettsystem oder kosmetikfettsystem oder pharmafettsystem
EP3373736A1 (de) Aufgeschäumtes, teigbasiertes lebensmittel sowie vorrichtung und verfahren zu seiner herstellung und verwendung der vorrichtung
DE102010023963A1 (de) Verfahren und Vorrichtung zum Herstellen eines geschäumten Fleisch- oder Fischprodukts
CH623460A5 (de)
EP4179881A1 (de) Faserverbund aus mehrkomponenten-filamenten zur nachbildung von fleisch
DE69132277T2 (de) Verfahren zur Herstellung einer Emulsion des Öl-in-Wasser-Typs
WO2024188909A1 (de) Proteinhaltiges texturat und verfahren zu dessen herstellung
DE2421343A1 (de) Verfahren zur herstellung von nahrungsmitteln auf proteinbasis
WO2024188911A1 (de) Verfahren zum erzeugen eines texturats und extruderanordnung
WO2021144603A1 (de) VERFAHREN ZUM HERSTELLEN VON ESSBAREN, STRUKTURIERTEN/TEXTURIERTEN PRODUKTEN AUS EINEM ODER MEHREREN, VORZUGSWEISE BIOLOGISCHEN STOFFEN ODER AUS MISCHUNGEN DERARTIGER STOFFE, EINRICHTUNG ZUM DURCHFÜHREN DES ERFINDUNGSGEMÄßEN VERFAHRENS SOWIE STEUERUNG ODER REGELUNG FÜR EINE DERARTIGE EINRICHTUNG, NACH DEM ERFINDUNGSGEMÄßEN VERFAHREN HERGESTELLTE PRODUKTE SOWIE DIE VERWENDUNG DERARTIGER PRODUKTE
DE2042856C3 (de) Fleischprodukt und Verfahren zu seiner Herstellung
DE102023106028A1 (de) Verfahren zum erzeugen eines texturats und proteinhaltiges texturat
DE102012112630A1 (de) Multiphasen-System
EP4266898A1 (de) Geschäumtes, elastisches, protein-basiertes produkt
CN116963606A (zh) 发泡的有弹性的基于蛋白质的产品、制备这样产品的方法、特别是基于植物蛋白质和植物纤维的挤出仿肉制品、用于实施这种方法的装置和所述产品用于制备基于植物蛋白质的仿肉制品的用途
JPH02501262A (ja) 整列線維を有する蛋白質製品のための方法、装置及び同製品
DE69617933T2 (de) Pflanzenöl, geeignet zur herstellung von backwaren
EP4413863A1 (de) Verfahren zum kombinierten, kontinuierlichen mischen und dosieren von unter statischem druck gasangereicherten teigen oder pasten, steuer- und/oder regelungsvorrichtung für die durchführung eines derartigen verfahrens, vorrichtung zum durchführen des verfahrens und nach diesem verfahren hergestellte produkte sowie verwendung solcher produkte

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS