EP4264114A1 - Power supply and cooling system for a floating structure - Google Patents
Power supply and cooling system for a floating structureInfo
- Publication number
- EP4264114A1 EP4264114A1 EP21851667.2A EP21851667A EP4264114A1 EP 4264114 A1 EP4264114 A1 EP 4264114A1 EP 21851667 A EP21851667 A EP 21851667A EP 4264114 A1 EP4264114 A1 EP 4264114A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- compression
- supply
- compression device
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 117
- 230000006835 compression Effects 0.000 claims abstract description 230
- 238000007906 compression Methods 0.000 claims abstract description 230
- 239000007788 liquid Substances 0.000 claims description 61
- 239000012530 fluid Substances 0.000 claims description 45
- 239000003507 refrigerant Substances 0.000 claims description 38
- 230000002093 peripheral effect Effects 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 5
- 238000007726 management method Methods 0.000 claims 4
- 239000007789 gas Substances 0.000 description 146
- 238000010586 diagram Methods 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/12—Heating; Cooling
- B63J2/14—Heating; Cooling of liquid-freight-carrying tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
- F25J1/0025—Boil-off gases "BOG" from storages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0092—Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0294—Multiple compressor casings/strings in parallel, e.g. split arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0298—Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0326—Valves electrically actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/043—Localisation of the removal point in the gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/04—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
- F17C2225/042—Localisation of the filling point
- F17C2225/043—Localisation of the filling point in the gas
- F17C2225/044—Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/04—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
- F17C2225/042—Localisation of the filling point
- F17C2225/046—Localisation of the filling point in the liquid
- F17C2225/047—Localisation of the filling point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0171—Arrangement
- F17C2227/0185—Arrangement comprising several pumps or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0339—Heat exchange with the fluid by cooling using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0358—Heat exchange with the fluid by cooling by expansion
- F17C2227/0362—Heat exchange with the fluid by cooling by expansion in a turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0636—Flow or movement of content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
- F17C2265/034—Treating the boil-off by recovery with cooling with condensing the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/037—Treating the boil-off by recovery with pressurising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/066—Fluid distribution for feeding engines for propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/90—Mixing of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/34—Details about subcooling of liquids
Definitions
- the present invention relates to the field of floating structures for storing and/or transporting gas in the liquid state and relates more particularly to a gas supply and cooling system installed within such floating structures.
- a ship comprising a tank of gas in the liquid state intended to be delivered to a point of destination
- said ship may be able to use at least a part of said gas in the liquid state in order to powering at least one of its motors, via a gas supply system.
- it is necessary to keep the pressure within the tank at an acceptable level, in particular by keeping the gas cargo in the liquid state at an adequate temperature.
- One of the existing solutions is to set up a compression device making it possible both to compress the gas intended to supply the engine and to compress the refrigerant fluid in order to limit the number of compression devices, but the gas supplying the engine and the refrigerant fluid do not meet the same compression conditions to ensure their respective functions.
- the invention makes it possible to solve this problem by proposing a system for supplying and cooling gas for a floral work comprising at least one tank configured to contain the gas, the supply and cooling system comprising: at least one circuit of supply intended to be traversed by gas coming from the tank, comprising at least one compression device, the supply circuit being configured to connect the compression device to an upper part of the tank, and to supply gas to at least one gas-consuming device which equips the florranr work, at least one cooling circuit intended to be traversed by a refrigerant fluid, comprising at least one heat exchanger configured to participate in an internal pressure management of the tank, a heat exchanger internal st a turbocharger comprising a compression member disposed upstream of a first pass of the internal heat exchanger st a turbine disposed e downstream of the first pass of the internal heat exchanger, the compression member and the turbine being linked in rotation by a shaft, the cooling circuit being connected to the supply circuit on either side of the device compression device, characterized in that the compression device comprises at least
- the role of the cooling circuit is to cool the gas contained in the tank by managing the internal pressure of the tank.
- Such a supply and cooling system thus makes it possible to ensure the function of supplying the gas-consuming device and the function of managing the internal pressure in the tank, and this with the aid of a single compression.
- the fact that the compression stages of the compression device can be arranged in series or in parallel makes it possible to optimally compress any fluid circulating through the compression device, regardless of its nature and/or its destination.
- the compression stages of the compression device are arranged in series in order to favor the pressure of the gas at the flow rate passing through the compression device.
- the compression stages of the compression device are arranged in parallel in order to favor the flow of refrigerant fluid passing through the compression device at start-up. under pressure of said refrigerant fluid.
- the latter can partially vaporize within the tank, naturally or induced in order to supply the gas-consuming device.
- the gas in the vapor state can either be evacuated via the supply circuit, or be recondensed and sent to the tank, directly or indirectly via the cooling circuit.
- the compression device compresses the gas circulating in the supply circuit from the tank.
- the compressed gas can then circulate to the gas-consuming device to supply it, or circulate to the cooling circuit in order to act as a refrigerant.
- the refrigerant fluid can also be a third-party fluid only used as a refrigerant fluid. Such third party fluid can also be compressed by the compression device.
- the compression member and the turbine by their mechanical connection, are driven in rotation with each other.
- the turbine is driven in rotation and thus drives the shaft in rotation, which itself drives the compression member in rotation.
- the fluid refrigerant is therefore initially compressed by the compression member.
- the refrigerant then passes through the internal heat exchanger via the first pass and is then expanded while passing through the turbine.
- the refrigerant fluid then passes through the heat exchanger, which then makes it possible to manage the internal pressure of the tank. It is thus understood that the coolant circulating in the cooling circuit participates in the cooling of the gas in the liquid state contained in the tank via the heat exchanger.
- the control device allows the connection of the compression stages in series or in parallel depending on the nature of the fluid circulating through the compression device or depending on the need to which the power supply and cooling system must respond.
- control module comprises a main pipe passing through each of the compression stages of the compression device.
- the fluid compressed by the compression device circulates within the main pipe in order to pass through each of the compression stages.
- the control module comprises at least one peripheral pipe connected to the main pipe and at least one valve which controls the flow rate circulating on said peripheral pipe, the peripheral pipe bypassing a compression stage.
- Each compression stage is bypassed by a peripheral pipe in order to allow in particular the connection of the compression stages in parallel with respect to each other.
- the fluid thus circulates only partially within the main pipe and separates into as many fractions as there are compression stages, each of the fractions bypassing a compression stage while circulating within a peripheral pipe.
- the connection in series or in parallel is made by opening or closing the valves, authorizing access or not to the main pipe and/or to the peripheral pipes making it possible to bypass the compression stages.
- the internal heat exchanger comprises a first pass and a second pass exchanging heat with each other, the first pass being arranged upstream of the heat exchanger and the second pass being arranged downstream of the heat exchanger.
- the internal heat exchanger thus makes it possible to pre-cool the refrigerant fluid before it passes through the turbine.
- the refrigerant passes through the second pass of the internal heat exchanger to regulate the temperature within the cooling circuit.
- the compression device of the supply circuit is a first compression device, the supply and cooling system comprising a second compression device installed in parallel with the first compression device.
- Installing two compression devices in parallel allows, for example, the functions of the power and cooling system to be provided in the event that one of the compression devices fails.
- the fact of installing two compression devices also makes it possible to guarantee the supply of the gas-consuming device and the management of the internal pressure in the tank simultaneously, each of the compression devices being specific to each of the needs. Both compression devices can also be assigned to the same need.
- the second compression device comprises at least two compression stages, the control device being configured to connect the compression stages of the second compression device in series when the second compression device supplies the apparatus gas consumer and to connect the compression stages of the second compression device in parallel when the second compression device supplies the cooling circuit.
- the structure of the second compression device is identical to that of the first compression device.
- the second compression device is therefore also capable of supplying the gas-consuming device or the cooling circuit.
- the supply and cooling system comprises a gas circuit in the liquid state intended to be traversed by gas in the liquid state coming from the tank, and configured to take the gas from the liquid state contained in the tank, the heat exchanger effecting a heat exchange between the gas in the liquid state of the gas circuit in the liquid state and a refrigerant fluid circulating in the cooling circuit.
- a gas circuit in the liquid state intended to be traversed by gas in the liquid state coming from the tank, and configured to take the gas from the liquid state contained in the tank, the heat exchanger effecting a heat exchange between the gas in the liquid state of the gas circuit in the liquid state and a refrigerant fluid circulating in the cooling circuit.
- the gas circuit in the liquid state comprises a member for spraying the gas in the liquid state in the upper part of the vessel and an outlet orifice arranged in a lower part of the vessel.
- the gas in liquid state can be projected in the form of a spray at the top of the tank.
- the spraying of gas in the cold liquid state at the level of the top of the tank via the spray device makes it possible to at least partially condense the gas in the vapor state present in the top of the tank.
- the condensation of the gas in the vapor state thus makes it possible to lower the pressure within the tank.
- the gas in the cooled liquid state can also return to the lower part of the tank.
- the supply and cooling system comprises a return line connected to the supply circuit downstream of the compression device and extending as far as the gas circuit in the liquid state, the supply and cooling system comprising a first heat exchanger effecting a heat exchange between the gas circulating in the return line and the gas circulating in the gas circuit in the liquid state. It may happen that the gas in the vapor state is sent to the device that consumes too much gas, or that the gas in the vapor state is present in too large a quantity in the top of the vessel for the cooling circuit to be able to completely condense the gas at the vapor state.
- the excess gas can for example be burned or released into the atmosphere.
- the return line offers an alternative to this loss, by circulating the excess gas to the gas circuit in the liquid state in order to return it to the tank.
- a heat exchange takes place between the gas circulating in the return line and the gas in the liquid state circulating in the gas circuit at the liquid state and having been cooled by passing through the heat exchanger.
- the heat exchanger thus acts as a condenser for the gas circulating in the return line. Once this heat exchange has taken place, the condensed gas returns to the tank via the outlet orifice, or can be sprayed via the spray device.
- the supply and cooling system comprises a second heat exchanger effecting a heat exchange between the gas flowing in the supply circuit upstream of the compression device, and the gas flowing in the line back upstream of the first heat exchanger.
- the gas circulating in the supply line leaving the tank, it is at a lower temperature than the gas circulating in the return line.
- the second heat exchanger thus makes it possible to pre-cool the gas circulating in the return line before it is condensed by then passing through the first heat exchanger.
- the heat exchanger is arranged at least partially at the top of the vessel, that is to say so as to extend therein.
- This is an alternative embodiment, devoid of the gas circuit in the liquid state.
- the heat exchanger instead of cooling the gas in the liquid state circulating in the gas circuit in the liquid state, the heat exchanger is placed directly at the top of the vessel and acts as a gas condenser at the vapor state present in the top of the tank.
- the heat exchanger can for example be a gravity condenser.
- the refrigerant circulates thus within a spiral and thus condenses the gas in the ambient vapor state from the top of the tank. Once condensed, the gas in liquid state joins the liquid part of the cargo.
- the invention also covers a method for managing a gas contained in a tank, implemented by a supply and cooling system according to any one of the preceding characteristics, comprising: a first step of determining a need supply of the gas-consuming device or a need to manage the pressure inside the tank, a second step of connection in series or in parallel of the compression stages of the compression device by the module of control according to the determined need.
- the first compression device the compression stages of which are connected in series, supplies the gas-consuming device while the second compression device, the compression stages of which are connected in parallel supplies the cooling circuit.
- the first compression device and the second compression device according to a second mode of operation, supply the gas-consuming device.
- the first compression device and the second compression device supply the cooling circuit.
- FIG. 1 is a general diagram of a first embodiment of a power supply and cooling system according to the invention.
- FIG. 1 is a diagram representing the structure of a compression device present within the power supply and cooling system
- FIG. 5 is a general diagram of a second embodiment of the power supply and cooling system
- FIG. 6 is a diagram representing a first mode of operation of the second embodiment of the power supply and cooling system
- FIG. 7 is a diagram representing a second mode of operation of the second embodiment of the power supply and cooling system
- FIG. 8 is a diagram representing a third mode of operation of the second embodiment of the power supply and cooling system
- FIG. 9 is a general diagram of a third embodiment of the power and cooling system.
- FIG. 1 represents a supply and cooling device 1, which can be arranged within a floating structure capable of transporting and/or storing gas in liquid form, for example within a tank 2.
- This gas is for example natural gas.
- the gas in liquid form is stored in tank 2 at very low temperature.
- the gas in liquid form can partially evaporate at the level of a head 200 of the tank 2.
- the phenomenon of evaporation of the gas contributes to an increase in the pressure inside the tank 2.
- Such an increase in the internal pressure must be regulated, for example by evacuating from the tank 2 the gas in the vapor state having formed in the top 200 of the tank. It is also possible to recondense the gas having evaporated so that the latter returns to liquid form, which leads to a reduction in the internal pressure of tank 2.
- the supply and cooling system 1 comprises a supply circuit 3.
- This supply circuit 3 is configured to suck the evaporated gas having formed in the top 200 of the tank 2.
- the gas can subsequently be used as fuel for a first gas-consuming device 5 and/or a second gas-consuming device 6.
- the first gas-consuming device 5 can be an engine allowing the propulsion of the floating structure and the second gas-consuming device 6 can be an auxiliary motor responsible for supplying the floating structure with electricity.
- the supply circuit 3 comprises a compression device 10 ensuring the compression of the gas.
- the latter can then supply gas-consuming appliances. If the latter do not require a supply of energy via the gas, the latter can be eliminated, for example via a burner 7.
- the supply and cooling system also includes a cooling circuit 4.
- the cooling circuit 4 is configured, directly or indirectly, to participate in the pressure management of the tank 2.
- the cooling circuit 4 is configured to circulating a refrigerant fluid, which may for example be the gas sucked into the supply circuit 3, or else a third-party refrigerant fluid.
- the cooling circuit 4 is connected to the supply circuit 3, more particularly upstream and downstream of the compression device 10. The latter can thus participate in the circulation and compression of the refrigerant fluid.
- the compression device 10 can participate in the activity of the power supply circuit 3 or in the activity of the cooling circuit 4.
- the determination of such an activity can for example depend on the position of 'a first valve 41 disposed on the supply circuit 3 upstream of the compression device 10 st from the connection to the cooling circuit 4, of a second valve 42 disposed on the supply circuit 3 downstream of the compression device 10 st of the connection to the cooling circuit 4, of a third valve 43 disposed on the cooling circuit 4 downstream of the compression device 10 st of the connection to the supply circuit 3, st of a fourth valve 44 disposed on the cooling circuit 4 upstream of the compression device 10 and the connection to the power supply circuit 3.
- the compression device 10 is integrated into the power supply circuit 3 for the purpose of compress gas to power gas-consuming appliances.
- the compression device 10 is integrated into the cooling circuit 4 in order to compress the fluid refrigerant to take part in the management of the pressure of the tank 2.
- the cooling circuit 4 comprises a turbocharger 13, an internal heat exchanger 18 and a heat exchanger 17.
- the turbocharger 13 comprises a compression member 14 and a turbine 15 mechanically connected to each other by a shaft 16.
- the compression member 14 is arranged upstream of a first pass of the internal heat exchanger 18 while the turbine 15 is arranged downstream of the same first pass of the heat exchanger 18.
- the turbine 15 is placed in rotation, er thus drives the shaft 16, which itself drives the compression member 14.
- the refrigerant fluid is therefore initially compressed by the compression member 14 and then passes through the first pass of the heat exchanger. internal heat 18 then is subsequently released by the turbine 15.
- the expansion allows a decrease in the temperature of the refrigerant fluid which circulates through the heat exchanger 17, then through a second pass of the internal heat exchanger 18 . They therefore operates a heat exchange between the refrigerant fluid circulating within the first pass of the heat exchanger internal heat 18 and the refrigerant fluid circulating within the second pass of the internal heat exchanger 18 in order to regulate the temperature of the refrigerant fluid circulating in the cooling circuit 4.
- the supply and cooling system 1 also comprises a gas circuit with liquid air 8, within which gas circulates in liquid form coming from the tank 2.
- the gas circuit with liquid air 8 allows the condensation gas is evaporated in the sky 200 of the tank 2 st thus participates in the management of the pressure of the tank.
- the gas in the liquid state of the tank 2 is sucked within the gas circuit in the liquid state 8 by means of a pump 19.
- the gas in the liquid state then circulates until it passes through the exchanger of heat 17. It is thus understood that the heat exchange operated within the heat exchanger 17 is carried out between the refrigerant fluid circulating in the cooling circuit 4 and the gas with the liquid erar circulating in the gas circuit to the liquid erar 8.
- the gas to the liquid erar thus exits cooled from the heat exchanger 17.
- the liquid-erar gas can return to the lower part of the tank 2 via an outlet orifice 21.
- a connected operation participates in lowering the average temperature of the tank 2, which causes a drop in pressure saturation of tank 2 and thus a drop in pressure in tank 2.
- the cooled liquid-erar gas can also be sprayed in the form of a spray in the top 200 of the tank 2.
- the liquid-erar gas circuit comprises a spraying member 20 which sprays the gas in liquid era.
- the spraying of the gas to the liquid erar makes it possible to condense the evaporated gas in the top 200 of the tank 2.
- the condensation of the gas thus reduces the quantity of evaporated gas, which therefore leads to a drop in the internal pressure of the tank 2.
- the gas circuit to the liquid erar 8 comprises an additional valve 51.
- FIG. 2 schematically illustrates an internal structure of the compression device 10.
- the compression of fluid within the compression device can be done in various ways, depending on the need to be met by the supply and cooling system.
- the fluid is compressed within the device compression 10 by a plurality of compression stages.
- the compression device 10 comprises a first compression stage 30 and a second compression stage 31. Each compression stage is followed by a cooler 35.
- the compression device 10 may comprise more than two compression stages.
- the compression stages can be connected together in series or in parallel.
- a connection is made through a control module 9.
- the control module 9 comprises a main pipe 32 which extends from one end to the other of the compression device 10.
- the first compression stage 30 st the second compression stage 31 are both arranged on the main pipe 32.
- the control module 9 also comprises a first peripheral pipe
- the first peripheral pipe 33 connected to the main pipe 32 via a first connection disposed upstream of the first compression stage 30 and via a second connection disposed downstream of the coolant 35 of the first compression stage 30.
- the first peripheral pipe 33 is therefore configured to circulate gas which bypasses the first compression stage 30.
- the first peripheral pipe comprises a first valve 36.
- the control module 9 also comprises a second peripheral pipe
- the second peripheral pipe 34 is therefore configured to circulate gas therein which bypasses the first compression stage 30.
- FIG. 3 represents a first arrangement of compression stages of the compression device 10.
- the solid lines of the pipes of the control module 9 correspond to pipes where a fluid circulates therein, while the dotted pipes correspond to pipes where the fluid does not circulate.
- the compression stages are connected in series with respect to each other.
- the series connection of the compression stages is implemented by the control module 9 when the gas flowing through the compression device 10 is intended to supply the gas-consuming appliances represented in FIG. 1.
- the gas pressure must be given priority over the flow rate.
- the gas must therefore be compressed by all of the compression stages, and a connection of the compression stages in series is more suitable.
- the first valve 36 When the compression stages are connected in series, the first valve 36 is closed. The gas therefore circulates only within the main pipe 32 and is compressed by the first compression stage 30, then passes through the cooler 35 of the first compression stage 30. The gas then joins the second valve 37 which maintains the circulation of the gas within the main pipe 32 so that the gas is compressed by the second compression stage 31, then passes through the cooler 35 of the second compression stage 31 before leaving the compression device 10.
- Figure 4 shows a second arrangement of compression stages of the compression device 10.
- the compression stages are arranged in parallel with respect to each other. The parallel arrangement is indicated when the compression device 10 compresses the refrigerant intended to circulate within the cooling circuit, in order to favor the flow of refrigerant over its pressure.
- the control module 9 opens the first valve 36 arranged on the first peripheral pipe 33.
- the refrigerant fluid circulates within the main pipe 32 st separates into two fractions.
- a first fraction continues its circulation in the main pipe 32 and is compressed by the first compression stage 30 then passes through the cooler 35 of the first compression stage 30.
- a second fraction circulates within the first peripheral pipe 33 and bypasses the first compression stage 30. The second fraction then joins the main pipe 32 and is compressed by the second compression stage 31 and is cooled by the cooler 35 of the second compression stage 31.
- the first fraction of refrigerant fluid reaches the second valve 37 which directs the refrigerant fluid towards the second peripheral pipe 34 and thus bypasses the second compression stage 31.
- the two refrigerant fluid fractions were each compressed by a compression stage.
- the parallel connection of the compression stages ensures a higher fluid flow than a series connection.
- FIG. 5 represents a second embodiment of the supply and cooling system 1.
- This second embodiment differs from the first embodiment in that it comprises a first compression device 11 and a second compression device 12
- the first compression device 11 is installed at the level of the supply circuit 3 while the second compression device 12 is installed within the cooling circuit 4.
- the function of the two compression devices is not however defined by their location, as will be described in detail later.
- the presence of two compression devices also makes it possible to set up redundancy within the power supply and cooling system 1. Thus, for example, if one of the compression devices breaks down, the other compression device can still perform its function and keep the power supply and cooling system 1 operational.
- the supply circuit 3 and the cooling circuit 4 both comprise a plurality of valves allowing access to each of the circuits to each of the compression devices so that the latter can both meet the gas supply needs of the appliances. gas consumers or, if necessary, supply of coolant to the cooling circuit.
- the second embodiment of the power and cooling system 1 comprises a fifth valve 45, a sixth valve 46, a seventh valve 47, an eighth valve 48, a ninth valve 49 and a tenth valve 50.
- the fifth valve 45 and the sixth valve 46 allow the connection of the first compression device 11 to the cooling circuit 4 or else the connection of the second compression device 12 to the power supply circuit 3 depending on the configuration of the power supply system. cooling 1.
- the seventh valve 47 and the eighth valve 48 are installed on either side of the first compression device 11 to isolate the latter when they are in the closed position. Closing these valves is useful in the event of a breakdown of the first compression device 11.
- the ninth valve 49 and the tenth valve 50 make it possible to isolate the second compression device 12 from the rest of the power supply system and from cooling 1.
- the supply and cooling system 1 also comprises a return line 60 connected to the supply circuit 3, upstream from the second gas-consuming device 6 and from the burner 7.
- the return line 60 makes it possible to recirculate the excess gas circulating within the alimenrarion line 3 rd not necessary for the consumption of gas-consuming appliances.
- the gas circulates in the return line in order to return to tank 2.
- the supply and cooling system 1 comprises a first heat exchanger 61 and a second heat exchanger 62.
- the first heat exchanger 61 operates a heat exchange between the gas circulating in the return line 60 stores the cooled liquid gas circulating in the liquid gas circuit 8, within which a branch can be arranged to pass through the first heat exchanger 61 and thus recondenses the gas circulating in the return line 60.
- the second heat exchanger 62 is arranged upstream of the first heat exchanger 61 st operates a heat exchange between the gas flowing in the line of return the gas from the supply circuit 3 to the outlet of the tank 2.
- the gas leaving the tank 2 necessarily being at a lower temperature, this makes it possible to cool the gas circulating in the return line 60.
- Said gas is thus pre-cooled initially by crossing the second heat exchanger 62, then is recondensed by crossing the first heat exchanger 61.
- the recondensed gas joins the gas circuit in the liquid state 8 then the tank 2 via the outlet orifice 21 or by being projected via the spray device 20.
- Figures 6, 7 and 8 represent the second embodiment of the power supply and cooling system 1 according to three different operating modes. For each of these modes of operation, the two devices meet the need for supplying the gas-consuming devices and/or the need for supplying the cooling circuit 4.
- the solid lines represent pipes where a fluid circulates therein while the dotted lines represent pipes where no fluid circulates.
- FIG. 6 therefore represents a first mode of operation of the supply and cooling system 1.
- the first compression device 11 is connected to the supply circuit 3 in order to supply the gas-consuming devices and the second compression device 12 is connected to the cooling circuit 4 in order to supply the latter.
- the compression stages of the first compression device 11 are therefore arranged in series as shown in Figure 3, while the compression stages of the second compression device 12 are arranged in parallel as shown in Figure 4.
- the fifth valve 45 and the sixth valve 46 are closed in order to isolate the supply circuit 3 and the first compression device 11 from the cooling circuit 4 and from the second compression device 12.
- FIG. 7 represents a second mode of operation of the power supply and cooling system 1.
- the first compression device 11 and the second compression device 12 are connected to the power supply circuit 3 in order to supply gas-consuming appliances.
- the floors compression device of the first compression device 11 and of the second compression device 12 are therefore both arranged in series as shown in FIG. 3.
- the fifth valve 45 and the sixth valve 46 are open in order to connect the second compression device 12 to the supply circuit 3
- the third valve 43 and the fourth valve 44 are closed in order to isolate the cooling circuit 4 from the rest of the supply and cooling system 1.
- liquid-erar gas circulating in the liquid-erar gas circuit 8 is not cooled due to the lack of cooling circuit 4, the liquid-erar gas can however circulate therein in order to to condense the gas possibly circulating in the return line 60.
- FIG. 8 represents a third mode of operation of the power supply and cooling system 1.
- the first compression device 11 and the second compression device 12 are connected to the cooling circuit 4 in order to supply this one.
- the compression stages of the first compression device 11 and of the second compression device 12 are therefore both arranged in parallel as shown in FIG. 4.
- the fifth valve 45 and the sixth valve 46 are open in order to connect the first compression device compression 11 to the cooling circuit 4, and the first valve 41 and the second valve 42 are closed in order to isolate the supply circuit 3 from the rest of the supply and cooling system 1.
- FIG. 9 represents a third embodiment of the supply and cooling system 1. This third embodiment does not include either the gas circuit at the liquid state described previously, nor the return line of the second embodiment.
- the difference of this third embodiment lies in the positioning of the heat exchanger 17 which here is directly placed at least partially within the tank 2.
- the heat exchanger 17 therefore participates directly in the management of the pressure of the tank, er not indirectly by cooling the gas circuit to liquid erar as for the previous embodiments.
- the heat exchanger 17 therefore comprises only a single pass through which the refrigerant fluid passes.
- the pass may consist of a spiral lead so that the path of refrigerant fluid within the heat exchanger 17 is longer.
- the heat exchanger 17 therefore cools the top 200 of tank 2.
- the gas evaporated in the top 200 of tank 2 is therefore condensed near the heat exchanger 17, and then falls back into tank 2.
- the heat exchanger 17 therefore acts here as a gravity condenser.
- the invenrion connects that it has just been described, achieves the goal that it appears to be fixed, and makes it possible to propose a supply and cooling system for floating structures comprising at least one compression device before meet various needs depending on the connection of its compression stages.
- Variants not described here could be implemented without departing from the context of the invention, since, in accordance with the invention, they include a power supply and cooling system in accordance with the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Ocean & Marine Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The present invention relates to a power supply and cooling system (1) for a floating structure comprising a tank (2), comprising: a supply circuit (3) comprising at least one compression device (10), the supply circuit (3) being configured to supply gas to a gas-consuming device (5, 6), a cooling circuit (4) comprising a heat exchanger (17) configured to participate in managing the internal pressure of the tank (2), the cooling circuit (4) being connected to the supply circuit (3) on either side of the compression device (10), characterised in that the compression device (10) comprises two compression stages (30, 31), the power supply and cooling system (1) comprising a control device (9) configured to connect the compression stages (30, 31) in series or in parallel.
Description
DESCRIPTION DESCRIPTION
Titre de l'invention : Système d’alimentation et de refroidissement pour ouvrage flottant Title of the invention: Supply and cooling system for floating structure
La présente invention se rapporte au domaine des ouvrages flottants de stockage et/ou de transport de gaz à l’état liquide et concerne plus particulièrement un système d’alimentation en gaz et de refroidissement installé au sein de tels ouvrages flottants.The present invention relates to the field of floating structures for storing and/or transporting gas in the liquid state and relates more particularly to a gas supply and cooling system installed within such floating structures.
Au cours d’un trajet effectué par un navire comprenant une cuve de gaz à l’état liquide destiné à être livré vers un point de destination, ledit navire peut être apte à utiliser au moins une partie dudit gaz à l’état liquide afin d’alimenter au moins l’un de ses moteurs, et ce via un système d’alimentation en gaz. Parallèlement à cela, il est nécessaire de conserver la pression au sein de la cuve à un niveau acceptable, notamment en maintenant la cargaison de gaz à l’état liquide à une température adéquate. During a journey made by a ship comprising a tank of gas in the liquid state intended to be delivered to a point of destination, said ship may be able to use at least a part of said gas in the liquid state in order to powering at least one of its motors, via a gas supply system. At the same time, it is necessary to keep the pressure within the tank at an acceptable level, in particular by keeping the gas cargo in the liquid state at an adequate temperature.
A ce titre, il est connu d’utiliser un circuit d’alimentation permettant d’aspirer le gaz s’étant évaporé, puis de compresser celui-ci afin d’alimenter le ou les moteurs. D’une manière parallèle ou alternative, la pression au sein de la cuve peut être abaissée grâce à un circuit de refroidissement permettant de mettre en circulation un fluide réfrigérant afin de reliquéfîer une fraction du gaz s’étant évaporé au sein de la cuve. As such, it is known to use a supply circuit making it possible to suck in the gas that has evaporated, then to compress it in order to supply the motor or motors. In a parallel or alternative way, the pressure within the tank can be lowered thanks to a cooling circuit making it possible to circulate a cooling fluid in order to reliquefy a fraction of the gas having evaporated within the tank.
Ces deux circuits sont régulièrement retrouvés au sein des ouvrages flottants et génèrent un encombrement et un coût non négligeable. Un objectif est donc d’améliorer le système d’alimentation et de refroidissement afin de réduire lesdits encombrements et coûts. Réduire l’encombrement permet par ailleurs de limiter la quantité de canalisations au sein des circuits. La maintenance de ces circuits s’en trouve donc simplifiée et un dysfonctionnement pouvant survenir au niveau de l’un ou l’autre des circuits est détecté plus rapidement. These two circuits are regularly found within floating structures and generate a size and a not insignificant cost. One objective is therefore to improve the power supply and cooling system in order to reduce said dimensions and costs. Reducing the size also makes it possible to limit the quantity of pipes within the circuits. Maintenance of these circuits is therefore simplified and a malfunction that may occur in one or other of the circuits is detected more quickly.
L’une des solutions existantes est de mettre en place un dispositif de compression permettant à la fois de compresser le gaz destiné à alimenter le moteur et de compresser le fluide réfrigérant afin de limiter le nombre de dispositifs de compression, mais le gaz
alimentant le moteur er le fluide réfrigérant ne répondent pas aux mêmes conditions de compression pour assurer leurs fonctions respectives. One of the existing solutions is to set up a compression device making it possible both to compress the gas intended to supply the engine and to compress the refrigerant fluid in order to limit the number of compression devices, but the gas supplying the engine and the refrigerant fluid do not meet the same compression conditions to ensure their respective functions.
L’invenrion permet de solutionner ce problème en proposant un système d’alimenrarion er de refroidissemenr de gaz pour ouvrage florranr comprenant au moins une cuve configurée pour contenir le gaz, le système d’alimenrarion er de refroidissemenr comprenant : au moins un circuit d’alimenrarion destiné à être parcouru par du gaz provenant de la cuve, er comprenant au moins un dispositif de compression, le circuit d’alimenrarion étant configuré pour raccorder le dispositif de compression à un ciel de la cuve, er pour alimenter en gaz au moins un appareil consommateur de gaz qui équipe l’ouvrage florranr, au moins un circuit de refroidissemenr destiné à être parcouru par un fluide réfrigérant, comprenant au moins un échangeur de chaleur configuré pour participer à une gestion de pression interne de la cuve, un échangeur de chaleur interne er un turbocompresseur comprenant un organe de compression disposé en amonr d’une première passe de l’échangeur de chaleur interne er une turbine disposée en aval de la première passe de l’échangeur de chaleur interne, l’organe de compression er la turbine étant liés en rotation par un arbre, le circuit de refroidissemenr étant raccordé au circuit d’alimenrarion de part er d’autre du dispositif de compression, caractérisé en ce que le dispositif de compression comprend au moins deux étages de compression, le système d’alimenrarion er de refroidissemenr comprenant un dispositif de contrôle configuré pour connecter en série les étages de compression lorsque le dispositif de compression alimente l’appareil consommateur de gaz er pour connecter en parallèle les étages de compression lorsque le dispositif de compression alimente le circuit de refroidissemenr. The invention makes it possible to solve this problem by proposing a system for supplying and cooling gas for a floral work comprising at least one tank configured to contain the gas, the supply and cooling system comprising: at least one circuit of supply intended to be traversed by gas coming from the tank, comprising at least one compression device, the supply circuit being configured to connect the compression device to an upper part of the tank, and to supply gas to at least one gas-consuming device which equips the florranr work, at least one cooling circuit intended to be traversed by a refrigerant fluid, comprising at least one heat exchanger configured to participate in an internal pressure management of the tank, a heat exchanger internal st a turbocharger comprising a compression member disposed upstream of a first pass of the internal heat exchanger st a turbine disposed e downstream of the first pass of the internal heat exchanger, the compression member and the turbine being linked in rotation by a shaft, the cooling circuit being connected to the supply circuit on either side of the device compression device, characterized in that the compression device comprises at least two compression stages, the power supply and cooling system comprising a control device configured to connect the compression stages in series when the compression device supplies power to the apparatus er gas consumer to connect the compression stages in parallel when the compression device supplies the cooling circuit.
Le rôle du circuit de refroidissemenr est de refroidir le gaz contenu dans la cuve en gérant la pression interne de la cuve.
Un tel système d’alimentation et de refroidissement permet ainsi d’assurer la fonction d’alimentation de l’appareil consommateur de gaz et la fonction de gestion de pression interne à la cuve, et ce à l’aide d’un seul dispositif de compression. Le fait que les étages de compression du dispositif de compression puissent être agencés en série ou en parallèle permet de compresser de manière optimale tout fluide circulant à travers le dispositif de compression, et ce peu importe sa nature et/ou sa destination. The role of the cooling circuit is to cool the gas contained in the tank by managing the internal pressure of the tank. Such a supply and cooling system thus makes it possible to ensure the function of supplying the gas-consuming device and the function of managing the internal pressure in the tank, and this with the aid of a single compression. The fact that the compression stages of the compression device can be arranged in series or in parallel makes it possible to optimally compress any fluid circulating through the compression device, regardless of its nature and/or its destination.
Lorsque le fluide compressé par le dispositif de compression est du gaz provenant de la cuve et destiné à alimenter l’appareil consommateur de gaz, les étages de compression du dispositif de compression sont agencés en série afin de privilégier la pression du gaz au débit traversant le dispositif de compression. When the fluid compressed by the compression device is gas coming from the tank and intended to supply the gas-consuming device, the compression stages of the compression device are arranged in series in order to favor the pressure of the gas at the flow rate passing through the compression device.
Lorsque le fluide compressé par le dispositif de compression est du fluide réfrigérant permettant la gestion de pression de la cuve, les étages de compression du dispositif de compression sont agencés en parallèle afin de privilégier le débit de fluide réfrigérant traversant le dispositif de compression à la mise en pression dudit fluide réfrigérant.When the fluid compressed by the compression device is refrigerant fluid allowing the pressure management of the tank, the compression stages of the compression device are arranged in parallel in order to favor the flow of refrigerant fluid passing through the compression device at start-up. under pressure of said refrigerant fluid.
Lors du transport d’une cargaison de gaz sous forme liquide, ce dernier peut partiellement se vaporiser au sein de la cuve, de manière naturelle ou de manière provoquée afin d’alimenter l’appareil consommateur de gaz. Afin d’abaisser la pression interne de la cuve, le gaz à l’état vapeur peut soit être évacué via le circuit d’alimentation, soit être recondensé et envoyé dans la cuve, de manière directe ou indirecte via le circuit de refroidissement. During the transport of a cargo of gas in liquid form, the latter can partially vaporize within the tank, naturally or induced in order to supply the gas-consuming device. In order to lower the internal pressure of the tank, the gas in the vapor state can either be evacuated via the supply circuit, or be recondensed and sent to the tank, directly or indirectly via the cooling circuit.
Le dispositif de compression compresse le gaz circulant dans le circuit d’alimentation depuis la cuve. Le gaz compressé peut par la suite circuler jusqu’à l’appareil consommateur de gaz pour alimenter ce dernier, ou bien circuler jusqu’au circuit de refroidissement afin d’officier en tant que fluide réfrigérant. Le fluide réfrigérant peut également être un fluide tiers uniquement utilisé en tant que fluide réfrigérant. Un tel fluide tiers peut également être compressé par le dispositif de compression. The compression device compresses the gas circulating in the supply circuit from the tank. The compressed gas can then circulate to the gas-consuming device to supply it, or circulate to the cooling circuit in order to act as a refrigerant. The refrigerant fluid can also be a third-party fluid only used as a refrigerant fluid. Such third party fluid can also be compressed by the compression device.
L’organe de compression et la turbine, de par leur liaison mécanique, sont entraînés en rotation l’un avec l’autre. La turbine est entraînée en rotation et entraîne ainsi en rotation l’arbre, qui lui-même entraîne l’organe de compression en rotation. Le fluide
réfrigérant est donc dans un premier temps compressé par l’organe de compression. Le fluide réfrigérant traverse ensuite l’échangeur de chaleur interne via la première passe, puis est détendu en passant à travers la turbine. Le fluide réfrigérant traverse ensuite l’échangeur de chaleur, ce qui permet par la suite de gérer la pression interne de la cuve. On comprend ainsi que le fluide réfrigérant circulant dans le circuit de refroidissement participe au refroidissement du gaz à l’état liquide contenu dans la cuve via l’échangeur de chaleur. The compression member and the turbine, by their mechanical connection, are driven in rotation with each other. The turbine is driven in rotation and thus drives the shaft in rotation, which itself drives the compression member in rotation. The fluid refrigerant is therefore initially compressed by the compression member. The refrigerant then passes through the internal heat exchanger via the first pass and is then expanded while passing through the turbine. The refrigerant fluid then passes through the heat exchanger, which then makes it possible to manage the internal pressure of the tank. It is thus understood that the coolant circulating in the cooling circuit participates in the cooling of the gas in the liquid state contained in the tank via the heat exchanger.
Le dispositif de contrôle permet la connexion des étages de compression en série ou en parallèle en fonction de la nature du fluide circulant à travers le dispositif de compression ou en fonction du besoin auquel le système d’alimentation et de refroidissement doit répondre. The control device allows the connection of the compression stages in series or in parallel depending on the nature of the fluid circulating through the compression device or depending on the need to which the power supply and cooling system must respond.
Selon une caractéristique de l’invention, le module de contrôle comprend une canalisation principale traversant chacun des étages de compression du dispositif de compression. Lorsque les étages de compression sont connectés en série, le fluide compressé par le dispositif de compression circule au sein de la canalisation principale afin de passer par chacun des étages de compression. According to one characteristic of the invention, the control module comprises a main pipe passing through each of the compression stages of the compression device. When the compression stages are connected in series, the fluid compressed by the compression device circulates within the main pipe in order to pass through each of the compression stages.
Selon une caractéristique de l’invention, le module de contrôle comprend au moins une canalisation périphérique connectée à la canalisation principale et au moins une vanne qui contrôle le débit circulant sur ladite canalisation périphérique, la canalisation périphérique contournant un étage de compression. Chaque étage de compression est contourné par une canalisation périphérique afin de permettre notamment la connexion des étages de compression en parallèle l’un par rapport à l’autre. Le fluide ne circule ainsi que partiellement au sein de la canalisation principale et se sépare en autant de fractions qu’il y a d’étages de compression, chacune des fractions contournant un étage de compression en circulant au sein d’une canalisation périphérique. La connexion en série ou en parallèle est effectuée par l’ouverture ou la fermeture des vannes, autorisant l’accès ou non à la canalisation principale et/ou aux canalisations périphériques permettant de contourner les étages de compression.
Selon une caractéristique de l’invention, l’échangeur de chaleur interne comprend une première passe et une deuxième passe échangeant thermiquement l’une avec l’autre, la première passe étant disposée en amont de l’échangeur de chaleur et la deuxième passe étant disposée en aval de l’échangeur de chaleur. L’échangeur de chaleur interne permet ainsi de pré-refroidir le fluide réfrigérant avant son passage à travers la turbine. En sortie de l’échangeur de chaleur, le fluide réfrigérant traverse la deuxième passe de l’échangeur de chaleur interne pour réguler la température au sein du circuit de refroidissement.According to one characteristic of the invention, the control module comprises at least one peripheral pipe connected to the main pipe and at least one valve which controls the flow rate circulating on said peripheral pipe, the peripheral pipe bypassing a compression stage. Each compression stage is bypassed by a peripheral pipe in order to allow in particular the connection of the compression stages in parallel with respect to each other. The fluid thus circulates only partially within the main pipe and separates into as many fractions as there are compression stages, each of the fractions bypassing a compression stage while circulating within a peripheral pipe. The connection in series or in parallel is made by opening or closing the valves, authorizing access or not to the main pipe and/or to the peripheral pipes making it possible to bypass the compression stages. According to a characteristic of the invention, the internal heat exchanger comprises a first pass and a second pass exchanging heat with each other, the first pass being arranged upstream of the heat exchanger and the second pass being arranged downstream of the heat exchanger. The internal heat exchanger thus makes it possible to pre-cool the refrigerant fluid before it passes through the turbine. On leaving the heat exchanger, the refrigerant passes through the second pass of the internal heat exchanger to regulate the temperature within the cooling circuit.
Selon une caractéristique de l’invention, le dispositif de compression du circuit d’alimentation est un premier dispositif de compression, le système d’alimentation et de refroidissement comprenant un deuxième dispositif de compression installé en parallèle du premier dispositif de compression. Le fait d’installer deux dispositifs de compression en parallèle permet par exemple d’assurer les fonctions du système d’alimentation et de refroidissement dans le cas où l’un des dispositifs de compression tombe en panne. Le fait d’installer deux dispositifs de compression permet par ailleurs de garantir l’alimentation de l’appareil consommateur de gaz et la gestion de la pression interne à la cuve de manière simultanée, chacun des dispositifs de compression étant propre à chacun des besoins. Les deux dispositifs de compression peuvent également être assignés au même besoin. According to a characteristic of the invention, the compression device of the supply circuit is a first compression device, the supply and cooling system comprising a second compression device installed in parallel with the first compression device. Installing two compression devices in parallel allows, for example, the functions of the power and cooling system to be provided in the event that one of the compression devices fails. The fact of installing two compression devices also makes it possible to guarantee the supply of the gas-consuming device and the management of the internal pressure in the tank simultaneously, each of the compression devices being specific to each of the needs. Both compression devices can also be assigned to the same need.
Selon une caractéristique de l’invention, le deuxième dispositif de compression comprend au moins deux étages de compression, le dispositif de contrôle étant configuré pour connecter en série les étages de compression du deuxième dispositif de compression lorsque le deuxième dispositif de compression alimente l’appareil consommateur de gaz et pour connecter en parallèle les étages de compression du deuxième dispositif de compression lorsque le deuxième dispositif de compression alimente le circuit de refroidissement. Autrement dit, la structure du deuxième dispositif de compression est identique à celle du premier dispositif de compression. Le deuxième dispositif de compression est donc également apte à alimenter l’appareil consommateur de gaz ou le circuit de refroidissement.
Selon une caractéristique de l’invention, le système d’alimentation et de refroidissement comprend un circuit de gaz à l’état liquide destiné à être parcouru par du gaz à l’état liquide provenant de la cuve, et configuré pour prélever le gaz à l’état liquide contenu dans la cuve, l’échangeur de chaleur opérant un échange de chaleur entre le gaz à l’état liquide du circuit de gaz à l’état liquide et un fluide réfrigérant circulant dans le circuit de refroidissement. Une telle opération est destinée à gérer la pression de saturation de la cuve en limitant la présence de gaz à l’état vapeur au niveau du ciel de la cuve. Le gaz à l’état liquide peut par exemple être pompé pour circuler au sein du circuit de gaz à l’état liquide. Le gaz à l’état liquide est refroidi par le fluide réfrigérant afin d’agir par la suite sur la pression au sein de la cuve. Une fois le gaz à l’état liquide refroidi grâce au circuit de refroidissement, ledit gaz est alors à une température plus faible que le gaz à l’état liquide contenu dans la cuve. Le retour du gaz refroidi entraîne ainsi une baisse de la température moyenne de la cuve, ce qui assure également une baisse de la pression de saturation de la cuve. According to a characteristic of the invention, the second compression device comprises at least two compression stages, the control device being configured to connect the compression stages of the second compression device in series when the second compression device supplies the apparatus gas consumer and to connect the compression stages of the second compression device in parallel when the second compression device supplies the cooling circuit. In other words, the structure of the second compression device is identical to that of the first compression device. The second compression device is therefore also capable of supplying the gas-consuming device or the cooling circuit. According to one characteristic of the invention, the supply and cooling system comprises a gas circuit in the liquid state intended to be traversed by gas in the liquid state coming from the tank, and configured to take the gas from the liquid state contained in the tank, the heat exchanger effecting a heat exchange between the gas in the liquid state of the gas circuit in the liquid state and a refrigerant fluid circulating in the cooling circuit. Such an operation is intended to manage the saturation pressure of the vessel by limiting the presence of gas in the vapor state at the top of the vessel. The gas in the liquid state can for example be pumped to circulate within the gas circuit in the liquid state. The gas in the liquid state is cooled by the refrigerant fluid in order to subsequently act on the pressure within the tank. Once the gas in the liquid state has been cooled by means of the cooling circuit, said gas is then at a lower temperature than the gas in the liquid state contained in the tank. The return of the cooled gas thus causes a drop in the average temperature of the tank, which also ensures a drop in the saturation pressure of the tank.
Selon une caractéristique de l’invention, le circuit de gaz à l’état liquide comprend un organe de pulvérisation du gaz à l’état liquide dans le ciel de cuve et un orifice de sortie disposé dans une partie inférieure de la cuve. Une fois refroidi par le fluide réfrigérant par le biais de l’échangeur de chaleur, le gaz à l’état liquide peut être projeté sous forme de spray au niveau du ciel de cuve. La pulvérisation de gaz à l’état liquide froid au niveau de ciel de cuve via l’organe de pulvérisation permet de condenser au moins partiellement le gaz à l’état vapeur présent dans le ciel de cuve. La condensation du gaz à l’état vapeur permet ainsi d’abaisser la pression au sein de la cuve. Le gaz à l’état liquide refroidi peut également retourner en partie inférieur de la cuve. According to one characteristic of the invention, the gas circuit in the liquid state comprises a member for spraying the gas in the liquid state in the upper part of the vessel and an outlet orifice arranged in a lower part of the vessel. Once cooled by the refrigerant through the heat exchanger, the gas in liquid state can be projected in the form of a spray at the top of the tank. The spraying of gas in the cold liquid state at the level of the top of the tank via the spray device makes it possible to at least partially condense the gas in the vapor state present in the top of the tank. The condensation of the gas in the vapor state thus makes it possible to lower the pressure within the tank. The gas in the cooled liquid state can also return to the lower part of the tank.
Selon une caractéristique de l’invention, le système d’alimentation et de refroidissement comprend une ligne de retour connectée au circuit d’alimentation en aval du dispositif de compression et s’étendant jusqu’au circuit de gaz à l’état liquide, le système d’alimentation et de refroidissement comprenant un premier échangeur thermique opérant un échange de chaleur entre le gaz circulant dans la ligne de retour et le gaz circulant dans le circuit de gaz à l’état liquide. Il peut arriver que le gaz à l’état vapeur
soit envoyé vers l’appareil consommateur de gaz en trop grande quantité, ou encore que le gaz à l’état vapeur soit présent en trop grande quantité dans le ciel de la cuve pour que le circuit de refroidissement puisse entièrement condenser le gaz à l’état vapeur. According to one characteristic of the invention, the supply and cooling system comprises a return line connected to the supply circuit downstream of the compression device and extending as far as the gas circuit in the liquid state, the supply and cooling system comprising a first heat exchanger effecting a heat exchange between the gas circulating in the return line and the gas circulating in the gas circuit in the liquid state. It may happen that the gas in the vapor state is sent to the device that consumes too much gas, or that the gas in the vapor state is present in too large a quantity in the top of the vessel for the cooling circuit to be able to completely condense the gas at the vapor state.
Lorsque le gaz à l’état vapeur est envoyé vers l’appareil consommateur de gaz, le surplus de gaz peut par exemple être brûlé ou largué dans l’atmosphère. La ligne de retour permet d’offrir une alternative à cette perte, en faisant circuler le surplus de gaz jusqu’au circuit de gaz à l’état liquide afin de le renvoyer dans la cuve. When the gas in the vapor state is sent to the gas-consuming device, the excess gas can for example be burned or released into the atmosphere. The return line offers an alternative to this loss, by circulating the excess gas to the gas circuit in the liquid state in order to return it to the tank.
Afin de condenser le gaz à l’état vapeur circulant dans la ligne de retour, un échange de chaleur s’opère entre le gaz circulant dans la ligne de retour et le gaz à l’état liquide circulant dans le circuit de gaz à l’état liquide et ayant été refroidi en traversant l’échangeur de chaleur. L’échangeur thermique fait ainsi office de condenseur du gaz circulant dans la ligne de retour. Une fois cet échange de chaleur opéré, le gaz condensé retourne au sein de la cuve via l’orifice de sortie, ou peut être pulvérisé via l’organe de pulvérisation. In order to condense the gas in the vapor state circulating in the return line, a heat exchange takes place between the gas circulating in the return line and the gas in the liquid state circulating in the gas circuit at the liquid state and having been cooled by passing through the heat exchanger. The heat exchanger thus acts as a condenser for the gas circulating in the return line. Once this heat exchange has taken place, the condensed gas returns to the tank via the outlet orifice, or can be sprayed via the spray device.
Selon une caractéristique de l’invention, le système d’alimentation et de refroidissement comprend un deuxième échangeur thermique opérant un échange de chaleur entre le gaz circulant dans le circuit d’alimentation en amont du dispositif de compression, et le gaz circulant dans la ligne de retour en amont du premier échangeur thermique. Le gaz circulant dans la ligne d’alimentation sortant de la cuve, celui-ci est à une température plus faible que le gaz circulant dans la ligne de retour. Le deuxième échangeur thermique permet ainsi de pré-refroidir le gaz circulant dans la ligne de retour avant que celui-ci ne soit condensé en traversant ensuite le premier échangeur thermique. According to one characteristic of the invention, the supply and cooling system comprises a second heat exchanger effecting a heat exchange between the gas flowing in the supply circuit upstream of the compression device, and the gas flowing in the line back upstream of the first heat exchanger. The gas circulating in the supply line leaving the tank, it is at a lower temperature than the gas circulating in the return line. The second heat exchanger thus makes it possible to pre-cool the gas circulating in the return line before it is condensed by then passing through the first heat exchanger.
Selon une caractéristique de l’invention, l’échangeur de chaleur est agencé au moins partiellement au niveau du ciel de la cuve, c’est-à-dire de manière à s’étendre dans celui- ci. Il s’agit d’un mode de réalisation alternatif, dépourvu du circuit de gaz à l’état liquide. Ainsi, au lieu de refroidir le gaz à l’état liquide circulant dans le circuit de gaz à l’état liquide, l’échangeur de chaleur est directement placé au niveau du ciel de la cuve et fait office de condenseur du gaz à l’état vapeur présent dans le ciel de cuve. L’échangeur de chaleur peut par exemple être un condenseur gravitaire. Le fluide réfrigérant circule
ainsi au sein d’une spirale et condense ainsi le gaz à l’état vapeur ambiant du ciel de la cuve. Une fois condensé, le gaz à l’état liquide rejoint la partie liquide de la cargaison.According to one characteristic of the invention, the heat exchanger is arranged at least partially at the top of the vessel, that is to say so as to extend therein. This is an alternative embodiment, devoid of the gas circuit in the liquid state. Thus, instead of cooling the gas in the liquid state circulating in the gas circuit in the liquid state, the heat exchanger is placed directly at the top of the vessel and acts as a gas condenser at the vapor state present in the top of the tank. The heat exchanger can for example be a gravity condenser. The refrigerant circulates thus within a spiral and thus condenses the gas in the ambient vapor state from the top of the tank. Once condensed, the gas in liquid state joins the liquid part of the cargo.
L’invention couvre également un procédé de gestion d’un gaz contenu dans une cuve, mis en œuvre par un système d’alimentation et de refroidissement selon l’une quelconque des caractéristiques précédentes, comprenant : une première étape de détermination d’un besoin d’alimentation de l’appareil consommateur de gaz ou d’un besoin de gestion de la pression à l’intérieur de la cuve, une deuxième étape de connexion en série ou en parallèle des étages de compression du dispositif de compression par le module de contrôle en fonction du besoin déterminé. The invention also covers a method for managing a gas contained in a tank, implemented by a supply and cooling system according to any one of the preceding characteristics, comprising: a first step of determining a need supply of the gas-consuming device or a need to manage the pressure inside the tank, a second step of connection in series or in parallel of the compression stages of the compression device by the module of control according to the determined need.
Un tel procédé permet ainsi d’adapter le type de connexion des étages de compression du dispositif de compression au besoin donné. Such a method thus makes it possible to adapt the type of connection of the compression stages of the compression device to the given need.
Selon une caractéristique du procédé, selon un premier mode de fonctionnement, le premier dispositif de compression, dont les étages de compression sont connectés en série, alimente l’appareil consommateur de gaz tandis que le deuxième dispositif de compression, dont les étages de compression sont connectés en parallèle alimente le circuit de refroidissement. According to a characteristic of the method, according to a first mode of operation, the first compression device, the compression stages of which are connected in series, supplies the gas-consuming device while the second compression device, the compression stages of which are connected in parallel supplies the cooling circuit.
Selon une caractéristique du procédé, selon un deuxième mode de fonctionnement, le premier dispositif de compression et le deuxième dispositif de compression, dont les étages de compression sont connectés en série, alimentent l’appareil consommateur de gaz. According to a characteristic of the method, according to a second mode of operation, the first compression device and the second compression device, the compression stages of which are connected in series, supply the gas-consuming device.
Selon une caractéristique du procédé, selon un troisième mode de fonctionnement, le premier dispositif de compression et le deuxième dispositif de compression, dont les étages de compression sont connectés en parallèle, alimentent le circuit de refro idissement. According to a characteristic of the method, according to a third mode of operation, the first compression device and the second compression device, the compression stages of which are connected in parallel, supply the cooling circuit.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre
indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : Other characteristics and advantages of the invention will become apparent through the description which follows on the one hand, and several embodiments given as indicative and non-limiting with reference to the schematic drawings appended on the other hand, on which:
[fig 1] est un schéma général d’un premier mode de réalisation d’un système d’alimentation et de refroidissement selon l’invention, [fig 1] is a general diagram of a first embodiment of a power supply and cooling system according to the invention,
[fig 2] est un schéma représentant la structure d’un dispositif de compression présent au sein du système d’alimentation et de refroidissement, [fig 2] is a diagram representing the structure of a compression device present within the power supply and cooling system,
[fig 3] représente un premier agencement d’étages de compression du dispositif de compression, [fig 3] represents a first arrangement of compression stages of the compression device,
[fig 4] représente un deuxième agencement des étages de compression du dispositif de compression, [fig 4] shows a second arrangement of the compression stages of the compression device,
[fig 5] est un schéma général d’un deuxième mode de réalisation du système d’alimentation et de refroidissement, [fig 5] is a general diagram of a second embodiment of the power supply and cooling system,
[fig 6] est un schéma représentant un premier mode de fonctionnement du deuxième mode de réalisation du système d’alimentation et de refroidissement, [fig 6] is a diagram representing a first mode of operation of the second embodiment of the power supply and cooling system,
[fig 7] est un schéma représentant un deuxième mode de fonctionnement du deuxième mode de réalisation du système d’alimentation et de refroidissement, [fig 7] is a diagram representing a second mode of operation of the second embodiment of the power supply and cooling system,
[fig 8] est un schéma représentant un troisième mode de fonctionnement du deuxième mode de réalisation du système d’alimentation et de refroidissement, [fig 8] is a diagram representing a third mode of operation of the second embodiment of the power supply and cooling system,
[fig 9] est un schéma général d’un troisième mode de réalisation du système d’alimentation et de refroidissement. [fig 9] is a general diagram of a third embodiment of the power and cooling system.
La figure 1 représente un dispositif d’alimentation et de refroidissement 1 , pouvant être agencé au sein d’un ouvrage flottant apte à transporter et/ou à stocker du gaz sous forme liquide, par exemple au sein d’une cuve 2. Ce gaz est par exemple du gaz naturel. Le gaz sous forme liquide est stocké dans la cuve 2 à très basse température. Pour des raisons diverses, par exemple de manière naturelle lors du transport, le gaz sous forme liquide peut partiellement s’évaporer au niveau d’un ciel 200 de la cuve 2. Le phénomène d’évaporation du gaz participe à une augmentation de la pression interne de la cuve 2.
Une telle augmentation de la pression interne doit être régulée, par exemple en évacuant hors de la cuve 2 le gaz à l’état vapeur s’étant formé dans le ciel 200 de la cuve. Il est également possible de recondenser le gaz s’étant évaporé afin que ce dernier repasse sous forme liquide, ce qui conduit à une diminution de la pression interne de la cuve 2.FIG. 1 represents a supply and cooling device 1, which can be arranged within a floating structure capable of transporting and/or storing gas in liquid form, for example within a tank 2. This gas is for example natural gas. The gas in liquid form is stored in tank 2 at very low temperature. For various reasons, for example naturally during transport, the gas in liquid form can partially evaporate at the level of a head 200 of the tank 2. The phenomenon of evaporation of the gas contributes to an increase in the pressure inside the tank 2. Such an increase in the internal pressure must be regulated, for example by evacuating from the tank 2 the gas in the vapor state having formed in the top 200 of the tank. It is also possible to recondense the gas having evaporated so that the latter returns to liquid form, which leads to a reduction in the internal pressure of tank 2.
Le système d’alimentation et de refroidissement 1 comprend un circuit d’alimentation 3. Ce circuit d’alimentation 3 est configuré pour aspirer le gaz évaporé s’étant formé dans le ciel 200 de la cuve 2. Le gaz peut par la suite être utilisé en tant que carburant pour un premier appareil consommateur de gaz 5 et/ou un deuxième appareil consommateur de gaz 6. A titre d’exemple, le premier appareil consommateur de gaz 5 peut être un moteur permettant la propulsion de l’ouvrage flottant et le deuxième appareil consommateur de gaz 6 peut être un moteur auxiliaire responsable de l’alimentation électrique de l’ouvrage flottant. The supply and cooling system 1 comprises a supply circuit 3. This supply circuit 3 is configured to suck the evaporated gas having formed in the top 200 of the tank 2. The gas can subsequently be used as fuel for a first gas-consuming device 5 and/or a second gas-consuming device 6. By way of example, the first gas-consuming device 5 can be an engine allowing the propulsion of the floating structure and the second gas-consuming device 6 can be an auxiliary motor responsible for supplying the floating structure with electricity.
Afin d’adapter la pression du gaz circulant dans le circuit d’alimentation 3 pour l’élever à une pression compatible avec les appareils consommateur de gaz, le circuit d’alimentation 3 comprend un dispositif de compression 10 assurant la compression du gaz. Ce dernier peut par la suite alimenter les appareils consommateur de gaz. Si ces derniers ne nécessitent pas un apport en énergie via le gaz, celui-ci peut être éliminé, par exemple via un bruleur 7. In order to adapt the pressure of the gas circulating in the supply circuit 3 to raise it to a pressure compatible with the gas-consuming appliances, the supply circuit 3 comprises a compression device 10 ensuring the compression of the gas. The latter can then supply gas-consuming appliances. If the latter do not require a supply of energy via the gas, the latter can be eliminated, for example via a burner 7.
Le système d’alimentation et de refroidissement comprend également un circuit de refroidissement 4. Le circuit de refroidissement 4 est configuré, de manière directe ou indirecte, à participer à la gestion de pression de la cuve 2. Le circuit de refroidissement 4 est configuré pour faire circuler un fluide réfrigérant, pouvant par exemple être le gaz aspiré au sein du circuit d’alimentation 3, ou bien un fluide réfrigérant tiers. The supply and cooling system also includes a cooling circuit 4. The cooling circuit 4 is configured, directly or indirectly, to participate in the pressure management of the tank 2. The cooling circuit 4 is configured to circulating a refrigerant fluid, which may for example be the gas sucked into the supply circuit 3, or else a third-party refrigerant fluid.
Le circuit de refroidissement 4 est connecté au circuit d’alimentation 3, plus particulièrement en amont et en aval du dispositif de compression 10. Ce dernier peut ainsi participer à la mise en circulation et à la compression du fluide réfrigérant. The cooling circuit 4 is connected to the supply circuit 3, more particularly upstream and downstream of the compression device 10. The latter can thus participate in the circulation and compression of the refrigerant fluid.
On comprend de ce qui précède que le dispositif de compression 10 peut participer à l’activité du circuit d’alimentation 3 ou à l’activité du circuit de refroidissement 4. La détermination d’une telle activité peut par exemple dépendre de la position d’une
première valve 41 disposée sur le circuit d’alimenrarion 3 en amonr du dispositif de compression 10 er de la connexion au circuit de refroidissement 4, d’une deuxième valve 42 disposée sur le circuit d’alimenrarion 3 en aval du dispositif de compression 10 er de la connexion au circuit de refroidissement 4, d’une troisième valve 43 disposée sur le circuit de refroidissement 4 en aval du dispositif de compression 10 er de la connexion au circuit d’alimenrarion 3, er d’une quatrième valve 44 disposée sur le circuit de refroidissement 4 en amonr du dispositif de compression 10 er de la connexion au circuit d’alimenrarion 3. It is understood from the above that the compression device 10 can participate in the activity of the power supply circuit 3 or in the activity of the cooling circuit 4. The determination of such an activity can for example depend on the position of 'a first valve 41 disposed on the supply circuit 3 upstream of the compression device 10 st from the connection to the cooling circuit 4, of a second valve 42 disposed on the supply circuit 3 downstream of the compression device 10 st of the connection to the cooling circuit 4, of a third valve 43 disposed on the cooling circuit 4 downstream of the compression device 10 st of the connection to the supply circuit 3, st of a fourth valve 44 disposed on the cooling circuit 4 upstream of the compression device 10 and the connection to the power supply circuit 3.
Ainsi, lorsque la première valve 41 er la deuxième valve 42 sont en position ouverte, er que la troisième valve 43 er la quatrième valve 44 sont en position fermée, le dispositif de compression 10 est intégré au circuit d’alimenrarion 3 dans le but de compresser le gaz pour alimenter les appareils consommateur de gaz. Thus, when the first valve 41 and the second valve 42 are in the open position, and the third valve 43 and the fourth valve 44 are in the closed position, the compression device 10 is integrated into the power supply circuit 3 for the purpose of compress gas to power gas-consuming appliances.
Lorsque la première valve 41 er la deuxième valve 42 sont en position fermée, er que la troisième valve 43 er la quatrième valve 44 sont en position ouverte, le dispositif de compression 10 est intégré au circuit de refroidissement 4 dans le but de compresser le fluide réfrigérant pour participer à la gestion de la pression de la cuve 2. When the first valve 41 and the second valve 42 are in the closed position, and the third valve 43 and the fourth valve 44 are in the open position, the compression device 10 is integrated into the cooling circuit 4 in order to compress the fluid refrigerant to take part in the management of the pressure of the tank 2.
Le circuit de refroidissement 4 comprend un turbocompresseur 13, un échangeur de chaleur interne 18 er un échangeur de chaleur 17. Le turbocompresseur 13 comprend un organe de compression 14 er une turbine 15 mécaniquement reliés l’un à l’autre par un arbre 16. L’organe de compression 14 est disposé en amonr d’une première passe de l’échangeur de chaleur interne 18 tandis que la turbine 15 est disposée en aval de cerre même première passe de l’échangeur de chaleur 18. La turbine 15 est mise en rotation, er entraîne ainsi l’arbre 16, qui lui- même entraîne l’organe de compression 14. Le fluide réfrigérant est donc dans un premier temps compressé par l’organe de compression 14 puis traverse la première passe de l’échangeur de chaleur interne 18 puis est par la suite dérendu par la turbine 15. La détente permet une diminution de la température du fluide réfrigérant qui circule à travers l’échangeur de chaleur 17, puis à travers une deuxième passe de l’échangeur de chaleur interne 18. Il s’opère donc un échange de chaleur entre le fluide réfrigérant circulant au sein de la première passe de l’échangeur de
chaleur interne 18 er le fluide réfrigérant circulant au sein de la deuxième passe de l’échangeur de chaleur interne 18 afin de réguler la température de fluide réfrigérant circulant dans le circuit de refroidissement 4. The cooling circuit 4 comprises a turbocharger 13, an internal heat exchanger 18 and a heat exchanger 17. The turbocharger 13 comprises a compression member 14 and a turbine 15 mechanically connected to each other by a shaft 16. The compression member 14 is arranged upstream of a first pass of the internal heat exchanger 18 while the turbine 15 is arranged downstream of the same first pass of the heat exchanger 18. The turbine 15 is placed in rotation, er thus drives the shaft 16, which itself drives the compression member 14. The refrigerant fluid is therefore initially compressed by the compression member 14 and then passes through the first pass of the heat exchanger. internal heat 18 then is subsequently released by the turbine 15. The expansion allows a decrease in the temperature of the refrigerant fluid which circulates through the heat exchanger 17, then through a second pass of the internal heat exchanger 18 . They therefore operates a heat exchange between the refrigerant fluid circulating within the first pass of the heat exchanger internal heat 18 and the refrigerant fluid circulating within the second pass of the internal heat exchanger 18 in order to regulate the temperature of the refrigerant fluid circulating in the cooling circuit 4.
Le système d’alimenrarion er de refroidissemenr 1 comprend également un circuit de gaz à l’érar liquide 8, au sein duquel circule du gaz sous forme liquide provenant de la cuve 2. Le circuit de gaz à l’érar liquide 8 permet la condensation du gaz s’éranr évaporé dans le ciel 200 de la cuve 2 er participe ainsi à la gestion de la pression de la cuve. The supply and cooling system 1 also comprises a gas circuit with liquid air 8, within which gas circulates in liquid form coming from the tank 2. The gas circuit with liquid air 8 allows the condensation gas is evaporated in the sky 200 of the tank 2 st thus participates in the management of the pressure of the tank.
Le gaz à l’érar liquide de la cuve 2 est aspiré au sein du circuit de gaz à l’érar liquide 8 par le biais d’une pompe 19. Le gaz à l’érar liquide circule ensuite jusqu’à traverser l’échangeur de chaleur 17. On comprend ainsi que l’échange de chaleur opéré au sein de l’échangeur de chaleur 17 est effectué entre le fluide réfrigérant circulant dans le circuit de refroidissemenr 4 er le gaz à l’érar liquide circulant dans le circuit de gaz à l’érar liquide 8. Le gaz à l’érar liquide sort ainsi refroidi de l’échangeur de chaleur 17. The gas in the liquid state of the tank 2 is sucked within the gas circuit in the liquid state 8 by means of a pump 19. The gas in the liquid state then circulates until it passes through the exchanger of heat 17. It is thus understood that the heat exchange operated within the heat exchanger 17 is carried out between the refrigerant fluid circulating in the cooling circuit 4 and the gas with the liquid erar circulating in the gas circuit to the liquid erar 8. The gas to the liquid erar thus exits cooled from the heat exchanger 17.
Après avoir été refroidi, le gaz à l’érar liquide peur retourner en partie inférieure de la cuve 2 via un orifice de sortie 21. Une relie opération participe à baisser la température moyenne de la cuve 2, ce qui entraîne une baisse de la pression de saturation de la cuve 2 er ainsi une baisse de la pression dans la cuve 2. After having been cooled, the liquid-erar gas can return to the lower part of the tank 2 via an outlet orifice 21. A connected operation participates in lowering the average temperature of the tank 2, which causes a drop in pressure saturation of tank 2 and thus a drop in pressure in tank 2.
Le gaz à l’érar liquide refroidi peur également être pulvérisé sous la forme de spray dans le ciel 200 de la cuve 2. Pour ce faire, le circuit de gaz à l’érar liquide comprend un organe de pulvérisation 20 assurant la pulvérisation du gaz à l’érar liquide. La pulvérisation du gaz à l’érar liquide permet de condenser le gaz s’éranr évaporé dans le ciel 200 de la cuve 2. La condensation du gaz diminue ainsi la quantité de gaz évaporé, ce qui entraîne donc une baisse de la pression interne de la cuve 2. Afin d’autoriser ou non la circulation du gaz à l’érar liquide, le circuit de gaz à l’érar liquide 8 comprend une valve additionnelle 51. The cooled liquid-erar gas can also be sprayed in the form of a spray in the top 200 of the tank 2. To do this, the liquid-erar gas circuit comprises a spraying member 20 which sprays the gas in liquid era. The spraying of the gas to the liquid erar makes it possible to condense the evaporated gas in the top 200 of the tank 2. The condensation of the gas thus reduces the quantity of evaporated gas, which therefore leads to a drop in the internal pressure of the tank 2. In order to authorize or not the circulation of the gas to the liquid erar, the gas circuit to the liquid erar 8 comprises an additional valve 51.
La figure 2 illustre schématiquement une structure interne au dispositif de compression 10. La compression de fluide au sein du dispositif de compression peur se faire de manière diverse, er ce en fonction du besoin auquel doit répondre le système d’alimenrarion er de refroidissemenr. Le fluide est compressé au sein du dispositif de
compression 10 par une pluralité d’ étage de compression. Sur la figure 2, le dispositif de compression 10 comprend un premier étage de compression 30 er un deuxième étage de compression 31. Chaque étage de compression est suivi par un refroidissent 35. Le dispositif de compression 10 peur comprendre plus de deux étages de compression.FIG. 2 schematically illustrates an internal structure of the compression device 10. The compression of fluid within the compression device can be done in various ways, depending on the need to be met by the supply and cooling system. The fluid is compressed within the device compression 10 by a plurality of compression stages. In FIG. 2, the compression device 10 comprises a first compression stage 30 and a second compression stage 31. Each compression stage is followed by a cooler 35. The compression device 10 may comprise more than two compression stages.
Les étages de compression peuvent être connectés entre eux en série ou bien en parallèle. Une relie connexion se fair par le biais d’un module de contrôle 9. Le module de contrôle 9 comprend une canalisation principale 32 qui s’étend d’une extrémité à l’autre du dispositif de compression 10. Le premier étage de compression 30 er le deuxième étage de compression 31 sont tous deux agencés sur la canalisation principale 32. The compression stages can be connected together in series or in parallel. A connection is made through a control module 9. The control module 9 comprises a main pipe 32 which extends from one end to the other of the compression device 10. The first compression stage 30 st the second compression stage 31 are both arranged on the main pipe 32.
Le module de contrôle 9 comprend également une première canalisation périphériqueThe control module 9 also comprises a first peripheral pipe
33, connectée à la canalisation principale 32 via une première connexion disposée en amonr du premier étage de compression 30 er via une deuxième connexion disposée en aval du refroidissent 35 du premier étage de compression 30. La première canalisation périphérique 33 est donc configurée pour y faire circuler du gaz qui contourne le premier étage de compression 30. La première canalisation périphérique comprend une première vanne 36. 33, connected to the main pipe 32 via a first connection disposed upstream of the first compression stage 30 and via a second connection disposed downstream of the coolant 35 of the first compression stage 30. The first peripheral pipe 33 is therefore configured to circulate gas which bypasses the first compression stage 30. The first peripheral pipe comprises a first valve 36.
Le module de contrôle 9 comprend par ailleurs une deuxième canalisation périphériqueThe control module 9 also comprises a second peripheral pipe
34, connectée à la canalisation principale 32via une première connexion disposée en aval du refroidisseur 35 du premier étage de compression 30 er via une deuxième connexion disposée en aval du refroidisseur 35 du refroidisseur 35 du deuxième étage de compression 31. La deuxième canalisation périphérique 34 est donc configurée pour y faire circuler du gaz qui contourne le premier étage de compression 30. 34, connected to the main pipe 32 via a first connection disposed downstream of the cooler 35 of the first compression stage 30 st via a second connection disposed downstream of the cooler 35 of the cooler 35 of the second compression stage 31. The second peripheral pipe 34 is therefore configured to circulate gas therein which bypasses the first compression stage 30.
La deuxième connexion de la première canalisation périphérique 33 est agencée en aval de la première connexion de la deuxième canalisation périphérique 34. Ainsi le gaz circulant dans la première canalisation périphérique 33 ne peur pas circuler au sein de la deuxième canalisation périphérique 34 par la suite. La première connexion de la deuxième canalisation périphérique 34 comprend une deuxième vanne 37 pouvant par exemple être une vanne trois voies.
La figure 3 représente un premier agencement d'étages de compression du dispositif de compression 10. Sur la figure 3, ainsi que sur la figure 4, les traits pleins des canalisations du module de contrôle 9 correspondent à des canalisations où un fluide y circule, tandis que les canalisations en pointillés correspondent à des canalisations où le fluide ne circule pas. Au sein de ce premier agencement, les étages de compression sont connectés en série l’un par rapport à l’autre. La connexion en série des étages de compression est mise en œuvre par le module de contrôle 9 lorsque le gaz circulant à travers le dispositif de compression 10 est destiné à alimenter les appareils consommateurs de gaz représentés sur la figure 1. Quand le gaz est destiné à alimenter lesdirs appareils consommateurs de gaz, la pression du gaz doit être privilégiée au débit. Le gaz doit donc être compressé par l’ensemble des étages de compression, et une connexion desdirs étages de compression en série est plus adaptée. The second connection of the first peripheral pipe 33 is arranged downstream of the first connection of the second peripheral pipe 34. Thus the gas circulating in the first peripheral pipe 33 cannot subsequently circulate within the second peripheral pipe 34. The first connection of the second peripheral pipe 34 comprises a second valve 37 which can for example be a three-way valve. FIG. 3 represents a first arrangement of compression stages of the compression device 10. In FIG. 3, as well as in FIG. 4, the solid lines of the pipes of the control module 9 correspond to pipes where a fluid circulates therein, while the dotted pipes correspond to pipes where the fluid does not circulate. Within this first arrangement, the compression stages are connected in series with respect to each other. The series connection of the compression stages is implemented by the control module 9 when the gas flowing through the compression device 10 is intended to supply the gas-consuming appliances represented in FIG. 1. When the gas is intended to supply gas-consuming devices, the gas pressure must be given priority over the flow rate. The gas must therefore be compressed by all of the compression stages, and a connection of the compression stages in series is more suitable.
Lorsque les étages de compression sont connectés en série, la première vanne 36 est fermée. Le gaz ne circule donc qu’au sein de la canalisation principale 32 et est compressé par le premier étage de compression 30, puis traverse le refroidissent 35 du premier étage de compression 30. Le gaz rejoint ensuite la deuxième vanne 37 qui maintient la circulation du gaz au sein de la canalisation principale 32 afin que le gaz soir compressé par le deuxième étage de compression 31, puis traverse le refroidissent 35 du deuxième étage de compression 31 avant de sortie du dispositif de compression 10.When the compression stages are connected in series, the first valve 36 is closed. The gas therefore circulates only within the main pipe 32 and is compressed by the first compression stage 30, then passes through the cooler 35 of the first compression stage 30. The gas then joins the second valve 37 which maintains the circulation of the gas within the main pipe 32 so that the gas is compressed by the second compression stage 31, then passes through the cooler 35 of the second compression stage 31 before leaving the compression device 10.
La figure 4 représente un deuxième agencement d’étages de compression du dispositif de compression 10. Sur la figure 4, les étages de compression sont agencés en parallèle l’un par rapport à l’autre. L’agencement en parallèle est indiqué lorsque le dispositif de compression 10 compresse le fluide réfrigérant destiné à circuler au sein du circuit de refroidissement, afin de privilégier le débit de fluide réfrigérant à sa pression. Pour ce deuxième agencement d’étages de compression, le module de contrôle 9 ouvre la première vanne 36 disposée sur la première canalisation périphérique 33. Figure 4 shows a second arrangement of compression stages of the compression device 10. In Figure 4, the compression stages are arranged in parallel with respect to each other. The parallel arrangement is indicated when the compression device 10 compresses the refrigerant intended to circulate within the cooling circuit, in order to favor the flow of refrigerant over its pressure. For this second arrangement of compression stages, the control module 9 opens the first valve 36 arranged on the first peripheral pipe 33.
Selon cer agencement, le fluide réfrigérant circule au sein de la canalisation principale 32 er se sépare en deux fractions. Une première fraction poursuit sa circulation dans la canalisation principale 32 er est compressé par le premier étage de compression 30 puis
traverse le refroidisseur 35 du premier étage de compression 30. Une deuxième fraction circule au sein de la première canalisation périphérique 33 et contourne le premier étage de compression 30. La deuxième fraction rejoint ensuite la canalisation principale 32 et est compressée par le deuxième étage de compression 31 et est refroidi par le refroidisseur 35 du deuxième étage de compression 31. According to this arrangement, the refrigerant fluid circulates within the main pipe 32 st separates into two fractions. A first fraction continues its circulation in the main pipe 32 and is compressed by the first compression stage 30 then passes through the cooler 35 of the first compression stage 30. A second fraction circulates within the first peripheral pipe 33 and bypasses the first compression stage 30. The second fraction then joins the main pipe 32 and is compressed by the second compression stage 31 and is cooled by the cooler 35 of the second compression stage 31.
La première fraction de fluide réfrigérant atteint la deuxième vanne 37 qui dirige le fluide réfrigérant vers la deuxième canalisation périphérique 34 et contourne ainsi le deuxième étage de compression 31. The first fraction of refrigerant fluid reaches the second valve 37 which directs the refrigerant fluid towards the second peripheral pipe 34 and thus bypasses the second compression stage 31.
Ainsi, les deux fractions de fluide réfrigérant ont chacune été compressées par un étage de compression. La connexion en parallèle des étages de compression assure un débit plus important en fluide qu’une connexion en série. Thus, the two refrigerant fluid fractions were each compressed by a compression stage. The parallel connection of the compression stages ensures a higher fluid flow than a series connection.
La figure 5 représente un deuxième mode de réalisation du système d’alimentation et de refroidissement 1. Ce deuxième mode de réalisation se distingue du premier mode de réalisation en ce qu’il comprend un premier dispositif de compression 11 et un deuxième dispositif de compression 12. Le premier dispositif de compression 11 est installé au niveau du circuit d’alimentation 3 tandis que le deuxième dispositif de compression 12 est installé au sein du circuit de refroidissement 4. La fonction des deux dispositifs de compression n’est toutefois pas définie par leur emplacement, tel que cela sera décrit en détails par la suite. FIG. 5 represents a second embodiment of the supply and cooling system 1. This second embodiment differs from the first embodiment in that it comprises a first compression device 11 and a second compression device 12 The first compression device 11 is installed at the level of the supply circuit 3 while the second compression device 12 is installed within the cooling circuit 4. The function of the two compression devices is not however defined by their location, as will be described in detail later.
La présence de deux dispositifs de compression permet par ailleurs de mettre en place une redondance au sein du système d’alimentation et de refroidissement 1. Ainsi, par exemple si l’un des dispositifs de compression tombe en panne, l’autre dispositif de compression peut toujours assurer sa fonction et maintenir le système d’alimentation et de refroidissement 1 opérationnel. The presence of two compression devices also makes it possible to set up redundancy within the power supply and cooling system 1. Thus, for example, if one of the compression devices breaks down, the other compression device can still perform its function and keep the power supply and cooling system 1 operational.
Le circuit d’alimentation 3 et le circuit de refroidissement 4 comprennent tous deux une pluralité de valves permettant l’accès à chacun des circuits à chacun des dispositifs de compression afin que ces derniers puissent tous deux répondre au besoin d’alimentation en gaz des appareils consommateurs de gaz ou au besoin d’alimentation en fluide réfrigérant du circuit de refroidissement. Ainsi, en plus des quatre valves déjà retrouvées
dans le premier mode de réalisation, le deuxième mode de réalisation du système d’alimenrarion er de refroidissemenr 1 comprend une cinquième valve 45, une sixième valve 46, une septième valve 47, une huitième valve 48, une neuvième valve 49 et une dixième valve 50. The supply circuit 3 and the cooling circuit 4 both comprise a plurality of valves allowing access to each of the circuits to each of the compression devices so that the latter can both meet the gas supply needs of the appliances. gas consumers or, if necessary, supply of coolant to the cooling circuit. Thus, in addition to the four valves already found in the first embodiment, the second embodiment of the power and cooling system 1 comprises a fifth valve 45, a sixth valve 46, a seventh valve 47, an eighth valve 48, a ninth valve 49 and a tenth valve 50.
La cinquième valve 45 et la sixième valve 46 permetent la connexion du premier dispositif de compression 11 au circuit de refroidissemenr 4 ou bien la connexion du deuxième dispositif de compression 12 au circuit d’alimenrarion 3 en fonction de la configuration du système d’alimenrarion er de refroidissemenr 1. The fifth valve 45 and the sixth valve 46 allow the connection of the first compression device 11 to the cooling circuit 4 or else the connection of the second compression device 12 to the power supply circuit 3 depending on the configuration of the power supply system. cooling 1.
La septième valve 47 er la huitième valve 48 sont installées de part er d’autre du premier dispositif de compression 11 er permetent d’isoler celui-ci lorsqu’elles sont en position fermées. La fermeture de ces valves est utile en cas de panne du premier dispositif de compression 11. La neuvième valve 49 er de la dixième valve 50 permetent quant à elles d’isoler le deuxième dispositif de compression 12 du reste du système d’alimenrarion er de refroidissemenr 1. The seventh valve 47 and the eighth valve 48 are installed on either side of the first compression device 11 to isolate the latter when they are in the closed position. Closing these valves is useful in the event of a breakdown of the first compression device 11. The ninth valve 49 and the tenth valve 50 make it possible to isolate the second compression device 12 from the rest of the power supply system and from cooling 1.
Le système d’alimenrarion er de refroidissemenr 1 comprend également une ligne de retour 60 connectée au circuit d’alimenrarion 3, en amonr du deuxième appareil consommateur de gaz 6 er du bruleur 7. La ligne de retour 60 permet de faire recirculer le surplus de gaz circulant au sein de la ligne d’alimenrarion 3 er non nécessaire à la consommation des appareils consommateur de gaz. Ainsi, au lieu d’êrre éliminé par le bruleur 7, le gaz circule dans la ligne de retour afin de retourner dans la cuve 2. The supply and cooling system 1 also comprises a return line 60 connected to the supply circuit 3, upstream from the second gas-consuming device 6 and from the burner 7. The return line 60 makes it possible to recirculate the excess gas circulating within the alimenrarion line 3 rd not necessary for the consumption of gas-consuming appliances. Thus, instead of being eliminated by burner 7, the gas circulates in the return line in order to return to tank 2.
Afin de recondenser le gaz circulant dans la ligne de retour 60, le système d’alimenrarion er de refroidissemenr 1 comprend un premier échangeur thermique 61 er un deuxième échangeur thermique 62. Le premier échangeur thermique 61 opère un échange de chaleur entre le gaz circulant dans la ligne de retour 60 er le gaz à l’érar liquide refroidi circulant dans le circuit de gaz à l’érar liquide 8, au sein duquel une branche peur être aménagée pour traverser le premier échangeur thermique 61 er ainsi recondenser le gaz circulant dans la ligne de retour 60. In order to recondense the gas circulating in the return line 60, the supply and cooling system 1 comprises a first heat exchanger 61 and a second heat exchanger 62. The first heat exchanger 61 operates a heat exchange between the gas circulating in the return line 60 stores the cooled liquid gas circulating in the liquid gas circuit 8, within which a branch can be arranged to pass through the first heat exchanger 61 and thus recondenses the gas circulating in the return line 60.
Le deuxième échangeur thermique 62 est aménagé en amonr du premier échangeur thermique 61 er opère un échange de chaleur entre le gaz circulant dans la ligne de
retour er le gaz du circuit d’alimentation 3 en sortie de la cuve 2. Le gaz sortant de la cuve 2 étant nécessairement à plus basse température, celui-ci permet de refroidir le gaz circulant dans la ligne de retour 60. Ledit gaz est ainsi pré refroidi dans un premier temps en traversant le deuxième échangeur thermique 62, puis est recondensé en traversant le premier échangeur thermique 61. En sortie de ce dernier, le gaz recondensé rejoint le circuit de gaz à l’état liquide 8 puis la cuve 2 via l’orifice de sortie 21 ou en étant projeté via l’organe de pulvérisation 20. The second heat exchanger 62 is arranged upstream of the first heat exchanger 61 st operates a heat exchange between the gas flowing in the line of return the gas from the supply circuit 3 to the outlet of the tank 2. The gas leaving the tank 2 necessarily being at a lower temperature, this makes it possible to cool the gas circulating in the return line 60. Said gas is thus pre-cooled initially by crossing the second heat exchanger 62, then is recondensed by crossing the first heat exchanger 61. At the outlet of the latter, the recondensed gas joins the gas circuit in the liquid state 8 then the tank 2 via the outlet orifice 21 or by being projected via the spray device 20.
Les figures 6, 7 et 8 représentent le deuxième mode de réalisation du système d’alimentation et de refroidissement 1 selon trois modes de fonctionnement différents. Pour chacun de ces modes de fonctionnement, les deux dispositifs répondent au besoin d’alimentation des appareils consommateurs de gaz et/ou au besoin d’alimentation du circuit de refroidissement 4. Les traits pleins représentent des conduites où un fluide y circule tandis que les traits en pointillés représentent des conduites où aucun fluide ne circule. Figures 6, 7 and 8 represent the second embodiment of the power supply and cooling system 1 according to three different operating modes. For each of these modes of operation, the two devices meet the need for supplying the gas-consuming devices and/or the need for supplying the cooling circuit 4. The solid lines represent pipes where a fluid circulates therein while the dotted lines represent pipes where no fluid circulates.
La figure 6 représente donc un premier mode de fonctionnement du système d’alimentation et de refroidissement 1. Dans ce premier mode de fonctionnement, le premier dispositif de compression 11 est relié au circuit d’alimentation 3 afin d’alimenter les appareils consommateurs de gaz et le deuxième dispositif de compression 12 est relié au circuit de refroidissement 4 afin d’alimenter ce dernier. Les étages de compression du premier dispositif de compression 11 sont donc agencés en série tel que représenté sur la figure 3, tandis que les étages de compression du deuxième dispositif de compression 12 sont agencés en parallèle tel que représenté sur la figure 4. La cinquième valve 45 et la sixième valve 46 sont fermées afin d’isoler le circuit d’alimentation 3 et le premier dispositif de compression 11 du circuit de refroidissement 4 et du deuxième dispositif de compression 12. FIG. 6 therefore represents a first mode of operation of the supply and cooling system 1. In this first mode of operation, the first compression device 11 is connected to the supply circuit 3 in order to supply the gas-consuming devices and the second compression device 12 is connected to the cooling circuit 4 in order to supply the latter. The compression stages of the first compression device 11 are therefore arranged in series as shown in Figure 3, while the compression stages of the second compression device 12 are arranged in parallel as shown in Figure 4. The fifth valve 45 and the sixth valve 46 are closed in order to isolate the supply circuit 3 and the first compression device 11 from the cooling circuit 4 and from the second compression device 12.
La figure 7 représente un deuxième mode de fonctionnement du système d’alimentation et de refroidissement 1. Dans ce deuxième mode de fonctionnement, le premier dispositif de compression 11 et le deuxième dispositif de compression 12 sont reliés au circuit d’alimentation 3 afin d’alimenter les appareils consommateurs de gaz. Les étages
de compression du premier dispositif de compression 11 er du deuxième dispositif de compression 12 sont donc tous deux agencés en série tel que représenté sur la figure 3. La cinquième valve 45 er la sixième valve 46 sont ouvertes afin de relier le deuxième dispositif de compression 12 au circuit d’alimenrarion 3, er la troisième valve 43 er la quatrième valve 44 sont fermées afin d’isoler le circuit de refroidissement 4 du reste du système d’alimenrarion er de refroidissement 1. FIG. 7 represents a second mode of operation of the power supply and cooling system 1. In this second mode of operation, the first compression device 11 and the second compression device 12 are connected to the power supply circuit 3 in order to supply gas-consuming appliances. The floors compression device of the first compression device 11 and of the second compression device 12 are therefore both arranged in series as shown in FIG. 3. The fifth valve 45 and the sixth valve 46 are open in order to connect the second compression device 12 to the supply circuit 3, the third valve 43 and the fourth valve 44 are closed in order to isolate the cooling circuit 4 from the rest of the supply and cooling system 1.
Bien que le gaz à l’érar liquide circulant dans le circuit de gaz à l’érar liquide 8 n’esr pas refroidi du fair de l’inacriviré du circuit de refroidissement 4, le gaz à l’érar liquide peur toutefois y circuler afin de condenser le gaz circulant éventuellement dans la ligne de retour 60. Although the liquid-erar gas circulating in the liquid-erar gas circuit 8 is not cooled due to the lack of cooling circuit 4, the liquid-erar gas can however circulate therein in order to to condense the gas possibly circulating in the return line 60.
La figure 8 représente un troisième mode de fonctionnement du système d’alimenrarion er de refroidissement 1. Dans ce deuxième mode de fonctionnement, le premier dispositif de compression 11 er le deuxième dispositif de compression 12 sont reliés au circuit de refroidissement 4 afin d’alimenter celui-ci. Les étages de compression du premier dispositif de compression 11 er du deuxième dispositif de compression 12 sont donc tous deux agencés en parallèle tel que représenté sur la figure 4. La cinquième valve 45 er la sixième valve 46 sont ouvertes afin de relier le premier dispositif de compression 11 au circuit de refroidissement 4, er la première valve 41 er la deuxième valve 42 sont fermées afin d’isoler le circuit d’alimenrarion 3 du reste du système d’alimenrarion er de refroidissement 1. FIG. 8 represents a third mode of operation of the power supply and cooling system 1. In this second mode of operation, the first compression device 11 and the second compression device 12 are connected to the cooling circuit 4 in order to supply this one. The compression stages of the first compression device 11 and of the second compression device 12 are therefore both arranged in parallel as shown in FIG. 4. The fifth valve 45 and the sixth valve 46 are open in order to connect the first compression device compression 11 to the cooling circuit 4, and the first valve 41 and the second valve 42 are closed in order to isolate the supply circuit 3 from the rest of the supply and cooling system 1.
Du fair que le circuit d’alimenrarion 3 est inactif, le gaz s’évaporant dans la cuve 2 n’esr pas aspiré er il n’y a donc pas non plus de surplus de gaz circulant dans la ligne de retour 60. Un moyen pour gérer la pression interne de la cuve 2 est donc l’utilisarion du circuit de gaz à l’érar liquide 8 afin de refroidir le gaz à l’érar liquide grâce au circuit de refroidissement 4, puis de renvoyer le gaz à l’érar liquide refroidi dans la cuve 2 via l’organe de pulvérisation 20 ou l’orifice de sortie 21. Since the supply circuit 3 is inactive, the gas evaporating in the tank 2 is not sucked in and there is therefore no excess gas circulating in the return line 60 either. to manage the internal pressure of the tank 2 is therefore the use of the gas circuit to the liquid erar 8 in order to cool the gas to the liquid erar thanks to the cooling circuit 4, then to return the gas to the erar liquid cooled in tank 2 via spray member 20 or outlet orifice 21.
La figure 9 représente un troisième mode de réalisation du système d’alimenrarion er de refroidissement 1. Ce troisième mode de réalisation ne comprend ni le circuit de gaz à
l’état liquide décrit précédemment, ni la ligne de retour du deuxième mode de réalisation. FIG. 9 represents a third embodiment of the supply and cooling system 1. This third embodiment does not include either the gas circuit at the liquid state described previously, nor the return line of the second embodiment.
La différence de ce troisième mode de réalisation réside dans le positionnement de l’échangeur de chaleur 17 qui ici est directement placé au moins partiellement au sein de la cuve 2. L’échangeur de chaleur 17 participe donc directement à la gestion de la pression de la cuve, er non de manière indirecte en refroidissant le circuit de gaz à l’érar liquide comme pour les modes de réalisation précédents. The difference of this third embodiment lies in the positioning of the heat exchanger 17 which here is directly placed at least partially within the tank 2. The heat exchanger 17 therefore participates directly in the management of the pressure of the tank, er not indirectly by cooling the gas circuit to liquid erar as for the previous embodiments.
L’échangeur de chaleur 17 ne comprend donc qu’une seule passe traversée par le fluide réfrigérant. La passe peur consister en une conduire en spirale afin que le trajet de fluide réfrigérant au sein de l’échangeur de chaleur 17 soir plus long. L’échangeur de chaleur 17 refroidir donc le ciel 200 de la cuve 2. Le gaz s’éranr évaporé dans le ciel 200 de la cuve 2 est donc condensé à proximité de l’échangeur de chaleur 17, er retombe dans la cuve 2. L’échangeur de chaleur 17 fair donc office ici de condenseur graviraire. The heat exchanger 17 therefore comprises only a single pass through which the refrigerant fluid passes. The pass may consist of a spiral lead so that the path of refrigerant fluid within the heat exchanger 17 is longer. The heat exchanger 17 therefore cools the top 200 of tank 2. The gas evaporated in the top 200 of tank 2 is therefore condensed near the heat exchanger 17, and then falls back into tank 2. The heat exchanger 17 therefore acts here as a gravity condenser.
Le fonctionnement des deux dispositifs de compression, du circuit d’alimenrarion 3 er du circuit de refroidissemenr 4 sont quant à eux identiques à ce qui a été décrit en figure 5. The operation of the two compression devices, of the power supply circuit 3 and of the cooling circuit 4 are identical to what has been described in figure 5.
Bien sûr, l’invenrion n’esr pas limitée aux exemples qui viennent d’êrre décrits er de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invenrion. Of course, the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.
L’invenrion, relie qu’elle vient d’êrre décrire, atteint bien le but qu’elle s’érair fixée, er permet de proposer un système d’alimenrarion er de refroidissemenr pour ouvrage flottant comprenant au moins un dispositif de compression pre à répondre à des besoins divers en fonction de la connexion de ses étages de compression. Des variantes non décrites ici pourraient être mises en œuvre sans sortir du contexte de l’invenrion, dès lors que, conformément à l’invenrion, elles comprennent un système d’alimenrarion er de refroidissemenr conforme à l’invenrion.
The invenrion, connects that it has just been described, achieves the goal that it appears to be fixed, and makes it possible to propose a supply and cooling system for floating structures comprising at least one compression device before meet various needs depending on the connection of its compression stages. Variants not described here could be implemented without departing from the context of the invention, since, in accordance with the invention, they include a power supply and cooling system in accordance with the invention.
Claims
REVENDICATIONS
1- Système d’alimentation et de refroidissement (1) de gaz pour ouvrage flottant comprenant au moins une cuve (2) configurée pour contenir le gaz, le système d’alimentation et de refroidissement (1) comprenant : au moins un circuit d’alimentation (3) destiné à être parcouru par du gaz provenant de la cuve (2), et comprenant au moins un dispositif de compression (10), le circuit d’alimentation (3) étant configuré pour raccorder le dispositif de compression (10) à un ciel (200) de la cuve (2), et pour alimenter en gaz au moins un appareil consommateur de gaz (5, 6) qui équipe l’ouvrage flottant, au moins un circuit de refroidissement (4) destiné à être parcouru par un fluide réfrigérant, comprenant au moins un échangeur de chaleur (17) configuré pour participer à une gestion de pression interne de la cuve (2), un échangeur de chaleur interne (18) et un turbocompresseur (13) comprenant un organe de compression (14) disposé en amont d’une première passe de l’échangeur de chaleur interne (18) et une turbine (15) disposée en aval de la première passe de l’échangeur de chaleur interne (18), l’organe de compression (14) et la turbine (15) étant liés en rotation par un arbre (16), le circuit de refroidissement (4) étant raccordé au circuit d’alimentation (3) de part et d’autre du dispositif de compression (10), caractérisé en ce que le dispositif de compression (10) comprend au moins deux étages de compression (30, 31), le système d’alimentation et de refroidissement (1) comprenant un dispositif de contrôle (9) configuré pour connecter en série les étages de compression (30, 31) lorsque le dispositif de compression (10) alimente l’appareil consommateur de gaz (5, 6) et pour connecter en parallèle les étages de compression (30, 31) lorsque le dispositif de compression (10) alimente le circuit de refroidissement (4). 1- Gas supply and cooling system (1) for floating structure comprising at least one tank (2) configured to contain the gas, the supply and cooling system (1) comprising: at least one circuit of supply (3) intended to be traversed by gas coming from the tank (2), and comprising at least one compression device (10), the supply circuit (3) being configured to connect the compression device (10) to a roof (200) of the tank (2), and to supply gas to at least one gas-consuming device (5, 6) which equips the floating structure, at least one cooling circuit (4) intended to be traversed by a refrigerant fluid, comprising at least one heat exchanger (17) configured to participate in internal pressure management of the tank (2), an internal heat exchanger (18) and a turbocharger (13) comprising a compression member (14) arranged upstream of a first pass of the internal heat exchanger (1 8) and a turbine (15) arranged downstream of the first pass of the internal heat exchanger (18), the compression member (14) and the turbine (15) being linked in rotation by a shaft (16) , the cooling circuit (4) being connected to the supply circuit (3) on either side of the compression device (10), characterized in that the compression device (10) comprises at least two compression stages (30, 31), the power and cooling system (1) comprising a control device (9) configured to connect the compression stages (30, 31) in series when the compression device (10) supplies the gas-consuming device (5, 6) and for connecting the compression stages (30, 31) in parallel when the compression device (10) supplies the cooling circuit (4).
2- Système d’alimentation et de refroidissement (1) selon la revendication 1, dans lequel le module de contrôle (9) comprend une canalisation principale (32) traversant chacun des étages de compression (30, 31) du dispositif de compression (10). 2- power supply and cooling system (1) according to claim 1, wherein the control module (9) comprises a main pipe (32) passing through each of the compression stages (30, 31) of the compression device (10 ).
3- Système d’alimentation et de refroidissement (1) selon la revendication 2, dans lequel le module de contrôle (9) comprend au moins une canalisation périphérique (33, 34) connectée à la canalisation principale (32) et au moins une vanne (36, 37) qui
contrôle le débit circulant sur ladite canalisation périphérique (33, 34), la canalisation périphérique (33, 34) contournant un étage de compression (30, 31). 3- power supply and cooling system (1) according to claim 2, wherein the control module (9) comprises at least one peripheral pipe (33, 34) connected to the main pipe (32) and at least one valve (36, 37) which controls the flow circulating on said peripheral pipe (33, 34), the peripheral pipe (33, 34) bypassing a compression stage (30, 31).
4- Système d’alimenrarion er de refroidissement (1) selon l’une quelconque des revendications précédentes, dans lequel l’échangeur de chaleur interne (18) comprend une première passe er une deuxième passe échangeant thermiquement l’une avec l’autre, la première passe étant disposée en amont de l’échangeur de chaleur (17) er la deuxième passe étant disposée en aval de l’échangeur de chaleur (17). 4- Power supply and cooling system (1) according to any one of the preceding claims, in which the internal heat exchanger (18) comprises a first pass and a second pass exchanging heat with each other, the first pass being placed upstream of the heat exchanger (17) and the second pass being placed downstream of the heat exchanger (17).
5- Système d’alimenrarion er de refroidissement (1) selon l’une quelconque des revendications précédentes, dans lequel le dispositif de compression (10) du circuit d’alimenrarion (3) est un premier dispositif de compression (11), le système d’alimenrarion er de refroidissement (1) comprenant un deuxième dispositif de compression (12) installé en parallèle du premier dispositif de compression (11). 5- Supply and cooling system (1) according to any one of the preceding claims, in which the compression device (10) of the supply circuit (3) is a first compression device (11), the system alimenrarion st cooling (1) comprising a second compression device (12) installed in parallel with the first compression device (11).
6- Système d’alimenrarion er de refroidissement (1) selon la revendication précédente, dans lequel le deuxième dispositif de compression (12) comprend au moins deux étages de compression (30, 31), le dispositif de contrôle (9) étant configuré pour connecter en série les étages de compression (30, 31) du deuxième dispositif de compression (12) lorsque le deuxième dispositif de compression (12) alimente l’appareil consommateur de gaz (5, 6) er pour connecter en parallèle les étages de compression (30, 31) du deuxième dispositif de compression (12) lorsque le deuxième dispositif de compression (12) alimente le circuit de refroidissement (4). 6- alimenrarion er cooling system (1) according to the preceding claim, wherein the second compression device (12) comprises at least two compression stages (30, 31), the control device (9) being configured to connecting the compression stages (30, 31) of the second compression device (12) in series when the second compression device (12) supplies the gas-consuming device (5, 6) er to connect the compression stages in parallel (30, 31) of the second compression device (12) when the second compression device (12) supplies the cooling circuit (4).
7- Système d’alimenrarion er de refroidissemenr (1) selon l’une quelconque des revendications précédentes, comprenant un circuit de gaz à l’érar liquide (8) destiné à être parcouru par du gaz à l’érar liquide provenant de la cuve (2), er configuré pour prélever le gaz à l’érar liquide contenu dans la cuve (2), l’échangeur de chaleur (17) opérant un échange de chaleur entre le gaz à l’érar liquide du circuit de gaz à l’érar liquide (8) er un fluide réfrigérant circulant dans le circuit de refroidissemenr (4). 7- Power supply and cooling system (1) according to any one of the preceding claims, comprising a liquid-erar gas circuit (8) intended to be traversed by liquid-erar gas coming from the tank. (2), er configured to take the gas to the liquid erar contained in the tank (2), the heat exchanger (17) effecting a heat exchange between the gas to the liquid erar of the gas circuit to the liquid erar (8) er a refrigerant circulating in the cooling circuit (4).
8- Système d’alimenrarion er de refroidissemenr (1) selon la revendication précédente, dans lequel le circuit de gaz à l’érar liquide (8) comprend un organe de pulvérisation (20) du gaz à l’érar liquide dans le ciel de cuve (200) er un orifice de sortie (21) disposé dans une partie inférieure de la cuve (2).
9- Système d’alimentation et de refroidissement (1) selon la revendication 7 ou 8, comprenant une ligne de retour (60) connectée au circuit d’alimentation (3) en aval du dispositif de compression (10, 11, 12) et s’étendant jusqu’au circuit de gaz à l’état liquide (8), le système d’alimentation et de refroidissement (1) comprenant un premier échangeur thermique (61) opérant un échange de chaleur entre le gaz circulant dans la ligne de retour (60) et le gaz circulant dans le circuit de gaz à l’état liquide (8). 8- Supply and cooling system (1) according to the preceding claim, in which the liquid-erar gas circuit (8) comprises a member (20) for spraying the liquid-erar gas into the sky of tank (200) and an outlet orifice (21) arranged in a lower part of the tank (2). 9- power supply and cooling system (1) according to claim 7 or 8, comprising a return line (60) connected to the supply circuit (3) downstream of the compression device (10, 11, 12) and extending as far as the gas circuit in the liquid state (8), the supply and cooling system (1) comprising a first heat exchanger (61) effecting a heat exchange between the gas circulating in the line of return (60) and the gas circulating in the gas circuit in the liquid state (8).
10- Système d’alimentation et de refroidissement (1) selon la revendication précédente, comprenant un deuxième échangeur thermique (62) opérant un échange de chaleur entre le gaz circulant dans le circuit d’alimentation (3) en amont du dispositif de compression (10, 11, 12), et le gaz circulant dans la ligne de retour (60) en amont du premier échangeur thermique (61). 10- Supply and cooling system (1) according to the preceding claim, comprising a second heat exchanger (62) effecting a heat exchange between the gas flowing in the supply circuit (3) upstream of the compression device ( 10, 11, 12), and the gas circulating in the return line (60) upstream of the first heat exchanger (61).
11- Système d’alimentation et de refroidissement (1) selon l’une quelconque des revendications 1 à 6, dans lequel l’échangeur de chaleur (17) est agencé au moins partiellement au niveau du ciel (200) de la cuve (2). 11- supply and cooling system (1) according to any one of claims 1 to 6, wherein the heat exchanger (17) is arranged at least partially at the level of the top (200) of the tank (2 ).
12- Procédé de gestion d’un gaz contenu dans une cuve (2), mis en œuvre par un système d’alimentation et de refroidissement (1) selon l’une quelconque des revendications précédentes, comprenant : une première étape de détermination d’un besoin d’alimentation de l’appareil consommateur de gaz (5, 6) ou d’un besoin de gestion de la pression à l’intérieur de la cuve (2), une deuxième étape de connexion en série ou en parallèle des étages de compression (30, 31) du dispositif de compression (10) par le module de contrôle (9) en fonction du besoin déterminé. 12- A method for managing a gas contained in a tank (2), implemented by a supply and cooling system (1) according to any one of the preceding claims, comprising: a first step of determining a need to supply the gas-consuming device (5, 6) or a need to manage the pressure inside the tank (2), a second stage of connection in series or in parallel of the stages compression (30, 31) of the compression device (10) by the control module (9) according to the determined need.
13- Procédé de gestion selon la revendication précédente, combiné avec la revendication 4, au cours duquel, selon un premier mode de fonctionnement, le premier dispositif de compression (11), dont les étages de compression (30, 31) sont connectés en série, alimente l’appareil consommateur de gaz (5, 6) tandis que le deuxième dispositif de compression (12), dont les étages de compression (30, 31) sont connectés en parallèle alimente le circuit de refroidissement (4).
14- Procédé de gestion selon la revendication précédente, au cours duquel, selon un deuxième mode de fonctionnement, le premier dispositif de compression (11) er le deuxième dispositif de compression (12), dont les étages de compression (30, 31) sont connectés en série, alimentent l’appareil consommateur de gaz (5, 6). 15- Procédé de gestion selon la revendication précédente, au cours duquel, selon un troisième mode de fonctionnement, le premier dispositif de compression (11) er le deuxième dispositif de compression (12), dont les étages de compression (30, 31) sont connectés en parallèle, alimentent le circuit de refroidissement (4).
13- Management method according to the preceding claim, combined with claim 4, during which, according to a first mode of operation, the first compression device (11), the compression stages (30, 31) of which are connected in series , supplies the gas consuming device (5, 6) while the second compression device (12), whose compression stages (30, 31) are connected in parallel supplies the cooling circuit (4). 14- Management method according to the preceding claim, during which, according to a second mode of operation, the first compression device (11) and the second compression device (12), the compression stages (30, 31) of which are connected in series, supply the gas-consuming device (5, 6). 15- Management method according to the preceding claim, during which, according to a third mode of operation, the first compression device (11) and the second compression device (12), the compression stages (30, 31) of which are connected in parallel, supply the cooling circuit (4).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2013752A FR3118103B1 (en) | 2020-12-18 | 2020-12-18 | Power and cooling system for floating structure |
PCT/FR2021/052291 WO2022129755A1 (en) | 2020-12-18 | 2021-12-13 | Power supply and cooling system for a floating structure |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4264114A1 true EP4264114A1 (en) | 2023-10-25 |
Family
ID=74669088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21851667.2A Pending EP4264114A1 (en) | 2020-12-18 | 2021-12-13 | Power supply and cooling system for a floating structure |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240101241A1 (en) |
EP (1) | EP4264114A1 (en) |
JP (1) | JP2023553727A (en) |
KR (1) | KR20230117451A (en) |
CN (1) | CN116710695A (en) |
FR (1) | FR3118103B1 (en) |
WO (1) | WO2022129755A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20211391A1 (en) * | 2021-11-19 | 2023-05-22 | Econnect Energy As | System and method for cooling of a liquefied gas product |
FR3141229B1 (en) * | 2022-10-20 | 2024-09-20 | Gaztransport Et Technigaz | System for managing a gas contained in a tank |
FR3141154A1 (en) * | 2022-10-20 | 2024-04-26 | Gaztransport Et Technigaz | METHOD FOR MANAGING A FLUID IN LIQUID FORM CONTAINED IN A TANK |
WO2024084147A1 (en) * | 2022-10-20 | 2024-04-25 | Gaztransport Et Technigaz | System for managing a gas contained in a tank |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3494145A (en) * | 1968-06-10 | 1970-02-10 | Worthington Corp | Integral turbo compressor-expander system for refrigeration |
FR3040773B1 (en) * | 2015-09-03 | 2021-02-12 | Cryostar Sas | SYSTEM AND METHOD FOR TREATMENT OF GAS RESULTING FROM THE EVAPORATION OF A CRYOGENIC LIQUID |
KR101751854B1 (en) * | 2015-11-12 | 2017-06-28 | 대우조선해양 주식회사 | Vessel |
FR3066257B1 (en) * | 2018-01-23 | 2019-09-13 | Gaztransport Et Technigaz | CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS |
KR102387172B1 (en) * | 2017-12-29 | 2022-04-15 | 대우조선해양 주식회사 | Boil-Off Gas Treating Apparatus and Method of Liquefied Gas Regasification System |
EP3508773A1 (en) * | 2018-01-08 | 2019-07-10 | Cryostar SAS | Method for providing pressurized gas to consumers and corresponding compressor arrangement at variable suction conditions |
FR3089282B1 (en) * | 2018-11-30 | 2023-02-24 | Gaztransport Et Technigaz | GAS TREATMENT SYSTEM OF A RECEPTION TERMINAL EQUIPPED WITH A REGASIFICATION UNIT AND CORRESPONDING GAS TREATMENT METHOD |
-
2020
- 2020-12-18 FR FR2013752A patent/FR3118103B1/en active Active
-
2021
- 2021-12-13 CN CN202180085396.2A patent/CN116710695A/en active Pending
- 2021-12-13 JP JP2023537050A patent/JP2023553727A/en active Pending
- 2021-12-13 KR KR1020237024383A patent/KR20230117451A/en unknown
- 2021-12-13 EP EP21851667.2A patent/EP4264114A1/en active Pending
- 2021-12-13 WO PCT/FR2021/052291 patent/WO2022129755A1/en active Application Filing
- 2021-12-13 US US18/257,345 patent/US20240101241A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240101241A1 (en) | 2024-03-28 |
CN116710695A (en) | 2023-09-05 |
WO2022129755A1 (en) | 2022-06-23 |
JP2023553727A (en) | 2023-12-25 |
KR20230117451A (en) | 2023-08-08 |
FR3118103B1 (en) | 2023-10-27 |
FR3118103A1 (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4264114A1 (en) | Power supply and cooling system for a floating structure | |
EP4158170B1 (en) | Device for regulating the pressure of an aircraft cryogenic fuel tank | |
FR2834778A1 (en) | THERMAL MANAGEMENT DEVICE, PARTICULARLY FOR A MOTOR VEHICLE EQUIPPED WITH A FUEL CELL | |
FR2554505A1 (en) | EVAPORATION COOLING SYSTEM FOR INTERNAL COMBUSTION ENGINES | |
FR2715212A1 (en) | Method and apparatus for operating a refrigeration system, characterized by regulation of the engine coolant. | |
FR3049341A1 (en) | SYSTEM FOR TREATING A GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID AND THE PRESSURIZED GAS SUPPLY OF A GAS ENGINE | |
WO2021240111A1 (en) | Installation for heating a cryogenic fuel | |
EP3510317B1 (en) | Facility, method for storing and liquefying a liquefied gas and associated transport vehicle | |
FR3040773A1 (en) | SYSTEM AND METHOD FOR THE TREATMENT OF GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID | |
WO2023247852A1 (en) | Supply and cooling system for a floating structure | |
EP4314679A1 (en) | Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship | |
EP4281718A1 (en) | Gas supply system for high- and low-pressure gas consuming appliances | |
FR3124830A1 (en) | Gas supply system for appliances using high and low pressure gas | |
FR3093785A1 (en) | Pressure control system in a liquefied natural gas tank. | |
WO2023111414A1 (en) | Cooling circuit for a system for supplying and cooling a gas | |
EP4222366A1 (en) | Gas supply system for high- and low-pressure gas consuming appliances | |
WO2023194670A1 (en) | Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system | |
WO2023194669A1 (en) | Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system | |
FR3114797A1 (en) | Gas supply system for appliances using high and low pressure gas | |
EP4253822A1 (en) | Gas supply system for high and low pressure gas consuming devices and method for controlling such a system | |
WO2023052708A1 (en) | System for treating a natural gas coming from a tank of a floating structure configured to supply natural gas as fuel to a natural gas consuming apparatus | |
WO2024084147A1 (en) | System for managing a gas contained in a tank | |
WO2024003484A1 (en) | System for managing a gas contained in a floating structure | |
WO2021064319A1 (en) | System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state | |
FR3141229A1 (en) | System for managing gas contained in a tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |