EP4259909A2 - Heizelement - Google Patents

Heizelement

Info

Publication number
EP4259909A2
EP4259909A2 EP21835605.3A EP21835605A EP4259909A2 EP 4259909 A2 EP4259909 A2 EP 4259909A2 EP 21835605 A EP21835605 A EP 21835605A EP 4259909 A2 EP4259909 A2 EP 4259909A2
Authority
EP
European Patent Office
Prior art keywords
heating element
flow
deflections
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21835605.3A
Other languages
English (en)
French (fr)
Inventor
Peter Hirth
Rolf BRÜCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP4259909A2 publication Critical patent/EP4259909A2/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for the aftertreatment of exhaust gases, with a flow path through which exhaust gas can flow, with at least one honeycomb body acting as a catalyst and at least one heating element, the heating element being made of a ceramic material that runs along a plurality of flow channels from an inflow side to an outflow side can be flowed through, the heating element being electrically conductive along the walls delimiting the flow channels.
  • Heating elements are used to heat catalytic converters, for example in the exhaust lines of internal combustion engines, in order to reach the so-called light-off temperature of the catalytic converters at an early stage, from which point the chemical conversion of the exhaust gases functions particularly efficiently.
  • the heating elements are formed, for example, by electrically conductive conductor structures, which are connected to a power source and thus generate heat using the ohmic resistance.
  • heating discs for use in exhaust systems of internal combustion engines are known in the prior art.
  • metallic honeycomb bodies are used, which are formed from a plurality of metallic foils which are stacked and wound up.
  • honeycomb bodies are formed with a plurality of flow channels that can be flowed through, through which the exhaust gas can flow.
  • the heating discs are connected to a voltage source via an electrical connection.
  • heating disks made of ceramic materials which have a metallic conductor which is connected to a voltage source and can be heated using the ohmic resistance.
  • a particular disadvantage of the devices in the prior art is that complex insulation measures have to be taken in order to prevent the current from following an undesired path and causing electrical short circuits.
  • Undesired hot spots can also occur along the heating element if the current flows along the shortest possible path, resulting in sections on the heating element through which the current flows significantly more and are therefore heated than other areas. Hot spots can be disadvantageous, particularly with regard to durability, and non-homogeneous heat distribution over the cross section of the flow-through catalytic converter is also disadvantageous with regard to the efficiency of the catalytic converter.
  • One exemplary embodiment of the invention relates to a device for the aftertreatment of exhaust gases, with a flow section through which exhaust gas can flow, with at least one honeycomb body acting as a catalyst and at least one heating element, the heating element being formed from a ceramic material that runs along a plurality of flow channels from an inflow side can be flowed through to an outflow side, the heating element being electrically conductive along the walls delimiting the flow channels and by means an electrical contact can be connected to a voltage source, the heating element running in a meandering manner over a cross-section of the flow path that can be flowed through.
  • the heating element can preferably be produced from a disk-shaped honeycomb body, which can be produced, for example, by extrusion.
  • the disk-like honeycomb body can be machined, for example, using a machining process, and a desired shape can thus be produced.
  • the heating element is preferably designed in a meandering manner and thus forms a heating section which extends over the cross section of the device for exhaust gas aftertreatment through which flow can take place.
  • the heating element can also be produced by a suitable shaping process as a meandering shaped heating section.
  • the heating element preferably has a structure similar to that of a ceramic honeycomb body of a catalytically active catalyst.
  • a large number of fine channels runs through the honeycomb body from an inflow side to an outflow side, so that the honeycomb body and the heating element as a whole are gas-permeable along a defined main direction.
  • the electrical conductivity of the heating element is achieved by the channel walls delimiting the flow channels.
  • the ceramic can be provided with an electrically conductive coating, for example.
  • metallic particles can be admixed to the ceramic, so that the metallic-ceramic mixture as a whole is electrically conductive.
  • the heating element is particularly well suited to covering as large a part as possible of the cross-section through which flow can take place, in order to achieve heating of the flowing exhaust gas that is as homogeneous and strong as possible.
  • the heating element can be constructed by alternating 180-degree deflections in a row, so that sections of the heating element running parallel to one another are formed.
  • a spiral arrangement of the individual sections of the heating element Mentes are preferred, which are known for example from metallic honeycomb bodies for heating discs in the prior art.
  • the aim is to achieve the largest possible area of coverage of the cross-section through which flow can take place, without individual sections of the heating element coming into electrically conductive contact with one another.
  • the heating element can be arranged entirely in a single plane.
  • the heating element can also be arranged, for example, in two or more planes that are spaced apart from one another. For this purpose, after a deflection, the heating element would run along the main flow direction of the honeycomb body and thus connect the two levels to one another. The heating element can thus also extend along the main flow direction of the honeycomb body.
  • the heating element has a number of deflections within one plane. Deflections through 180 degrees are particularly advantageous in order to achieve the best possible utilization of the available cross-sectional area of the honeycomb body and thus generate the highest possible heating output.
  • the heating element is formed of a ceramic honeycomb body.
  • a heating element which is formed from a disc-shaped honeycomb body by a machining process is particularly advantageous.
  • the heating element has a cross-sectional thickening of the electrically conductive structure at the deflections compared to the remaining areas of the heating element.
  • the electrically conductive structure is formed by the channel walls.
  • more channel walls can be arranged in sections per unit area, for example, or the thickness of the channel walls can be increased in sections.
  • the porosity of the channel walls can be different. High porosity allows more air per Unit volume bound in the material, resulting in less conductive material there overall. Decreased porosity thus results in more material per unit volume, which means there is relatively more material there.
  • a material thickening in the area of the deflections is advantageous in order to avoid the occurrence of so-called hotspots or hot spots. Due to the material thickening, there is locally more material through which the current can flow along the heating element. The heat generated at the heating element is thus distributed over more mass, which reduces the maximum local heating.
  • the cross-sectional thickening of the electrically conductive structure can also be formed to different extents over the cross-section of the heating element, so that, for example, areas that are close to the inner, smaller radius of curvature in the area of the deflection experience a smaller cross-sectional thickening, or even a cross-sectional reduction. while areas that are close to the outer larger radius of curvature in the area of the deflection experience a greater cross-sectional thickening.
  • This can be advantageous in particular in order to influence the current flow along the heating element in a targeted manner and thus to avoid the occurrence of hot spots due to an increased current flow.
  • a preferred exemplary embodiment is characterized in that the heating element has a different thermal conductivity over the cross section of the heating element in the areas of the deflections than in the sections before and after the deflections.
  • a reduced thermal conductivity can be produced, for example, by a special choice of material, for example by making the areas of the deflections from a different material than the rest of the heating element.
  • the base material of the heating element for example in the area of the deflections be mixed with another material or with another element.
  • the thermal conductivity at the inner edge of the deflection, adjacent to the smaller radii of curvature, is preferably different than at the outer edge of the deflection, adjacent to the larger radii of curvature.
  • the thermal conductivity can be designed in such a way that the occurrence of hot spots, particularly in the area of the smaller radii of curvature, is reduced.
  • the thermal conductivity can be influenced, among other things, by the choice of material, the porosity, the cross-sectional area of the heating element or the number and thickness of the channel walls.
  • the heating element has a different heat capacity over the cross section of the heating element in the areas of the deflections than in the sections before and after the deflections.
  • the local generation of a higher heat capacity also counteracts the development of local hot spots, which means that a more homogeneous heat distribution is achieved overall.
  • the heat capacity generated by the selection of the parameters in the area of the smaller radii of curvature is preferably different from the heat capacity in the area of the larger radii of curvature.
  • the heating element has a different electrical resistance over the cross section of the heating element in the areas of the deflections.
  • the specific electrical resistance can also be influenced by the material properties already mentioned.
  • the specific electrical resistance is also adjusted over the cross section of the heating element, so that the occurrence of hot spots is reduced or completely avoided.
  • the heating element preferably has a higher electrical resistance in the area of the smaller or narrower radii of curvature than in the area of the larger or wider radii of curvature.
  • the proportion of electrically conductive material per unit area is different in some areas. In this way, particularly well conductive areas and less well conductive areas can be produced within the heating element. In this way, the flow of current along the heating element can be advantageously influenced.
  • FIG. 1 is a top view of a heating element which is arranged on one of the end faces of a heating disk formed by a honeycomb body,
  • FIG. 2 shows a top view of a deflection area of the heating element, the cell density in the area of the deflection being higher than in the rest of the heating element,
  • FIG. 3 shows a plan view of a deflection area of the heating element, the walls delimiting the flow channels being thicker in the area of the deflection than in the rest of the heating element, and FIG
  • FIG. 4 shows a plan view of a deflection area of the heating element, the walls delimiting the flow channels being formed in sections from a material with different material properties.
  • FIG. 1 shows a flow cross section 1 of the device for exhaust gas aftertreatment in a schematically indicated manner.
  • a heating element 2 is arranged, which has a plurality of flow channels Baren flow through which can be flowed along a main flow direction, which is parallel to a surface normal on the plane of the drawing.
  • the individual flow channels are delimited by walls in a direction transverse to the main flow direction.
  • the heating element 2 is made of a ceramic material, it is either provided with an electrically conductive surface coating or has a certain proportion of electrically conductive material.
  • the ceramic can be mixed with metallic particles, for example, in order to generate sufficient electrical conductivity.
  • the heating element 2 is heated by energizing the heating element 2.
  • the heating element 2 can be connected at the end via electrical contacts 3 to a voltage source. Using the ohmic resistance, the heating element 2 is thus heated if current flows through the heating element 2 .
  • the meandering heating element 2 in the exemplary embodiment in FIG. 1 can be produced, for example, by a machining process from a honeycomb body designed as a disc.
  • the heating element 2 is arranged in a meandering manner over the cross section 1 of the catalytic converter that is upstream or downstream in the direction of flow (not shown in FIG. 1). Arrangements deviating from this can also be provided in order to optimally utilize the cross-sectional area of the catalytic converter and to ensure the best possible heat transfer and the most homogeneous heat generation possible. Deviating from the exemplary embodiment in FIG. 1, the heating element can also run in a direction which follows a surface normal on the plane of the drawing. This is particularly important in the case of a heating element arranged in several levels one behind the other.
  • the heating element 2 has a plurality of deflection areas 4 in which it changes its direction. These deflection areas 4 are preferably designed in such a way that the generation of local hot spots is avoided or at least significantly reduced.
  • the deflection area 4 can be thickened, for example, have a reduced porosity compared to the rest of the heating element 2, have a lower thermal conductivity or have an increased thermal capacity.
  • the material used or the wall thickness can also vary over the cross section of the deflection area 4 .
  • FIG. 2 shows a detailed view of a deflection area 4, with a greater cell density being provided in the curved area 6 of the deflection 4 in comparison to the remaining structure 5 of the heating element 2.
  • the area 6 has more flow channels per unit area than the rest of the heating element 2.
  • Figure 3 shows an alternative embodiment of the deflection area 7, the existing walls in the curved area 8 of the deflection 7, which delimit the flow channels, have a greater wall thickness than in the remaining structure 5 of the heating element 2.
  • the increased wall thickness also increases the electrical Conductivity affected.
  • FIG. 4 shows a further alternative embodiment of a deflection area 9, the walls delimiting the flow channels being formed from different materials in the curved area 10 of the deflection 9.
  • FIG. The walls arranged in the area 11 of the smaller inner radius are formed from a first material, while the walls arranged in the area 12 of the larger outer radius are formed from a second material.
  • the materials can differ from one another in particular in terms of the specific electrical resistance, the metal content, the porosity, the surface coating or a combination of the aforementioned properties.
  • the aim is in particular to produce a suitable influencing of the current flow within the heating element 2 in order to avoid the occurrence of local hot spots.
  • the specific resistance can be adjusted in particular areas in order to locally limit or promote the flow of current.
  • the changes described above can also directly influence the thermal conductivity of the heating conductor, which means that heat can be better dissipated and can be distributed, which can also reduce the occurrence of hot spots.
  • FIGS. 1 to 4 in particular do not have any restrictive character and serve to clarify the idea of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Incineration Of Waste (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Nachbehandlung von Abgasen, mit einer von Abgas durchströmbaren Strömungsstrecke mit zumindest einem als Katalysator wirkenden Wabenkörper (1) und zumindest einem Heizelement (2), wobei das Heizelement (2) aus einem keramischen Material gebildet ist, das entlang einer Mehrzahl von Strömungskanälen von einer Einströmseite hin zu einer Ausströmseite durchströmbar ist, wobei das Heizelement (2) entlang der die Strömungskanäle begrenzenden Wandungen elektrisch leitfähig ist und mittels einer elektrischen Kontaktierung (3) mit einer Spannungsquelle verbindbar ist, wobei das Heizelement (2) mäanderartig über einen durchströmbaren Querschnitt der Strömungsstrecke verläuft.

Description

Beschreibung
Keramische Heizscheibe als Heizelement
Technisches Gebiet
Die Erfindung betrifft eine Vorrichtung zur Nachbehandlung von Abgasen, mit einer von Abgas durchström baren Strömungsstrecke mit zumindest einem als Katalysator wirkenden Wabenkörper und zumindest einem Heizelement, wobei das Heizelement aus einem keramischen Material gebildet ist, das entlang einer Mehrzahl von Strömungskanälen von einer Einströmseite hin zu einer Ausströmseite durchströmbar ist, wobei das Heizelement entlang der die Strömungskanäle begrenzenden Wandungen elektrisch leitfähig ist.
Stand der Technik
Zur Beheizung von Katalysatoren, beispielsweise in Abgassträngen von Verbrennungskraftmaschinen, werden Heizelemente eingesetzt, um frühzeitig die sogenannte Light Off Temperatur der Katalysatoren zu erreichen, ab welcher die chemische Umsetzung der Abgase besonders effizient funktioniert. Die Heizelemente werden hierzu beispielsweise durch elektrisch leitfähige Leiterstrukturen gebildet, welche mit einer Stromquelle verbunden werden und so unter Ausnutzung des Ohmschen Widerstands Wärme erzeugen.
Im Stand der Technik ist eine Vielzahl von Heizscheiben für den Einsatz in Abgasanlagen von Verbrennungskraftmaschinen bekannt. Unter anderem werden metallische Wabenkörper verwendet, die aus einer Mehrzahl von metallischen Folien gebildet werden, die aufeinandergestapelt und aufgewickelt sind. Dadurch werden Wabenkörper mit einer Mehrzahl von durchström baren Strömungskanälen gebildet, die vom Abgas durchströmt werden können. Über einen elektrischen Anschluss werden die Heizscheiben mit einer Spannungsquelle verbunden. Alternativ dazu sind Heizscheiben aus keramischen Werkstoffen bekannt, welche einen metallischen Leiter aufweisen, der mit einer Spannungsquelle verbunden ist und unter Ausnutzung des Ohmschen Widerstandes erhitzt werden kann.
Nachteilig an den Vorrichtungen im Stand der Technik ist insbesondere, dass aufwendige Isolationsmaßnahmen getroffen werden müssen, um zu verhindern, dass der Strom einem nicht gewollten Pfad folgt und es so zu elektrischen Kurzschlüssen kommt. Auch kann es zu ungewollten Heißstellen entlang des Heizelements kommen, wenn der fließende Strom dem kürzest möglichen Weg folgt und somit Abschnitte am Heizelement entstehen, welche deutlich stärker vom Strom durchflossen und somit aufgeheizt werden als andere Bereiche. Heißstellen können insbesondere hinsichtlich der Dauerhaltbarkeit nachteilig sein und zusätzlich ist eine nicht homogene Wärmeverteilung über den Querschnitt des durchströmbaren Katalysators hinweg nachteilig hinsichtlich der Effizienz des Katalysators.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung eine Vorrichtung mit einem Katalysator und mit einem Heizelement zu schaffen, wobei das Heizelement einfach herstellbar ist, dauerhaltbar ist und einfach an unterschiedliche Anforderungen angepasst werden kann.
Die Aufgabe hinsichtlich des Katalysators mit einem elektrischen Heizelement wird durch einen Katalysator mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft eine Vorrichtung zur Nachbehandlung von Abgasen, mit einer von Abgas durchströmbaren Strömungsstrecke mit zumindest einem als Katalysator wirkenden Wabenkörper und zumindest einem Heizelement, wobei das Heizelement aus einem keramischen Material gebildet ist, das entlang einer Mehrzahl von Strömungskanälen von einer Einströmseite hin zu einer Ausströmseite durchströmbar ist, wobei das Heizelement entlang der die Strömungskanäle begrenzenden Wandungen elektrisch leitfähig ist und mittels einer elektrischen Kontaktierung mit einer Spannungsquelle verbindbar ist, wobei das Heizelement mäanderartig über einen durchström baren Querschnitt der Strömungsstrecke verläuft.
Das Heizelement kann bevorzugt aus einem scheibenförmigen Wabenkörper erzeugt werden, welcher beispielsweise durch Extrudieren hergestellt werden kann. Der scheibenartige Wabenkörper kann beispielsweise mit einem spanenden Verfahren bearbeitet werden und so eine gewünschte Form erzeugt werden. Bevorzugt ist das Heizelement mäanderartig ausgebildet und bildet so eine Heizstrecke, welche sich über den durchströmbaren Querschnitt der Vorrichtung zur Abgasnachbehandlung erstreckt. Alternativ kann das Heizelement auch durch ein geeignetes Formgebungsverfahren bereits als mäanderartig ausgeformter Heizstrecke erzeugt werden.
Das Heizelement weist bevorzugt eine Struktur auf, wie sie auch ein keramischer Wabenkörper eines katalytisch aktiven Katalysators aufweist. Eine Vielzahl von feinen Kanälen durchzieht den Wabenkörper von einer Einströmseite hin zu einer Ausströmseite, so dass der Wabenkörper wie auch das Heizelement insgesamt entlang einer definierten Hauptrichtung gasdurchlässig ist.
Die elektrische Leitfähigkeit des Heizelementes wird durch die die Strömungskanäle begrenzenden Kanalwände erreicht. Hierzu kann die Keramik beispielsweise mit einer elektrisch leitfähigen Beschichtung versehen sein. Alternativ können der Keramik metallische Partikel zugemischt sein, so dass das metallische Keramikgemisch insgesamt elektrisch leitfähig ist.
Das Heizelement ist durch seinen mäanderartigen Aufbau insbesondere gut dazu geeignet einen möglichst großen Teil des durchström baren Querschnitts zu überdecken, um eine möglichst homogene und starke Aufheizung des strömenden Abgases zu erreichen. Grundsätzlich kann das Heizelement durch abwechselnd aneinander gereihte 180 Grad Umlenkungen aufgebaut sein, so dass parallel zueinander verlaufende Abschnitte des Heizelementes ausgebildet werden. Alternativ kann auch eine spiralförmige Anordnung der einzelnen Abschnitte des Heizele- mentes bevorzugt werden, welche beispielsweise von metallischen Wabenkörpern für Heizscheiben im Stand der Technik bekannt sind.
Das Ziel ist, dass eine möglichst großflächige Überdeckung des durchström baren Querschnitts erreicht wird, ohne dass einzelne Abschnitte des Heizelementes miteinander in elektrisch leitenden Kontakt geraten.
Das Heizelement kann vollständig in einer einzigen Ebene angeordnet sein. Alternativ dazu kann das Heizelement beispielsweise auch in zwei oder mehr zueinander beabstandeten Ebenen angeordnet sein. Hierzu würde das Heizelement nach einer Umlenkung entlang der Hauptdurchströmungsrichtung des Wabenkörpers verlaufen und so die beiden Ebenen miteinander verbinden. Das Heizelement kann somit auch eine Erstreckung entlang der Hauptdurchströmungsrichtung des Wabenkörpers aufweisen.
Besonders vorteilhaft ist es, wenn das Heizelement mehrere Umlenkungen innerhalb einer Ebene aufweist. Umlenkungen um 180 Grad sind besonders vorteilhaft, um eine möglichst gute Ausnutzung der zur Verfügung stehenden Querschnittsfläche des Wabenkörpers zu erreichen und so eine möglichst hohe Heizleistung zu erzeugen.
Weiterhin ist es zu bevorzugen, wenn das Heizelement aus einem keramischen Wabenkörper gebildet ist. Insbesondere vorteilhaft ist ein Heizelement, welches aus einem scheibenförmigen Wabenkörper durch ein spanendes Verfahren gebildet ist.
Auch ist es vorteilhaft, wenn das Heizelement an den Umlenkungen im Vergleich zu den restlichen Bereichen des Heizelementes eine Querschnittsverdickung der elektrisch leitfähigen Struktur aufweist. Die elektrisch leitfähige Struktur ist durch die Kanalwände gebildet. Um eine Querschnittsverdickung im Bereich der Umlenkung zu erreichen, können beispielsweise abschnittsweise mehr Kanalwände pro Flächeneinheit angeordnet sein oder es kann die Dicke der Kanalwände abschnittsweise erhöht sein. Alternativ oder ergänzend dazu kann die Porosität der Kanalwände unterschiedlich hoch sein. Durch eine hohe Porosität wird mehr Luft pro Volumeneinheit im Material gebunden, wodurch insgesamt weniger leitfähiges Material dort vorhanden ist. Eine verringerte Porosität führt somit zu mehr Material pro Volumeneinheit, wodurch relativ gesehen mehr Material dort vorhanden ist.
Eine Matenalverdickung im Bereich der Umlenkungen ist vorteilhaft, um das Entstehen von sogenannten Hotspots beziehungsweise von Heißstellen zu vermeiden. Durch die Matenalverdickung ist lokal mehr Material vorhanden, welches von dem Strom entlang des Heizelementes durchflossen werden kann. Die am Heizelement entstehende Wärme wird somit auf mehr Masse verteilt, wodurch die maximale lokale Erhitzung reduziert wird.
Bei einer bevorzugten Ausgestaltung kann die Querschnittsverdickung der elektrisch leitfähigen Struktur auch über den Querschnitt des Heizelementes unterschiedlich stark ausgebildet sein, so dass beispielsweise Bereiche, welchen dem inneren kleineren Krümmungsradius im Bereich der Umlenkung nahe sind, eine geringere Querschnittsverdickung erfahren, oder sogar eine Querschnittsreduzierung erfahren, während Bereiche, welche dem äußeren größeren Krümmungsradius im Bereich der Umlenkung nahe sind, eine größere Querschnittsverdickung erfahren. Dies kann insbesondere vorteilhaft sein, um den Stromfluss entlang des Heizelementes gezielt zu beeinflussen und so das Entstehen von Heißstellen aufgrund eines erhöhten Stromdurchflusses zu vermeiden.
Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass das Heizelement in den Bereichen der Umlenkungen eine über den Querschnitt des Heizelementes hinweg unterschiedliche Wärmeleitfähigkeit aufweist als an den Abschnitten vor und nach den Umlenkungen.
Die geringere Wärmeleitfähigkeit wirkt dem Entstehen von lokalen Heißstellen entgegen. Eine verringerte Wärmeleitfähigkeit kann etwa durch eine spezielle Matenalauswahl erzeugt werden, indem beispielsweise die Bereiche der Umlenkungen aus einem anderen Material gefertigt sind als das restliche Heizelement. Auch kann das Grundmaterial des Heizelementes beispielsweise im Bereich der Umlenkungen mit einem weiteren Material beziehungsweise mit einem weiteren Element versetzt sein.
Bevorzugt ist die Wärmeleitfähigkeit am Innenrand der Umlenkung, benachbart zu den kleineren Krümmungsradien, eine andere als am Außenrand der Umlenkung, benachbart zu den größeren Krümmungsradien. Dadurch lässt sich die Wärmeleitfähigkeit derart gestalten, dass das Entstehen von Heißstellen, insbesondere im Bereich der kleineren Krümmungsradien, vermindert wird. Die Wärmeleitfähigkeit kann unter anderem durch die Materialwahl, die Porosität, die Querschnittsfläche des Heizelementes oder die Anzahl und Dicke der Kanalwandungen beeinflusst werden.
Auch ist es zu bevorzugen, wenn das Heizelement in den Bereichen der Umlenkungen eine über den Querschnitt des Heizelementes unterschiedliche Wärmekapazität aufweist als an den Abschnitten vor und nach den Umlenkungen. Auch das lokale Erzeugen von einer höheren Wärmekapazität wirkt der Entstehung von lokalen Heißstellen entgegen, wodurch insgesamt eine homogenere Wärmeverteilung erreicht wird. Auch hier ist bevorzugt die jeweils durch die Wahl der Parameter erzeugte Wärmekapazität im Bereich der kleineren Krümmungsradien unterschiedlich zu der Wärmekapazität im Bereich der größeren Krümmungsradien.
Auch ist es vorteilhaft, wenn das Heizelement in den Bereichen der Umlenkungen einen über den Querschnitt des Heizelementes unterschiedlichen elektrischen Widerstand aufweist. Der spezifische elektrische Widerstand lässt sich ebenfalls durch die bereits erwähnten Materialeigenschaften beeinflussen. Vorteilhafterweise wird der spezifische elektrische Widerstand auch über den Querschnitt des Heizelementes hinweg angepasst, so dass das Entstehen von Heißstellen reduziert oder vollständig vermieden wird. Bevorzugt weist das Heizelement einen höheren elektrischen Widerstand im Bereich der kleineren oder engeren Krümmungsradien auf als im Bereich der größeren oder weiteren Krümmungsradien. Dies führt vorteilhaft zu einer Verlagerung des Hauptleitweges des Stroms von der Innenseite der Umlenkung hin zur Außenseite der Umlenkung. Auch ist es vorteilhaft, wenn der Anteil an elektrisch leitfähigem Material pro Flächeneinheit bereichsweise unterschiedlich ist. So können besonders gut leitfähige Bereiche und weniger gut leitfähige Bereiche innerhalb des Heizelementes erzeugt werden. Auf diese Weise lässt sich der Stromfluss entlang des Heizelementes vorteilhaft beeinflussen.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
Fig. 1 eine Aufsicht auf ein Heizelement, der an einer der Stirnflächen einer durch einen Wabenkörper gebildeten Heizscheibe angeordnet ist,
Fig. 2 eine Aufsicht auf einen Umlenkungsbereich des Heizelementes, wobei die Zelldichte im Bereich der Umlenkung höher ist als im restlichen Heizelement,
Fig. 3 eine Aufsicht auf einen Umlenkungsbereich des Heizelementes, wobei die die Strömungskanäle begrenzenden Wandungen im Bereich der Umlenkung dicker ausgeführt sind als im restlichen Heizelement, und
Fig. 4 eine Aufsicht auf einen Umlenkungsbereich des Heizelementes, wobei die die Strömungskanäle begrenzenden Wandungen abschnittsweise aus einem Material mit abweichenden Matenaleigenschaften gebildet sind. Bevorzugte Ausführung der Erfindung
Die Figur 1 zeigt schematisch angedeutet einen Strömungsquerschnitt 1 der Vorrichtung zur Abgasnachbehandlung. Innerhalb dieses Strömungsquerschnitts 1 ist ein Heizelement 2 angeordnet, welches eine Vielzahl von durchström baren Strömungskanälen aufweist, die entlang einer Hauptdurchströmungsrichtung, die parallel zu einer Flächennormalen auf der Zeichnungsebene steht, durchströmt werden können. Die einzelnen Strömungskanäle sind durch Wandungen in einer Richtung quer zur Hauptdurchströmungsrichtung begrenzt. Da das Heizelement 2 aus einem keramischen Material gefertigt ist, ist es entweder mit einer elektrisch leitfähigen Oberflächenbeschichtung versehen oder weist einen gewissen Anteil von elektrisch leitfähigem Material auf. Die Keramik kann beispielsweise mit metallischen Partikeln versetzt sein, um eine ausreichende elektrische Leitfähigkeit zu erzeugen.
Die Aufheizung des Heizelementes 2 erfolgt durch das Bestromen des Heizelementes 2. Hierfür kann das Heizelement 2 endseitig über elektrische Kontaktierungen 3 mit einer Spannungsquelle verbunden werden. Unter Ausnutzung des Ohmschen Widerstandes findet somit eine Aufheizung des Heizelementes 2 statt, sofern Strom durch das Heizelement 2 fliest.
Das im Ausführungsbeispiel der Figur 1 mäanderartig verlaufende Heizelement 2 kann beispielsweise durch ein spanendes Verfahren aus einem als Scheibe ausgebildeten Wabenkörper erzeugt werden.
Das Heizelement 2 ist im Ausführungsbeispiel der Figur 1 mäanderartig über den Querschnitt 1 des in Strömungsrichtung vorgelagerten oder nachgelagerten Katalysators (nicht gezeigt in Figur 1 ) angeordnet. Auch hiervon abweichende Anordnungen sind vorsehbar, um die Querschnittsfläche des Katalysators optimal auszunutzen und eine möglichst gute Wärmeübertragung und eine möglichst homogene Wärmeerzeugung sicherzustellen. Abweichend von dem Ausführungsbeispiel der Figur 1 kann das Heizelement auch in einer Richtung, welche einer Flächennormalen auf der Zeichnungsebene folgt, verlaufen. Dies kommt insbesondere bei einem in mehreren Ebenen hintereinander liegenden Heizelement zum Tragen.
Das Heizelement 2 weist mehrere Umlenkungsbereiche 4 auf, in welchen es seine Richtung ändert. Bevorzugt sind diese Umlenkungsbereiche 4 derart ausgebildet, dass eine Erzeugung von lokalen Heißstellen vermieden oder zumindest deutlich reduziert wird. Hierzu kann der Umlenkungsbereich 4 beispielsweise verdickt ausgeführt sein, eine verringerte Porosität im Vergleich zum restlichen Heizelement 2 aufweisen, eine geringere Wärmeleitfähigkeit aufweisen oder eine erhöhte Wärmekapazität aufweisen. Auch kann das verwendete Material oder die Wandstärke über den Querschnitt des Umlenkungsbereichs 4 variieren.
Die Figur 2 zeigt eine Detailansicht eines Umlenkungsbereichs 4, wobei im gebogenen Bereich 6 der Umlenkung 4 eine im Vergleich zum restlichen Struktur 5 des Heizelementes 2 größere Zelldichte vorgesehen ist. Der Bereich 6 weist pro Flächeneinheit mehr Strömungskanäle auf als das restliche Heizelement 2. Dies führt dazu, dass im Vergleich zur restliche Struktur 5 des Heizelementes 2 die Eigenschaften als elektrischer Leiter im Umlenkungsbereich 4 verändert werden.
Die Figur 3 zeigt eine alternative Ausgestaltung des Umlenkungsbereichs 7, wobei im gebogenen Bereich 8 der Umlenkung 7 die vorhandenen Wandungen, welche die Strömungskanäle begrenzen, eine höhere Wandstärke aufweisen als in der restlichen Struktur 5 des Heizelementes 2. Durch die erhöhte Wandstärke wird ebenfalls die elektrische Leitfähigkeit beeinflusst.
Die Figur 4 zeigt eine weitere alternative Ausgestaltung eines Umlenkungsbereichs 9, wobei im gebogenen Bereich 10 der Umlenkung 9, die die Strömungskanäle begrenzenden Wandungen aus unterschiedlichen Materialien gebildet sind. Die im Bereich 11 des kleineren Innenradius angeordneten Wandungen sind aus einem ersten Material gebildet, während die im Bereich 12 des größeren Außenradius angeordneten Wandungen aus einem zweiten Material gebildet sind. Die Materialien können sich insbesondere durch den spezifischen elektrischen Widerstand, den Metallanteil, die Porosität, die Oberflächenbeschichtung oder eine Kombination aus den vorgenannten Eigenschaften voneinander unterscheiden.
Alle in den Ausführungsbeispielen der Figuren 1 bis 4 gezeigten Ausführungen können beliebig miteinander kombiniert werden. Insbesondere kann es vorgesehen werden, dass einzelne Variationen sich nur auf begrenzte Bereiche innerhalb der Umlenkung beschränken. So etwa, dass der Innenbereich an den kleineren Biegungsradien anders aufgebaut ist als der Außenbereich an den größeren Biegungsradien.
Ziel ist es insbesondere eine geeignete Beeinflussung des Stromflusses innerhalb des Heizelementes 2 zu erzeugen, um das Auftreten von lokalen Heißstellen zu vermeiden. Hierzu kann insbesondere bereichsweise der spezifische Widerstand angepasst werden, um den Stromfluss lokal zu begrenzen oder zu begünstigen. Grundsätzlich ist es vorteilhaft, wenn ein verstärkter Stromfluss in den Außenbereichen der Umlenkung stattfindet, um so das Entstehen von Heißstellen am Innenradius zu vermeiden. Da der Strom dem Prinzip des geringsten Widerstandes folgt, ist durch die gezielte Beeinflussung des Widerstandes eine geeignete Strom lenkung gewährleistet.
Das Erhöhen der Anzahl der Wände, das Verdicken der Wandungen, wie auch das Verringern der Porosität führen alle insgesamt zu einer Erhöhung der vom Strom durchström baren Querschnittsfläche, wodurch der elektrische Widerstand des jeweiligen Bereichs verändert wird, wodurch wiederrum die Strom leitung, insbesondere die Stromverteilung über den Querschnitt des Heizelementes hinweg verändert wird.
Neben der Beeinflussung des Widerstandes zur Beeinflussung der Stromleitung kann durch die vorbeschriebenen Veränderungen auch direkt die Wärmeleitfähigkeit des Heizleiters beeinflusst werden, wodurch Wärme besser abgeführt und verteilt werden kann, wodurch ebenfalls das Entstehen von Heißstellen vermindert werden kann.
Die Ausführungsbeispiele der Figuren 1 bis 4 weisen insbesondere keinen be- schränkenden Charakter auf und dienen der Verdeutlichung des Erfindungsgedankens.

Claims

Patentansprüche
1. Vorrichtung zur Nachbehandlung von Abgasen, mit einer von Abgas durch- strömbaren Strömungsstrecke mit zumindest einem als Katalysator wirkenden Wabenkörper und zumindest einem Heizelement (2), wobei das Heizelement (2) aus einem keramischen Material gebildet ist, das entlang einer Mehrzahl von Strömungskanälen von einer Einströmseite hin zu einer Ausströmseite durchströmbar ist, wobei das Heizelement (2) entlang der die Strömungskanäle begrenzenden Wandungen elektrisch leitfähig ist und mittels einer elektrischen Kontaktierung (3) mit einer Spannungsquelle verbindbar ist, wobei das Heizelement (2) mäanderartig über einen durch- strömbaren Querschnitt (1) der Strömungsstrecke verläuft.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) mehrere Umlenkungen (4, 7, 9) innerhalb einer Ebene aufweist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) aus einem keramischen Wabenkörper gebildet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) an den Umlenkungen (4, 7, 9) im Vergleich zu den restlichen Bereichen des Heizelementes (2) eine Querschnittsverdickung der elektrisch leitfähigen Struktur aufweist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) in den Bereichen der Umlenkungen (4, 7, 9) eine über den Querschnitt des Heizelementes (2) hinweg unterschiedliche Wärmeleitfähigkeit aufweist als an den Abschnitten vor und nach den Umlenkungen (4, 7, 9).
6. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) in den Bereichen der Umlenkungen (4, 7, 9) eine über den Querschnitt des Heizelementes (2) unterschiedliche Wärmekapazität aufweist als an den Abschnitten vor und nach den Umlenkungen (4, 7, 9).
7. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (2) in den Bereichen der Umlenkungen (4, 7, 9) einen über den Querschnitt des Heizelementes (2) unterschiedlichen elektrischen Widerstand aufweist.
EP21835605.3A 2020-12-11 2021-12-01 Heizelement Pending EP4259909A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020215753.7A DE102020215753B4 (de) 2020-12-11 2020-12-11 Keramische Heizscheibe als Heizelement
PCT/EP2021/083848 WO2022122516A2 (de) 2020-12-11 2021-12-01 Keramische heizscheibe als heizelement

Publications (1)

Publication Number Publication Date
EP4259909A2 true EP4259909A2 (de) 2023-10-18

Family

ID=79185421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21835605.3A Pending EP4259909A2 (de) 2020-12-11 2021-12-01 Heizelement

Country Status (5)

Country Link
US (1) US20240102411A1 (de)
EP (1) EP4259909A2 (de)
CN (1) CN116917601A (de)
DE (1) DE102020215753B4 (de)
WO (1) WO2022122516A2 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519191A (en) * 1992-10-30 1996-05-21 Corning Incorporated Fluid heater utilizing laminar heating element having conductive layer bonded to flexible ceramic foil substrate
DE4339686C1 (de) 1993-11-22 1994-11-03 Daimler Benz Ag Elektrisch beheizbarer Abgaskatalysator
DE19943846A1 (de) * 1999-09-13 2001-03-15 Emitec Emissionstechnologie Vorrichtung mit Heizelement zur Abgasreinigung
DE102012109391A1 (de) * 2012-10-02 2014-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Elektrisch beheizbarer, aus keramischem Material extrudierter Wabenkörper
DE102017124276A1 (de) 2017-10-18 2019-04-18 Eberspächer Exhaust Technology GmbH & Co. KG Mischanordnung

Also Published As

Publication number Publication date
DE102020215753B4 (de) 2022-07-21
WO2022122516A2 (de) 2022-06-16
WO2022122516A3 (de) 2022-08-04
CN116917601A (zh) 2023-10-20
US20240102411A1 (en) 2024-03-28
DE102020215753A1 (de) 2022-06-15

Similar Documents

Publication Publication Date Title
EP1212521B1 (de) Vorrichtung mit heizelement zur abgasreinigung
DE19680093B4 (de) Wabenkörper mit von einem Fluid durchströmbaren Kanälen von unterschiedlichem Strömungswiderstand
DE112019001864T5 (de) Abgasleitung, Vorrichtung zur Abgasreinigung und Verfahren zur Herstellung der Reinigungsvorrichtung
EP2504541B1 (de) Abgasreinigungskomponente mit umlenkfläche und verfahren zu deren herstellung
DE112020002424T5 (de) Fahrzeugabgasreinigungsvorrichtung, entsprechendes Herstellungsverfahren, Abgasleitung und Fahrzeug
EP2027372B1 (de) Nebenstromfilter mit verbessertem filterwirkungsgrad
EP0412086A1 (de) Anordnung zur beschleunigung des ansprechens eines abgaskatalysators.
DE102007024563A1 (de) Vorrichtung umfassend einen großen elektrisch beheizbaren Wabenkörper
DE4102890A1 (de) Wabenkoerper mit inhomogener elektrischer beheizung
DE102020132800A1 (de) Abgasheizeinheit
DE4131970A1 (de) Katalytischer konverter mit einem elektrischen widerstand als katalysatortraeger
DE112014002159T5 (de) Katalytischer Wandler
EP2150690B1 (de) Elektrisch beheizbarer wabenkörper mit zonen erhöhter widerstände
EP0682742B1 (de) Elektrisch beheizbarer wabenkörper mit durch schlitze erhöhtem widerstand
DE112012001620B4 (de) Katalytischer Konverter
DE102020211024A1 (de) Elektrischer heizträger und abgasreinigungsvorrichtung
DE112013006485T5 (de) Katalytischer Wandler
DE102020215753B4 (de) Keramische Heizscheibe als Heizelement
DE10104601A1 (de) Reaktor für ein Brennstoffzellenssystem
WO2021115950A1 (de) Vorrichtung zur abgasnachbehandlung mit einer ringförmigen heizscheibe
DE19959612A1 (de) Katalysatorkörper für eine Abgasreinigugnseinrichtung einer Verbrennungskraftmaschine
DE102021211213B3 (de) Elektrisch beheizbarer Wabenkörper mit Welllagen unterschiedlicher Zelldichte
EP4073360A1 (de) Vorrichtung zur abgasnachbehandlung und verfahren zur herstellung dieser
WO2023247167A1 (de) Vorrichtung zur erwärmung von in einer abgasleitung strömbaren abgas
EP1431528A2 (de) Abgasreinigungsanordnung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230711

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN