EP4255637A1 - Separator, in particular for separating organic waste and additives - Google Patents

Separator, in particular for separating organic waste and additives

Info

Publication number
EP4255637A1
EP4255637A1 EP21704534.3A EP21704534A EP4255637A1 EP 4255637 A1 EP4255637 A1 EP 4255637A1 EP 21704534 A EP21704534 A EP 21704534A EP 4255637 A1 EP4255637 A1 EP 4255637A1
Authority
EP
European Patent Office
Prior art keywords
separator
paddles
plane
angles
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP21704534.3A
Other languages
German (de)
French (fr)
Other versions
EP4255637B1 (en
Inventor
Götz ARDEY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4255637A1 publication Critical patent/EP4255637A1/en
Application granted granted Critical
Publication of EP4255637B1 publication Critical patent/EP4255637B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/282Shape or inner surface of mill-housings
    • B02C13/284Built-in screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/062Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives with rotor elements extending axially in close radial proximity of a concentrically arranged slotted or perforated ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/18Drum screens
    • B07B1/20Stationary drums with moving interior agitators

Definitions

  • the invention relates to a separator, in particular for separating organic waste and additives, with a housing, a separator shaft drivably mounted in a longitudinal direction of the housing, a screen basket concentrically surrounding the separator shaft and a plurality of paddles arranged on the separator shaft, which extend radially around the screen basket and are spaced apart from one another in groups in parallel planes, with the transverse axis of a paddle opposite the longitudinal axis of the paddle runs at an angle.
  • Organic products such as groceries and animal feed, are often packaged to keep them fresh, sanitary or undamaged.
  • This packaging may be metal (e.g. cans), glass (e.g. bottles), paper/cardboard (e.g. egg cartons) or plastic (e.g. cling film) or other materials.
  • metal e.g. cans
  • glass e.g. bottles
  • paper/cardboard e.g. egg cartons
  • plastic e.g. cling film
  • rubbish dumps are still used today to dispose of waste. In many countries, however, the disposal of waste in landfills is now prohibited by law. Due to environmental pollution and the corresponding legal regulations, the waste must be burned in waste incineration plants so that the packaging is also disposed of.
  • the waste can be shredded with shredders and shredders.
  • the proportion of foreign matter in the organic substrate remains the same as the proportion of the packaging in the product, and no separation process takes place. It is therefore desirable that the additives, especially those separate inorganic packaging from organic materials and dispose of them separately. Since the packaging generally accounts for only a very small proportion of the overall product, there are twofold benefits from separation.
  • the organic matter can be shredded and used directly as compost or fertilizer. It can also be used as a substrate in biogas plants as an energy source for gas production. The process residues from the biogas plant can later be used as fertilizer on fields.
  • the purity of the separation is very important. Purity is defined as the proportion of “residues”, i.e. what is usually left over from the packaging, in the substrate. Plastics in particular have to be separated very carefully from the organic waste because they do not rot during composting, but are then introduced into the ground with the compost and remain there for a long time or, as microplastics, can be very harmful to living beings.
  • Various technical systems are known which carry out several individual steps in a multi-stage process chain. This can be done from initial piercing of the waste with a mandrel wheel, followed by shredding for comminution, followed by a rotating screen bin for separation, to watering and brushing the residual waste.
  • Such systems can deliver very good results for very specific types of waste. However, they are extremely intolerant of off-spec waste contents. Glass bottles or tin cans, for example, can already damage the mandrels of the mandrel wheel in the first stage. In addition, multi-stage systems are very wear and maintenance-intensive and are therefore only used in niche applications for both technical and economic reasons.
  • the waste is separated and shredded in one operation.
  • two essential functional principles can be distinguished: hammer mills and separators.
  • Hammer mills usually consist of an essentially horizontal shaft to which beaters or hammers of different shapes are attached via a joint. The shaft rotates at low speeds in a mostly barrel-shaped screen basket.
  • the beaters smash and grind the waste and the organics are expelled through the holes in the screen basket into a (partial) cylinder gap between the screen basket and the surrounding housing.
  • the substrate crushed organic material
  • hammer mills There are different types.
  • the beaters or paddles or hammers can be positioned at an angle relative to the longitudinal axis of the shaft.
  • EP 1350569 B1 discloses a device for separating waste containing organic substances and impurities, in particular market waste, which has a shredder in which plate-shaped paddles that can be pivoted in the plane of the plate are arranged on a motor-driven shaft. A sieve is arranged below the shaft. The waste that is brought in is shredded by the paddles and the twisting of the paddles causes it to be moved in the direction of the outlet, with the organic part being largely separated from the other components through the sieve.
  • the company Bio Greenline AG sells separators in a vertical design, which are designed for the separation of packaging and large quantities of food that can no longer be used as such. They open and shred packaging without generating harmful microplastics.
  • the paddles which are arranged on a shaft driven by an electric motor, tear open the packaging as they rotate. Centrifugal and gravity forces separate heavier organic matter from lighter packaging.
  • the organic matter is discharged as a substrate with an adjustable water content for use in biogas plants and the packaging is led out of the separator housing in the upper area. Proceeding from this, the object of the invention is to improve the separation of impurities in the waste, in particular the separation of organic and inorganic waste materials.
  • a generic separator is characterized in that the angles of a group of paddles in one plane are different from the angles of the group of paddles in the adjacent plane.
  • the paddles are twisted about their longitudinal axis running in the radial direction. Their transverse axis then runs at an angle and not parallel to the axis of rotation of the separator shaft.
  • the different interlocking of the paddles creates an air flow that over time drives the impurities that are too large for the holes in the screen basket to an outer point in the housing in relation to the axial direction of the separator shaft, where the impurities can be discharged.
  • the angular position of the paddles can change progressively from one plane to another, so that the angles have the following relationship: ⁇ i-1 ⁇ ⁇ i ⁇ ⁇ i+1. However, the angular position can also change degressively from one plane to the other, so that the relationship for the angles is: ⁇ i-1 > ⁇ i > ⁇ i+1.
  • the progressive twisting of the paddles has the advantage that the waste stays longer in the lower part of the machine and is highly shredded. Only over time are the impurities accelerated and ejected. Practical tests have shown that this geometry delivers optimal results for fruits with a hard skin, such as citrus fruits.
  • the waste In the case of a degressive twist, the waste remains in the lower part of the separator for a shorter period of time, so that good shredding is initially achieved. Due to the decreasing twist towards the top, the lighter impurities (packaging parts) remain longer in the upper part compared to an arrangement with constant twisting of the paddles and can thus be largely freed from the organic matter. Practical tests have shown that this geometry delivers optimal results for plastic packaging.
  • the change in the angles preferably runs continuously and in particular by 5° from plane to plane.
  • the angle ⁇ 1 of all paddles P1 in the lower plane can be E130° in the degressive paddle position and then reduced by 5° from plane to plane, so that in the upper plane E6 the angle is ⁇ 65°. With the progressive paddle position, this can be realized in reverse, so that the angle ⁇ 1 in the lower plane is E15° and the angle ⁇ 6 in the uppermost plane is E630°.
  • the angles of the paddles are preferably adjustable and in particular preferably steplessly adjustable. However, they can also be optimized for a specific waste composition and thus permanently installed.
  • the angles ⁇ i are preferably identical for all paddles Pi. All paddles Pi in the same plane Ei count as a group Gi.
  • At least three paddles Pi are preferably arranged at a regular distance from one another in a group Gi.
  • air or water can be fed into the housing from the outside.
  • Exemplary embodiments of the invention are to be explained in more detail below with the aid of a drawing. They show: FIG. 1 - the structural representation of a separator; FIG. 2 shows the functional representation of the separator according to FIG. 1; FIG. 3 shows a schematic representation of a first exemplary embodiment of the separator with a degressive paddle position; Figure 4 - a schematic representation of a second embodiment of the separator with progressive paddle position.
  • FIG. 1 shows the structural representation of a vertical separator, which consists of the cylindrical housing 1, the screen basket 3 arranged concentrically thereto and the concentrically arranged separator shaft 2 extending in the longitudinal direction of the housing, on which paddles (P1, P2, P3, P4, P5, P6) are arranged.
  • the separator shaft 2 is driven by an electric motor, not shown, so that the paddles Pi rotate in the housing 1 .
  • a cylinder gap 4 is formed between the inner wall of the housing 1 and the outer wall of the screen basket 3 .
  • the paddles P1 to P6 are arranged in mutually regularly spaced planes E1, E2, E3, E4, E5, E6. In each plane E1, four paddles Pi are spaced apart from each other at an angle of 90° and combined into a group Gi.
  • FIG. 2 schematically illustrates the mode of operation of the separator when the paddle position is degressive.
  • the planes E 1 to E 6 are spaced parallel to one another, with the distance between the individual planes E i not necessarily having to be the same.
  • E 6 four paddles P 1 , P 2 , P 3 , P 4 , P 5 , P 6 are arranged at an angle of 90° to each other and together form a group G 1 in each plane, G2 , G3 , G4 , G5 , G6 . .
  • the paddles P i are inclined by an angle ⁇ i relative to the longitudinal axis R i running perpendicular to the axis of rotation of the separator shaft 2 .
  • the angle ⁇ i from one plane Ei to the next plane Ei+1 preferably decreases steadily.
  • the five degree decrease from level to level specified herein is preferred. But in itself it can be arbitrary. Steps of 10° are also conceivable.
  • FIG. 4 schematically shows a vertical separator with a progressive paddle position. In principle, the same applies here as to the degressive paddle position.
  • the planes E1 to E6 are spaced parallel to one another, with the distance between the individual planes Ei not necessarily having to be the same.
  • Four paddles P1, P2, P3, P4, P5, P6 are arranged at an angle of 90° to each other in each level E1, ..., E6 and together form a group G1, G2, G3, G4, G5, G6 in each level ..
  • the paddles Pi are inclined at an angle ⁇ i relative to the longitudinal axis Ri.
  • the increase in angle ⁇ i from one level E i to the next higher level E i+1 is preferably continuous.
  • the five degree increase from level to level specified herein is preferred. But in itself it can be arbitrary. Steps of 10° are also conceivable.
  • the degree of increase in the position ⁇ i of the paddles P i from one level E i to the last level E i+n can be between 1° and 89°. Otherwise, the same applies to this embodiment with a progressive paddle position as in the embodiment with a degressive paddle position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A separator comprising a housing (1), a separator shaft (2) drivably mounted in a longitudinal direction (L) of the housing (1), a screen basket (3) concentrically surrounding the separator shaft (2), and a plurality of paddles (Pi), which are arranged on the separator shaft (2) and which extend radially towards the screen basket (3) and are distanced from one another in groups (Gi) in parallel planes (Ei), with the transverse axis (Qi) of a paddle (Pi) running at an angle (αi) relative to the longitudinal axis (Ri) of the paddle (Pi), is characterised in that the angles (αi) of a group (Gi) of paddles (Pi) in one plane (E,) are different from the angles (αi+1), (αi+1) of the group (Gi-1), (Gi+1) in the adjacent plane (EM), (Ei+1).

Description

Dr.-Ing. Götz Ardey Anwaltsakte: Germaniastrasse 75 6787-0001 PCT-1 8006 Zürich Schweiz Datum: 10. Februar 2021 Separator, insbesondere zur Trennung von organischem Abfall und Zusatzstoffen Die Erfindung betrifft einen Separator, insbesondere zum Trennen von organischem Abfall und Zusatzstoffen, mit einem Gehäuse, einer in einer Längsrichtung des Gehäuses antreibbar gelagerten Separatorwelle, einem die Separatorwelle konzentrisch umgebenden Siebkorb und einer Mehrzahl an der Separatorwelle angeordneten Paddeln, die sich radial um Siebkorb hin erstrecken und in Gruppen in parallelen Ebenen zueinander beanstandet sind, wobei die Querachse eines Paddels gegenüber der Längsachse des Paddels in einem Winkel verläuft. Organische Produkte, wie zum Beispiel Lebensmittel und Tierfutter, sind häufig verpackt, um sie frisch, hygienisch oder unbeschädigt zu halten. Diese Verpackung kann aus Metall (z. B. Dosen), Glas (z. B. Flaschen), Papier/Pappe (z. B. Eierkartons) oder Plastik (z. B. Klarsichtfolie) oder anderen Materialien sein. Beim Entsorgen dieser Produkte stellt sich das Problem, dass der organische Teil mit der Zeit verrottet und sich zersetzt, die Verpackung (Zusatzstoff) jedoch nicht oder nicht so schnell wie der organische Anteil. Zur Abfallentsorgung werden noch heute in einigen Regionen der Welt Müllkippen verwendet. In vielen Ländern ist jedoch das Entsorgen von Abfall auf Müllkippen mittlerweile gesetzlich untersagt Aufgrund der Umweltbelastung und durch entsprechende gesetzliche Regelung muss der Abfall in Müllverbrennungsanlagen verbrannt werden, damit auch die Verpackung entsorgt wird. Das Verbrennen der meist überwiegend aus Wasser bestehenden organischen Produkte ist energieaufwendig und teuer. Der Abfall kann mit Schreddern und Häckslern zerkleinert werden. Der Anteil der Fremdstoffe im organischen Substrat bleibt dabei im Mittel aber gleich dem Anteil der Verpackung am Produkt, und es findet kein Trennprozess statt. Daher ist es wünschenswert, die Zusatzstoffe, insbesondere die anorganische Verpackung von den organischen Stoffen zu trennen und diese getrennt zu entsorgen. Da im Allgemeinen die Verpackung nur einen sehr geringen Anteil am Gesamtprodukt ausmacht, ergibt sich aus einer Trennung ein doppelter Vorteil. Die Organik kann zerkleinert und direkt als Kompost oder Dünger verwendet werden. Auch kann sie als Substrat in Biogasanlagen als Energieträger zur Gasgewinnung genutzt werden. Die Prozessreste aus der Biogasanlage können später als Dünger auf Felder ausgebracht werden. Bei diesem – meist kombinierten – Zerkleinerungs- und Trennungsprozess ist vor allem die Reinheit der Trennung sehr wichtig. Als Reinheit wird der Anteil von „Reststoffen“, also dem meist Überbleibsel der Verpackung, im Substrat beschrieben. Insbesondere Kunststoffe müssen sehr sorgfältig von dem organischen Abfall getrennt werden, weil sie bei der Kompostierung nicht verrotten, sondern anschließend mit dem Kompost ins Erdreich eingebracht werden und dort für lange Zeit verbleiben bzw. als Mikrokunststoffe für Lebewesen sehr belastend werden können. Es sind verschiedene technische Systeme bekannt, die in einer mehrstufigen Prozesskette mehrere einzelne Schritte vollziehen. Dies kann von anfänglichem Durchstoßen des Abfalls mit einem Dornrad, gefolgt von einem Schreddern zur Zerkleinerung geschehen, an die sich eine rotierende Siebtonne zur Trennung bis zum Wässern und Bürsten der Restabfälle anschließt. Solche Systeme können für sehr spezielle Abfallsorten sehr gute Ergebnisse liefern. Sie sind jedoch äußerst intolerant gegenüber von der Spezifikation abweichenden Abfallinhalten. Glasflaschen oder Blechdosen können beispielsweise bereits in der ersten Stufe die Dornen des Dornrades beschädigen. Darüber hinaus sind mehrstufige Anlagen sehr verschleiß- und wartungsaufwendig und finden somit sowohl aus technischen als auch aus wirtschaftlichen Gründen nur Nischenanwendungen. Bei Einschritt-Prozess-Systemen finden die Trennung und die Zerkleinerung des Abfalls in einem Vorgang statt. Dabei lassen sich grundsätzlich zwei wesentliche Funktionsprinzipien unterscheiden: Hammermühlen und Separatoren. Hammermühlen bestehen meist aus einer im Wesentlichen horizontal liegenden Welle, an der über ein Gelenk Schlägel oder Hämmer unterschiedlicher Form angebracht sind. Die Welle rotiert mit geringen Drehzahlen in einem meist tonnenartigen Siebkorb. Die Schlägel zerschlagen und zermahlen den Abfall und die organischen Stoffe werden über die Löcher im Siebkorb in einen (Teil-)Zylinderspalt zwischen dem Siebkorb und dem diesen umgebenden Gehäuse ausgetrieben. Das Substrat (zerkleinerte Organik) läuft durch die Gravitation an der Innenwand des Gehäuses nach unten und tritt am tiefsten Punkt aus der Hammermühle aus. Dort kann es dann in einem Lagertank aufgefangen oder direkt zur Weiterverwendung als Dünger oder für eine Biogasanlage abgepumpt werden. Es gibt verschiedene Typen von Hammermühlen. Die Schlägel oder Paddel bzw. Hämmer können dabei gegenüber der Längsachse der Welle schräg gestellt sein. Aus der EP 2656919 B1 ist eine Hammermühle bekannt, deren Gehäuse im Wesentlichen ein Kreiszylinder ist, der eine kreiszylindrische Wand oder Mantelfläche und zwei den Zylinder verschließende Abschlussplatten aufweist. Sowohl das Gehäuse als auch die Paddel können schräg gestellt sein. Aus der EP 1350569 B1 ist eine Vorrichtung zum Trennen von Abfällen mit organischen Stoffen und Störstoff-Anteilen, insbesondere von Marktabfällen, bekannt, die einen Zerkleinerer aufweist, in dem auf einer motorisch angetriebenen Welle plattenförmige, in ihrer Plattenebene schwenkbare Paddel angeordnet sind. Unterhalb der Welle ist ein Sieb angeordnet. Durch die Paddel wird der eingebrachte Abfall zerkleinert und die Schränkung der Paddel bewirkt, dass dieser in Richtung des Auslasses bewegt wird, wobei sich der organische Anteil weitgehend durch das Sieb von den anderen Bestandteilen abtrennt. Von der Firma Bio Greenline AG werden Separatoren in vertikaler Konstruktionsweise vertrieben, die auf die Trennung von Verpackungen und nicht mehr als solche verwertbaren Lebensmittel in großen Mengen ausgelegt sind. Sie öffnen und zerkleinern Verpackungen ohne schädliches Mikroplastik zu erzeugen. Die an einer elektromotorisch angetriebenen Welle angeordneten Paddel reißen beim Rotieren die Verpackungen auf. Mittels Zentrifugal- und Schwerkraft werden schwerere organische Stoffe von den leichteren Verpackungen getrennt. Die Organik wird als Substrat mit regulierbarem Wasseranteil für die Verwertung in Biogasanlagen abgeführt und die Verpackungen im oberen Bereich aus dem Gehäuse des Separators herausgeführt. Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Trennung von Störstoffen im Abfall, insbesondere die Trennung von organischen und anorganischen Abfallstoffen zu verbessern. Zur Problemlösung zeichnet sich ein gattungsgemäßer Separator dadurch aus, dass die Winkel einer Gruppe Paddel in einer Ebene gegenüber den Winkeln der Gruppe Paddel in der benachbarten Ebene unterschiedlich sind. Die Paddel werden um ihre in radialer Richtung verlaufende Längsachse verschränkt. Ihre Querachse verläuft dann in einem Winkel und nicht parallel zur Drehachse der Separatorwelle. Durch die unterschiedliche Verschränkung der Paddel wird eine Luftströmung erzeugt, die die Störstoffe, die zu groß für die Löcher im Siebkorb sind, mit der Zeit an eine bezogen auf die Axialrichtung der Separatorwelle äußere Stelle im Gehäuse treibt, in der die Störstoffe ausgetragen werden können. Die Winkelstellung der Paddel kann sich progressiv von einer Ebene zur anderen ändern, sodass für die Winkel die Beziehung gilt: αi-1 < αi < αi+1. Die Winkelstellung kann sich aber auch degressiv von einer Ebene zur anderen ändern, sodass für die Winkel die Beziehung gilt: αi-1 > αi > αi+1. Wenn die Längsachse der Separatorwelle in vertikaler Richtung verläuft, hat die progressive Schränkung der Paddel den Vorteil, dass der Abfall länger im unteren Teil der Maschine verbleibt und stark zerkleinert wird. Erst mit der Zeit werden die Störstoffe beschleunigt und ausgeworfen. Praktische Tests haben ergeben, dass diese Geometrie optimale Resultate für Obsts mit harter Schale, zum Beispiel Zitrusfrüchte, liefert. Bei einer degressiven Schränkung verbleibt der Abfall kürzer im unteren Teil des Separators, sodass zunächst eine gute Zerkleinerung erreicht wird. Durch die abnehmende Schränkung nach oben hin verbleiben die leichteren Störstoffe (Verpackungsteile) gegenüber einer Anordnung mit gleichbleibender Verschränkung der Paddel länger im oberen Teil und können so weitgehend von der Organik befreit werden. Praktische Tests haben ergeben, dass diese Geometrie optimale Resultate für Kunststoffverpackungen liefert. Die Änderung der Winkel verläuft vorzugsweise stetig und insbesondere von Ebene zu Ebene um 5°. In einem Separator mit sechs Gruppen von Paddeln bzw. sechs parallelen Ebenen kann bei der degressiven Paddelstellung der Winkel α1 aller Paddel P1 in der unteren Ebene E130° betragen und dann von Ebene zu Ebene um 5° reduziert werden, sodass in der oberen Ebene E6 der Winkel α65° beträgt. Bei der progressiven Paddelstellung kann dies umgekehrt realisiert werden, sodass der Winkel α1 in der unteren Ebene E15° beträgt und der Winkel α6 in der obersten Ebene E630°. Vorzugsweise sind die Winkel der Paddel einstellbar und insbesondere vorzugsweise stufenlos einstellbar. Sie können jedoch auch für eine spezifische Abfallzusammensetzung optimiert und somit fest montiert sein. In einer Gruppe Gi sind die Winkel αi für alle Paddel Pi vorzugsweise identisch. Als Gruppe Gi gelten alle Paddel Pi in der derselben Ebene Ei. Vorzugsweise sind in einer Gruppe Gi mindestens drei Paddel Pi zueinander regelmäßig beabstandet angeordnet. Um die Effizienz des Separators zu erhöhen, kann in das Gehäuse von außen Luft oder Wasser zugeführt werden. Mit Hilfe einer Zeichnung sollen Ausführungsbeispiele der Erfindung nachfolgend näher erläutert werden. Es zeigen: Figur 1 - die Konstruktionsdarstellung eines Separators; Figur 2 - die Funktionsdarstellung des Separators nach Figur 1; Figur 3 - eine schematische Darstellung eines ersten Ausführungsbeispiels des Separators mit degressiver Paddelstellung; Figur 4 - eine schematische Darstellung eines zweiten Ausführungsbeispiels des Separators mit progressiver Paddelstellung. Figur 1 zeigt die Konstruktionsdarstellung eines Vertikal-Separators, der aus dem zylindrischen Gehäuse 1, dem konzentrisch hierzu angeordneten Siebkorb 3 und der sich in Längsrichtung des Gehäuses erstreckenden, konzentrisch angeordneten Separatorwelle 2, an der sich in radialer Richtung erstreckende Paddel (P1, P2, P3, P4, P5, P6) angeordnet sind, besteht. Die Separatorwelle 2 wird über einen nicht dargestellten Elektromotor angetrieben, sodass die Paddel Pi im Gehäuse 1 rotieren. Zwischen der Innenwand des Gehäuses 1 und der Außenwand des Siebkorbes 3 ist ein Zylinderspalt 4 ausgebildet. Die Paddel P1 bis P6 sind in zueinander regelmäßig beabstandeten Ebenen E1, E2, E3, E4, E5, E6 angeordnet. In jeder Ebene E1 sind jeweils vier Paddel Pi im Winkel von jeweils 90° zueinander beabstandet und zu einer Gruppe Gi zusammengefasst angeordnet. Figur 2 verdeutlicht die Funktion des Separators. Im unteren Bereich des Separators wird über den Einlass 5 der aus organischen Stoffen und Zusatzstoffen bestehende Abfall 9 zugeführt. Durch die Rotation der Paddel Pi wird dieser in vertikaler Richtung über die einzelnen Ebenen Ei nach oben geführt. Der organische Abfall wird durch die Löcher 3.1 im Siebkorb 3 nach radial außen in den Zylinderraum 4 gedrückt und gelangt dort nach unten in den Auffangbehälter 6 und kann als Substrat 10 aus dem Auslass 7 abgezogen werden. Die Zusatzstoffe 11, insbesondere Verpackungsmaterialien (Papier, Kunststoff) werden im oberen Bereich aus dem Auslass 8 herausgefördert. Figur 3 verdeutlicht schematisch die Funktionsweise des Separators bei degressiver Paddelstellung. Die Ebenen E1 bis E6 sind zueinander parallel beabstandet, wobei der Abstand zwischen den einzelnen Ebenen Ei nicht zwingend notwendig gleich sein muss. In jeder Ebene E1, …, E6 sind vier Paddel P1, P2, P3, P4, P5, P6 jeweils im Winkel von 90° zueinander beabstandet angeordnet und bilden in jeder Ebene gemeinsam eine Gruppe G1, G2, G3, G4, G5, G6.. In Richtung ihrer Querachse Qi sind die Paddel Pi gegenüber der senkrecht zur Drehachse der Separatorwelle 2 verlaufenden Längsachse Ri um einen Winkel αi geneigt. In der unteren Ebene E1 beträgt der Neigungswinkel α1 = 30°, in der zweiten Ebene E2 beträgt der Winkel α2 = 25°, in der dritten Ebene E3 beträgt der Winkel α3 = 20°, in der vierten Ebene E4 beträgt der Winkel α4 = 15°, in der fünften Ebene E5 beträgt der Winkel α5 = 10°, in der obersten Ebene E6 beträgt der Winkel α6 = 5°. Der Winkel αi von einer Ebene Ei zur nächsten Ebene Ei+1 nimmt vorzugsweise stetig ab. Die hier angegebene Abnahme von fünf Grad von Ebene zu Ebene ist bevorzugt. Sie kann aber an sich beliebig sein. Ebenso sind Schritte von 10° denkbar. Da für die Funktion des Separators mindestens zwei Ebenen E1 und E2 notwendig sind, kann die Grad-Abnahme der Anstellung αi der Paddel Pi von einer Ebene Ei zur letzten Ebene Ei+n zwischen 1° und 89° betragen. Es muss also eine Verschränkung der Paddel Pi vorliegen und ihre Querrichtung (Querachse) darf nicht parallel zur Drehachse der Separatorwelle 2 verlaufen. Die in den Figuren links und rechts der Separatorwelle 2 abstehenden Paddel Pi sind in der Seitenansicht und das mittlere Paddel Pi ist in der Draufsicht zu sehen. Figur 4 zeigt schematisch einen Vertikal-Separator mit progressiver Paddelstellung. In der Funktionsweise gilt hier prinzipiell dasselbe wie zu der degressiven Paddelstellung. Die Ebenen E1 bis E6 sind zueinander parallel beabstandet, wobei der Abstand zwischen den einzelnen Ebenen Ei nicht zwingend notwendig gleich sein muss. In jeder Ebene E1, …, E6 sind vier Paddel P1, P2, P3, P4, P5, P6 jeweils im Winkel von 90° zueinander beabstandet angeordnet und bilden in jeder Ebene gemeinsam eine Gruppe G1, G2, G3, G4, G5, G6.. In Richtung ihrer Querachse Qi sind die Paddel Pi gegenüber der Längsachse Ri um einen Winkel αi geneigt. In der unteren Ebene E1 beträgt der Neigungswinkel α1 = 5°, in der zweiten Ebene E2 beträgt der Winkel α2 = 10°, in der dritten Ebene E3 beträgt der Winkel α3 = 15°, in der vierten Ebene E4 beträgt der Winkel α4 = 20°, in der fünften Ebene E5 beträgt der Winkel α5 = 25°, in der obersten Ebene E6 beträgt der Winkel α6 = 30°. Die Zunahme des Winkels αi von einer Ebene Ei zur nächst höheren Ebene Ei+1 ist vorzugsweise stetig. Die hier angegebene Zunahme von fünf Grad von Ebene zu Ebene ist bevorzugt. Sie kann aber an sich beliebig sein. Ebenso sind Schritte von 10° denkbar. Da für die Funktion des Separators mindestens zwei Ebenen E1 und E2 notwendig sind, kann die Grad-Zunahme der Anstellung αi der Paddel Pi von einer Ebene Ei zur letzten Ebene Ei+n zwischen 1° und 89° betragen. Im Übrigen gilt auch bei dieser Ausführungsform mit progressiver Paddelstellung dasselbe wie bei der Ausführungsform mit degressiver Paddelstellung. Dr.-Ing. Götz Ardey Attorney file: Germaniastrasse 75 6787-0001 PCT-1 8006 Zurich Switzerland Date: February 10, 2021 Separator, in particular for separating organic waste and additives The invention relates to a separator, in particular for separating organic waste and additives, with a housing, a separator shaft drivably mounted in a longitudinal direction of the housing, a screen basket concentrically surrounding the separator shaft and a plurality of paddles arranged on the separator shaft, which extend radially around the screen basket and are spaced apart from one another in groups in parallel planes, with the transverse axis of a paddle opposite the longitudinal axis of the paddle runs at an angle. Organic products, such as groceries and animal feed, are often packaged to keep them fresh, sanitary or undamaged. This packaging may be metal (e.g. cans), glass (e.g. bottles), paper/cardboard (e.g. egg cartons) or plastic (e.g. cling film) or other materials. When disposing of these products, the problem arises that the organic part rots and decomposes over time, but the packaging (additive) does not, or not as quickly as the organic part. In some regions of the world, rubbish dumps are still used today to dispose of waste. In many countries, however, the disposal of waste in landfills is now prohibited by law. Due to environmental pollution and the corresponding legal regulations, the waste must be burned in waste incineration plants so that the packaging is also disposed of. Burning the organic products, which mostly consist mainly of water, is energy-intensive and expensive. The waste can be shredded with shredders and shredders. On average, the proportion of foreign matter in the organic substrate remains the same as the proportion of the packaging in the product, and no separation process takes place. It is therefore desirable that the additives, especially those separate inorganic packaging from organic materials and dispose of them separately. Since the packaging generally accounts for only a very small proportion of the overall product, there are twofold benefits from separation. The organic matter can be shredded and used directly as compost or fertilizer. It can also be used as a substrate in biogas plants as an energy source for gas production. The process residues from the biogas plant can later be used as fertilizer on fields. In this – mostly combined – crushing and separation process, the purity of the separation is very important. Purity is defined as the proportion of “residues”, i.e. what is usually left over from the packaging, in the substrate. Plastics in particular have to be separated very carefully from the organic waste because they do not rot during composting, but are then introduced into the ground with the compost and remain there for a long time or, as microplastics, can be very harmful to living beings. Various technical systems are known which carry out several individual steps in a multi-stage process chain. This can be done from initial piercing of the waste with a mandrel wheel, followed by shredding for comminution, followed by a rotating screen bin for separation, to watering and brushing the residual waste. Such systems can deliver very good results for very specific types of waste. However, they are extremely intolerant of off-spec waste contents. Glass bottles or tin cans, for example, can already damage the mandrels of the mandrel wheel in the first stage. In addition, multi-stage systems are very wear and maintenance-intensive and are therefore only used in niche applications for both technical and economic reasons. In one-step process systems, the waste is separated and shredded in one operation. Basically, two essential functional principles can be distinguished: hammer mills and separators. Hammer mills usually consist of an essentially horizontal shaft to which beaters or hammers of different shapes are attached via a joint. The shaft rotates at low speeds in a mostly barrel-shaped screen basket. The beaters smash and grind the waste and the organics are expelled through the holes in the screen basket into a (partial) cylinder gap between the screen basket and the surrounding housing. The substrate (crushed organic material) runs down the inner wall of the housing due to gravity and emerges from the hammer mill at the lowest point. There it can then be collected in a storage tank or pumped out directly for further use as fertilizer or for a biogas plant. There are different types of hammer mills. The beaters or paddles or hammers can be positioned at an angle relative to the longitudinal axis of the shaft. A hammer mill is known from EP 2656919 B1, the housing of which is essentially a circular cylinder which has a circular-cylindrical wall or lateral surface and two end plates closing the cylinder. Both the housing and the paddles can be inclined. EP 1350569 B1 discloses a device for separating waste containing organic substances and impurities, in particular market waste, which has a shredder in which plate-shaped paddles that can be pivoted in the plane of the plate are arranged on a motor-driven shaft. A sieve is arranged below the shaft. The waste that is brought in is shredded by the paddles and the twisting of the paddles causes it to be moved in the direction of the outlet, with the organic part being largely separated from the other components through the sieve. The company Bio Greenline AG sells separators in a vertical design, which are designed for the separation of packaging and large quantities of food that can no longer be used as such. They open and shred packaging without generating harmful microplastics. The paddles, which are arranged on a shaft driven by an electric motor, tear open the packaging as they rotate. Centrifugal and gravity forces separate heavier organic matter from lighter packaging. The organic matter is discharged as a substrate with an adjustable water content for use in biogas plants and the packaging is led out of the separator housing in the upper area. Proceeding from this, the object of the invention is to improve the separation of impurities in the waste, in particular the separation of organic and inorganic waste materials. To solve the problem, a generic separator is characterized in that the angles of a group of paddles in one plane are different from the angles of the group of paddles in the adjacent plane. The paddles are twisted about their longitudinal axis running in the radial direction. Their transverse axis then runs at an angle and not parallel to the axis of rotation of the separator shaft. The different interlocking of the paddles creates an air flow that over time drives the impurities that are too large for the holes in the screen basket to an outer point in the housing in relation to the axial direction of the separator shaft, where the impurities can be discharged. The angular position of the paddles can change progressively from one plane to another, so that the angles have the following relationship: αi-1 < αi < αi+1. However, the angular position can also change degressively from one plane to the other, so that the relationship for the angles is: αi-1 > αi > αi+1. When the longitudinal axis of the separator shaft is in the vertical direction, the progressive twisting of the paddles has the advantage that the waste stays longer in the lower part of the machine and is highly shredded. Only over time are the impurities accelerated and ejected. Practical tests have shown that this geometry delivers optimal results for fruits with a hard skin, such as citrus fruits. In the case of a degressive twist, the waste remains in the lower part of the separator for a shorter period of time, so that good shredding is initially achieved. Due to the decreasing twist towards the top, the lighter impurities (packaging parts) remain longer in the upper part compared to an arrangement with constant twisting of the paddles and can thus be largely freed from the organic matter. Practical tests have shown that this geometry delivers optimal results for plastic packaging. The change in the angles preferably runs continuously and in particular by 5° from plane to plane. In a separator with six groups of paddles or six parallel planes, the angle α1 of all paddles P1 in the lower plane can be E130° in the degressive paddle position and then reduced by 5° from plane to plane, so that in the upper plane E6 the angle is α65°. With the progressive paddle position, this can be realized in reverse, so that the angle α1 in the lower plane is E15° and the angle α6 in the uppermost plane is E630°. The angles of the paddles are preferably adjustable and in particular preferably steplessly adjustable. However, they can also be optimized for a specific waste composition and thus permanently installed. In a group Gi, the angles αi are preferably identical for all paddles Pi. All paddles Pi in the same plane Ei count as a group Gi. At least three paddles Pi are preferably arranged at a regular distance from one another in a group Gi. In order to increase the efficiency of the separator, air or water can be fed into the housing from the outside. Exemplary embodiments of the invention are to be explained in more detail below with the aid of a drawing. They show: FIG. 1 - the structural representation of a separator; FIG. 2 shows the functional representation of the separator according to FIG. 1; FIG. 3 shows a schematic representation of a first exemplary embodiment of the separator with a degressive paddle position; Figure 4 - a schematic representation of a second embodiment of the separator with progressive paddle position. Figure 1 shows the structural representation of a vertical separator, which consists of the cylindrical housing 1, the screen basket 3 arranged concentrically thereto and the concentrically arranged separator shaft 2 extending in the longitudinal direction of the housing, on which paddles (P1, P2, P3, P4, P5, P6) are arranged. The separator shaft 2 is driven by an electric motor, not shown, so that the paddles Pi rotate in the housing 1 . A cylinder gap 4 is formed between the inner wall of the housing 1 and the outer wall of the screen basket 3 . The paddles P1 to P6 are arranged in mutually regularly spaced planes E1, E2, E3, E4, E5, E6. In each plane E1, four paddles Pi are spaced apart from each other at an angle of 90° and combined into a group Gi. FIG. 2 explains the function of the separator. In the lower area of the separator, the waste 9 consisting of organic substances and additives is fed in via the inlet 5 . By rotating the paddle Pi, it is guided upwards in a vertical direction over the individual levels Ei. The organic waste is pushed radially outwards through the holes 3.1 in the screen basket 3 into the cylinder space 4 and reaches there downwards into the collection container 6 and can be drawn off from the outlet 7 as a substrate 10. The additives 11, in particular packaging materials (paper, plastic) are conveyed out of the outlet 8 in the upper area. FIG. 3 schematically illustrates the mode of operation of the separator when the paddle position is degressive. The planes E 1 to E 6 are spaced parallel to one another, with the distance between the individual planes E i not necessarily having to be the same. In each plane E 1 , ..., E 6 four paddles P 1 , P 2 , P 3 , P 4 , P 5 , P 6 are arranged at an angle of 90° to each other and together form a group G 1 in each plane, G2 , G3 , G4 , G5 , G6 . . In the direction of their transverse axis Q i , the paddles P i are inclined by an angle α i relative to the longitudinal axis R i running perpendicular to the axis of rotation of the separator shaft 2 . In the lower plane E 1 the angle of inclination is α 1 = 30°, in the second plane E 2 the angle is α 2 = 25°, in the third plane E 3 the angle is α 3 = 20°, in the fourth plane E 4 is the angle α 4 = 15 °, in the fifth plane E 5 is the angle α 5 = 10 °, in the top level E6 is the angle α 6 = 5 °. The angle αi from one plane Ei to the next plane Ei+1 preferably decreases steadily. The five degree decrease from level to level specified herein is preferred. But in itself it can be arbitrary. Steps of 10° are also conceivable. Since at least two levels E1 and E2 are required for the function of the separator, the degree of decrease in the position αi of the paddles Pi from one level Ei to the last level Ei+n can be between 1° and 89°. There must therefore be an entanglement of the paddles Pi and their transverse direction (transverse axis) must not run parallel to the axis of rotation of the separator shaft 2 . The paddles Pi protruding to the left and right of the separator shaft 2 in the figures can be seen in the side view and the middle paddle Pi can be seen in the top view. FIG. 4 schematically shows a vertical separator with a progressive paddle position. In principle, the same applies here as to the degressive paddle position. The planes E1 to E6 are spaced parallel to one another, with the distance between the individual planes Ei not necessarily having to be the same. Four paddles P1, P2, P3, P4, P5, P6 are arranged at an angle of 90° to each other in each level E1, ..., E6 and together form a group G1, G2, G3, G4, G5, G6 in each level .. In the direction of their transverse axis Qi, the paddles Pi are inclined at an angle αi relative to the longitudinal axis Ri. In the lower plane E1, the angle of inclination is α1 = 5°, in the second plane E2, the angle is α2 = 10°, in the third plane E3, the angle is α3 = 15°, in In the fourth plane E 4 the angle is α 4 =20°, in the fifth plane E 5 the angle is α 5 =25°, in the top plane E 6 the angle is α 6 =30°. The increase in angle α i from one level E i to the next higher level E i+1 is preferably continuous. The five degree increase from level to level specified herein is preferred. But in itself it can be arbitrary. Steps of 10° are also conceivable. Since at least two levels E 1 and E 2 are required for the function of the separator, the degree of increase in the position α i of the paddles P i from one level E i to the last level E i+n can be between 1° and 89°. Otherwise, the same applies to this embodiment with a progressive paddle position as in the embodiment with a degressive paddle position.
Bezugszeichenliste 1 Gehäuse 2 Separatorwelle 3 Siebkorb 3.1 Loch 4 Zylinderspalt 5 Einlass 6 Sammelbehälter 7 Auslass 8 Auslass 9 Abfall 10 Substrat 11 Zusatzstoff αi Winkel α1 Winkel α2 Winkel α3 Winkel α4 Winkel α5 Winkel α6 Winkel Ei Ebene E1 Ebene E2 Ebene E3 Ebene E4 Ebene E5 Ebene E6 Ebene Gi Gruppe G1 Gruppe G2 Gruppe G3 Gruppe G4 Gruppe G5 Gruppe G6 Gruppe Pi Paddel P1 Paddel P2 Paddel P3 Paddel P4 Paddel P5 Paddel P6 Paddel Qi Querachse Q1 Querachse Q2 Querachse Q3 Querachse Q4 Querachse Q5 Querachse Q6 Querachse Ri Längsachse R1 Längsachse R2 Längsachse R3 Längsachse R4 Längsachse R5 Längsachse R6 Längsachse LIST OF REFERENCE NUMERALS 1 housing 2 separator shaft 3 screen basket 3.1 hole 4 cylinder gap 5 inlet 6 collection container 7 outlet 8 outlet 9 waste 10 substrate 11 additive αi angle α1 angle α2 angle α3 angle α4 angle α5 angle α6 angle E1 plane E1 plane E2 plane E3 plane E4 plane E 5 plane E 6 plane G i group G 1 group G 2 group G 3 group G 4 group G 5 group G 6 group P i paddle P 1 paddle P2 paddle P3 paddle P4 paddle P5 paddle P6 paddle Qi transverse axis Q1 transverse axis Q2 transverse axis Q3 Transverse axis Q4 Transverse axis Q5 Transverse axis Q6 Transverse axis Ri Longitudinal axis R1 Longitudinal axis R2 Longitudinal axis R 3 Longitudinal axis R 4 Longitudinal axis R 5 Longitudinal axis R 6 Longitudinal axis

Claims

Patentansprüche 1. Separator mit einem Gehäuse (1), einer in einer Längsrichtung (L) des Gehäuses (1) antreibbar gelagerten Separatorwelle (2), einem die Separatorwelle (2) konzentrisch umgebenden Siebkorb (3) und einer Mehrzahl an der Separatorwelle (2) angeordneten Paddel (Pi), die sich radial zum Siebkorb (3) hin erstrecken und in Gruppen (Gi) in parallelen Ebenen (Ei) zueinander beabstandet sind, wobei die Querachse (Qi) eines Paddels (Pi) gegenüber der Längssachse (Ri) des Paddels (Pi) in einem Winkel (αi) verläuft, dadurch gekennzeichnet, dass die Winkel (αi) einer Gruppe (Gi) Paddel (Pi) in einer Ebene (Ei) gegenüber den Winkeln (αi-1), (αi+1) der Gruppe (Gi-1), (Gi+1) in der benachbarten Ebene (Ei-1), (Ei+1) unterschiedlich sind. Claims 1. Separator with a housing (1), a separator shaft (2) drivably mounted in a longitudinal direction (L) of the housing (1), a screen basket (3) concentrically surrounding the separator shaft (2) and a plurality on the separator shaft (2 ) arranged paddles (P i ), which extend radially towards the screen basket (3) and are spaced apart from one another in groups (G i ) in parallel planes (E i ), the transverse axis (Q i ) of a paddle (P i ) being opposite the longitudinal axis (R i ) of the paddle (P i ) at an angle (α i ), characterized in that the angles (α i ) of a group (G i ) paddles (P i ) in a plane (E i ) opposite the angles (α i-1 ), (α i+1 ) of the group (Gi-1), (Gi+1) in the adjacent plane (Ei-1), (Ei+1) are different.
2. Separator nach Anspruch 1, dadurch gekennzeichnet, dass für die Winkel die Beziehung gilt: αi-1 < αi < αi+1. 2. Separator according to claim 1, characterized in that the relationship applies to the angles: αi-1<αi<αi+1.
3. Separator nach Anspruch 1, dadurch gekennzeichnet, dass für die Winkel die Beziehung gilt: αi-1 > αi > αi+1. 3. Separator according to claim 1, characterized in that the relationship applies to the angles: αi-1>αi>αi+1.
4. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Gehäuse (1) und dem Siebkorb (3) ein Zylinderspalt (4) ausgebildet ist. 4. Separator according to one of the preceding claims, characterized in that between the housing (1) and the screen basket (3) a cylinder gap (4) is formed.
5. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Längsachse (V) der Separatorwelle (2) in Vertikalrichtung verläuft. 5. Separator according to one of the preceding claims, characterized in that the longitudinal axis (V) of the separator shaft (2) runs in the vertical direction.
6. Separator nach einem der vorstehenden Ansprühe, dadurch gekennzeichnet, dass das Gehäuse (1) kegelstumpfförmig ausgebildet ist. 6. Separator according to one of the preceding claims, characterized in that the housing (1) is designed in the shape of a truncated cone.
7. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Winkel (αi) einstellbar sind. 7. Separator according to one of the preceding claims, characterized in that the angles (α i ) are adjustable.
8. Separator nach Anspruch 7, dadurch gekennzeichnet, dass die Winkel (αi) stufenlos einstellbar sind. 8. Separator according to claim 7, characterized in that the angles (α i ) are continuously adjustable.
9. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Winkel (αi) in einer Gruppe (Gi) für alle Paddel (Pi) identisch sind. 9. Separator according to one of the preceding claims, characterized in that the angles (αi) in a group (Gi) are identical for all paddles (Pi).
10. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in das Gehäuse (1) von außen Luft und/oder Wasser zuführbar ist. 10. Separator according to one of the preceding claims, characterized in that air and/or water can be fed into the housing (1) from the outside.
11. Separator nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in jeder Gruppe (Gi) einer Ebene (Ei) mindestens drei Paddel (Pi) vorgesehen sind. 11. Separator according to one of the preceding claims, characterized in that in each group (Gi) of a plane (Ei) at least three paddles (Pi) are provided.
EP21704534.3A 2021-02-10 2021-02-10 Separator, in particular for separating organic waste and additives Active EP4255637B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/053224 WO2022171277A1 (en) 2021-02-10 2021-02-10 Separator, in particular for separating organic waste and additives

Publications (2)

Publication Number Publication Date
EP4255637A1 true EP4255637A1 (en) 2023-10-11
EP4255637B1 EP4255637B1 (en) 2024-06-05

Family

ID=74587064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21704534.3A Active EP4255637B1 (en) 2021-02-10 2021-02-10 Separator, in particular for separating organic waste and additives

Country Status (2)

Country Link
EP (1) EP4255637B1 (en)
WO (1) WO2022171277A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB372760A (en) * 1930-12-11 1932-05-11 Horace Waring Improvements in or relating to the drying and/or filtration of mixtures of liquids and solids
US4440635A (en) * 1979-03-29 1984-04-03 Haigh M. Reiniger Process and apparatus for the recovery of cellulose fibers from paper-plastic mixtures
EP1350569B1 (en) 2002-04-03 2014-06-25 Anton Berger Waste separation apparatus
DE10308500A1 (en) * 2003-02-26 2004-09-23 Der Grüne Punkt - Duales System Deutschland Ag Dry, damage-free removal of labels from hollow plastic products, particularly containers, involves passing containers between a drum and stator where various forces are applied for complete label removal
ITVI20080302A1 (en) * 2008-12-19 2010-06-20 Luciano Zoia CENTRIFUGAL SEPARATOR OF BESC WASTE
CH706451A2 (en) 2012-04-27 2013-10-31 Anton Berger Hybag Automationen Ag Strainer made of composite metal.

Also Published As

Publication number Publication date
EP4255637B1 (en) 2024-06-05
WO2022171277A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
EP2977106B1 (en) Method and device for large-scale processing of biomass
DE19608703A1 (en) Plastic recovered from industrial waste of plastic film and method and device for recovering plastic from industrial waste from plastic film
DE2800283A1 (en) SCREEN DRUM FOR SORTING RECYCLABLE PACKAGING MATERIAL
DE2503621C3 (en) Shredding device with toothed disc
EP2945788B1 (en) Device and method for removing impurities from shredded plastic
DE2440345A1 (en) DEVICE FOR SORTING WASTE
DE2730978A1 (en) CRUSHING DRUM FOR DETACHING CELLULOSIC MATERIALS
DE3105597C2 (en) Waste treatment
DE2713054A1 (en) METHOD AND DEVICE FOR WASTE PROCESSING
DE2928471C2 (en) Machine for shredding lumpy objects
DE2005252B2 (en) Waste shredder
DE102014004492A1 (en) Production of biogas from straw
EP3895806A1 (en) Method and device for cmomminuting solid materials
EP4255637B1 (en) Separator, in particular for separating organic waste and additives
EP1350569B1 (en) Waste separation apparatus
DE102006006703A1 (en) Treatment of contaminated waste residue from recycled paper pulping involves continuous grinding in a hammer mill with simultaneous centrifugal fiber removal through a sieve
DE202015007990U1 (en) Pulper-dissolving device in rotary drum design
DE3807017C2 (en)
EP0824966B1 (en) Crushing device as well as crusher for solid or pasty waste in a liquid
DE3731634C2 (en)
DE102006031904B3 (en) Paper pulping assembly for paper recovery and recycling has rotor surrounded by ring
CH674162A5 (en)
WO1995002465A1 (en) Device for processing mixtures of recyclable materials
DE4328687A1 (en) Shredder operating by the rotary-shears principle
DE202016106372U1 (en) Chopping device for the treatment of biomass material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20240108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED