EP4241003A1 - Flexible fluid transport pipe and associated methods - Google Patents

Flexible fluid transport pipe and associated methods

Info

Publication number
EP4241003A1
EP4241003A1 EP21799307.0A EP21799307A EP4241003A1 EP 4241003 A1 EP4241003 A1 EP 4241003A1 EP 21799307 A EP21799307 A EP 21799307A EP 4241003 A1 EP4241003 A1 EP 4241003A1
Authority
EP
European Patent Office
Prior art keywords
sealing layer
flexible pipe
composite
layer
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21799307.0A
Other languages
German (de)
French (fr)
Inventor
Alexandre DAMIENS
Thomas EPSZTEIN
Marcelo MIYAZAKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TechnipFMC Subsea France SAS
Original Assignee
TechnipFMC Subsea France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TechnipFMC Subsea France SAS filed Critical TechnipFMC Subsea France SAS
Publication of EP4241003A1 publication Critical patent/EP4241003A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2271/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • B29L2023/006Flexible liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to a subsea flexible pipe intended for the transport of fluids comprising, from the inside to the outside:
  • At least one tensile armor ply not linked to the sealing layer, the at least one tensile armor ply comprising at least one armor element wound around the sealing layer;
  • the tubular structure is for example a layer of composite material of a flexible pipe for transporting fluid through a body of water.
  • Flexible pipes of the aforementioned type are used in particular in deep water in the oil and gas industry as well as in the renewable energy industry. Typically, they are used for the transport of hydrocarbon fluids, the reinjection of carbon dioxide into an underwater reservoir or for the transport and distribution of hydrogen produced at sea. through a stretch of water between a surface assembly and a bottom assembly. These pipes can also extend between two sets of surfaces.
  • the bottom assembly is intended to collect the fluid exploited at the bottom of the body of water.
  • the surface assembly is generally floating. It is intended to collect, potentially process, and distribute fluid.
  • the surface assembly can be a semi-submersible platform, an FPSO or another floating assembly.
  • the flexible pipe has a length greater than 800 m, even greater than 1000 m or 2000 m for ultra-deep water applications.
  • the flexible pipe is sized to withstand a very high hydrostatic pressure, for example 200 bar for a submerged pipe at a depth of 2000 m.
  • the flexible pipe is generally dimensioned to resist an axial tension greater than the total weight of the flexible pipe suspended from a surface assembly and extending underwater from the surface to the seabed. This is particularly the case when the flexible pipe is used as a riser (“riser” in English) intended to ensure, in service, a vertical connection between the seabed and the surface assembly.
  • riser riseriser
  • the capacity of the flexible pipe to support its own weight when it is suspended in water makes it possible in particular to facilitate its installation at sea from a laying vessel.
  • flexible pipes which are both light and very resistant to external hydrostatic pressure. It is also preferable that the flexible lines be resistant to the internal pressures encountered in production. It is also advantageous that the flexible pipes have excellent resistance to fatigue, in particular to endure the multiple cycles of displacement of the pipe under the effect of the movements of the body of water and of the entire surface.
  • tubular reinforcing structure consists of a composite material with a thermoplastic matrix, for example a composite material comprising a PEEK (polyetheretherketone) matrix reinforced with carbon fibers.
  • PEEK polyetheretherketone
  • Such pipes are known as "Thermoplastic Composite Pipe” (TCP) and are described in particular in the normative document DNVGL- ST-F1 19, “Standard Practice - Thermoplastic composites pipes”, published in September 2019 by DNV GL (Det Norske Veritas GL).
  • TCP flexible pipes generally comprise, from the inside out, a tubular internal sealing sheath made of polymer material (“polymer liner”, in English language), a tubular reinforcing structure made of composite material and an external sheath (“cover”). in English language) protection in polymeric material.
  • the tubular reinforcement structure being theoretically sealed, the tubular internal sheath is optional.
  • most of these flexible pipes include a tubular internal sheath in order to guarantee the tightness of the pipe in the event that the tubular reinforcing structure presents a manufacturing defect affecting its tightness.
  • the presence of the tubular inner sheath facilitates the manufacture of the flexible pipe TCP. Indeed, this first layer then forms a central core on which one comes to bear to roll up the plurality of composite laminates forming the tubular reinforcing structure.
  • the tubular reinforcing structure is typically glued or welded to the tubular inner sheath in order to prevent the tubular inner sheath from collapsing during rapid decompression of the pipe transporting hydrocarbons in the gas phase.
  • the outer protective sheath is optional but when it is present, it is advantageously glued or welded to the tubular reinforcement structure, the assembly thus forming a flexible pipe TCP with a totally completely bonded structure.
  • TCP pipes are marketed in particular by the companies Magma Global Ltd (TCP registered trademark m-pipe®) and Airborne Oil & Gas B.V. .
  • tubular reinforcing structure consists of a composite material with a thermosetting matrix, for example a composite comprising an epoxy resin matrix reinforced with glass fibers.
  • thermosetting matrix for example a composite comprising an epoxy resin matrix reinforced with glass fibers.
  • hybrid flexible pipes which have an intermediate structure between that of TCP flexible pipes and that of flexible pipes of the unbonded type.
  • These pipes comprise, from the inside outwards, an internal tubular sealing sheath, a tubular reinforcing structure made of composite material, at least one ply of tensile armor and an external sheath.
  • the tubular reinforcing structure is advantageously made of a composite material with a thermoplastic matrix, but it is also possible to use a thermosetting matrix.
  • the reinforcing tubular structure is advantageously welded or glued to the tubular inner sheath.
  • the tensile armor plies or plies are similar to those of unbonded type flexible pipes, that is to say they consist of helically wound wires.
  • these pipes may comprise an internal carcass located inside the internal sealing sheath, said internal carcass having the function of increasing the resistance to crushing (“collapse” in English) of the pipe.
  • the internal carcass is formed for example of a profiled metal strip, wound in a spiral.
  • the coils of the strip are advantageously stapled to each other, which makes it possible to take up the crushing forces.
  • the tubular reinforcement structure comprises a tube made of composite material and has both the function of a pressure vault arranged outside a tubular internal sheath and of a carcass arranged inside the tubular internal sheath , that is to say that it generally takes up most of the radial forces applied to the pipe.
  • the tubular reinforcing structure linked to the internal tubular sealing sheath, also has a gas barrier function, such as the acid gases of the H 2 S and CO 2 type contained in the hydrocarbon fluids transported to the inside the internal tubular sealing sheath. It thus makes it possible to protect the metallic reinforcing elements of the flexible pipe against corrosion phenomena.
  • the critical pressure from which water is likely to infiltrate into the hybrid flexible pipe, as well as the quantity of water which can infiltrate therein, depend on the quality of the bonding on the one hand between the different layers of the flexible pipe and on the other hand between the thermoplastic matrix and the reinforcing material, within the tubular reinforcing structure.
  • An object of the invention is therefore to obtain a hybrid flexible pipe having a composite structure that is intact over time, in particular at high hydrostatic pressure.
  • the subject of the invention is a flexible pipe of the aforementioned type, in which the thickness of the sealing layer is less than 15 mm.
  • the flexible pipe according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
  • the sealing layer has a water permeability coefficient of less than 2.10-4 cm 3 (STP).cm -2 .s' 1 .bar 1 ;
  • the composite reinforcement structure comprises a winding of at least two laminated reinforcing layers, each reinforcing layer being made from a thermoplastic matrix reinforced with reinforcing fibers;
  • the reinforcement layer is made from a thermoplastic polyetheretherketone (PEEK) matrix reinforced with carbon fibers;
  • PEEK thermoplastic polyetheretherketone
  • the sealing layer is devoid of reinforcing materials
  • the sealing layer is formed by rolling up at least two strips of a thermoplastic material and by welding the at least two strips together;
  • the thickness of the sealing layer is less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm;
  • the sealing layer is formed from a tubular sheath of extruded thermoplastic material; - when the sealing layer is formed from a tubular sheath of extruded thermoplastic material, the thickness of the sealing layer is from 3 to 15 mm, preferably from 3 mm to 10 mm;
  • the sealing layer is bonded to the composite reinforcement structure
  • the waterproofing layer is not linked to the composite reinforcement structure
  • the sealing layer is made from a thermoplastic material selected from polyolefins, polyamides, fluoropolymers, thermoplastic elastomers, polyaryletherketones, copolymers thereof, any of their mixtures and mixtures comprising them, preferably from polyaryletherketones;
  • the sealing layer is made from the same thermoplastic material as that used for the thermoplastic matrix of each reinforcing layer of the composite reinforcing structure, advantageously from polyetheretherketone (PEEK).
  • PEEK polyetheretherketone
  • the invention also relates to a process for manufacturing a flexible pipe comprising the following steps:
  • the at least one ply of tensile armor comprising at least one armor element wrapped around the sealing layer;
  • an external sealing sheath arranged around the at least one ply of tensile armor; in which the thickness of the sealing layer is less than 15 mm.
  • the method according to the invention may comprise one or more of the following characteristics, taken in isolation:
  • the sealing layer is formed by winding around the composite reinforcement structure at least two strips of a thermoplastic material, and welding the at least two strips together;
  • the formation of the sealing layer is carried out by extruding a thermoplastic material on the composite reinforcement structure.
  • Figure 1 is a partially cutaway perspective view of a flexible pipe according to the invention.
  • a flexible pipe 10 according to the invention is schematically illustrated in Figure 1.
  • the flexible pipe 10 comprises a central section 12 partly illustrated in FIG. 1. It comprises, at each of the axial ends of the central section 12, an end fitting (not shown).
  • the flexible pipe 10 according to the invention is not limited to a certain category of end fittings. Examples of end fittings that can be used with the flexible pipes 10 of the invention are described in WO 2019/068757.
  • the pipe 10 delimits an internal passage 13 for the circulation of a fluid, advantageously a petroleum fluid.
  • the internal passage 13 extends along an axis A-A', between the upstream end and the downstream end of the pipe 10. It opens through the end pieces (not shown).
  • the flexible pipe 10 is intended to be laid across a body of water 14 in a fluid exploitation installation, in particular hydrocarbons.
  • the expanse of water 14 is, for example, a sea, a lake or an ocean.
  • the depth of the expanse of water 14 to the right of the fluid exploitation installation is for example between 500 m and 4000 m.
  • the installation comprises a surface assembly and a bottom assembly (not shown) or two surface assemblies which are advantageously connected together by the flexible pipe 10.
  • the surface assembly is, for example, floating. It is advantageously formed by a floating production, storage and offloading unit called FPSO (“Floating Production, Storage and Offloading” in English), a floating unit dedicated to liquefied natural gas called FLNG (“Floating Liquified Natural Gas” in English). English language), a semi-submersible platform or an offloading buoy.
  • FPSO floating Production, Storage and Offloading
  • FLNG floating Liquified Natural Gas
  • the surface assembly is a fixed rigid structure of the “jacket” type or an oscillating structure fixed to the bottom of the sea, which can for example be a TLP (“Tension Leg Platform”).
  • the flexible pipe 10 connects the bottom assembly to the surface assembly.
  • the flexible pipe 10 is therefore partially submerged in the expanse of water 14 and has an upper end placed in a volume of air.
  • the flexible pipe 10 is completely submerged in the body of water 14 and connects, for example, two bottom assemblies (not shown) to each other.
  • Another variant consists of a flexible pipe 10 partially submerged in the body of water 14 and connecting for example two surface assemblies (typically an unloading buoy and an FPSO). This is particularly the case for flexible lines of the OOL (Oil Offloading Line) type.
  • OOL Olet Offloading Line
  • the pipe 10 delimits a plurality of concentric layers around the axis A-A′, which extend continuously along the central section 12 up to the end pieces located at the ends of the pipe.
  • the pipe 10 comprises at least one internal tubular sheath 20 based on polymer material advantageously constituting an internal sealing sheath, a composite structure of tubular reinforcement 21, applied around the tubular sheath 20 in being bonded thereto, and a sealing layer 22, applied around the composite reinforcing structure 21.
  • the pipe 10 has no internal tubular sheath 20, the composite reinforcing structure 21 then being sealed and ensuring the sealing function.
  • the pipe 10 further comprises in this example a plurality of tensile armor plies 24, 25 arranged externally with respect to the sealing layer 22, being unrelated to the sealing layer 22.
  • the pipe 10 further comprises anti-wear layers 26, interposed between the sealing layer 22 and the tensile armor plies 24, 25, as well as between the plies of tensile armor 24, 25.
  • the anti-wear layers 26 consist of one or more strips of thermoplastic material wound along the axis (A-A') but which are not welded together , unlike the sealing layer 22. These anti-wear layers 26 are therefore not sealed.
  • the pipe 10 also advantageously comprises a reinforcing tape 28, wrapped around the tensile armor plies 24, 25 and an outer sheath 30, intended for the mechanical protection and sealing of the pipe 10.
  • the tubular sheath 20 is intended to seal the fluid transported in the passage 13 in a sealed manner.
  • the tubular sheath 20 also has the function of protecting the composite reinforcing structure 21 against abrasion linked to the presence of abrasive particles. , for example sand, within the fluid transported in the passage 13.
  • the tubular sheath 20 is formed from a polymer material, preferably thermoplastic.
  • the polymer forming the tubular sheath 20 is chosen from a polyolefin such as polyethylene, a polyamide such as PA11 or PA12, or a fluorinated polymer such as polyvinylidene fluoride (PVDF) or copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
  • a polyolefin such as polyethylene
  • a polyamide such as PA11 or PA12
  • a fluorinated polymer such as polyvinylidene fluoride (PVDF) or copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
  • the tubular sheath 20 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide), LCPs (polymers liquid crystals), PPA (polyphthalamide), copolymers thereof, and/or mixtures thereof or a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE ( perfluoropolyether).
  • PEK polyetherketone
  • the tubular sheath 20 may for example comprise a mixture of polyaryletherketone and a polysiloxane, such as those described in application WO 2019/150060.
  • the tubular sheath 20 comprises at least 50% by mass of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass, even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the tubular sheath 20.
  • the tubular sheath 20 consists of one of the polymers defined above or of one of the mixtures defined above and fillers and/or additives.
  • the thickness of the tubular sheath 20 is for example between 1 mm and 20 mm.
  • the tubular sheath 20 is formed of a tube of polymer material, of a strip of assembled polymer material, or of an impregnated polymer mat.
  • tubular sheath 20 is formed of a tube, it is advantageously obtained by extrusion of a thermoplastic tube chosen in particular from the polymers mentioned above.
  • the tubular sheath 20 is formed from a strip of assembled polymer material, it is advantageously produced by extrusion and winding of thermoplastic strips of a polymer as described above.
  • the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two lower adjacent bands ensuring the sealing of the tubular sheath 20.
  • the flexible pipe 10 has no internal carcass, it is designated by the English term “smooth bore”.
  • the internal surface of the tubular sheath 20 directly delimits the internal passage 13.
  • the composite reinforcement structure 21 is applied directly to the tubular sheath 20. It is assembled on the tubular sheath 20 to form a bonded assembly with the tubular sheath 20.
  • the composite reinforcement structure 21 comprises at least one, preferably a plurality of laminated composite reinforcement layers, and optionally, an anti-delamination layer interposed between at least two reinforcement layers.
  • Each laminated reinforcement layer comprises a superposition of composite reinforcement layers.
  • each composite reinforcement layer comprises a polymer matrix 40 and reinforcing fibers 42 embedded in the matrix 40.
  • the matrix 40 is formed from a polymer, in particular from a thermoplastic polymer.
  • the polymer of the tubular sheath 20 is advantageously of the same nature as that of the matrix 40.
  • the polymer of the tubular sheath 20 and the polymer of the matrix 40 are capable of melting and forming an intimate mixture, without phase separation, after cooling.
  • the polymer forming the matrix 40 is chosen from a polyolefin such as polyethylene, a polyamide such as PA11 or PA12, or a fluorinated polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride copolymers and polyhexafluoropropylene (PVDF-HFP).
  • a polyolefin such as polyethylene
  • a polyamide such as PA11 or PA12
  • a fluorinated polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride copolymers and polyhexafluoropropylene (PVDF-HFP).
  • the matrix 40 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide) LCPs (polymer crystals liquids), PPA (polyphthalamide), copolymers of these and/or mixtures thereof or else a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether).
  • PEK polyetherketone
  • PEEK poly
  • the matrix 40 can for example comprise a mixture of polyaryletherketone and a polysiloxane, for example such as those described in application WO2019/150060.
  • the matrix 40 comprises at least 50% by weight of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass, even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the matrix 40.
  • the matrix 40 consists of one of the polymers defined above or of one of the mixtures defined above and fillers and/or additives.
  • the reinforcing fibers 42 are for example carbon fibers, glass fibers, aramid fibers, and/or basalt fibers.
  • the reinforcing fibers 42 generally have a maximum tensile strength greater than 2 GPa, advantageously greater than 3 GPa and comprised for example between 3 GPa and 6 GPa, as measured at 23° C. according to Standard ASTM D885M - 10A (2014 )e1.
  • maximum tensile strength and “tensile strength” have the same meaning and designate the ultimate tensile strength measured during a test. of traction.
  • the reinforcing fibers 42 advantageously have a tensile modulus greater than 50 GPa, for example between 70 GPa and 500 GPa, in particular between 50 GPa and 100 GPa for glass fibers, between 100 GPa and 500 GPa for carbon fibers and between 50 GPa and 200 GPa for aramid fibers, as measured at 23°C according to Standard ASTM D885M - 10A(2014)e1.
  • tensile modulus In the present application, the terms "tensile modulus”, “Young's modulus” and “tensile modulus of elasticity” have the same meaning and designate the modulus of elasticity measured during a tensile test.
  • the density of the reinforcing fibers 42 is generally between 1.4 g/cm3 and 3.0 g/cm3.
  • the reinforcing fibers 42 are for example arranged, for each of the composite reinforcing layers, unidirectionally in the matrix 40. They are then parallel to each other. As a variant, the reinforcing fibers 42 are crossed in two orthogonal directions, or else are arranged randomly in the matrix (not shown).
  • the length of the reinforcing fibers 42 in each composite layer is greater than 100 m, and is in particular between 100 m and 4500 m.
  • the diameter of the composite fibers is for example less than 100 microns, and is in particular between 4 microns and 10 microns.
  • each composite reinforcement layer is formed from a winding of at least one composite strip 44 having several layers of fibers 42 embedded in an elongated matrix 40, of length greater than at least 10 times its width and at least 10 times its thickness.
  • each composite strip 44 is greater than 100 m and is between 100 m and 4500 m.
  • the width of each composite band 44 is between 6 mm and 50 mm.
  • the thickness of each composite band 44 is between 0.1 mm and 1 mm.
  • Each composite strip 44 thus has, at 23° C., a tensile modulus greater than 10 GPa, in particular between 30 GPa and 170 GPa, as measured by Standard NF EN 2561, January 1996, an elongation at break greater than 1 %, in particular between 1% and 5%, as measured by Standard NF EN 2561, January 1996, and a maximum tensile strength greater than 100 MPa, and in particular between 350 MPa and 3500 MPa as measured by the Standard NF EN 2561, January 1996.
  • each reinforcement layer the or each composite strip 44 is wound helically around the axis A-A' of the tubular sheath 20, and is heated to cause the partial melting of the matrix 40, and the connection with the successive turns of the composite strip 44, and/or with the adjacent layers which may be other reinforcing layers, anti-delamination layers or the tubular sheath 20.
  • the absolute value of the winding helix angle p of each composite strip 44 with respect to the axis A-A' of the pipe 10 is for example between 55° and 85°. This ensures elongation of the composite under the effect of internal pressure, and adequate cooperation with the armor layers 24, 25.
  • each composite layer is generally between 0.10 mm and 10 mm, for example between 0.12 mm and 7 mm, or between 0.22 mm and 5 mm.
  • the sealing layer 22 is intended to confine the composite reinforcing structure 21 in leaktight manner. sealing 22, the layer 22 has the function of limiting, preferably of preventing, the contact between the infiltrated water and the composite reinforcement structure 21 .
  • the sealing layer 22 can be bonded or unbonded to the composite reinforcement structure 21 .
  • the permeability of the sealing layer depends on the material chosen for its production as well as the temperature to which the layer is subsequently exposed.
  • the water permeability of the polymer materials that may be suitable for producing the sealing layer 22 is between 1x10 -7 cm 3 (STP).cm -1 .s' 1 .bar 1 and 2x10 -5 cm 3 ( STP).cm -1 .s -1 .bar 1 . Therefore, for a thickness of sealing layer 22 of between 1 mm and 20 mm, the water permeability of the layer is 5 ⁇ 10 -8 cm 3 (STP).cm -2 .s' 1 .bar 1 at 2x10 -4 cm 3 (STP).cm -2 .s' 1 .bar 1 .
  • permeability of the sealing layer 22 is meant in the sense of the invention the ability of said sealing layer 22 as a whole to allow water to pass through.
  • the permeability of the sealing layer may be different from the permeability of the material constituting the layer, in particular due to the presence of any discontinuities or faults in the sealing layer which would facilitate the passage of water or because the layer sealing is made on the basis of a discontinuous structure like a wound strip.
  • the permeability of the sealing layer is clearly understood here as that of the layer as a whole, including the material and any interstices or interfaces between the discontinuous regions forming the layer.
  • the permeability measurement refers to the permeability of the sealing layer as a whole, as it is present in the flexible pipe 10 of the invention.
  • the water permeability of the material constituting the sealing layer 22 can be measured by the weight loss technique. This method for measuring the permeability of a liquid is described in particular in the publication “Emmanuel RICHAUD, Bruno FLACONN ⁇ CHE, Jacques VERDU - Biodiesel permeability in polyethylene - Polymer Testing - Vol. 31, p.170-1076 - 2012. Knowing the water permeability of the material, it is then possible to calculate the permeability of the sealing layer 22 by applying the following formula:
  • the thickness of the sealing layer 22 (expressed in cm).
  • the sealing layer 22 is formed from a thermoplastic material.
  • the polymer forming the sealing layer 22 is chosen from an optionally crosslinked polyolefin, such as polyethylene or polypropylene; a thermoplastic elastomer (TPE) such as thermoplastic polyurethane (TPE-U or TPU) or styrenic copolymers (TPE-S or TPS) or vulcanized polypropylene and ethylene-propylene-diene (PP-EPDM) copolymers (TPE -V or TPV); a polyamide such as PA11 or PA12; or a fluoropolymer such as polyvinylidene fluoride (PVDF) or else copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
  • TPE thermoplastic elastomer
  • TPE-U or TPU thermoplastic polyurethane
  • TPE-S or TPS styrenic copoly
  • the sealing layer 22 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide ), PEI (polyetherimide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide) LCPs ( liquid crystal polymers), PPA (polyphthalamide) and/or their mixtures or else a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether).
  • PEK polyetherketone
  • PEEK polyetheretherketoneketone
  • the sealing layer 22 may for example comprise a mixture of polyaryletherketone and a polysiloxane, such as those described in application WO2019/150060.
  • the sealing layer 22 comprises at least 50% by mass of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass , even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the sealing layer 22.
  • the sealing layer 22 consists of one of the polymers defined above or of one of the mixtures of these and of fillers and/or additives.
  • the polymer of the sealing layer 22 is advantageously of the same nature as that of the matrix 40, more advantageously of the same nature as that of the matrix 40 and that of the sheath 20.
  • the polymer of the sealing layer 22 and the polymer of the matrix 40, and optionally the polymer of the tubular sheath 20 are capable of melting and forming an intimate mixture, without phase separation, after cooling.
  • the sealing layer 22 is made of a thermoplastic material.
  • the sealing layer 22 is devoid of reinforcing materials.
  • sealing layer 22 is continuous.
  • continuous is meant in the sense of the invention that the structure of the sealing layer 22 is identical at all points.
  • the sealing layer 22 does not include radial through holes which could facilitate the passage of a fluid, in particular water, through the layer.
  • a sealing layer 22 having a closed porosity is thus considered to be homogeneous within the meaning of the invention.
  • the thickness of the sealing layer is for example between 1 mm and 20 mm, preferably it is less than or equal to 15 mm.
  • the sealing layer 22 is formed in one piece from a tubular sheath made of polymer material.
  • the sealing layer 22 is made from a discontinuous structure, for example from a strip of assembled polymer material.
  • the sealing layer 22 is formed of a tubular sheath, it is advantageously obtained by extruding a thermoplastic material around the composite reinforcing structure 21, the material being chosen in particular from the polymers mentioned above.
  • the thickness of the sealing layer 22 is typically from 3 to 15 mm, preferably from 4 mm to 10 mm.
  • the sealing layer 22 is formed from a strip of assembled polymer material, it is advantageously made by winding thermoplastic strips of a polymer as described above, followed by a step of welding the thermoplastic strips.
  • the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two adjacent strips, lower ensuring the sealing of the layer of sealing 22.
  • the thickness of the sealing layer 22 is typically less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm
  • the sealing layer 22 is not linked to the composite reinforcement structure 21 and is devoid of reinforcement materials.
  • the polymer forming the sealing layer 22 is chosen from a polyolefin, optionally crosslinked, such as polyethylene or polypropylene; a TPE thermoplastic elastomer such as thermoplastic polyurethane (TPE-U or TPU) or styrenic copolymers (TPE-S or TPS) or vulcanized polypropylene and ethylene-propylene-diene (PP-EPDM) copolymers (TPE-V or POS); a polyamide such as PA11 or PA12; a fluorinated polymer such as polyvinylidene fluoride (PVDF) or even copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
  • a polyolefin optionally crosslinked, such as polyethylene or polypropylene
  • TPE-U or TPU thermoplastic polyurethane
  • TPE-S or TPS styrenic copolymers
  • the sealing layer 22 is then formed of a tubular sheath obtained by extrusion of a thermoplastic material around the composite reinforcing structure 21 .
  • the sealing layer 22 then has a thickness of typically 3 to 15 mm, preferably 4 mm to 10 mm.
  • the sealing layer 22 is bonded to the composite reinforcing structure 21 and is devoid of reinforcing materials.
  • the sealing layer 22 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide ) LCPs (liquid crystal polymers), PPA (polyphthalamide), copolymers of these and/or mixtures thereof or a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether).
  • sealing layer 22 comprises PEEK (polyetherketone),
  • the polymer of the sealing layer 22 is of the same nature as that of the matrix 40, more advantageously of the same nature as that of the matrix 40 and that of the sheath 20.
  • the sealing layer 22 is then produced by extrusion or by winding thermoplastic strips previously obtained by pultrusion (or extrusion by pulling), typically by winding at least two thermoplastic strips, and the sealing layer 22 has a lower thickness to 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm.
  • the flexible pipe 10 comprises an internal armor ply 24, and an external armor ply 25 around which the outer sheath 30 is arranged.
  • Each layer of armor 24, 25 comprises longitudinal armor elements 50 wound at a long pitch around the axis A-A' of the pipe.
  • long-pitch wound it is meant that the absolute value with respect to the axis A- A' of the helix angle is less than 55°, typically between 25° and 45°, and sometimes between 20 ° and 45°.
  • the weave elements 50 of a first ply 24 are wound generally at an opposite angle relative to the weave elements 50 of a second ply 25.
  • the angle of winding relative to the axis A-A 'of the armor elements 50 of the first ply 24 is equal to + a, a being between 25° and 45°
  • the winding angle relative to the axis A-A' of the armor elements 50 of the second ply 25 placed in contact with the first ply 24 is for example ⁇ a, with a comprised between 25° and 45°.
  • the armor elements 50 are for example formed by metal wires. Alternatively, the armor elements 50 are formed by flat composite yarns or tapes reinforced with carbon fibers.
  • the composite reinforcement structure 21 can have a low tensile strength and tends to elongate under the effect of axial forces, the armor plies 24, 25 take up the axial forces and thus prevent the elongation of the composite reinforcement structure 21 .
  • the tensile armor plies 24, 25 better resist axial compression under the external pressure conditions of the deep sea.
  • the angle a of winding of the armor elements 50 of absolute value comprised between 25° and 55° taken in combination with the angle p of winding of the composite strips 44 of absolute value comprised between 60° and 80° allows compression of the composite reinforcing structure 21, reducing the minimum bending radius (“minimal bending radius” or “MBR”).
  • MRR minimum bending radius
  • the allowable tensile deformation at the upper surface of the tubular assembly formed by the internal sheath 20 and the composite reinforcing structure 21 is greater than 1%. This deformation induces the wrap radius compatible with most fabrication and installation equipment.
  • the outer sheath 30 is intended to prevent the permeation of fluid from the exterior of the flexible conduit 10 to the interior. It is advantageously made of a polymer material, in particular based on a polyolefin, such as polyethylene, based on a polyamide, such as PA11 or PA12, based on a fluorinated polymer such as polyvinylidene fluoride ( PVDF), or based on an elastomeric thermoplastic comprising a polyolefin, such as polyethylene or polypropylene, combined with an elastomer of the type SBS (styrene butadiene styrene), SEBS (styrene ethylene butadiene styrene), EPDM (ethylene propylene diene monomer), polybutadiene, polyisoprene or polyethylene-butylene.
  • a polyolefin such as polyethylene
  • a polyamide such as PA11 or PA12
  • a fluorinated polymer such as
  • the thickness of the outer sheath 30 is for example between 5 mm and 15 mm.
  • Each anti-wear layer 26 is formed, for example, of a polyolefin such as a polyethylene (PE) or a polypropylene (PP), a polyamide such as PA-11 or PA-12, a fluorinated polymer such as polyvinylidene fluoride (PVDF), a polyaryletherketone (PAEK) such as polyetheretherketone (PEEK) or polyetherketoneketone (PEKK), or even a polymer material comprising a sulphonated group such as polysulphone (PSU), polyethersulfone (PES) or polyphenylsulfone (PPSU).
  • An anti-wear layer 26 is placed between the sealing layer 22 and the first tensile armor ply 24.
  • Another anti-wear layer 26 is placed between the armor plies 24, 25, advantageously as indicated in the API Standard 17J, 4th edition May 2014.
  • the reinforcing tape 28 is formed, for example, of an anti-buckling layer of high resistance in order to limit the buckling of the tensile armors 24, 25 in the event that the pipe is subjected to the reverse bottom effect phenomenon.
  • This layer is for example made of aramid.
  • the ribbon is wound around the outermost armor ply 25, between the armor ply 25 and the outer sheath 30, advantageously as indicated in the API 17J Standard, 4th edition May 2014.
  • the method according to the invention comprises the following steps:
  • the sheath 20 is manufactured and/or is provided in the installation.
  • the sheath 20 undergoes a preliminary pre-compaction step.
  • Sheath 20 is then heated to bring its outer surface to a temperature above 100°C, and in particular between 100°C and 350°C.
  • the sheath 20 must have the most cylindrical shape possible.
  • Such a device is for example described in WO 2019/180050.
  • a plurality of reinforcing layers are then formed around sheath 20 from strips 44.
  • a plurality of strips 44 are unwound in parallel around the sheath 20.
  • Guide elements can be used to maintain the strips 44 parallel to each other, with a controlled clearance.
  • the parallel strips 44 are then heated, advantageously to a temperature between 150° C. and 500° C., said temperature depending on the nature of the thermoplastic polymer constituting the matrix 40 of the strips 44.
  • the heating temperature of the strips 44 is advantageously between 350°C and 500°C.
  • the heating temperature of the strips 44 is advantageously between 180° C. and 280° C., preferentially between 200° C. and 250°C. This advantageously leads to the at least partial fusion of the matrix 40.
  • the strips 44 are wound helically around the outer surface defined by the sheath 20.
  • the absolute value of the winding helix angle p of each composite strip 44 with respect to the axis A-A' of the pipe 10 is for example between 50° and 85°, preferably between 55° and 80°. °. This allows the composite reinforcement structure 21 to accommodate radial elongations due to the radial forces generated under the effect of the internal pressure, and adequate cooperation with the armor plies 24, 25.
  • a train of rollers as defined is driven in rotation and is applied to the strips 44 so as to compact them.
  • the successive rollers define a compaction generator which rests on the strips 44.
  • the strips 44 are compacted in a uniform manner, avoiding the disorganization of the fibers 42 present in the matrix 40, while ensuring an effective distribution of the molten material of the matrix 40 to form a composite reinforcing structure 21 which is continuous and sealed.
  • the composite reinforcement structure 21 undergoes a post-compaction step during which the external surface of the composite reinforcement structure 21 is softened by heating, then compacted again by the trains of rotating rollers.
  • the rollers of the roller trains roll in a helical path along the respective strips 44, ensuring minimal disruption of the reinforcing fibers 42.
  • the pre-compaction, tubular structure formation and post-compaction operations are repeated to form several concentric reinforcement layers with other strips 44, as described above.
  • the composite reinforcement structure 21 is thus manufactured layer by layer, each new outer layer having a thickness substantially equal to that of a strip 44. These operations can be repeated several tens of times, in particular when the strip or strips 44 have a thickness significantly less than the final thickness of the wall of the composite reinforcement structure 21 desired.
  • the characteristics of the strips 44 and/or the laying and/or compacting parameters can be modified each time a new layer is added. For example, it is possible to modify the helix angle of the strips 44, in particular to cross the fibers of two superimposed layers.
  • the sealing layer 22 is then formed around the composite reinforcement structure 21 .
  • the sealing layer 22 is formed by extrusion of a thermoplastic chosen from the polymers mentioned above.
  • the thermoplastic material is extruded directly onto the composite reinforcing structure 21 .
  • the thickness of the sealing layer 22 is typically from 3 to 15 mm, preferably from 3 mm to 10 mm.
  • the sealing layer 22 is formed by winding around the composite reinforcing structure 21 thermoplastic strips of a polymer as described above, followed by welding of the strips.
  • the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two lower adjacent bands ensuring the sealing of the tubular sheath 20.
  • the strips 44 forming the composite reinforcing structure 21 and the thermoplastic strips forming the sealing layer 22 are wound with the same winding angle relative to the axis AA' of the pipe 10.
  • the absolute value of the The winding helix angle of each composite strip 44 and of each thermoplastic strip with respect to the axis A-A' of the pipe 10 is for example between 50° and 85°, preferably between 55° and 80°.
  • the sealing layer 22 is obtained by winding at least two thermoplastic strips around the composite reinforcing structure 21 .
  • Thermoplastic tapes are typically prepared by extruding the thermoplastic material.
  • the sealing layer 22 is a two-layer arranged around the composite reinforcement structure 21 in which each layer comprises the winding of at least two thermoplastic strips prepared by extrusion of the thermoplastic material.
  • thermoplastic strips are carried out according to any known method, typically by heating the junction zones between the strips to a temperature of between 150° C. and 500° C., the temperature depending on the nature of the thermoplastic polymer constituting the strips.
  • the heating temperature is advantageously between 350°C and 500°C.
  • the thermoplastic strips are made of PVDF (melting point of the order of 180°C)
  • the heating temperature is advantageously between 180°C and 280°C, preferably between 200°C and 250°C.
  • thermoplastic strips are welded out by LASER radiation.
  • the welding of the thermoplastic strips allows the formation of a continuous sealing layer 22.
  • the thickness of the sealing layer 22 is typically less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm.
  • the method of the invention allows the manufacture of flexible pipes 10 in which the sealing layer 22 is bonded or not bonded to the composite reinforcement structure 21, depending on the method used to form the sealing layer 22.
  • the sealing layer 22 is formed by winding thermoplastic strips around the composite reinforcing structure 21, followed by the welding the strips together. In this case, the sealing layer 22 obtained is bonded to the composite reinforcing structure 21 .
  • the sealing layer 22 is formed by extrusion of a thermoplastic material.
  • the bonded or unbonded character of the sealing layer 22 depends on the temperature at which the extruded thermoplastic material and the composite reinforcement layer 21 are brought into contact.
  • the resulting sealing layer 22 is not bonded to the composite reinforcement structure 21 .
  • the extruded thermoplastic material and the composite reinforcement layer are brought into contact at a temperature greater than or equal to the melting temperature of the thermoplastic material, the resulting sealing layer 22 is bonded to the composite reinforcement structure. 21 .
  • the method of the invention leads exclusively to the formation of a sealing layer 22 not bonded to the structure. reinforcement composite 21 .
  • the armor elements 50 of the tensile armor plies 24, 25 are then wound around the sealing layer 22, in a manner not bonded with the sealing layer 22.
  • an anti-wear layer 26 is interposed between the sealing layer 22 and the first ply of tensile armors 24, and between each ply of tensile armors 24, 25.
  • a reinforcing tape 28 is wrapped around the outermost tensile armor ply 25.
  • the outer sheath 30 is formed around the armor plies 24, 25.
  • the compaction provided by the rollers during the formation of the composite reinforcement structure 21, then during the post-compaction step reinforces the mechanical properties of the composite reinforcement structure 21, in particular by providing interlaminar mechanical resistance. increased, a greater rate of crystallinity, and a reduced rate of porosity.
  • the composite reinforcement structure 21 is therefore mechanically more robust and has improved sealing against the fluid intended to circulate in the internal passage 13.
  • the presence of the sealing layer 22 limits, preferably completely prevents, the entry of external water into the interior of the flexible pipe 10 of the invention. It makes it possible in particular to protect the composite reinforcing structure 21 against the harmful effects of water, in particular by avoiding the formation of discontinuities.

Abstract

Disclosed is a flexible pipe (10) designed to transport fluids comprising, from the interior toward the exterior: an internal tubular sheath (20) with an axis (A-A') defining an internal passage (13) for fluid circulation; a composite reinforcing structure (21) applied around the tubular sheath (20) and connected to the tubular sheath (20); at least one sealing layer (22) made of a thermoplastic material applied around the composite reinforcing structure (21); at least one ply of tensile armor (24, 25), not connected to the sealing layer (22) the at least one ply of tensile armor (24, 25) comprising at least one armor element (50) wound around the sealing layer (22); characterized in that the thickness of the sealing layer (22) is less than 15 mm.

Description

Conduite flexible de transport de fluide et procédés associés Flexible fluid transport pipe and associated methods
La présente invention concerne une conduite flexible sous-marine destinée au transport de fluides comprenant, de l’intérieur vers l’extérieur : The present invention relates to a subsea flexible pipe intended for the transport of fluids comprising, from the inside to the outside:
- une gaine interne tubulaire d’axe (A-A’) définissant un passage interne de circulation de fluides ; - an internal tubular sheath with axis (A-A') defining an internal fluid circulation passage;
- une structure composite de renfort appliquée autour de la gaine tubulaire et liée à la gaine tubulaire ; - A composite reinforcement structure applied around the tubular sheath and linked to the tubular sheath;
- au moins une couche d’étanchéité en un matériau thermoplastique appliquée autour de la structure composite de renfort ; - at least one sealing layer of a thermoplastic material applied around the composite reinforcement structure;
- au moins une nappe d’armures de traction, non liée à la couche d’étanchéité, la au moins une nappe d’armures de traction comprenant au moins un élément d’armure enroulé autour de la couche d’étanchéité ; et - at least one tensile armor ply, not linked to the sealing layer, the at least one tensile armor ply comprising at least one armor element wound around the sealing layer; and
- optionnellement une gaine externe d’étanchéité disposée autour de la au moins une nappe d’armures de traction. - optionally an outer sealing sheath arranged around the at least one ply of tensile armor.
La structure tubulaire est par exemple une couche en matériau composite d’une conduite flexible de transport de fluide à travers une étendue d’eau. The tubular structure is for example a layer of composite material of a flexible pipe for transporting fluid through a body of water.
Les conduites flexibles du type précité sont utilisées notamment en eau profonde dans l’industrie pétrolière et gazière ainsi que dans l’industrie des énergies renouvelables. Typiquement, elles sont utilisées pour le transport de fluides d’hydrocarbures, la réinjection de dioxyde de carbone dans un réservoir sous-marin ou encore pour le transport et la distribution d’hydrogène produit en mer. Les conduites flexibles pétrolières s’étendent généralement à travers une étendue d’eau entre un ensemble de surface et un ensemble de fond. Ces conduites peuvent également s’étendre entre deux ensembles de surface. Flexible pipes of the aforementioned type are used in particular in deep water in the oil and gas industry as well as in the renewable energy industry. Typically, they are used for the transport of hydrocarbon fluids, the reinjection of carbon dioxide into an underwater reservoir or for the transport and distribution of hydrogen produced at sea. through a stretch of water between a surface assembly and a bottom assembly. These pipes can also extend between two sets of surfaces.
L’ensemble de fond est destiné à recueillir le fluide exploité dans le fond de l’étendue d’eau. L’ensemble de surface est généralement flottant. Il est destiné à collecter, potentiellement traiter, et à distribuer le fluide. L’ensemble de surface peut être une plateforme semi-submersible, un FPSO ou un autre ensemble flottant. The bottom assembly is intended to collect the fluid exploited at the bottom of the body of water. The surface assembly is generally floating. It is intended to collect, potentially process, and distribute fluid. The surface assembly can be a semi-submersible platform, an FPSO or another floating assembly.
Dans certains cas, pour l’exploitation de fluides en eaux profondes, la conduite flexible présente une longueur supérieure à 800 m, voire supérieure à 1000 m ou à 2000 m pour des applications en eaux ultra-profondes. In some cases, for the exploitation of fluids in deep waters, the flexible pipe has a length greater than 800 m, even greater than 1000 m or 2000 m for ultra-deep water applications.
Pour les grandes profondeurs, la conduite flexible est dimensionnée pour résister à une pression hydrostatique très importante, par exemple 200 bar pour une conduite immergée à 2000 m de profondeur. De plus, la conduite flexible est généralement dimensionnée pour résister à une tension axiale supérieure au poids total de la conduite flexible suspendue à un ensemble de surface et s’étendant sous l’eau depuis la surface jusqu’au fond marin. Ceci est notamment le cas lorsque la conduite flexible est utilisée comme une conduite montante (« riser » en langue anglaise) destinée à assurer en service une liaison verticale entre le fond marin et l’ensemble de surface. La capacité de la conduite flexible à supporter son propre poids lorsqu’elle est suspendue dans l’eau permet notamment de faciliter son installation en mer à partir d’un navire de pose. For great depths, the flexible pipe is sized to withstand a very high hydrostatic pressure, for example 200 bar for a submerged pipe at a depth of 2000 m. In addition, the flexible pipe is generally dimensioned to resist an axial tension greater than the total weight of the flexible pipe suspended from a surface assembly and extending underwater from the surface to the seabed. This is particularly the case when the flexible pipe is used as a riser (“riser” in English) intended to ensure, in service, a vertical connection between the seabed and the surface assembly. The capacity of the flexible pipe to support its own weight when it is suspended in water makes it possible in particular to facilitate its installation at sea from a laying vessel.
Par suite, pour les grandes profondeurs, il est avantageux d’utiliser des conduites flexibles qui sont la fois légères et très résistantes à la pression externe hydrostatique. Il est également préférable que les conduites flexibles soient résistantes aux pressions internes rencontrées en production. Il est en outre avantageux que les conduites flexibles présentent une excellente résistance à la fatigue, notamment pour endurer les multiples cycles de déplacement de la conduite sous l’effet des mouvements de l’étendue d’eau et de l’ensemble de surface. As a result, for great depths, it is advantageous to use flexible pipes which are both light and very resistant to external hydrostatic pressure. It is also preferable that the flexible lines be resistant to the internal pressures encountered in production. It is also advantageous that the flexible pipes have excellent resistance to fatigue, in particular to endure the multiple cycles of displacement of the pipe under the effect of the movements of the body of water and of the entire surface.
La plupart des conduites flexibles utilisées dans l’industrie pétrolière offshore sont des conduites flexibles de type non lié (« unbonded » en langue anglaise) comportant au moins une gaine d’étanchéité renforcée par au moins une couche de renfort constituée de fils métalliques enroulés en hélice autour de la gaine d’étanchéité. De telles conduites sont notamment décrites dans le document normatif API 17J, « Specification for Unbonded Flexible Pipe », 4ème édition, mai 2014 publié par l’American Petroleum Institute. Cependant, ces conduites flexibles ont généralement un poids élevé, ce qui rend leur installation en eau profonde et ultra-profonde complexe et coûteuse. De plus, les conduites montantes de ce type doivent généralement être équipées de bouées pour les applications à grande profondeur, ce qui induit des dépenses supplémentaires. Enfin, les couches métalliques de renfort sont généralement sensibles à la corrosion, notamment à la corrosion sous l’influence de gaz acides du type H2S et CO2 présents dans les hydrocarbures de certains gisements. Pour pallier ces problèmes, on connaît des conduites flexibles allégées comportant une structure tubulaire de renfort en matériau composite comprenant une matrice et des fibres de renfort noyées dans la matrice. Most of the flexible pipes used in the offshore oil industry are flexible pipes of the unbonded type comprising at least one sealing sheath reinforced by at least one reinforcing layer consisting of metal wires wound in helix around the sealing sheath. Such pipes are notably described in the normative document API 17J, "Specification for Unbonded Flexible Pipe", 4th edition, May 2014 published by the American Petroleum Institute. However, these flexible pipes generally have a high weight, which makes their installation in deep and ultra-deep water complex and expensive. In addition, risers of this type must generally be equipped with buoys for deep-sea applications, which incurs additional expense. Finally, the metallic reinforcement layers are generally sensitive to corrosion, in particular to corrosion under the influence of acid gases of the H2S and CO2 type present in the hydrocarbons of certain deposits. To overcome these problems, lightweight flexible pipes are known comprising a tubular reinforcing structure made of composite material comprising a matrix and reinforcing fibers embedded in the matrix.
On connaît notamment des conduites dans lesquelles la structure tubulaire de renfort est constituée d’un matériau composite à matrice thermoplastique, par exemple d’un matériau composite comportant une matrice en PEEK (polyétheréthercétone) renforcée par des fibres de carbone. De telles conduites sont connues sous le nom « Thermoplastic Composite Pipe » (TCP) et sont notamment décrites dans le document normatif DNVGL- ST-F1 19, « Standard Practice - Thermoplastic composites pipes », publié en septembre 2019 par le DNV GL (Det Norske Veritas GL). In particular, pipes are known in which the tubular reinforcing structure consists of a composite material with a thermoplastic matrix, for example a composite material comprising a PEEK (polyetheretherketone) matrix reinforced with carbon fibers. Such pipes are known as "Thermoplastic Composite Pipe" (TCP) and are described in particular in the normative document DNVGL- ST-F1 19, “Standard Practice - Thermoplastic composites pipes”, published in September 2019 by DNV GL (Det Norske Veritas GL).
Les conduites flexibles TCP comportent généralement de l’intérieur vers l’extérieur une gaine interne tubulaire d’étanchéité en matériau polymère (« polymer liner » en langue anglaise), une structure tubulaire de renfort en matériau composite et une gaine externe (« cover » en langue anglaise) de protection en matériau polymère. La structure tubulaire de renfort étant théoriquement étanche, la gaine interne tubulaire est optionnelle. Cependant, en pratique, la plupart de ces conduites flexibles comportent une gaine interne tubulaire afin de garantir l’étanchéité de la conduite dans le cas où la structure tubulaire de renfort présenterait un défaut de fabrication affectant son étanchéité. En outre, la présence de la gaine interne tubulaire permet de faciliter la fabrication de la conduite flexible TCP. En effet, cette première couche forme alors un noyau central sur lequel on vient prendre appui pour enrouler la pluralité de laminés composite formant la structure tubulaire de renfort. TCP flexible pipes generally comprise, from the inside out, a tubular internal sealing sheath made of polymer material (“polymer liner”, in English language), a tubular reinforcing structure made of composite material and an external sheath (“cover”). in English language) protection in polymeric material. The tubular reinforcement structure being theoretically sealed, the tubular internal sheath is optional. However, in practice, most of these flexible pipes include a tubular internal sheath in order to guarantee the tightness of the pipe in the event that the tubular reinforcing structure presents a manufacturing defect affecting its tightness. In addition, the presence of the tubular inner sheath facilitates the manufacture of the flexible pipe TCP. Indeed, this first layer then forms a central core on which one comes to bear to roll up the plurality of composite laminates forming the tubular reinforcing structure.
La structure tubulaire de renfort est typiquement collée ou soudée à la gaine interne tubulaire afin d’éviter l’écrasement (« collapse » en anglais) de la gaine interne tubulaire lors d’une décompression rapide de la conduite transportant des hydrocarbures en phase gazeuse. La gaine externe de protection est optionnelle mais lorsqu’elle est présente, elle est avantageusement collée ou soudée à la structure tubulaire de renfort, l’ensemble formant ainsi une conduite flexible TCP de structure totalement complètement liée. De telles conduites TCP sont notamment commercialisées par les sociétés Magma Global Ltd (TCP de marque déposée m-pipe®) et Airborne Oil & Gas B.V. Elles sont notamment décrites dans GB2526986A, WO2014/023943, WO2012/1 18378, W02006/107196 et EP1090243B1. The tubular reinforcing structure is typically glued or welded to the tubular inner sheath in order to prevent the tubular inner sheath from collapsing during rapid decompression of the pipe transporting hydrocarbons in the gas phase. The outer protective sheath is optional but when it is present, it is advantageously glued or welded to the tubular reinforcement structure, the assembly thus forming a flexible pipe TCP with a totally completely bonded structure. Such TCP pipes are marketed in particular by the companies Magma Global Ltd (TCP registered trademark m-pipe®) and Airborne Oil & Gas B.V. .
On connait également des conduites flexibles similaires aux conduites flexibles TCP dans lesquelles la structure tubulaire de renfort est constituée d’un matériau composite à matrice thermodurcissable, par exemple un composite comportant une matrice en résine époxy renforcée par des fibres de verre. Ces conduites présentent généralement une flexibilité inférieure à celle des conduites TCP. There are also known flexible pipes similar to flexible pipes TCP in which the tubular reinforcing structure consists of a composite material with a thermosetting matrix, for example a composite comprising an epoxy resin matrix reinforced with glass fibers. These pipes generally have less flexibility than TCP pipes.
On connait aussi des conduites flexibles dites « hybrides » qui présentent une structure intermédiaire entre celle des conduites flexibles TCP et celle des conduites flexibles de type non lié. Ces conduites comportent de l’intérieur vers l’extérieur une gaine interne tubulaire d’étanchéité, une structure tubulaire de renfort en matériau composite, au moins une nappe d’armures de traction et une gaine externe. La structure tubulaire de renfort est avantageusement constituée d’un matériau composite à matrice thermoplastique, mais il est aussi possible d’utiliser une matrice thermodurcissable. La structure tubulaire de renfort est avantageusement soudée ou collée à la gaine interne tubulaire. La ou les nappes d’armures de traction sont similaires à celle des conduites flexibles de type non lié, c’est-à-dire qu’elles sont constituées de fils enroulés hélicoïdalement. En outre, optionnellement, ces conduites peuvent comporter une carcasse interne située à l’intérieur de la gaine interne d’étanchéité, ladite carcasse interne ayant pour fonction d’augmenter la résistance à l’écrasement (« collapse » en anglais) de la conduite. La carcasse interne est formée par exemple d’un feuillard métallique profilé, enroulé en spirale. Les spires du feuillard sont avantageusement agrafées les unes aux autres, ce qui permet de reprendre les efforts d’écrasement. Also known are so-called “hybrid” flexible pipes which have an intermediate structure between that of TCP flexible pipes and that of flexible pipes of the unbonded type. These pipes comprise, from the inside outwards, an internal tubular sealing sheath, a tubular reinforcing structure made of composite material, at least one ply of tensile armor and an external sheath. The tubular reinforcing structure is advantageously made of a composite material with a thermoplastic matrix, but it is also possible to use a thermosetting matrix. The reinforcing tubular structure is advantageously welded or glued to the tubular inner sheath. The tensile armor plies or plies are similar to those of unbonded type flexible pipes, that is to say they consist of helically wound wires. In addition, optionally, these pipes may comprise an internal carcass located inside the internal sealing sheath, said internal carcass having the function of increasing the resistance to crushing (“collapse” in English) of the pipe. . The internal carcass is formed for example of a profiled metal strip, wound in a spiral. The coils of the strip are advantageously stapled to each other, which makes it possible to take up the crushing forces.
Ces conduites flexibles hybrides sont notamment décrites dans WO00/70256 et dans l’article « Unbonded Flexible Pipe : Composite Reinforcement for Optimized Hybrid Design » écrit par N. Dodds, V. Jha, J. Latto et D. Finch, et publié sous la référence OTC- 25753 lors de la conférence « Offshore Technology Conference » qui s’est tenue à Houston du 4 au 7 mai 2015. These hybrid flexible pipes are described in particular in WO00/70256 and in the article “Unbonded Flexible Pipe: Composite Reinforcement for Optimized Hybrid Design” written by N. Dodds, V. Jha, J. Latto and D. Finch, and published under the reference OTC-25753 during the Offshore Technology Conference held in Houston from May 4 to 7, 2015.
La structure tubulaire de renfort comprend un tube en matériau composite et présente à la fois la fonction d’une voûte de pression disposée à l’extérieur d’une gaine interne tubulaire et d’une carcasse disposée à l’intérieur de la gaine interne tubulaire, c’est- à-dire qu’elle reprend généralement l’essentiel des efforts radiaux appliqués à la conduite. The tubular reinforcement structure comprises a tube made of composite material and has both the function of a pressure vault arranged outside a tubular internal sheath and of a carcass arranged inside the tubular internal sheath , that is to say that it generally takes up most of the radial forces applied to the pipe.
La structure tubulaire de renfort, liée à la gaine interne tubulaire d’étanchéité, présente en outre une fonction de barrière aux gaz, tels que les gaz acides du type H2S et CO2 contenus dans les fluides d’hydrocarbures transportés à l’intérieur de la gaine interne tubulaire d’étanchéité. Elle permet ainsi de protéger les éléments métalliques de renfort de la conduite flexible contre les phénomènes de corrosion. The tubular reinforcing structure, linked to the internal tubular sealing sheath, also has a gas barrier function, such as the acid gases of the H 2 S and CO 2 type contained in the hydrocarbon fluids transported to the inside the internal tubular sealing sheath. It thus makes it possible to protect the metallic reinforcing elements of the flexible pipe against corrosion phenomena.
Une telle conduite ne donne cependant pas entière satisfaction. Soumise à des conditions de pressions hydrostatiques élevées, en particulier aux grandes profondeurs, de l’eau est susceptible de s’infiltrer à l’intérieur d’une telle conduite flexible. La structure tubulaire composite de la conduite flexible est alors susceptible de se fragiliser, résultant en un risque augmenté de fuite du fluide transporté. Such conduct does not, however, give complete satisfaction. Subject to high hydrostatic pressure conditions, particularly at great depths, water is likely to infiltrate inside such a flexible pipe. The composite tubular structure of the flexible pipe is then likely to become fragile, resulting in an increased risk of leakage of the transported fluid.
La pression critique à partir de laquelle l’eau est susceptible de s’infiltrer dans la conduite flexible hybride, ainsi que la quantité d’eau pouvant s’y infiltrer, dépendent de la qualité du collage d’une part entre les différentes couches de la conduite flexible et d’autre part entre la matrice thermoplastique et le matériau de renfort, au sein de la structure tubulaire de renfort. The critical pressure from which water is likely to infiltrate into the hybrid flexible pipe, as well as the quantity of water which can infiltrate therein, depend on the quality of the bonding on the one hand between the different layers of the flexible pipe and on the other hand between the thermoplastic matrix and the reinforcing material, within the tubular reinforcing structure.
D’autres paramètres peuvent également influer sur la valeur de pression critique, à savoir, les chargements mécaniques subis par la structure de la conduite flexible avant sa mise en service. Par exemple, les efforts de pression subis par la conduite flexible suite à la réalisation d’un test d’acceptation usine (« Factory Acceptance Test » en langue anglaise) ou encore, les efforts de flexion d’enroulement de la conduite lors de son stockage sur bobine après fabrication et/ou de déroulement de la conduite lors de son installation en mer. Other parameters can also influence the critical pressure value, namely, the mechanical loads undergone by the structure of the flexible pipe before it is put into service. For example, the pressure forces undergone by the flexible pipe following the performance of a factory acceptance test or even the bending forces of the pipe winding during its storage on a reel after manufacture and/or the unwinding of the pipe during of its installation at sea.
L’introduction d’eau dans la conduite flexible hybride conduit à l’apparition de discontinuités au niveau du matériau composite formant la structure tubulaire de renfort, se traduisant par une chute significative de l’imperméabilité de la structure composite tubulaire. Les gaz acides transportés dans la conduite diffusent alors plus intensément à travers la structure tubulaire résultant en la corrosion des nappes d’armures de traction. The introduction of water into the hybrid flexible pipe leads to the appearance of discontinuities in the composite material forming the tubular reinforcing structure, resulting in a significant drop in the impermeability of the tubular composite structure. The acid gases transported in the pipe then diffuse more intensely through the tubular structure resulting in corrosion of the tensile armor layers.
Ceci peut conduire dans certains cas à un endommagement irréversible de la conduite. This can lead in some cases to irreversible damage to the pipe.
Un but de l’invention est donc d’obtenir une conduite flexible hybride présentant une structure composite intègre au cours du temps, notamment à pression hydrostatique élevée. An object of the invention is therefore to obtain a hybrid flexible pipe having a composite structure that is intact over time, in particular at high hydrostatic pressure.
A cet effet, l’invention a pour objet une conduite flexible du type précité, dans laquelle l’épaisseur de la couche d’étanchéité est inférieure à 15 mm. To this end, the subject of the invention is a flexible pipe of the aforementioned type, in which the thickness of the sealing layer is less than 15 mm.
La conduite flexible selon l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement envisageable : The flexible pipe according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
- la couche d’étanchéité présente un coefficient de perméabilité à l’eau inférieur à 2.10-4 cm3(STP).cm-2.s'1.bar1 ; - the sealing layer has a water permeability coefficient of less than 2.10-4 cm 3 (STP).cm -2 .s' 1 .bar 1 ;
- la structure composite de renfort comprend un enroulement d’au moins deux couches de renfort laminées, chaque couche de renfort étant réalisée à partir d’une matrice thermoplastique renforcée avec des fibres de renfort ; - the composite reinforcement structure comprises a winding of at least two laminated reinforcing layers, each reinforcing layer being made from a thermoplastic matrix reinforced with reinforcing fibers;
- la couche de renfort est réalisée à partir d’une matrice thermoplastique en polyétheréthercétone (PEEK) renforcée avec des fibres de carbone ; - the reinforcement layer is made from a thermoplastic polyetheretherketone (PEEK) matrix reinforced with carbon fibers;
- la couche d’étanchéité est dépourvue de matériaux de renfort ; - the sealing layer is devoid of reinforcing materials;
- la couche d’étanchéité est formée par l’enroulement d’au moins deux bandes d’un matériau thermoplastique et par soudage des au moins deux bandes entre elles ; - the sealing layer is formed by rolling up at least two strips of a thermoplastic material and by welding the at least two strips together;
- lorsque la couche d’étanchéité est formée par l’enroulement d’au moins deux bandes d’un matériau thermoplastique et par soudage des au moins deux bandes entre elles, l’épaisseur de la couche d’étanchéité est inférieure à 3 mm, avantageusement inférieure à 2 mm, encore plus avantageusement inférieure à 1 mm ; - when the sealing layer is formed by rolling up at least two strips of a thermoplastic material and by welding the at least two strips together, the thickness of the sealing layer is less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm;
- la couche d’étanchéité est formée à partir d’une gaine tubulaire en matériau thermoplastique extrudée ; - lorsque la couche d’étanchéité est formée à partir d’une gaine tubulaire en matériau thermoplastique extrudée, l’épaisseur de la couche d’étanchéité est de 3 à 15 mm, de préférence de 3 mm à 10 mm ; - the sealing layer is formed from a tubular sheath of extruded thermoplastic material; - when the sealing layer is formed from a tubular sheath of extruded thermoplastic material, the thickness of the sealing layer is from 3 to 15 mm, preferably from 3 mm to 10 mm;
- la couche d’étanchéité est liée à la structure composite de renfort ; - the sealing layer is bonded to the composite reinforcement structure;
- la couche d’étanchéité est non liée à la structure composite de renfort ; - the waterproofing layer is not linked to the composite reinforcement structure;
- la couche d’étanchéité est réalisée à partir d’un matériau thermoplastique sélectionné parmi les polyoléfines, les polyamides, les polymères fluorés, les élastomères thermoplastiques, les polyaryléthercétones, les copolymères de ceux-ci, l’un quelconque de leurs mélanges et les mélanges les comprenant, de préférence parmi les polyaryléthercétones ; - the sealing layer is made from a thermoplastic material selected from polyolefins, polyamides, fluoropolymers, thermoplastic elastomers, polyaryletherketones, copolymers thereof, any of their mixtures and mixtures comprising them, preferably from polyaryletherketones;
- la couche d’étanchéité est réalisée à partir du même matériau thermoplastique que celui utilisé pour la matrice thermoplastique de chaque couche de renfort de la structure composite de renfort, avantageusement à partir de polyétheréthercétone (PEEK). - the sealing layer is made from the same thermoplastic material as that used for the thermoplastic matrix of each reinforcing layer of the composite reinforcing structure, advantageously from polyetheretherketone (PEEK).
L’invention a également pour objet un procédé de fabrication d’une conduite flexible comprenant les étapes suivantes : The invention also relates to a process for manufacturing a flexible pipe comprising the following steps:
- fourniture d’une gaine tubulaire d’axe central (A-A’) définissant un passage interne de circulation de fluides ; - supply of a tubular sheath with a central axis (A-A') defining an internal passage for the circulation of fluids;
- formation d’une structure composite de renfort appliquée autour de la gaine tubulaire et liée à la gaine tubulaire ; - formation of a composite reinforcement structure applied around the tubular sheath and linked to the tubular sheath;
- formation, autour de la structure composite de renfort, d’une couche d’étanchéité en matériau thermoplastique, - formation, around the composite reinforcement structure, of a sealing layer of thermoplastic material,
- disposition, autour de la couche d’étanchéité, d’au moins une nappe d’armures de traction, non liée à la couche d’étanchéité, la au moins une nappe d’armures de traction comprenant au moins un élément d’armure enroulé autour de la couche d’étanchéité ; et- arrangement, around the sealing layer, of at least one ply of tensile armor, not linked to the sealing layer, the at least one ply of tensile armor comprising at least one armor element wrapped around the sealing layer; and
- optionnellement, disposition d’une gaine externe d’étanchéité disposée autour de la au moins une nappe d’armures de traction ; dans laquelle l’épaisseur de la couche d’étanchéité est inférieure à 15 mm. - optionally, provision of an external sealing sheath arranged around the at least one ply of tensile armor; in which the thickness of the sealing layer is less than 15 mm.
Le procédé selon l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément : The method according to the invention may comprise one or more of the following characteristics, taken in isolation:
- la formation de la couche d’étanchéité est réalisée par enroulement autour de la structure composite de renfort d’au moins deux bandes d’un matériau thermoplastique, et soudage des au moins deux bandes entre elles ; ou - the sealing layer is formed by winding around the composite reinforcement structure at least two strips of a thermoplastic material, and welding the at least two strips together; Where
- la formation de la couche d’étanchéité est réalisée par extrusion d’un matériau thermoplastique sur la structure composite de renfort. - the formation of the sealing layer is carried out by extruding a thermoplastic material on the composite reinforcement structure.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et faite en se référant au dessin annexé, sur lesquels : La figure 1 est une vue en perspective partiellement écorchée d’une conduite flexible selon l’invention. The invention will be better understood on reading the following description, given solely by way of example, and made with reference to the attached drawing, in which: Figure 1 is a partially cutaway perspective view of a flexible pipe according to the invention.
Dans tout ce qui suit, les termes « extérieur » ou « externe » et « intérieur » ou « interne » s’entendent respectivement comme plus éloigné radialement de l’axe de la conduite flexible et comme plus proche radialement de l’axe de la conduite flexible. In all that follows, the terms "external" or "external" and "interior" or "internal" are understood respectively as radially further away from the axis of the flexible pipe and as radially closer to the axis of the flexible driving.
Une conduite flexible 10 selon l’invention est illustrée schématiquement par la figure 1. A flexible pipe 10 according to the invention is schematically illustrated in Figure 1.
La conduite flexible 10 comporte un tronçon central 12 illustré en partie sur la figure 1. Elle comporte, à chacune des extrémités axiales du tronçon central 12, un embout d’extrémité (non représenté). The flexible pipe 10 comprises a central section 12 partly illustrated in FIG. 1. It comprises, at each of the axial ends of the central section 12, an end fitting (not shown).
La conduite flexible 10 selon l’invention n’est pas limitée à une certaine catégorie d’embouts d’extrémité. Des exemples d’embouts d’extrémité pouvant être utilisés avec les conduites flexibles 10 de l’invention sont décrits dans WO 2019/068757. The flexible pipe 10 according to the invention is not limited to a certain category of end fittings. Examples of end fittings that can be used with the flexible pipes 10 of the invention are described in WO 2019/068757.
En référence à la figure 1 , la conduite 10 délimite un passage interne 13 de circulation d’un fluide, avantageusement d’un fluide pétrolier. Le passage interne 13 s’étend suivant un axe A-A’, entre l’extrémité amont et l’extrémité aval de la conduite 10. Il débouche à travers les embouts (non représentés). Referring to Figure 1, the pipe 10 delimits an internal passage 13 for the circulation of a fluid, advantageously a petroleum fluid. The internal passage 13 extends along an axis A-A', between the upstream end and the downstream end of the pipe 10. It opens through the end pieces (not shown).
La conduite flexible 10 est destinée à être disposée à travers une étendue d’eau 14 dans une installation d’exploitation de fluide, notamment d’hydrocarbures. The flexible pipe 10 is intended to be laid across a body of water 14 in a fluid exploitation installation, in particular hydrocarbons.
L’étendue d’eau 14 est par exemple, une mer, un lac ou un océan. La profondeur de l’étendue d’eau 14 au droit de l’installation d’exploitation de fluide est par exemple comprise entre 500 m et 4000 m. The expanse of water 14 is, for example, a sea, a lake or an ocean. The depth of the expanse of water 14 to the right of the fluid exploitation installation is for example between 500 m and 4000 m.
L’installation comporte un ensemble de surface et un ensemble de fond (non représentés) ou deux ensembles de surface qui sont avantageusement raccordés entre eux par la conduite flexible 10. The installation comprises a surface assembly and a bottom assembly (not shown) or two surface assemblies which are advantageously connected together by the flexible pipe 10.
L’ensemble de surface est par exemple flottant. Il est avantageusement formé par une unité flottante de production, de stockage et de déchargement appelée FPSO (« Floating Production, Storage and Offloading » en langue anglaise), une unité flottante dédiée au gaz naturel liquéfié appelée FLNG (« Floating Liquified Natural Gas » en langue anglaise), une plate-forme semi-submersible ou une bouée de déchargement. En variante, l’ensemble de surface est une structure rigide fixe de type « jacket » ou une structure oscillante assujettie au fond de la mer pouvant être par exemple un TLP (« Tension Leg Platform » en langue anglaise). The surface assembly is, for example, floating. It is advantageously formed by a floating production, storage and offloading unit called FPSO (“Floating Production, Storage and Offloading” in English), a floating unit dedicated to liquefied natural gas called FLNG (“Floating Liquified Natural Gas” in English). English language), a semi-submersible platform or an offloading buoy. As a variant, the surface assembly is a fixed rigid structure of the “jacket” type or an oscillating structure fixed to the bottom of the sea, which can for example be a TLP (“Tension Leg Platform”).
Dans cet exemple, la conduite flexible 10 raccorde l’ensemble de fond à l’ensemble de surface. La conduite flexible 10 est donc partiellement immergée dans l’étendue d’eau 14 et présente une extrémité supérieure disposée dans un volume d’air. En variante, la conduite flexible 10 est totalement immergée dans l’étendue d’eau 14 et raccorde par exemple deux ensembles de fond (non représentés) entre eux. In this example, the flexible pipe 10 connects the bottom assembly to the surface assembly. The flexible pipe 10 is therefore partially submerged in the expanse of water 14 and has an upper end placed in a volume of air. As a variant, the flexible pipe 10 is completely submerged in the body of water 14 and connects, for example, two bottom assemblies (not shown) to each other.
Une autre variante consiste en une conduite flexible 10 partiellement immergée dans l’étendue d’eau 14 et raccordant par exemple deux ensembles de surface (typiquement une bouée de déchargement et un FPSO). Ceci est notamment le cas des lignes flexibles de type OOL (« Oil Offloading Line » en langue anglaise). Another variant consists of a flexible pipe 10 partially submerged in the body of water 14 and connecting for example two surface assemblies (typically an unloading buoy and an FPSO). This is particularly the case for flexible lines of the OOL (Oil Offloading Line) type.
Comme illustré par la figure 1 , la conduite 10 délimite une pluralité de couches concentriques autour de l’axe A-A’, qui s’étendent continûment le long du tronçon central 12 jusqu’aux embouts situés aux extrémités de la conduite. As illustrated by FIG. 1, the pipe 10 delimits a plurality of concentric layers around the axis A-A′, which extend continuously along the central section 12 up to the end pieces located at the ends of the pipe.
Dans l’exemple de la figure 1 , la conduite 10 comporte au moins une gaine interne tubulaire 20 à base de matériau polymère constituant avantageusement une gaine interne d’étanchéité, une structure composite de renfort 21 tubulaire, appliquée autour de la gaine tubulaire 20 en étant liée à celle-ci, et une couche d’étanchéité 22, appliquée autour de la structure composite de renfort 21. En variante, la conduite 10 est dépourvue de gaine interne tubulaire 20, la structure composite de renfort 21 étant alors étanche et assurant la fonction d’étanchéité. In the example of Figure 1, the pipe 10 comprises at least one internal tubular sheath 20 based on polymer material advantageously constituting an internal sealing sheath, a composite structure of tubular reinforcement 21, applied around the tubular sheath 20 in being bonded thereto, and a sealing layer 22, applied around the composite reinforcing structure 21. Alternatively, the pipe 10 has no internal tubular sheath 20, the composite reinforcing structure 21 then being sealed and ensuring the sealing function.
La conduite 10 comporte en outre dans cet exemple une pluralité de nappes d’armures de traction 24, 25 disposées extérieurement par rapport à la couche d’étanchéité 22, en étant non liées à la couche d’étanchéité 22. The pipe 10 further comprises in this example a plurality of tensile armor plies 24, 25 arranged externally with respect to the sealing layer 22, being unrelated to the sealing layer 22.
Avantageusement, et selon l’utilisation souhaitée, la conduite 10 comporte en outre des couches anti-usure 26, interposées entre la couche d’étanchéité 22 et les nappes d’armures de traction 24, 25, ainsi qu’entre les nappes d’armures de traction 24, 25. De manière connue, les couches anti-usure 26 sont constituées d’une ou de plusieurs bandes en matériau thermoplastiques enroulées le long de l’axe (A-A’) mais qui ne sont pas soudées entre elles, contrairement à la couche d’étanchéité 22. Ces couches anti-usure 26 ne sont donc pas étanches. Advantageously, and depending on the desired use, the pipe 10 further comprises anti-wear layers 26, interposed between the sealing layer 22 and the tensile armor plies 24, 25, as well as between the plies of tensile armor 24, 25. In a known manner, the anti-wear layers 26 consist of one or more strips of thermoplastic material wound along the axis (A-A') but which are not welded together , unlike the sealing layer 22. These anti-wear layers 26 are therefore not sealed.
La conduite 10 comporte en outre avantageusement un ruban de renfort 28, enroulé autour des nappes d’armures de traction 24, 25 et une gaine externe 30, destinée à la protection mécanique et d’étanchéité de la conduite 10. The pipe 10 also advantageously comprises a reinforcing tape 28, wrapped around the tensile armor plies 24, 25 and an outer sheath 30, intended for the mechanical protection and sealing of the pipe 10.
De manière connue, la gaine tubulaire 20 est destinée à confiner de manière étanche le fluide transporté dans le passage 13. La gaine tubulaire 20 a aussi pour fonction de protéger la structure composite de renfort 21 contre l’abrasion liée à la présence de particules abrasives, par exemple du sable, au sein du fluide transporté dans le passage 13. La gaine tubulaire 20 est formée en matériau polymère, de préférence thermoplastique. In known manner, the tubular sheath 20 is intended to seal the fluid transported in the passage 13 in a sealed manner. The tubular sheath 20 also has the function of protecting the composite reinforcing structure 21 against abrasion linked to the presence of abrasive particles. , for example sand, within the fluid transported in the passage 13. The tubular sheath 20 is formed from a polymer material, preferably thermoplastic.
Par exemple, le polymère formant la gaine tubulaire 20 est choisi parmi une polyoléfine telle que du polyéthylène, un polyamide tel que du PA1 1 ou du PA12, ou un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou encore les copolymères de polyfluorure de vinylidène et de polyhexafluoropropylène (PVDF-HFP). For example, the polymer forming the tubular sheath 20 is chosen from a polyolefin such as polyethylene, a polyamide such as PA11 or PA12, or a fluorinated polymer such as polyvinylidene fluoride (PVDF) or copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
En variante, la gaine tubulaire 20 comprend un polymère choisi parmi le PEK (polyéthercétone), le PEEK (polyétheréthercétone), le PEEKK (polyétheréthercétonecétone), le PEKK (polyéthercétonecétone), le PEKEKK (polyéthercétoneéthercétonecétone), le PAI (polyamide-imide), le PEI (polyéther-imide), le PSU (polysulfone), le PPSU (polyphénylsulfone), le PES (polyéthersulfone), le PAS (polyarylsulfone), le PPE (polyphénylèneéther), le PPS (polysulfure de phénylène), les LCP (polymères à cristaux liquides), le PPA (polyphtalamide), les copolymères de ceux-ci, et/ou leurs mélanges ou encore un mélange d’un ou de plusieurs de ceux-ci avec un polysiloxane, le PTFE (polytétrafluoroéthylène) ou le PFPE (perfluoropolyéther). Alternatively, the tubular sheath 20 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide), LCPs (polymers liquid crystals), PPA (polyphthalamide), copolymers thereof, and/or mixtures thereof or a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE ( perfluoropolyether).
La gaine tubulaire 20 peut par exemple comprendre un mélange de polyaryléthercétone et d’un polysiloxane, tel que ceux décrits dans la demande WO 2019/150060. The tubular sheath 20 may for example comprise a mixture of polyaryletherketone and a polysiloxane, such as those described in application WO 2019/150060.
De préférence, la gaine tubulaire 20 comprend au moins 50 % en masse du polymère défini ci-dessus (ou du mélange de ceux-ci lorsqu’il s’agit d’un mélange), plus préférentiellement au moins 75% en masse, encore plus préférentiellement au moins 80% en masse, typiquement au moins 90% en masse, par rapport à la masse totale de la gaine tubulaire 20. Preferably, the tubular sheath 20 comprises at least 50% by mass of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass, even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the tubular sheath 20.
Selon un mode de réalisation préféré, la gaine tubulaire 20 est constituée d’un des polymères définis ci-dessus ou d’un des mélanges définis ci-dessus et de charges et/ou d’additifs. According to a preferred embodiment, the tubular sheath 20 consists of one of the polymers defined above or of one of the mixtures defined above and fillers and/or additives.
L’épaisseur de la gaine tubulaire 20 est par exemple comprise entre 1 mm et 20 mm. The thickness of the tubular sheath 20 is for example between 1 mm and 20 mm.
La gaine tubulaire 20 est formée d’un tube en matériau polymère, d’une bande en matériau polymère assemblé, ou d’un mat de polymère imprégné. The tubular sheath 20 is formed of a tube of polymer material, of a strip of assembled polymer material, or of an impregnated polymer mat.
Lorsque la gaine tubulaire 20 est formée d’un tube, elle est avantageusement obtenue par extrusion d’un tube thermoplastique choisi notamment parmi les polymères mentionnés ci-dessus. When the tubular sheath 20 is formed of a tube, it is advantageously obtained by extrusion of a thermoplastic tube chosen in particular from the polymers mentioned above.
Lorsque la gaine tubulaire 20 est formée d’une bande en matériau polymère assemblé, elle est réalisée avantageusement par extrusion et enroulement de bandes thermoplastiques d’un polymère tel que décrit plus haut. De préférence, les spires d’une première couche sont jointives (bord à bord sans recouvrement) et les spires d’une couche supérieure sont disposées de façon à avoir un recouvrement de deux bandes adjacentes inférieures assurant l’étanchéité de la gaine tubulaire 20. La conduite flexible 10 est dépourvue de carcasse interne, elle est désignée par le terme anglais « smooth bore ». La surface interne de la gaine tubulaire 20 délimite directement le passage interne 13. When the tubular sheath 20 is formed from a strip of assembled polymer material, it is advantageously produced by extrusion and winding of thermoplastic strips of a polymer as described above. Preferably, the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two lower adjacent bands ensuring the sealing of the tubular sheath 20. The flexible pipe 10 has no internal carcass, it is designated by the English term “smooth bore”. The internal surface of the tubular sheath 20 directly delimits the internal passage 13.
Dans cet exemple, la structure composite de renfort 21 est appliquée directement sur la gaine tubulaire 20. Elle est assemblée sur la gaine tubulaire 20 pour former un ensemble lié avec la gaine tubulaire 20. In this example, the composite reinforcement structure 21 is applied directly to the tubular sheath 20. It is assembled on the tubular sheath 20 to form a bonded assembly with the tubular sheath 20.
La structure composite de renfort 21 comporte au moins une, de préférence une pluralité de couches composites de renfort laminées, et éventuellement, une couche antidélamination interposée entre au moins deux couches de renfort. The composite reinforcement structure 21 comprises at least one, preferably a plurality of laminated composite reinforcement layers, and optionally, an anti-delamination layer interposed between at least two reinforcement layers.
Chaque couche de renfort laminée comporte une superposition de couches composites de renfort. Each laminated reinforcement layer comprises a superposition of composite reinforcement layers.
En référence à la figure 1 , chaque couche composite de renfort comporte une matrice en polymère 40 et des fibres de renfort 42 noyées dans la matrice 40. Referring to Figure 1, each composite reinforcement layer comprises a polymer matrix 40 and reinforcing fibers 42 embedded in the matrix 40.
De préférence, la matrice 40 est formée d’un polymère, notamment d’un polymère thermoplastique. Le polymère de la gaine tubulaire 20 est avantageusement de même nature que celui de la matrice 40. Par « de même nature », on entend au sens de la présente invention que le polymère de la gaine tubulaire 20 et le polymère de la matrice 40 sont propres à fondre et à former un mélange intime, sans séparation de phase, après refroidissement. Preferably, the matrix 40 is formed from a polymer, in particular from a thermoplastic polymer. The polymer of the tubular sheath 20 is advantageously of the same nature as that of the matrix 40. By "of the same nature", it is meant within the meaning of the present invention that the polymer of the tubular sheath 20 and the polymer of the matrix 40 are capable of melting and forming an intimate mixture, without phase separation, after cooling.
Par exemple, le polymère formant la matrice 40 est choisi parmi une polyoléfine telle que du polyéthylène, un polyamide tel que du PA1 1 ou du PA12, ou un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou encore les copolymère polyfluorure de vinylidène et de polyhexafluoropropylène (PVDF-HFP). For example, the polymer forming the matrix 40 is chosen from a polyolefin such as polyethylene, a polyamide such as PA11 or PA12, or a fluorinated polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride copolymers and polyhexafluoropropylene (PVDF-HFP).
En variante, la matrice 40 comprend un polymère choisi parmi le PEK (polyéthercétone), le PEEK (polyétheréthercétone), le PEEKK (polyétheréthercétonecétone), le PEKK (polyéthercétonecétone), le PEKEKK (polyéthercétoneéthercétonecétone), le PAI (polyamide-imide), le PEI (polyéther-imide), le PSU (polysulfone), le PPSU (polyphénylsulfone), le PES (polyéthersulfone) , le PAS (polyarylsulfone), le PPE (polyphénylèneéther), le PPS (polysulfure de phénylène) les LCP (polymères à cristaux liquides), le PPA (polyphtalamide), les copolymères de ceux-ci et/ou leurs mélanges ou encore un mélange d’un ou de plusieurs de ceux-ci avec un polysiloxane, le PTFE (polytétrafluoroéthylène) ou le PFPE (perfluoropolyéther). As a variant, the matrix 40 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide) LCPs (polymer crystals liquids), PPA (polyphthalamide), copolymers of these and/or mixtures thereof or else a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether).
La matrice 40 peut par exemple comprendre un mélange de polyaryléthercétone et d’un polysiloxane, par exemple tel que ceux décrits dans la demande WO2019/150060. De préférence, la matrice 40 comprend au moins 50 % en masse du polymère défini ci-dessus (ou du mélange de ceux-ci lorsqu’il s’agit d’un mélange), plus préférentiellement au moins 75% en masse, encore plus préférentiellement au moins 80% en masse, typiquement au moins 90% en masse, par rapport à la masse totale de la matrice 40. The matrix 40 can for example comprise a mixture of polyaryletherketone and a polysiloxane, for example such as those described in application WO2019/150060. Preferably, the matrix 40 comprises at least 50% by weight of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass, even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the matrix 40.
Selon un mode de réalisation préféré, la matrice 40 est constitué d’un des polymères définis ci-dessus ou d’un des mélanges définis ci-dessus et de charges et/ou d’additifs. According to a preferred embodiment, the matrix 40 consists of one of the polymers defined above or of one of the mixtures defined above and fillers and/or additives.
Les fibres de renfort 42 sont par exemple des fibres de carbone, des fibres de verre, des fibres d’aramide, ou/et des fibres de basalte. The reinforcing fibers 42 are for example carbon fibers, glass fibers, aramid fibers, and/or basalt fibers.
Les fibres de renfort 42 présentent généralement une résistance à la traction maximale supérieure à 2 GPa, avantageusement supérieure à 3 GPa et comprise par exemple entre 3 GPa et 6 GPa, telle que mesurée à 23° C selon la Norme ASTM D885M - 10A(2014)e1. The reinforcing fibers 42 generally have a maximum tensile strength greater than 2 GPa, advantageously greater than 3 GPa and comprised for example between 3 GPa and 6 GPa, as measured at 23° C. according to Standard ASTM D885M - 10A (2014 )e1.
Dans la présente demande, les termes « résistance à la traction maximale » et « résistance à la traction » ont la même signification et désignent la limite à la rupture en traction (« ultimate tensile strength » en langue anglaise) mesurée lors d’un essai de traction. In the present application, the terms "maximum tensile strength" and "tensile strength" have the same meaning and designate the ultimate tensile strength measured during a test. of traction.
En outre, les fibres de renfort 42 présentent avantageusement un module de traction supérieur à 50 GPa , compris par exemple entre 70 GPa et 500 GPa , notamment entre 50 GPa et 100 GPa pour les fibres de verre, entre 100 GPa et 500 GPa pour les fibres de carbone et entre 50 GPa et 200 GPa pour les fibres d’aramide, tel que mesuré à 23°C selon la Norme ASTM D885M - 10A(2014)e1 . In addition, the reinforcing fibers 42 advantageously have a tensile modulus greater than 50 GPa, for example between 70 GPa and 500 GPa, in particular between 50 GPa and 100 GPa for glass fibers, between 100 GPa and 500 GPa for carbon fibers and between 50 GPa and 200 GPa for aramid fibers, as measured at 23°C according to Standard ASTM D885M - 10A(2014)e1.
Dans la présente demande, les termes « module de traction », « module d’Young » et « module d’élasticité en traction » ont la même signification et désignent le module d’élasticité mesuré lors d’un essai de traction. In the present application, the terms "tensile modulus", "Young's modulus" and "tensile modulus of elasticity" have the same meaning and designate the modulus of elasticity measured during a tensile test.
La densité des fibres de renfort 42 est généralement comprise entre 1 ,4 g/cm3 et 3,0 g/cm3. The density of the reinforcing fibers 42 is generally between 1.4 g/cm3 and 3.0 g/cm3.
Les fibres de renfort 42 sont par exemple agencées, pour chacune des couches composite de renfort, de manière unidirectionnelle dans la matrice 40. Elles sont alors parallèles les unes aux autres. En variante, les fibres de renfort 42 sont croisées suivant deux directions orthogonales, ou encore sont disposées de manière aléatoire dans la matrice (non représenté). The reinforcing fibers 42 are for example arranged, for each of the composite reinforcing layers, unidirectionally in the matrix 40. They are then parallel to each other. As a variant, the reinforcing fibers 42 are crossed in two orthogonal directions, or else are arranged randomly in the matrix (not shown).
La longueur des fibres de renfort 42 dans chaque couche composite est supérieure à 100 m, et est notamment comprise entre 100 m et 4500 m. The length of the reinforcing fibers 42 in each composite layer is greater than 100 m, and is in particular between 100 m and 4500 m.
Le diamètre des fibres composites est par exemple inférieur à 100 microns, et est notamment compris entre 4 microns et 10 microns. The diameter of the composite fibers is for example less than 100 microns, and is in particular between 4 microns and 10 microns.
De préférence, chaque couche composite de renfort est formée d’un enroulement d’au moins une bande composite 44 présentant plusieurs couches de fibres 42 noyées dans une matrice 40 allongée, de longueur supérieure à au moins 10 fois sa largeur et à au moins 10 fois son épaisseur. Preferably, each composite reinforcement layer is formed from a winding of at least one composite strip 44 having several layers of fibers 42 embedded in an elongated matrix 40, of length greater than at least 10 times its width and at least 10 times its thickness.
Par exemple, la longueur de chaque bande composite 44 est supérieure à 100 m et est comprise entre 100 m et 4500 m. La largeur de chaque bande composite 44 est comprise entre 6 mm et 50 mm. L’épaisseur de chaque bande composite 44 est comprise entre 0,1 mm et 1 mm. For example, the length of each composite strip 44 is greater than 100 m and is between 100 m and 4500 m. The width of each composite band 44 is between 6 mm and 50 mm. The thickness of each composite band 44 is between 0.1 mm and 1 mm.
Chaque bande composite 44 présente ainsi à 23°C, un module de traction supérieur à 10 GPa, notamment compris entre 30 GPa et 170 GPa, tel que mesuré par la Norme NF EN 2561 , Janvier 1996, une élongation à la rupture supérieure à 1 %, notamment comprise entre 1 % et 5%, telle que mesurée par la Norme NF EN 2561 , Janvier 1996, et une résistance à la traction maximale supérieure à 100 MPa, et notamment comprise entre 350 MPa et 3500 MPa telle que mesurée par la Norme NF EN 2561 , Janvier 1996. Each composite strip 44 thus has, at 23° C., a tensile modulus greater than 10 GPa, in particular between 30 GPa and 170 GPa, as measured by Standard NF EN 2561, January 1996, an elongation at break greater than 1 %, in particular between 1% and 5%, as measured by Standard NF EN 2561, January 1996, and a maximum tensile strength greater than 100 MPa, and in particular between 350 MPa and 3500 MPa as measured by the Standard NF EN 2561, January 1996.
Lors de la réalisation de chaque couche de renfort, la ou chaque bande composite 44 est enroulée en hélice autour de l’axe A-A’ de la gaine tubulaire 20, et est chauffée pour provoquer la fusion partielle de la matrice 40, et la liaison avec les spires successives de la bande composite 44, et/ou avec les couches adjacentes qui peuvent être d’autres couches de renfort, des couches anti-délamination ou la gaine tubulaire 20. During the production of each reinforcement layer, the or each composite strip 44 is wound helically around the axis A-A' of the tubular sheath 20, and is heated to cause the partial melting of the matrix 40, and the connection with the successive turns of the composite strip 44, and/or with the adjacent layers which may be other reinforcing layers, anti-delamination layers or the tubular sheath 20.
La valeur absolue de l’angle d’hélice d’enroulement p de chaque bande composite 44 par rapport à l’axe A-A’ de la conduite 10 est par exemple comprise entre 55° et 85°. Ceci assure une élongation du composite sous l’effet de la pression interne, et une coopération adéquate avec les nappes d’armures 24, 25. The absolute value of the winding helix angle p of each composite strip 44 with respect to the axis A-A' of the pipe 10 is for example between 55° and 85°. This ensures elongation of the composite under the effect of internal pressure, and adequate cooperation with the armor layers 24, 25.
L’épaisseur de chaque couche composite est généralement comprise entre 0,10 mm et 10 mm, par exemple entre 0,12 mm et 7 mm, ou entre 0,22 mm et 5 mm. The thickness of each composite layer is generally between 0.10 mm and 10 mm, for example between 0.12 mm and 7 mm, or between 0.22 mm and 5 mm.
La couche d’étanchéité 22 est destinée à confiner de manière étanche la structure composite de renfort 21. En particulier, et en cas d’infiltration d’eau à l’intérieur de la conduite flexible 10, entre la gaine externe 30 et la couche d’étanchéité 22, la couche 22 a pour fonction de limiter, de préférence d’empêcher, le contact entre l’eau infiltrée et la structure composite de renfort 21 . The sealing layer 22 is intended to confine the composite reinforcing structure 21 in leaktight manner. sealing 22, the layer 22 has the function of limiting, preferably of preventing, the contact between the infiltrated water and the composite reinforcement structure 21 .
La couche d’étanchéité 22 peut être liée ou non-liée à la structure composite de renfort 21 . The sealing layer 22 can be bonded or unbonded to the composite reinforcement structure 21 .
La perméabilité de la couche d’étanchéité est fonction du matériau choisi pour sa réalisation ainsi que de la température à laquelle la couche est par la suite exposée. The permeability of the sealing layer depends on the material chosen for its production as well as the temperature to which the layer is subsequently exposed.
La perméabilité à l’eau des matériaux polymères pouvant convenir à la réalisation de la couche d’étanchéité 22 est comprise entre 1x10-7 cm3(STP).cm-1.s'1.bar1 et 2x10-5 cm3(STP).cm-1.s-1.bar1. Dès lors, pour une épaisseur de couche d’étanchéité 22 comprise entre 1 mm et 20 mm, la perméabilité à l’eau de la couche est de 5x10-8 cm3(STP).cm-2.s'1.bar1 à 2x10-4 cm3(STP).cm-2.s'1.bar1. The water permeability of the polymer materials that may be suitable for producing the sealing layer 22 is between 1x10 -7 cm 3 (STP).cm -1 .s' 1 .bar 1 and 2x10 -5 cm 3 ( STP).cm -1 .s -1 .bar 1 . Therefore, for a thickness of sealing layer 22 of between 1 mm and 20 mm, the water permeability of the layer is 5×10 -8 cm 3 (STP).cm -2 .s' 1 .bar 1 at 2x10 -4 cm 3 (STP).cm -2 .s' 1 .bar 1 .
Par « perméabilité de la couche d’étanchéité 22 » on entend au sens de l’invention la capacité à ladite couche d’étanchéité 22 dans sa globalité de se laisser traverser par l’eau. La perméabilité de la couche d’étanchéité peut être différente de la perméabilité du matériau constituant la couche, notamment en raison de la présence d’éventuelles discontinuités ou failles dans la couche d’étanchéité qui faciliteraient le passage d’eau ou parce que la couche d’étanchéité est réalisée à base d’une structure discontinue comme une bande enroulée. La perméabilité de la couche d’étanchéité s’entend bien ici comme celle de la couche dans sa globalité incluant le matériau et les éventuels interstices ou interfaces entre les régions discontinues formant la couche. Dans le contexte de l’invention, la mesure de perméabilité se réfère à la perméabilité de la couche d’étanchéité dans son ensemble, telle qu’elle est présente dans la conduite flexible 10 de l’invention. By "permeability of the sealing layer 22" is meant in the sense of the invention the ability of said sealing layer 22 as a whole to allow water to pass through. The permeability of the sealing layer may be different from the permeability of the material constituting the layer, in particular due to the presence of any discontinuities or faults in the sealing layer which would facilitate the passage of water or because the layer sealing is made on the basis of a discontinuous structure like a wound strip. The permeability of the sealing layer is clearly understood here as that of the layer as a whole, including the material and any interstices or interfaces between the discontinuous regions forming the layer. In the context of the invention, the permeability measurement refers to the permeability of the sealing layer as a whole, as it is present in the flexible pipe 10 of the invention.
La perméabilité à l’eau du matériau constituant la couche d’étanchéité 22 peut être mesurée par la technique de la perte de poids. Cette méthode de mesure de perméabilité d’un liquide est notamment décrite dans la publication “Emmanuel RICHAUD, Bruno FLACONNÈCHE, Jacques VERDU - Biodiesel permeability in polyethylene - Polymer Testing - Vol. 31 , p.170-1076 - 2012. Connaissant la perméabilité à l’eau du matériau, il est alors possible de calculer la perméabilité de la couche d’étanchéité 22 en appliquant la formule suivante : The water permeability of the material constituting the sealing layer 22 can be measured by the weight loss technique. This method for measuring the permeability of a liquid is described in particular in the publication “Emmanuel RICHAUD, Bruno FLACONNÈCHE, Jacques VERDU - Biodiesel permeability in polyethylene - Polymer Testing - Vol. 31, p.170-1076 - 2012. Knowing the water permeability of the material, it is then possible to calculate the permeability of the sealing layer 22 by applying the following formula:
Kmat Kcouche = - e avec : Kmat Klayer = - e with:
- Kcouche, la perméabilité à l’eau de la couche d’étanchéité (exprimée en cm3(STP).cnr1.s’1.bar1), - Klayer, the water permeability of the waterproofing layer (expressed in cm 3 (STP).cnr 1 .s' 1 .bar 1 ),
- Kmat., la perméabilité du matériau constituant la couche d’étanchéité (exprimée en cm3(STP).cm-2.s'1.bar1), et - Kmat., the permeability of the material constituting the sealing layer (expressed in cm 3 (STP).cm -2 .s' 1 .bar 1 ), and
- e, l’épaisseur de la couche d’étanchéité 22 (exprimée en cm). - e, the thickness of the sealing layer 22 (expressed in cm).
La couche d’étanchéité 22 est formée en matériau thermoplastique. Par exemple, le polymère formant la couche d’étanchéité 22 est choisi parmi une polyoléfine, éventuellement réticulée, telle que du polyéthylène ou du polypropylène ; un élastomère thermoplastique (TPE) tel que le polyuréthane thermoplastique (TPE-U ou TPU) ou les copolymères styréniques (TPE-S ou TPS) ou les copolymères de polypropylène et d’éthylène-propylène-diène (PP-EPDM) vulcanisés (TPE-V ou TPV); un polyamide tel que du PA1 1 ou du PA12 ; ou un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou encore les copolymères de polyfluorure de vinylidène et de polyhexafluoropropylène (PVDF-HFP). The sealing layer 22 is formed from a thermoplastic material. For example, the polymer forming the sealing layer 22 is chosen from an optionally crosslinked polyolefin, such as polyethylene or polypropylene; a thermoplastic elastomer (TPE) such as thermoplastic polyurethane (TPE-U or TPU) or styrenic copolymers (TPE-S or TPS) or vulcanized polypropylene and ethylene-propylene-diene (PP-EPDM) copolymers (TPE -V or TPV); a polyamide such as PA11 or PA12; or a fluoropolymer such as polyvinylidene fluoride (PVDF) or else copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
En variante, la couche d’étanchéité 22 comprend un polymère choisi parmi le PEK (polyéthercétone), le PEEK (polyétheréthercétone), le PEEKK (polyétheréthercétonecétone), le PEKK (polyéthercétonecétone), le PEKEKK (polyéthercétoneéthercétonecétone), le PAI (polyamide-imide), le PEI (polyéther-imide), le PSU (polysulfone), le PPSU (polyphénylsulfone), le PES (polyéthersulfone) , le PAS (polyarylsulfone), le PPE (polyphénylèneéther), le PPS (polysulfure de phénylène) les LCP (polymères à cristaux liquides), le PPA (polyphtalamide) et/ou leurs mélanges ou encore un mélange d’un ou de plusieurs de ceux-ci avec un polysiloxane, le PTFE (polytétrafluoroéthylène) ou le PFPE (perfluoropolyéther). Alternatively, the sealing layer 22 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide ), PEI (polyetherimide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide) LCPs ( liquid crystal polymers), PPA (polyphthalamide) and/or their mixtures or else a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether).
La couche d’étanchéité 22 peut par exemple comprendre un mélange de polyaryléthercétone et d’un polysiloxane, tel que ceux décrits dans la demande WO2019/150060. The sealing layer 22 may for example comprise a mixture of polyaryletherketone and a polysiloxane, such as those described in application WO2019/150060.
De préférence, la couche d’étanchéité 22 comprend au moins 50 % en masse du polymère défini ci-dessus (ou du mélange de ceux-ci lorsqu’il s’agit d’un mélange), plus préférentiellement au moins 75% en masse, encore plus préférentiellement au moins 80% en masse, typiquement au moins 90% en masse, par rapport à la masse totale de la couche d’étanchéité 22. Preferably, the sealing layer 22 comprises at least 50% by mass of the polymer defined above (or of the mixture thereof when it is a mixture), more preferably at least 75% by mass , even more preferably at least 80% by mass, typically at least 90% by mass, relative to the total mass of the sealing layer 22.
Selon un mode de réalisation préféré, la couche d’étanchéité 22 est constitué d’un des polymères définis ci-dessus ou d’un des mélanges de ceux-ci et de charges et/ou additifs. According to a preferred embodiment, the sealing layer 22 consists of one of the polymers defined above or of one of the mixtures of these and of fillers and/or additives.
Le polymère de la couche d’étanchéité 22 est avantageusement de même nature que celui de la matrice 40, plus avantageusement de même nature que celui de la matrice 40 et que celui de la gaine 20. Par « de même nature », on entend au sens de la présente invention que le polymère de la couche d’étanchéité 22 et le polymère de la matrice 40, et éventuellement le polymère de la gaine tubulaire 20, sont propres à fondre et à former un mélange intime, sans séparation de phase, après refroidissement. The polymer of the sealing layer 22 is advantageously of the same nature as that of the matrix 40, more advantageously of the same nature as that of the matrix 40 and that of the sheath 20. By "of the same nature", we mean at meaning of the present invention that the polymer of the sealing layer 22 and the polymer of the matrix 40, and optionally the polymer of the tubular sheath 20, are capable of melting and forming an intimate mixture, without phase separation, after cooling.
Selon un mode de réalisation préféré, la couche d’étanchéité 22 est constituée d’un matériau thermoplastique. En particulier, la couche d’étanchéité 22 est dépourvue de matériaux de renfort. According to a preferred embodiment, the sealing layer 22 is made of a thermoplastic material. In particular, the sealing layer 22 is devoid of reinforcing materials.
De préférence, la couche d’étanchéité 22 est continue. Par « continue », on entend au sens de l’invention que la structure de la couche d’étanchéité 22 est identique en tout point. En particulier, la couche d’étanchéité 22 ne comprend pas de trous radiaux débouchant qui pourraient faciliter le passage d’un fluide, notamment d’eau, à travers la couche. Une couche d’étanchéité 22 présentant une porosité fermée est ainsi considérée comme homogène au sens de l’invention. Preferably, sealing layer 22 is continuous. By "continuous" is meant in the sense of the invention that the structure of the sealing layer 22 is identical at all points. In particular, the sealing layer 22 does not include radial through holes which could facilitate the passage of a fluid, in particular water, through the layer. A sealing layer 22 having a closed porosity is thus considered to be homogeneous within the meaning of the invention.
L’épaisseur de la couche d’étanchéité est par exemple comprise entre 1 mm et 20 mm, de préférence elle est inférieure ou égale à 15 mm. The thickness of the sealing layer is for example between 1 mm and 20 mm, preferably it is less than or equal to 15 mm.
Dans ce cas, la couche d’étanchéité 22 est formée d’un seul tenant d’une gaine tubulaire en matériau polymère. In this case, the sealing layer 22 is formed in one piece from a tubular sheath made of polymer material.
En variante, la couche d’étanchéité 22 est réalisée à partir d’une structure discontinue, par exemple d’une bande en matériau polymère assemblé. As a variant, the sealing layer 22 is made from a discontinuous structure, for example from a strip of assembled polymer material.
Lorsque la couche d’étanchéité 22 est formée d’une gaine tubulaire, elle est avantageusement obtenue par extrusion d’un matériau thermoplastique autour de la structure composite de renfort 21 , le matériau étant choisi notamment parmi les polymères mentionnés ci-dessus. Dans ce premier cas, l’épaisseur de la couche d’étanchéité 22 est typiquement de 3 à 15 mm, de préférence de 4 mm à 10 mm. When the sealing layer 22 is formed of a tubular sheath, it is advantageously obtained by extruding a thermoplastic material around the composite reinforcing structure 21, the material being chosen in particular from the polymers mentioned above. In this first case, the thickness of the sealing layer 22 is typically from 3 to 15 mm, preferably from 4 mm to 10 mm.
Lorsque la couche d’étanchéité 22 est formée d’une bande en matériau polymère assemblé, elle est réalisée avantageusement par enroulement de bandes thermoplastiques d’un polymère tel que décrit plus haut, suivi d’une étape de soudage des bandes thermoplastiques. De préférence, les spires d’une première couche sont jointives (bord à bord sans recouvrement) et les spires d’une couche supérieure sont disposées de façon à avoir un recouvrement de deux bandes adjacentes, inférieures assurant l’étanchéité de la couche d’étanchéité 22. Dans ce second cas, l’épaisseur de la couche d’étanchéité 22 est typiquement inférieure à 3 mm, avantageusement inférieure à 2 mm, encore plus avantageusement inférieure à 1 mm When the sealing layer 22 is formed from a strip of assembled polymer material, it is advantageously made by winding thermoplastic strips of a polymer as described above, followed by a step of welding the thermoplastic strips. Preferably, the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two adjacent strips, lower ensuring the sealing of the layer of sealing 22. In this second case, the thickness of the sealing layer 22 is typically less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm
Selon un premier mode de réalisation, la couche d’étanchéité 22 est non liée à la structure composite de renfort 21 et est dépourvue de matériaux de renforts. According to a first embodiment, the sealing layer 22 is not linked to the composite reinforcement structure 21 and is devoid of reinforcement materials.
Selon ce premier mode de réalisation, le polymère formant la couche d’étanchéité 22 est choisi parmi une polyoléfine, éventuellement réticulée, telle que du polyéthylène ou du polypropylène ; un élastomère thermoplastique TPE tel que le polyuréthane thermoplastique (TPE-U ou TPU) ou les copolymères styréniques (TPE-S ou TPS) ou les copolymères de polypropylène et d’éthylène-propylène-diène (PP-EPDM) vulcanisés (TPE- V ou TPV); un polyamide tel que du PA11 ou du PA12 ; un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou encore les copolymères de polyfluorure de vinylidène et de polyhexafluoropropylène (PVDF-HFP). According to this first embodiment, the polymer forming the sealing layer 22 is chosen from a polyolefin, optionally crosslinked, such as polyethylene or polypropylene; a TPE thermoplastic elastomer such as thermoplastic polyurethane (TPE-U or TPU) or styrenic copolymers (TPE-S or TPS) or vulcanized polypropylene and ethylene-propylene-diene (PP-EPDM) copolymers (TPE-V or POS); a polyamide such as PA11 or PA12; a fluorinated polymer such as polyvinylidene fluoride (PVDF) or even copolymers of polyvinylidene fluoride and polyhexafluoropropylene (PVDF-HFP).
La couche d’étanchéité 22 est alors formée d’une gaine tubulaire obtenue par extrusion d’un matériau thermoplastique autour de la structure composite de renfort 21 . La couche d’étanchéité 22 présente alors une épaisseur typiquement de 3 à 15 mm, de préférence de 4 mm à 10 mm. The sealing layer 22 is then formed of a tubular sheath obtained by extrusion of a thermoplastic material around the composite reinforcing structure 21 . The sealing layer 22 then has a thickness of typically 3 to 15 mm, preferably 4 mm to 10 mm.
Selon un second mode de réalisation, la couche d’étanchéité 22 est liée à la structure composite de renfort 21 et est dépourvue de matériaux de renforts. According to a second embodiment, the sealing layer 22 is bonded to the composite reinforcing structure 21 and is devoid of reinforcing materials.
Selon ce second mode de réalisation, la couche d’étanchéité 22 comprend un polymère choisi parmi le PEK (polyéthercétone), le PEEK (polyétheréthercétone), le PEEKK (polyétheréthercétonecétone), le PEKK (polyéthercétonecétone), le PEKEKK (polyéthercétoneéthercétonecétone), le PAI (polyamide-imide), le PEI (polyéther-imide), le PSU (polysulfone), le PPSU (polyphénylsulfone), le PES (polyéthersulfone) , le PAS (polyarylsulfone), le PPE (polyphénylèneéther), le PPS (polysulfure de phénylène) les LCP (polymères à cristaux liquides), le PPA (polyphtalamide), les copolymères de ceux-ci et/ou leurs mélanges ou encore un mélange d’un ou de plusieurs de ceux-ci avec un polysiloxane, le PTFE (polytétrafluoroéthylène) ou le PFPE (perfluoropolyéther). De préférence, la couche d’étanchéité 22 comprend du PEEK (polyétheréthercétone). According to this second embodiment, the sealing layer 22 comprises a polymer chosen from PEK (polyetherketone), PEEK (polyetheretherketone), PEEKK (polyetheretherketoneketone), PEKK (polyetherketoneketone), PEKEKK (polyetherketoneetherketoneketone), PAI (polyamide-imide), PEI (polyether-imide), PSU (polysulfone), PPSU (polyphenylsulfone), PES (polyethersulfone), PAS (polyarylsulfone), PPE (polyphenyleneether), PPS (polyphenylene sulfide ) LCPs (liquid crystal polymers), PPA (polyphthalamide), copolymers of these and/or mixtures thereof or a mixture of one or more of these with a polysiloxane, PTFE (polytetrafluoroethylene) or PFPE (perfluoropolyether). Preferably, sealing layer 22 comprises PEEK (polyetheretherketone).
Avantageusement, selon ce second mode de réalisation, le polymère de la couche d’étanchéité 22 est de même nature que celui de la matrice 40, plus avantageusement de même nature que celui de la matrice 40 et que celui de la gaine 20. Advantageously, according to this second embodiment, the polymer of the sealing layer 22 is of the same nature as that of the matrix 40, more advantageously of the same nature as that of the matrix 40 and that of the sheath 20.
La couche d’étanchéité 22 est alors réalisée par extrusion ou par enroulement de bandes thermoplastiques préalablement obtenues par pultrusion (ou extrusion par tirage), typiquement par enroulement d’au moins deux bandes thermoplastiques, et la couche d’étanchéité 22 présente une épaisseur inférieure à 3 mm, avantageusement inférieure à 2 mm, encore plus avantageusement inférieure à 1 mm. The sealing layer 22 is then produced by extrusion or by winding thermoplastic strips previously obtained by pultrusion (or extrusion by pulling), typically by winding at least two thermoplastic strips, and the sealing layer 22 has a lower thickness to 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm.
Dans l’exemple représenté sur la figure 1 , la conduite flexible 10 comporte une nappe d'armures interne 24, et une nappe d'armures externe 25 autour de laquelle est disposée la gaine extérieure 30. In the example shown in Figure 1, the flexible pipe 10 comprises an internal armor ply 24, and an external armor ply 25 around which the outer sheath 30 is arranged.
Chaque nappe d’armures 24, 25 comporte des éléments d’armure 50 longitudinaux enroulés à pas long autour de l’axe A-A’ de la conduite. Each layer of armor 24, 25 comprises longitudinal armor elements 50 wound at a long pitch around the axis A-A' of the pipe.
Par « enroulé à pas long », on entend que la valeur absolue par rapport à l’axe A- A’ de l’angle d’hélice est inférieure à 55°, typiquement comprise entre 25° et 45°, et parfois entre 20° et 45°. By "long-pitch wound", it is meant that the absolute value with respect to the axis A- A' of the helix angle is less than 55°, typically between 25° and 45°, and sometimes between 20 ° and 45°.
Les éléments d’armure 50 d’une première nappe 24 sont enroulés généralement suivant un angle opposé par rapport aux éléments d’armure 50 d’une deuxième nappe 25. Ainsi, si l’angle d’enroulement par rapport à l’axe A-A’ des éléments d’armure 50 de la première nappe 24 est égal à + a, a étant compris entre 25° et 45°, l’angle d’enroulement par rapport à l’axe A-A’ des éléments d’armure 50 de la deuxième nappe 25 disposée au contact de la première nappe 24 est par exemple de - a, avec a compris entre 25° et 45°. The weave elements 50 of a first ply 24 are wound generally at an opposite angle relative to the weave elements 50 of a second ply 25. Thus, if the angle of winding relative to the axis A-A 'of the armor elements 50 of the first ply 24 is equal to + a, a being between 25° and 45°, the winding angle relative to the axis A-A' of the armor elements 50 of the second ply 25 placed in contact with the first ply 24 is for example −a, with a comprised between 25° and 45°.
Les éléments d’armure 50 sont par exemple formés par des fils métalliques. En variante, les éléments d’armure 50 sont formés par des fils ou rubans plats en composite renforcés avec des fibres de carbone. The armor elements 50 are for example formed by metal wires. Alternatively, the armor elements 50 are formed by flat composite yarns or tapes reinforced with carbon fibers.
La combinaison d’un angle p d’enroulement des bandes composites 44 de valeur absolue comprise entre 55° et 85°, de préférence entre 60 et 80°, avec un angle a d’enroulement des éléments d’armure 50 de valeur absolue comprise entre 25° et 55°, de préférence entre 25° et 45° empêche l’élongation de la structure composite de renfort 21 par effet de compensation produit par les nappes d’armures 24, 25. The combination of an angle p of winding of the composite strips 44 of absolute value between 55° and 85°, preferably between 60 and 80°, with an angle a of winding of the armor elements 50 of absolute value comprised between 25° and 55°, preferably between 25° and 45° prevents elongation of the composite reinforcement structure 21 by compensation effect produced by the armor plies 24, 25.
La structure composite de renfort 21 pouvant présenter une résistance à la traction faible et ayant tendance à s’allonger sous l’effet d’efforts axiaux, les nappes d’armures 24, 25 reprennent les efforts axiaux et préviennent ainsi l’allongement de la structure composite de renfort 21 . Since the composite reinforcement structure 21 can have a low tensile strength and tends to elongate under the effect of axial forces, the armor plies 24, 25 take up the axial forces and thus prevent the elongation of the composite reinforcement structure 21 .
La combinaison optimale entre les angles a, p d’enroulement réduit drastiquement les contraintes dans l’ensemble tubulaire formé par la gaine interne 20 et la structure composite de renfort 21 , et donc l’épaisseur nécessaire pour résister aux efforts de flexion, de pression interne ou/et d’écrasement (« collapse »). The optimal combination between the winding angles a, p drastically reduces the stresses in the tubular assembly formed by the internal sheath 20 and the composite reinforcement structure 21, and therefore the thickness necessary to resist the forces of bending, pressure internal or/and crushing ("collapse").
En outre, grâce à la raideur axiale de la structure composite de renfort 21 , les nappes d’armures de traction 24, 25 résistent mieux à la compression axiale sous les conditions de pression externe du grand fond. In addition, thanks to the axial stiffness of the composite reinforcement structure 21, the tensile armor plies 24, 25 better resist axial compression under the external pressure conditions of the deep sea.
En outre, l’angle a d’enroulement des éléments d’armure 50 de valeur absolue comprise entre 25° et 55°, pris en combinaison avec l’angle p d’enroulement des bandes composites 44 de valeur absolue comprise entre 60° et 80 ° autorise une compression de la structure composite de renfort 21 , réduisant le rayon de courbure minimal (« minimal bending radius » ou « MBR » en anglais). In addition, the angle a of winding of the armor elements 50 of absolute value comprised between 25° and 55°, taken in combination with the angle p of winding of the composite strips 44 of absolute value comprised between 60° and 80° allows compression of the composite reinforcing structure 21, reducing the minimum bending radius (“minimal bending radius” or “MBR”).
La déformation admissible en traction à l’extrados de l’ensemble tubulaire formé par la gaine interne 20 et la structure composite de renfort 21 est supérieure à 1%. Cette déformation induit le rayon d’enroulement compatible avec la plupart des équipements de fabrication et de pose. The allowable tensile deformation at the upper surface of the tubular assembly formed by the internal sheath 20 and the composite reinforcing structure 21 is greater than 1%. This deformation induces the wrap radius compatible with most fabrication and installation equipment.
La gaine externe 30 est destinée à empêcher la perméation de fluide depuis l’extérieur de la conduite flexible 10 vers l’intérieur. Elle est avantageusement réalisée en matériau polymère, notamment à base d’une polyoléfine, telle que du polyéthylène, à base d’un polyamide, tel que du PA11 ou du PA12, à base d’un polymère fluoré tel que du polyfluorure de vinylidène (PVDF), ou à base d’un thermoplastique élastomère comprenant une polyoléfine, telle que le polyéthylène ou le polypropylène, associée à un élastomère du type SBS (styrène butadiène styrène), SEBS (styrène éthylène butadiène styrène), EPDM (éthylène propylène diène monomère), polybutadiène, polyisoprène ou polyéthylène- butylène. The outer sheath 30 is intended to prevent the permeation of fluid from the exterior of the flexible conduit 10 to the interior. It is advantageously made of a polymer material, in particular based on a polyolefin, such as polyethylene, based on a polyamide, such as PA11 or PA12, based on a fluorinated polymer such as polyvinylidene fluoride ( PVDF), or based on an elastomeric thermoplastic comprising a polyolefin, such as polyethylene or polypropylene, combined with an elastomer of the type SBS (styrene butadiene styrene), SEBS (styrene ethylene butadiene styrene), EPDM (ethylene propylene diene monomer), polybutadiene, polyisoprene or polyethylene-butylene.
L’épaisseur de la gaine externe 30 est par exemple comprise entre 5 mm et 15 mm.The thickness of the outer sheath 30 is for example between 5 mm and 15 mm.
Chaque couche anti-usure 26 est formée par exemple d’une polyoléfine telle qu’un polyéthylène (PE) ou un polypropylène (PP), d’une polyamide telle que du PA-11 ou du PA- 12, d’un polymère fluoré tel que du polyfluorure de vinylidène (PVDF), d’une polyaryléthercétone (PAEK) telle que du polyétheréthercétone (PEEK) ou du polyéthercétonecétone (PEKK), ou encore d’un matériau polymère comprenant un groupe sulfoné tel que le polysulfone (PSU), le polyéthersulfone (PES) ou le polyphenylsulfone (PPSU). Une couche anti-usure 26 est disposée entre la couche d’étanchéité 22 et la première nappe d’armures de traction 24. Une autre couche anti-usure 26 est placée entre les nappes d’armures 24, 25, avantageusement comme indiqué dans la Norme API 17J, 4e édition Mai 2014. Each anti-wear layer 26 is formed, for example, of a polyolefin such as a polyethylene (PE) or a polypropylene (PP), a polyamide such as PA-11 or PA-12, a fluorinated polymer such as polyvinylidene fluoride (PVDF), a polyaryletherketone (PAEK) such as polyetheretherketone (PEEK) or polyetherketoneketone (PEKK), or even a polymer material comprising a sulphonated group such as polysulphone (PSU), polyethersulfone (PES) or polyphenylsulfone (PPSU). An anti-wear layer 26 is placed between the sealing layer 22 and the first tensile armor ply 24. Another anti-wear layer 26 is placed between the armor plies 24, 25, advantageously as indicated in the API Standard 17J, 4th edition May 2014.
Le ruban de renfort 28 est formé par exemple d’une couche anti-flambement de résistance élevée afin de limiter le flambement des armures de traction 24, 25 dans l’éventualité où la conduite serait soumise au phénomène d’effet de fond inverse. Cette couche est par exemple en aramide. Le ruban est enroulé autour de la nappe d’armures 25 située la plus à l’extérieur, entre la nappe d’armures 25 et la gaine externe 30, avantageusement comme indiqué dans la Norme API 17J, 4e édition Mai 2014. The reinforcing tape 28 is formed, for example, of an anti-buckling layer of high resistance in order to limit the buckling of the tensile armors 24, 25 in the event that the pipe is subjected to the reverse bottom effect phenomenon. This layer is for example made of aramid. The ribbon is wound around the outermost armor ply 25, between the armor ply 25 and the outer sheath 30, advantageously as indicated in the API 17J Standard, 4th edition May 2014.
Le procédé de fabrication d’une structure tubulaire 20 selon l’invention va maintenant être décrit, dans l’exemple de la réalisation d’une conduite flexible 10. The method of manufacturing a tubular structure 20 according to the invention will now be described, in the example of the production of a flexible pipe 10.
Le procédé selon l’invention comprend les étapes suivantes : The method according to the invention comprises the following steps:
1 ) la fourniture d’une gaine tubulaire 20 d’axe central (A-A’) définissant un passage interne 13 de circulation de fluides ; 1) the provision of a tubular sheath 20 with a central axis (A-A') defining an internal passage 13 for the circulation of fluids;
2) la formation d’une structure composite de renfort 21 appliquée autour de la gaine tubulaire 20 et liée à la gaine tubulaire 20 ; 2) the formation of a composite reinforcement structure 21 applied around the tubular sheath 20 and linked to the tubular sheath 20;
3) la formation, autour de la structure composite de renfort 21 , d’une couche d’étanchéité 22 en matériau thermoplastique, 3) the formation, around the composite reinforcement structure 21, of a sealing layer 22 of thermoplastic material,
4) la disposition, autour de la couche d’étanchéité 22, d’au moins une nappe d’armures 24, 25 de traction, non liée à la couche d’étanchéité 22, la au moins une nappe d’armures 24, 25 de traction comprenant au moins un élément d’armure 50 enroulé autour de la couche d’étanchéité 22 ; et, 4) the arrangement, around the sealing layer 22, of at least one ply of tensile armors 24, 25, not linked to the sealing layer 22, the at least one ply of armors 24, 25 traction comprising at least one armor element 50 wound around the sealing layer 22; and,
5) optionnellement, la disposition d’une gaine externe 30 d’étanchéité disposée autour de la au moins une nappe d’armures 24, 25 de traction. Le procédé selon l’invention peut être mis en œuvre à partir de toute installation connue de l’homme de métier. Une installation adaptée à la mise en œuvre du procédé de l’invention est par exemple décrite dans WO 2019/180050. 5) optionally, the provision of an outer sealing sheath 30 arranged around the at least one ply of armors 24, 25 of traction. The method according to the invention can be implemented from any installation known to those skilled in the art. An installation suitable for implementing the method of the invention is for example described in WO 2019/180050.
Initialement, la gaine 20 est fabriquée et/ou est fournie dans l’installation. Avantageusement, la gaine 20 subit une étape préalable de pré-compactage. La gaine 20 est ensuite chauffée pour amener sa surface externe à une température supérieure à 100°C, et notamment comprise entre 100 °C et 350 °C. Initially, the sheath 20 is manufactured and/or is provided in the installation. Advantageously, the sheath 20 undergoes a preliminary pre-compaction step. Sheath 20 is then heated to bring its outer surface to a temperature above 100°C, and in particular between 100°C and 350°C.
De préférence, la gaine 20 doit présenter une forme la plus cylindrique possible. A cet effet, il est possible de façonner la surface externe de la gaine en utilisant des trains de galets en rotation autour de la gaine. Un tel dispositif est par exemple décrit dans WO 2019/180050. Preferably, the sheath 20 must have the most cylindrical shape possible. To this end, it is possible to shape the outer surface of the sheath using sets of rollers rotating around the sheath. Such a device is for example described in WO 2019/180050.
Une pluralité de couches de renfort sont ensuite formées autour de la gaine 20 à partir des bandes 44. A plurality of reinforcing layers are then formed around sheath 20 from strips 44.
Pour chaque couche de renfort, une pluralité de bandes 44 sont déroulées en parallèle autour de la gaine 20. Des éléments de guidage peuvent être utilisés pour maintenir les bandes 44 parallèles entre elles, avec un jeu contrôlé. For each reinforcement layer, a plurality of strips 44 are unwound in parallel around the sheath 20. Guide elements can be used to maintain the strips 44 parallel to each other, with a controlled clearance.
Les bandes 44 parallèles sont ensuite chauffées, avantageusement à une température comprise entre 150°C et 500°C, ladite température dépendant de la nature du polymère thermoplastique constituant la matrice 40 des bandes 44. The parallel strips 44 are then heated, advantageously to a temperature between 150° C. and 500° C., said temperature depending on the nature of the thermoplastic polymer constituting the matrix 40 of the strips 44.
Lorsque la matrice 40 des bandes 44 est en PEEK (point de fusion de l’ordre de 350°C), la température de chauffage des bandes 44 est avantageusement comprise entre 350°C et 500°C. Lorsque la matrice 40 des bandes 44 est en PVDF (point de fusion de l’ordre de 180°C), la température de chauffage des bandes 44 est avantageusement comprise entre 180°C et 280°C, préférentiellement comprise entre 200°C et 250°C. Ceci entraine avantageusement la fusion au moins partielle de la matrice 40. When the matrix 40 of the strips 44 is made of PEEK (melting point of the order of 350°C), the heating temperature of the strips 44 is advantageously between 350°C and 500°C. When the matrix 40 of the strips 44 is made of PVDF (melting point of the order of 180° C.), the heating temperature of the strips 44 is advantageously between 180° C. and 280° C., preferentially between 200° C. and 250°C. This advantageously leads to the at least partial fusion of the matrix 40.
Avantageusement, les bandes 44 sont enroulées en hélice autour de la surface externe définie par la gaine 20. Advantageously, the strips 44 are wound helically around the outer surface defined by the sheath 20.
La valeur absolue de l’angle d’hélice d’enroulement p de chaque bande composite 44 par rapport à l’axe A-A’ de la conduite 10 est par exemple comprise entre 50° et 85°, préférentiellement entre 55° et 80°. Ceci permet à la structure composite de renfort 21 d’accommoder élongations radiales dus aux efforts radiaux engendrés sous l’effet de la pression interne, et une coopération adéquate avec les nappes d’armures 24, 25. The absolute value of the winding helix angle p of each composite strip 44 with respect to the axis A-A' of the pipe 10 is for example between 50° and 85°, preferably between 55° and 80°. °. This allows the composite reinforcement structure 21 to accommodate radial elongations due to the radial forces generated under the effect of the internal pressure, and adequate cooperation with the armor plies 24, 25.
De préférence, et juste après leur enroulement, un train de galets tel que défini est entraîné en rotation et s’applique sur les bandes 44 de manière à les compacter. A cet effet, les galets successifs définissent une génératrice de compactage qui s’appuie sur les bandes 44. Les bandes 44 sont compactées de manière uniforme, en évitant la désorganisation des fibres 42 présentes dans la matrice 40, tout en assurant une répartition efficace du matériau fondu de la matrice 40 pour former une structure composite de renfort 21 continue et étanche. Preferably, and just after their winding, a train of rollers as defined is driven in rotation and is applied to the strips 44 so as to compact them. To this end, the successive rollers define a compaction generator which rests on the strips 44. The strips 44 are compacted in a uniform manner, avoiding the disorganization of the fibers 42 present in the matrix 40, while ensuring an effective distribution of the molten material of the matrix 40 to form a composite reinforcing structure 21 which is continuous and sealed.
Puis, la structure composite de renfort 21 subit une étape de post-compactage au cours de laquelle la surface externe de la structure composite de renfort 21 est ramollie par chauffage, puis à nouveau compactée par les trains de galets rotatifs. Les galets des trains de galets roulent suivant une trajectoire en hélice le long des bandes 44 respectives, assurant une désorganisation minimale des fibres de renfort 42. Then, the composite reinforcement structure 21 undergoes a post-compaction step during which the external surface of the composite reinforcement structure 21 is softened by heating, then compacted again by the trains of rotating rollers. The rollers of the roller trains roll in a helical path along the respective strips 44, ensuring minimal disruption of the reinforcing fibers 42.
Avantageusement, les opérations de pré-compactage, de formation de la structure tubulaire et de post-compactage sont répétées pour former plusieurs couches de renfort concentriques avec d’autres bandes 44, comme décrit précédemment. Advantageously, the pre-compaction, tubular structure formation and post-compaction operations are repeated to form several concentric reinforcement layers with other strips 44, as described above.
La structure composite de renfort 21 est ainsi fabriquée couche par couche, chaque nouvelle couche extérieure présentant une épaisseur sensiblement égale à celle d’une bande 44. Ces opérations peuvent être répétées plusieurs dizaines de fois, notamment lorsque la ou les bandes 44 présentent une épaisseur nettement inférieure à l’épaisseur finale de la paroi de la structure composite de renfort 21 souhaitée. The composite reinforcement structure 21 is thus manufactured layer by layer, each new outer layer having a thickness substantially equal to that of a strip 44. These operations can be repeated several tens of times, in particular when the strip or strips 44 have a thickness significantly less than the final thickness of the wall of the composite reinforcement structure 21 desired.
De plus, les caractéristiques des bandes 44 et/ou les paramètres de pose et/ou de compactage peuvent être modifiés à chaque fois qu’une nouvelle couche est ajoutée. Par exemple, il est possible de modifier l’angle d’hélice des bandes 44, notamment pour croiser les fibres de deux couches superposées. In addition, the characteristics of the strips 44 and/or the laying and/or compacting parameters can be modified each time a new layer is added. For example, it is possible to modify the helix angle of the strips 44, in particular to cross the fibers of two superimposed layers.
La couche d’étanchéité 22 est ensuite formée autour de la structure composite de renfort 21 . The sealing layer 22 is then formed around the composite reinforcement structure 21 .
Selon un premier mode de réalisation, la couche d’étanchéité 22 est formée par extrusion d’un thermoplastique choisi parmi les polymères mentionnés ci-dessus. De préférence, selon ce mode de réalisation, le matériau thermoplastique est extrudé directement sur la structure composite de renfort 21 . According to a first embodiment, the sealing layer 22 is formed by extrusion of a thermoplastic chosen from the polymers mentioned above. Preferably, according to this embodiment, the thermoplastic material is extruded directly onto the composite reinforcing structure 21 .
Selon ce premier mode de réalisation, l’épaisseur de la couche d’étanchéité 22 est typiquement de 3 à 15 mm, de préférence de 3 mm à 10 mm. According to this first embodiment, the thickness of the sealing layer 22 is typically from 3 to 15 mm, preferably from 3 mm to 10 mm.
Selon un second mode de réalisation, la couche d’étanchéité 22 est formée par enroulement autour de la structure composite de renfort 21 de bandes thermoplastiques d’un polymère tel que décrit plus haut, suivi du soudage des bandes. De préférence, les spires d’une première couche sont jointives (bord à bord sans recouvrement) et les spires d’une couche supérieure sont disposées de façon à avoir un recouvrement de deux bandes adjacentes inférieures assurant l’étanchéité de la gaine tubulaire 20. Avantageusement, les bandes 44 formant la structure composite de renfort 21 et les bandes thermoplastiques formant la couche d’étanchéité 22 sont enroulées avec un même angle d’enroulement par rapport à l’axe A-A' de la conduite 10. La valeur absolue de l’angle d’hélice d’enroulement de chaque bande composite 44 et de chaque bande thermoplastique par rapport à l’axe A-A’ de la conduite 10 est par exemple comprise entre 50° et 85°, préférentiellement entre 55° et 80°. According to a second embodiment, the sealing layer 22 is formed by winding around the composite reinforcing structure 21 thermoplastic strips of a polymer as described above, followed by welding of the strips. Preferably, the turns of a first layer are contiguous (edge to edge without overlap) and the turns of an upper layer are arranged so as to have an overlap of two lower adjacent bands ensuring the sealing of the tubular sheath 20. Advantageously, the strips 44 forming the composite reinforcing structure 21 and the thermoplastic strips forming the sealing layer 22 are wound with the same winding angle relative to the axis AA' of the pipe 10. The absolute value of the The winding helix angle of each composite strip 44 and of each thermoplastic strip with respect to the axis A-A' of the pipe 10 is for example between 50° and 85°, preferably between 55° and 80°.
De préférence, la couche d’étanchéité 22 est obtenue par enroulement d’au moins deux bandes thermoplastiques autour de la structure composite de renfort 21 . Les bandes thermoplastiques sont typiquement préparées par extrusion du matériau thermoplastique. Preferably, the sealing layer 22 is obtained by winding at least two thermoplastic strips around the composite reinforcing structure 21 . Thermoplastic tapes are typically prepared by extruding the thermoplastic material.
Selon une variante de réalisation, la couche d’étanchéité 22 est un bi-couche disposé autour de la structure composite de renfort 21 dans lequel chaque couche comprend l’enroulement d’au moins deux bandes thermoplastiques préparées par extrusion du matériau thermoplastique. According to a variant embodiment, the sealing layer 22 is a two-layer arranged around the composite reinforcement structure 21 in which each layer comprises the winding of at least two thermoplastic strips prepared by extrusion of the thermoplastic material.
Le soudage des bandes thermoplastiques est réalisé selon toute méthode connue, typiquement par chauffage des zones de jonctions entre les bandes à une température comprise entre 150°C et 500°C, la température dépendant de la nature du polymère thermoplastique constituant les bandes. The welding of the thermoplastic strips is carried out according to any known method, typically by heating the junction zones between the strips to a temperature of between 150° C. and 500° C., the temperature depending on the nature of the thermoplastic polymer constituting the strips.
Lorsque les bandes thermoplastiques sont en PEEK (point de fusion de l’ordre de 350°C), la température de chauffage est avantageusement comprise entre 350°C et 500°C. Lorsque les bandes thermoplastiques sont en PVDF (point de fusion de l’ordre de 180°C), la température de chauffage est avantageusement comprise entre 180°C et 280°C, préférentiellement comprise entre 200°C et 250°C. When the thermoplastic strips are made of PEEK (melting point of the order of 350°C), the heating temperature is advantageously between 350°C and 500°C. When the thermoplastic strips are made of PVDF (melting point of the order of 180°C), the heating temperature is advantageously between 180°C and 280°C, preferably between 200°C and 250°C.
Typiquement, le soudage des bandes thermoplastiques est réalisé par rayonnement LASER. Le soudage des bandes thermoplastiques permet la formation d’une couche d’étanchéité 22 continue. Typically, the welding of thermoplastic strips is carried out by LASER radiation. The welding of the thermoplastic strips allows the formation of a continuous sealing layer 22.
Selon ce second mode de réalisation, l’épaisseur de la couche d’étanchéité 22 est typiquement inférieure à 3 mm, avantageusement inférieure à 2 mm, encore plus avantageusement inférieure à 1 mm. According to this second embodiment, the thickness of the sealing layer 22 is typically less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm.
Lorsque le polymère de la couche d’étanchéité 22 est de même nature que celui de la matrice 40 de la structure composite de renfort 21 , le procédé de l’invention permet la fabrication de conduites flexibles 10 dans laquelle la couche d’étanchéité 22 est liée ou non liée à la structure composite de renfort 21 , en fonction de la méthode employée pour former la couche d’étanchéité 22. When the polymer of the sealing layer 22 is of the same nature as that of the matrix 40 of the composite reinforcing structure 21, the method of the invention allows the manufacture of flexible pipes 10 in which the sealing layer 22 is bonded or not bonded to the composite reinforcement structure 21, depending on the method used to form the sealing layer 22.
Selon une première variante, la couche d’étanchéité 22 est formée par enroulement de bandes thermoplastiques autour de la structure composite de renfort 21 , suivi du soudage des bandes entre elles. Dans ce cas, la couche d’étanchéité 22 obtenue est liée à la structure composite de renfort 21 . According to a first variant, the sealing layer 22 is formed by winding thermoplastic strips around the composite reinforcing structure 21, followed by the welding the strips together. In this case, the sealing layer 22 obtained is bonded to the composite reinforcing structure 21 .
Selon une seconde variante, la couche d’étanchéité 22 est formée par extrusion d’un matériau thermoplastique. Dans ce cas, le caractère lié ou non lié de la couche d’étanchéité 22 dépend de la température à laquelle le matériau thermoplastique extrudé et la couche composite de renfort 21 sont mis en contact. Lorsque le matériau thermoplastique extrudé et la couche composite de renfort 21 sont mis en contact à une température inférieure à la température de fusion du matériau thermoplastique, la couche d’étanchéité 22 résultante est non liée à la structure composite de renfort 21 . A l’inverse, lorsque le matériau thermoplastique extrudé et la couche composite de renfort sont mis en contact à une température supérieure ou égale à la température de fusion du matériau thermoplastique, la couche d’étanchéité 22 résultante est liée à la structure composite de renfort 21 . According to a second variant, the sealing layer 22 is formed by extrusion of a thermoplastic material. In this case, the bonded or unbonded character of the sealing layer 22 depends on the temperature at which the extruded thermoplastic material and the composite reinforcement layer 21 are brought into contact. When the extruded thermoplastic material and the composite reinforcement layer 21 are brought into contact at a temperature below the melting temperature of the thermoplastic material, the resulting sealing layer 22 is not bonded to the composite reinforcement structure 21 . Conversely, when the extruded thermoplastic material and the composite reinforcement layer are brought into contact at a temperature greater than or equal to the melting temperature of the thermoplastic material, the resulting sealing layer 22 is bonded to the composite reinforcement structure. 21 .
Toutefois, lorsque le polymère de la couche d’étanchéité 22 n’est pas de même nature que celui de la matrice 40, le procédé de l’invention conduit exclusivement à la formation d’une couche d’étanchéité 22 non liée à la structure composite de renfort 21 . However, when the polymer of the sealing layer 22 is not of the same nature as that of the matrix 40, the method of the invention leads exclusively to the formation of a sealing layer 22 not bonded to the structure. reinforcement composite 21 .
Les éléments d’armure 50 des nappes d’armures de traction 24, 25 sont ensuite enroulés autour de la couche d’étanchéité 22, de manière non liée avec la couche d’étanchéité 22. Avantageusement une couche anti-usure 26 est interposée entre la couche d’étanchéité 22 et la première nappe d’armures de traction 24, et entre chaque nappe d’armures de traction 24, 25. The armor elements 50 of the tensile armor plies 24, 25 are then wound around the sealing layer 22, in a manner not bonded with the sealing layer 22. Advantageously, an anti-wear layer 26 is interposed between the sealing layer 22 and the first ply of tensile armors 24, and between each ply of tensile armors 24, 25.
Puis, un ruban de renfort 28 est enroulé autour de la nappe d’armures de traction 25 la plus à l’extérieur. Then, a reinforcing tape 28 is wrapped around the outermost tensile armor ply 25.
Ensuite, la gaine externe 30 est formée autour des nappes d’armures 24, 25. Then, the outer sheath 30 is formed around the armor plies 24, 25.
Le compactage assuré par les galets au cours de la formation de la structure composite de renfort 21 , puis au cours de l’étape de post-compactage renforce les propriétés mécaniques de la structure composite de renfort 21 , en particulier en offrant une résistance mécanique interlaminaire augmentée, un taux de cristallinité plus grand, et un taux de porosité diminué. The compaction provided by the rollers during the formation of the composite reinforcement structure 21, then during the post-compaction step reinforces the mechanical properties of the composite reinforcement structure 21, in particular by providing interlaminar mechanical resistance. increased, a greater rate of crystallinity, and a reduced rate of porosity.
La structure composite de renfort 21 est donc plus robuste mécaniquement et présente une étanchéité améliorée au fluide destiné à circuler dans le passage interne 13. The composite reinforcement structure 21 is therefore mechanically more robust and has improved sealing against the fluid intended to circulate in the internal passage 13.
La présence de la couche d’étanchéité 22 limite, de préférence prévient totalement, l’entrée d’eau extérieure à l’intérieure de la conduite flexible 10 de l’invention. Elle permet en particulier de protéger la structure composite de renfort 21 contre les effets néfastes de l’eau, notamment en évitant la formation de discontinuités. The presence of the sealing layer 22 limits, preferably completely prevents, the entry of external water into the interior of the flexible pipe 10 of the invention. It makes it possible in particular to protect the composite reinforcing structure 21 against the harmful effects of water, in particular by avoiding the formation of discontinuities.

Claims

23 REVENDICATIONS 23 CLAIMS
1. Conduite flexible (10) destinée au transport de fluides comprenant, de l’intérieur vers l’extérieur : 1. Flexible pipe (10) intended for the transport of fluids comprising, from the inside to the outside:
- une gaine interne tubulaire (20) d’axe (A-A’) définissant un passage interne (13) de circulation de fluides ; - a tubular internal sheath (20) of axis (A-A') defining an internal passage (13) for the circulation of fluids;
- une structure composite de renfort (21 ) appliquée autour de la gaine tubulaire (20) et liée à la gaine tubulaire (20) ; - A composite reinforcement structure (21) applied around the tubular sheath (20) and linked to the tubular sheath (20);
- au moins une couche d’étanchéité (22) en un matériau thermoplastique appliquée autour de la structure composite de renfort (21 ) ; - at least one sealing layer (22) of a thermoplastic material applied around the composite reinforcement structure (21);
- au moins une nappe d’armures (24, 25) de traction, non liée à la couche d’étanchéité (22), la au moins une nappe d’armures (24, 25) de traction comprenant au moins un élément d’armure (50) enroulé autour de la couche d’étanchéité (22) ; et - at least one tensile armor ply (24, 25), not bonded to the sealing layer (22), the at least one tensile armor ply (24, 25) comprising at least one armor (50) wrapped around the sealing layer (22); and
- optionnellement une gaine externe (30) d’étanchéité disposée autour de la au moins une nappe d’armures (24, 25) de traction, caractérisée en ce que l’épaisseur de la couche d’étanchéité (22) est inférieure à 15 mm. - optionally an outer sealing sheath (30) arranged around the at least one layer of tensile armor layers (24, 25), characterized in that the thickness of the sealing layer (22) is less than 15 mm.
2. Conduite flexible (10) selon la revendication 1 caractérisée en ce que la couche d’étanchéité (22) présente un coefficient de perméabilité à l’eau inférieur à 2.104 cm3(STP).cm-2.s'1.bar1. 2. Flexible pipe (10) according to claim 1 characterized in that the sealing layer (22) has a water permeability coefficient of less than 2.10 4 cm 3 (STP).cm -2 .s' 1 . bars 1 .
3. Conduite flexible (10) selon l’une quelconque des revendications 1 et 2 caractérisée en ce que la structure composite de renfort (21 ) comprend un enroulement d’au moins deux couches de renfort laminées, chaque couche de renfort étant réalisée à partir d’une matrice thermoplastique (40) renforcée avec des fibres de renfort (42). 3. Flexible pipe (10) according to any one of claims 1 and 2 characterized in that the composite reinforcing structure (21) comprises a winding of at least two laminated reinforcing layers, each reinforcing layer being made from of a thermoplastic matrix (40) reinforced with reinforcing fibers (42).
4. Conduite flexible (10) selon la revendication 3 caractérisée en ce que chaque couche de renfort est réalisée à partir d’une matrice thermoplastique (40) en polyétheréthercétone (PEEK) renforcée avec des fibres de carbone. 4. Flexible pipe (10) according to claim 3 characterized in that each reinforcing layer is made from a thermoplastic matrix (40) of polyetheretherketone (PEEK) reinforced with carbon fibers.
5. Conduite flexible (10) selon l’une quelconque des revendications 1 à 4, caractérisée en ce que la couche d’étanchéité (22) est dépourvue de matériaux de renfort. 5. Flexible pipe (10) according to any one of claims 1 to 4, characterized in that the sealing layer (22) is devoid of reinforcing materials.
6. Conduite flexible (10) selon l’une quelconque des revendications précédentes, caractérisée en ce que la couche d’étanchéité (22) est formée par l’enroulement d’au moins deux bandes d’un matériau thermoplastique et par soudage des au moins deux bandes entre elles. 6. Flexible pipe (10) according to any one of the preceding claims, characterized in that the sealing layer (22) is formed by the winding of at least two strips of a thermoplastic material and by welding at least least two bands between them.
7. Conduite flexible (10) selon la revendication 6, caractérisée en ce que l’épaisseur de la couche d’étanchéité (22) est inférieure à 3 mm, avantageusement inférieure à 2 mm, encore plus avantageusement inférieure à 1 mm. 7. Flexible pipe (10) according to claim 6, characterized in that the thickness of the sealing layer (22) is less than 3 mm, advantageously less than 2 mm, even more advantageously less than 1 mm.
8. Conduite flexible (10) selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la couche d’étanchéité (22) est formée à partir d’une gaine tubulaire en matériau thermoplastique extrudée. 8. Flexible pipe (10) according to any one of claims 1 to 5, characterized in that the sealing layer (22) is formed from a tubular sheath of extruded thermoplastic material.
9. Conduite flexible (10) selon la revendication 8, caractérisée en ce que l’épaisseur de la couche d’étanchéité (22) est de 3 à 15 mm, de préférence de 3 mm à 10 mm. 9. Flexible pipe (10) according to claim 8, characterized in that the thickness of the sealing layer (22) is 3 to 15 mm, preferably 3 mm to 10 mm.
10. Conduite flexible (10) selon l’une quelconque des revendications précédentes, caractérisée en ce que la couche d’étanchéité (22) est liée à la structure composite de renfort (21 ). 10. Flexible pipe (10) according to any one of the preceding claims, characterized in that the sealing layer (22) is bonded to the composite reinforcing structure (21).
11. Conduite flexible (10) selon l’une quelconque des revendications 1 à 9, caractérisée en ce que la couche d’étanchéité (22) est non liée à la structure composite de renfort (21 ). 11. Flexible pipe (10) according to any one of claims 1 to 9, characterized in that the sealing layer (22) is not bonded to the composite reinforcing structure (21).
12. Conduite flexible (10) selon l’une quelconque des revendications précédentes, caractérisée en ce que la couche d’étanchéité (22) est réalisée à partir d’un matériau thermoplastique sélectionné parmi les polyoléfines, les polyamides, les polymères fluorés, les élastomères thermoplastiques, les polyaryléthercétones, les copolymères de ceux-ci, l’un quelconque de leurs mélanges et les mélanges les comprenant, de préférence parmi les polyaryléthercétones. 12. Flexible pipe (10) according to any one of the preceding claims, characterized in that the sealing layer (22) is made from a thermoplastic material selected from polyolefins, polyamides, fluorinated polymers, thermoplastic elastomers, polyaryletherketones, copolymers thereof, any of their mixtures and mixtures comprising them, preferably from polyaryletherketones.
13. Conduite flexible (10) selon l’une quelconque des revendications 3 à 12, caractérisée en ce que la couche d’étanchéité (22) est réalisée à partir du même matériau thermoplastique que celui utilisé pour la matrice thermoplastique (40) de chaque couche de renfort de la structure composite de renfort (21 ), avantageusement à partir de polyétheréthercétone (PEEK). 13. Flexible pipe (10) according to any one of claims 3 to 12, characterized in that the sealing layer (22) is made from the same thermoplastic material as that used for the thermoplastic matrix (40) of each reinforcement layer of the composite reinforcement structure (21), advantageously from polyetheretherketone (PEEK).
14. Procédé de fabrication d’une conduite flexible (10) comprenant les étapes suivantes : 14. A method of manufacturing a flexible pipe (10) comprising the following steps:
- fourniture d’une gaine tubulaire (20) d’axe central (A-A’) définissant un passage interne (13) de circulation de fluides ; - provision of a tubular sheath (20) with a central axis (A-A') defining an internal passage (13) for the circulation of fluids;
- formation d’une structure composite de renfort (21 ) appliquée autour de la gaine tubulaire (20) et liée à la gaine tubulaire (20) ; - formation of a composite reinforcement structure (21) applied around the tubular sheath (20) and linked to the tubular sheath (20);
- formation, autour de la structure composite de renfort (21 ), d’une couche d’étanchéité (22) en matériau thermoplastique, - formation, around the composite reinforcement structure (21), of a sealing layer (22) of thermoplastic material,
- disposition, autour de la couche d’étanchéité (22), d’au moins une nappe d’armures (24, 25) de traction, non liée à la couche d’étanchéité (22), la au moins une nappe d’armures (24, 25) de traction comprenant au moins un élément d’armure (50) enroulé autour de la couche d’étanchéité (22) ; et, - provision, around the sealing layer (22), of at least one ply of tensile armor (24, 25), not linked to the sealing layer (22), the at least one ply of tensile armors (24, 25) comprising at least one armor element (50) wrapped around the sealing layer (22); and,
- optionnellement, disposition d’une gaine externe (30) d’étanchéité disposée autour de la au moins une nappe d’armures (24, 25) de traction caractérisée en ce que l’épaisseur de la couche d’étanchéité (22) est inférieure à 15 mm. - optionally, arrangement of an external sealing sheath (30) placed around the at least one ply of tensile armors (24, 25) characterized in that the thickness of the sealing layer (22) is less than 15mm.
15. Procédé selon la revendication 14, dans lequel la formation de la couche d’étanchéité (22) est réalisée par : enroulement autour de la structure composite de renfort (21) d’au moins deux bandes d’un matériau thermoplastique, et soudage des au moins deux bandes entre elles. 15. Method according to claim 14, in which the formation of the sealing layer (22) is carried out by: winding around the composite reinforcing structure (21) of at least two strips of a thermoplastic material, and welding at least two bands between them.
16. Procédé selon la revendication 14, dans lequel la formation de la couche d’étanchéité (22) est réalisée par extrusion d’un matériau thermoplastique sur la structure composite de renfort (21 ). 16. Method according to claim 14, in which the formation of the sealing layer (22) is carried out by extruding a thermoplastic material onto the composite reinforcing structure (21).
EP21799307.0A 2020-11-09 2021-11-09 Flexible fluid transport pipe and associated methods Pending EP4241003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011472A FR3116099B1 (en) 2020-11-09 2020-11-09 Flexible fluid transport conduit and associated methods
PCT/EP2021/081133 WO2022096748A1 (en) 2020-11-09 2021-11-09 Flexible fluid transport pipe and associated methods

Publications (1)

Publication Number Publication Date
EP4241003A1 true EP4241003A1 (en) 2023-09-13

Family

ID=74125472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21799307.0A Pending EP4241003A1 (en) 2020-11-09 2021-11-09 Flexible fluid transport pipe and associated methods

Country Status (5)

Country Link
US (1) US20240019051A1 (en)
EP (1) EP4241003A1 (en)
AU (1) AU2021375743A1 (en)
FR (1) FR3116099B1 (en)
WO (1) WO2022096748A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202211136D0 (en) * 2022-07-29 2022-09-14 Baker Hughes Energy Tech Uk Limited Composite layer and method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES241999Y (en) * 1978-03-14 1979-12-16 A PIPE TO TRANSPORT CRUDE OIL.
WO1995024578A1 (en) * 1994-03-10 1995-09-14 Elf Atochem S.A. Flexible metal pipes comprising a retractable polymer sheath
NO314958B1 (en) 1998-06-24 2003-06-16 Wellstream Int Ltd Flexible, polymeric, composite rudder such as a flexible riser
NO312483B1 (en) 1999-05-14 2002-05-13 Offtech Invest As Flexible, lightweight composite pipe for high pressure oil and gas applications
FR2861158B1 (en) * 2003-10-17 2006-01-27 Technip France FLEXIBLE TUBULAR DRIVE, IN PARTICULAR FOR PETROL OPERATION, WITH PTFE WINDING.
NL1028697C2 (en) 2005-04-05 2006-10-09 Airborne Dev B V Device and method for manufacturing fiber-reinforced tube.
GB201020514D0 (en) 2010-12-03 2011-01-19 Magma Global Ltd Composite pipe
NL2006335C2 (en) 2011-03-03 2012-09-04 Airborne Composites Tubulars B V Method for manufacturing continuous composite tube, apparatus for manufacturing continuous composite tube.
FR2987666B1 (en) * 2012-03-01 2014-02-28 Technic France FLEXIBLE TUBULAR DRIVING FOR THE TRANSPORT OF CORROSIVE HYDROCARBONS
GB2504687A (en) 2012-08-06 2014-02-12 Magma Global Ltd A pipe assembly including a composite pipe
DK177627B1 (en) * 2012-09-03 2013-12-16 Nat Oilwell Varco Denmark Is An unbonded flexible pipe
FR3059073B1 (en) * 2016-11-21 2019-08-16 Technip France UNLATCHED FLEXIBLE CONDUIT FOR TRANSPORTING ABRASIVE MATERIAL, METHOD AND USE THEREOF
FR3071899A1 (en) 2017-10-03 2019-04-05 Technip France FLEXIBLE CONDUIT FASTENING TIP, FLEXIBLE DRIVING AND METHOD THEREOF
FR3077578B1 (en) 2018-02-05 2020-01-10 Arkema France MIXTURES OF POLYARYLETHERCETONES HAVING IMPROVED SHOCK RESISTANCE, ELONGATION AT BREAK AND FLEXIBILITY
FR3079162B1 (en) 2018-03-20 2020-04-24 Technip France COMPACTION DEVICE OF A TUBULAR STRUCTURE, RELATED INSTALLATION AND METHOD
FR3090065B1 (en) * 2018-12-12 2020-11-20 Technip France Manufacturing process of a flexible pipe and associated pipe

Also Published As

Publication number Publication date
FR3116099B1 (en) 2023-12-08
AU2021375743A1 (en) 2023-06-15
FR3116099A1 (en) 2022-05-13
WO2022096748A1 (en) 2022-05-12
US20240019051A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
EP3601862B1 (en) Flexible pipe with layers of metal armour and layers of composite armour
WO2020016325A1 (en) Flexible pipe for transporting a gas and/or petroleum fluid and intended to be submerged within a body of water
EP3542089B1 (en) Flexible fluid transport pipe, and associated facility and method
EP3224393A1 (en) Thermal insulation layer for a flexible submarine tubular pipe
EP3004709B1 (en) Flexible duct for conveying a fluid, and related use and method
EP3768493B1 (en) Device for compacting a tubular structure, associated installation and method
EP4241003A1 (en) Flexible fluid transport pipe and associated methods
EP3692295B1 (en) Attachment end piece for a flexible pipe, associated flexible pipe and associated method
EP3123067B1 (en) Flexible pipe for transporting fluid, related manufacturing and determination methods
WO2022269024A1 (en) Thermoplastic composite hose for transporting fluid and flexible pipe comprising same
EP3899339B1 (en) Flexible pipe for conveying a fluid in a submarine environment, and associated method
FR3086364A1 (en) FLEXIBLE FLUID TRANSPORT PIPE WITH ANTI-CORROSIVE FLUID AND METHOD OF MANUFACTURING SAME
EP4341593A1 (en) Flexible underwater pipe comprising a wear-resistant polypropylene homopolymer layer
EP4285044A1 (en) Flexible pipe for conveying a fluid and associated production method
WO2020128001A1 (en) Flexible pipe for transporting a fluid in an underwater environment and associated method
FR3090799A1 (en) FLEXIBLE PIPE FOR THE TRANSPORT OF A HYDROCARBON FLUID WITHIN A BODY OF WATER AND ASSOCIATED METHOD
EP3768506A1 (en) Line to be submerged in a body of water, and associated production method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)