EP4233112A1 - Système et procédé de refroidissement d'un ensemble de piles à combustible - Google Patents

Système et procédé de refroidissement d'un ensemble de piles à combustible

Info

Publication number
EP4233112A1
EP4233112A1 EP21794588.0A EP21794588A EP4233112A1 EP 4233112 A1 EP4233112 A1 EP 4233112A1 EP 21794588 A EP21794588 A EP 21794588A EP 4233112 A1 EP4233112 A1 EP 4233112A1
Authority
EP
European Patent Office
Prior art keywords
cooling
loop
fuel cells
cells
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21794588.0A
Other languages
German (de)
English (en)
Inventor
Karine PRINCE
David Lavergne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Aerospace Toulouse SAS
Original Assignee
Liebherr Aerospace Toulouse SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Aerospace Toulouse SAS filed Critical Liebherr Aerospace Toulouse SAS
Publication of EP4233112A1 publication Critical patent/EP4233112A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a system for cooling a set of fuel cells intended to equip a transport vehicle, in particular an air transport vehicle such as an aircraft.
  • the invention also relates to a method for cooling a set of fuel cells.
  • a fuel cell also designated by the acronym PAC
  • PAC electrolysis
  • dihydrogen and dioxygen constitute the chemical fuel under which energy can be stored within a fuel cell application.
  • a second reaction provided by the fuel cell as such makes it possible to reverse the process and produce electricity from these two fuels.
  • the electrolysis reaction described is generally carried out on the ground so that the hydrogen is directly embarked in a dedicated tank and the oxygen is supplied by the air taken from outside the aircraft.
  • the fuel cell as such is therefore an electrical generator with two electrodes which makes it possible to produce electrical energy by oxidation on one electrode of a reducing fuel, such as hydrogen, coupled with a reduction on the another electrode of an oxidant, such as the oxygen in the air for example.
  • a reducing fuel such as hydrogen
  • an oxidant such as the oxygen in the air for example.
  • the cell's redox reaction generates not only electricity, but also by-products such as water, heat, and oxygen-depleted air.
  • One of the solutions commonly used in the aeronautical field to evacuate this heat is to provide a cooling liquid circulation loop in thermal interaction with outside air, the flow rate of which is sized for the full power of the battery for the temperatures outdoor maximums observed.
  • the circulation of the liquid in the loop can be carried out by a pump controlled according to the power of the cell to be cooled.
  • the inventors have sought to develop an optimized cooling system for a set of fuel cells which overcomes at least some of the drawbacks of the known solutions.
  • the invention thus aims to provide a system for cooling a set of fuel cells which overcomes at least some of the drawbacks of known cooling systems, in particular for on-board aeronautical applications.
  • the invention also aims to provide, in at least one embodiment, a cooling system which has a limited bulk compared to known systems.
  • the invention aims in particular to provide, in at least one embodiment, a cooling system that can be applied to a set of cells that can each deliver a level of power that is very different from each other.
  • the invention aims in particular to provide, in at least one mode of achievement, a cooling system that does not require a dedicated control pump for each stack.
  • the invention also aims to provide a method for cooling a set of fuel cells.
  • the invention relates to a system for cooling a set of fuel cells of a transport vehicle, such as an aircraft, comprising:
  • cooling loop a cooling fluid circulation loop, called the cooling loop
  • a cooling heat exchanger configured to be able to provide heat exchange between said cooling loop and a cooling air circulation channel taken from outside the transport vehicle.
  • the cooling system according to the invention is characterized in that it further comprises, arranged on said cooling loop:
  • variable-speed pump for supplying said cooling loop with cooling fluid according to a measurement representative of the need for cooling said set of fuel cells
  • a 3-way valve for regulating the flow of cooling fluid supplying this cell according to a measurement representative of the need for cooling of this cell.
  • the system according to the invention therefore comprises a single cooling loop supplied with cooling fluid by a single pump controlled according to a measurement representative of the cooling requirement of all the cells.
  • each stack of the set of stacks is supplied with cooling fluid by a regulation valve arranged on the cooling loop and controlled according to a measurement representative of the need for cooling of this stack.
  • the system according to the invention combines global regulation of all the stacks according to a measurement of the need for cooling of all the stacks with local regulation of each stack according to the need for cooling of each cell.
  • This particular architecture makes it possible to have only one cooling loop supply pump for global regulation and one regulation valve per stack for local regulation.
  • this architecture equipped with a single global flow regulation pump and several 3-way local flow regulation valves ensures optimized control of the cooling of a plurality of fuel cells which can deliver levels of power very different from each other.
  • the invention makes it possible to control the total cooling power necessary for all the cells, whatever their arrangements and the power they develop.
  • the system also comprises a 3-way valve, called a bypass valve, arranged on said cooling loop upstream of the heat exchanger, associated with a by-pass line of the heat exchanger, so as to be able to regulate the temperature of the cooling fluid upstream of said set of cells.
  • a 3-way valve called a bypass valve
  • This advantageous variant makes it possible to regulate the temperature of the cooling fluid upstream of all the stacks regardless of the temperature of the cooling air circulating in the cooling air circulation channel.
  • the control of the bypass valve makes it possible to control the quantity of the cooling fluid in heat exchange with the cooling air and therefore to control the temperature of the cooling fluid which supplies the various 3-way valves of regulation of the various batteries. of all fuel cells.
  • the flow of cooling fluid is determined by the variable speed pump controlled by a measurement representative of the need for cooling of the stack assembly and the coolant temperature is determined by the bypass valve.
  • the invention also makes it possible to have a heating mode in which at least one stack of all the stacks heats the other stacks, by controlling the 3-way valves.
  • the system further comprises a computer for controlling said variable-speed pump, all the 3-way regulation valves and said bypass valve.
  • the calculator is configured to determine the total power of the losses of the stacks and to define the total flow of cooling fluid necessary in the cooling loop and the inlet temperature of the various stacks of the set of stacks.
  • the computer thus ensures the control (or piloting) of the pump, the diversion valve and the various 3-way valves associated respectively with each stack of the set of stacks.
  • the system further comprises at least one temperature sensor arranged at the outlet of each fuel cell of said set of fuel cells so as to be able to provide a temperature measurement of the cooling fluid at the cell outlet forming said measurement representative of the need for cooling of this stack.
  • the measurement representative of the cooling requirement of each stack of the set of stacks is a temperature measurement at the stack outlet. This temperature measurement thus enables the computer to regulate the flow sent to each stack in order to maintain a target temperature.
  • the system further comprises at least one temperature sensor arranged on the cooling loop upstream of said set of fuel cells so as to be able to provide a measurement of the temperature of the cooling fluid of the cooling loop forming said measure representative of the need for cooling said set of cells.
  • the measurement representative of the cooling requirement of the set of cells is a measurement of the temperature of the cooling fluid of the cooling loop upstream of said set of cells. This measure of temperature thus enables the computer to regulate the inlet temperature of the batteries.
  • the invention also relates to a method for cooling a set of fuel cells of a transport vehicle, such as an aircraft, comprising the following steps:
  • cooling loop circulation of a cooling fluid in a loop, called cooling loop
  • the method according to the invention is advantageously implemented by a system according to the invention and the system according to the invention advantageously implements a method according to the invention.
  • the technical advantages and effects of a system according to the invention apply mutatis mutandis to a method according to the invention.
  • the method further comprises a step of regulating the temperature of said cooling fluid upstream of said set of fuel cells by regulating the flow rate of fluid in heat exchange with said cooling air taken from outside of the transport vehicle.
  • a method according to this variant is advantageously implemented by a system equipped with a bypass valve according to the invention.
  • the benefits and effects techniques of a system according to this variant of the invention equipped with a bypass valve apply mutatis mutandis to a method according to this variant of the invention.
  • the method further comprises, for each fuel cell of said set of cells, said measurement representative of the need for cooling of this fuel cell consists of a measurement of the temperature of the cooling fluid at the outlet of this pile.
  • a method according to this variant is advantageously implemented by a system equipped with temperature sensors arranged at the outlet of the batteries of said set of batteries.
  • the technical advantages and effects of a system according to this variant of the invention equipped with temperature sensors at the outlet of the batteries apply mutatis mutandis to a method according to this variant of the invention.
  • the invention also extends to a set of fuel cells mounted in series (same current delivered by the different cells) or in parallel (same voltage delivered by the different cells) or a combination of cells mounted in series and in parallel, characterized in that it is cooled by a cooling system according to the invention.
  • the invention can be used for main electrical generation (peak power when starting certain aircraft loads, for example) or for auxiliary power generation (power supply in hot conditions, for example) or for a propulsion application in as such.
  • the invention also relates to a transport vehicle such as an aircraft, characterized in that it comprises a set of fuel cells according to the invention.
  • An aircraft according to the invention can be equipped with a set of fuel cells cooled by a cooling system according to the invention for use as main electrical generation, auxiliary electrical generation or even propulsion electrical generation or a combination of these various uses.
  • the invention also relates to a system and a method for cooling a set of fuel cells, a set of fuel cells and a transport vehicle such as an aircraft characterized in combination by all or some of the characteristics mentioned above. or below.
  • FIG. 1 is a schematic view of a cooling system for a set of fuel cells according to one embodiment of the invention
  • FIG. 2 is a schematic view of a method for cooling a set of fuel cells according to one embodiment of the invention.
  • FIG. 1 schematically illustrates a system for cooling a set 10 of fuel cells according to one embodiment of the invention.
  • This set 10 of fuel cells comprises three cells 10a, 10b, 10c according to the embodiment of the invention.
  • Each cell 10a, 10b, 10c conventionally comprises (not shown in the figures) an anode equipped with an anode inlet intended to be supplied with a combustible fluid and an anode outlet intended to deliver an anode product fluid, a cathode equipped with a cathode inlet intended to be fed by an oxidizing fluid, and a cathode outlet intended to deliver a cathode product fluid.
  • the cooling system according to the invention aims to cool the anode and/or the cathode of each cell of the set of fuel cells.
  • the heat exchanges between the anode and/or the cathode and the cooling fluid can be obtained by heat exchangers, heat dissipation plates attached to the anode and/or the cathode of each cell, such as bipolar plates , or any equivalent means.
  • FIG. 1 only the main elements of the set of cells relating to the cooling system according to the invention are represented.
  • the system comprises a loop 20 for circulation of a cooling fluid, called the cooling loop.
  • This cooling loop 20 is supplied with cooling fluid, such as for example a heat transfer liquid, by a pump 21 with variable speed.
  • the pump 21 therefore makes it possible to regulate the flow rate of cooling fluid which circulates in the cooling loop 20 .
  • variable-speed pump 21 is controlled by a computer 30 from a measurement representative of the need for cooling, such as for example the measurement of the temperature of the cooling fluid supplied by a sensor 22 arranged on the cooling loop 20, upstream of the set of batteries 10 and downstream of the variable speed pump 21.
  • FIG. 1 schematically illustrate the control signals from the computer 30 intended for the equipment that it controls.
  • the sensor 22 can be of any known type and is configured to transmit the temperature measurement to the computer 30 by communication means not shown in the figure for clarity.
  • the transmission of the measurement to the computer can be carried out by wired means, wireless means or a combination of wired and wireless means.
  • the sensor 22 therefore provides the computer 30 with information representative of the cooling requirement of all 10 of the fuel cells and makes it possible to ensure that the temperature objective has indeed been achieved.
  • each cell 10a, 10b, 10c is connected to the cooling loop 20 via a pipe 13a, 13b, 13c and a 3-way regulation valve 12a, 12b, 12c arranged on the loop 20 cooling.
  • Each control valve 12a, 12b, 12c is controlled by the computer 30 from a measurement of the temperature of the cooling fluid supplied by a sensor 1 ia, 11b, 11c arranged at the output of the stack 10a, 10b, 10c, on the pipe 14a, 14b, 14c returning to the cooling loop 20, downstream of the assembly 10 of the batteries.
  • These sensors 1a, 11b, 11c can be of any known type and are configured to transmit the temperature measurement to the computer 30 by communication means not shown in the figure for clarity.
  • the transmission of the measurement to the computer can be carried out by wired means, wireless means or a combination of wired and wireless means.
  • the sensor 22 provides the computer with information representative of the cooling requirement of all the stacks while the sensors 1 ia , 11b, 1 le each provide information representative of the cooling requirement of each stack taken individually.
  • the information representing the need for cooling can be provided by means other than a temperature sensor.
  • This particular architecture makes it possible to have only one cooling loop supply pump for global regulation and one regulation valve per stack for local regulation.
  • the system according to the invention also comprises a cooling heat exchanger 24 configured to be able to ensure heat exchanges between the cooling fluid circulating in the cooling loop 20 and a cooling air taken from outside the transport vehicle and circulating in a channel 25 for air circulation.
  • the arrow 26 of Figure 1 schematically illustrates the cooling air taken from outside the transport vehicle.
  • this air is dynamic air, better known under the English name of "RAM air” or “Rammed air”, that is to say literally outside air which enters an ad hoc opening.
  • the air circulation in the channel 25 can be ensured, for example, by a fan, not shown in FIG. 1.
  • This fan can be an electric fan or a fan carried by a turbomachine shaft of the aircraft, such as for example a turbomachine of a air conditioning system.
  • a flow control valve also makes it possible to modulate the air flow of the system and provides a first level of temperature regulation for the sensor 22
  • the heat exchanger 24 can be of any known type and is not described here in detail.
  • the cooling system according to the embodiment of Figure 1 also comprises a 3-way valve, called bypass valve 27, arranged on the cooling loop 20, between the pump 21 and the exchanger 24.
  • This control valve 27 can either supply the exchanger 24 with cooling fluid, or supply a bypass pipe 28 (also designated by the terms bypass pipe), which is arranged so as to bypass the heat exchanger 24 .
  • This control valve 27 is controlled by the computer 30.
  • the combination of the control valve 27, the heat exchanger 24 and the bypass pipe 28, makes it possible to regulate the temperature of the cooling fluid at the inlet of the batteries l ia , 11b, 11c, regardless of the outside air temperature. It also allows the heating of the heat transfer fluid circuit (such as a mixture of ethylene, glycol and water, better known by the English acronym EGW for "Ethylene Glycol Water), for example during starting in cold weather.
  • EGW Ethylene Glycol Water
  • the cooling system also comprises and according to the embodiment of Figure 1, a filter 29 configured to filter the cooling fluid.
  • the filter 29 makes it possible to capture the particles present in the liquid loop and which could pollute the batteries.
  • a De-ionizing filter can also be arranged on the circuit (not shown in the figures) and makes it possible to maintain the electrical properties of the coolant.
  • a system according to the invention makes it possible to precisely adjust the output temperature of each battery 10a, 10b, 10c whatever the power transients of the batteries and to protect them overtemperature in the event of overload or operation at very high temperatures.
  • the flow rate of the pump 21 is adjusted to the total cooling requirement of the assembly 10 of the stacks 10a, 10b, 10c. This flow is regulated at constant temperature by exchange with an external air flow circulating in channel 25.
  • the flow rate in each stack 10a, 10b, 10c is adjusted in order to keep the temperature constant.
  • the computer 30 ensures the determination of the cold power requirement, the flow control of the pump 21, the temperature regulation of each cell by measuring the temperatures acquired by the sensors 11a, 11b, 11c and 22, and the control of the various valves 12a, 12b, 12c and 27 of the system.
  • variable-speed pump 21 provides the total flow adapted to the losses of all 10 of the stacks in the system.
  • the temperature of the cooling fluid is regulated by the evacuation of the calories in the exchanger 24 cooled by the flow of outside air 26, which makes it possible to evacuate the total losses of the batteries to the outside.
  • the computer 30 evaluates the total power loss of the cells and defines the total flow rate necessary and the inlet temperature of the cooling fluid of the cells.
  • the 3-way valves 12a, 12b, 12c each regulate the flow of fluid in each cell to ensure the evacuation of calories and define the temperature at the outlet of the cell.
  • the total flow of the pump 21 is distributed between the stacks 10a, 10b, 10c according to their need for cooling. Each stack thus receives the minimum flow necessary to guarantee the desired internal temperature of the stack.
  • the invention also extends to a transport vehicle, in particular railway, automotive or air, equipped with a set of fuel cells cooled by a system according to the invention.
  • the invention also extends to a method for cooling a set of fuel cells of a transport vehicle, such as an aircraft.
  • This process represented schematically by FIG. 2 comprises the following steps:
  • step 130 (optional) of regulating the temperature of the cooling fluid upstream of the set of fuel cells by regulating the flow of fluid in heat exchange with the cooling air taken from outside the transport vehicle ,
  • step 140 of regulating the flow of cooling fluid supplying each fuel cell from the cooling loop according to a measurement representative of the need for cooling of this cell.
  • the method according to the invention is advantageously implemented by a system according to the invention and the system according to the invention advantageously implements a method according to the invention.
  • a method and a system according to the invention ensure precise temperature regulation of several cells connected to the same liquid loop. In addition, they make it possible to control the total cooling power required by the combination of cells, regardless of their arrangements and the power they develop.
  • a method and a system according to the invention are not limited only to the embodiments described and to the only aeronautical application described. In particular, the method and the system according to the invention can be applied to any type of vehicle, in particular air, railway or automobile, and for any type of application (main generation of energy, auxiliary generation of energy or generation propulsion energy).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un système de refroidissement d'un ensemble (10) de piles à combustible d'un véhicule de transport, tel qu'un aéronef, comprenant : une boucle (20) de circulation d'un fluide de refroidissement; un échangeur thermique (24) de refroidissement configuré pour pouvoir assurer des échanges thermiques entre ladite boucle (20) et un canal (25) de circulation d'un air (26) de refroidissement; une pompe (21) à vitesse variable d'alimentation de ladite boucle de refroidissement en fluide de refroidissement en fonction d'une mesure représentative du besoin de refroidissement dudit ensemble des piles à combustible; pour chaque pile (10a, 10b, 10c) à combustible dudit ensemble de piles, une vanne 3 voies (12a, 12b, 12c) de régulation du débit de fluide de refroidissement alimentant cette pile en fonction d'une mesure représentative du besoin de refroidissement de cette pile.

Description

DESCRIPTION
TITRE DE L’INVENTION : SYSTÈME ET PROCÉDÉ DE REFROIDISSEMENT D’UN ENSEMBLE DE PILES À COMBUSTIBLE
Domaine technique de l’invention
L’invention concerne un système de refroidissement d’un ensemble de piles à combustible destiné à équiper un véhicule de transport, en particulier un véhicule de transport aérien tel qu’un aéronef. L’invention concerne aussi un procédé de refroidissement d’un ensemble de piles à combustible.
Arrière-plan technologique
Il existe aujourd’hui un engouement fort pour équiper les véhicules de transport, en particulier les aéronefs, de piles à combustibles dans la mesure où ces piles forment des sources d’énergie propres, fiables et flexibles.
Le principe à la base d’une pile à combustible (aussi désignée par l’acronyme PAC), telle qu’une pile à hydrogène, repose sur la séparation de l’eau sous l’effet d’un courant électrique (électrolyse) en dihydrogène et di oxygène. Ces deux molécules constituent le combustible chimique sous lequel l’énergie peut être stockée au sein d’une application de piles à combustible. Une seconde réaction assurée par la pile à combustible en tant que telle permet d’inverser le processus et de produire de l’électricité à partir de ces deux combustibles.
Dans les applications aéronautiques, la réaction d’ électrolyse décrite est en général réalisée au sol de sorte que l’hydrogène est directement embarqué dans un réservoir dédié et le dioxygène est fourni par l’air prélevé à l’extérieur de l’aéronef
La pile à combustible en tant que telle est donc un générateur électrique à deux électrodes qui permet de produire de l’énergie électrique par une oxydation sur une électrode d’un combustible réducteur, tel que l’hydrogène, couplée à une réduction sur l’autre électrode d’un oxydant, tel que l’oxygène de l’air par exemple.
La réaction d’oxydoréduction de la pile permet de générer non seulement de l’électricité, mais également des sous-produits tels que de l’eau, de la chaleur et de l’air appauvri en oxygène.
Il est donc nécessaire de prévoir un système de refroidissement des piles à combustible pour évacuer la chaleur dégagée par les piles. En particulier, on peut considérer que pour 1 kW d’électricité produite, une pile à combustible émet IkW de chaleur.
L’une des solutions couramment utilisées dans le domaine aéronautique pour évacuer cette chaleur est de prévoir une boucle de circulation d’un liquide de refroidissement en interaction thermique avec un air extérieur dont le débit est dimensionné pour la pleine puissance de la pile pour les températures maximales extérieures observées. La circulation du liquide dans la boucle peut être réalisée par une pompe pilotée en fonction de la puissance de la pile à refroidir.
Dans le cas d’un ensemble de piles à combustible placées en parallèle ou en série, il est nécessaire de prévoir un système de refroidissement pour chaque pile et notamment une pompe de régulation par pile, et de dimensionner le système en fonction de la pleine puissance de la pile présentant le niveau de puissance maximal.
Cette solution apparait peu optimisée, en particulier lorsque les différentes piles présentent des niveaux de puissance très différents les uns des autres.
Les inventeurs ont cherché à développer un système de refroidissement optimisé d’un ensemble de piles à combustible qui pallie au moins certains des inconvénients des solutions connues.
Objectifs de l’invention
L’invention vise ainsi à fournir un système de refroidissement d’un ensemble de piles à combustible qui pallie au moins certains des inconvénients des systèmes de refroidissement connus, en particulier pour des applications aéronautiques embarquées.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un système de refroidissement qui présente un encombrement limité par rapport aux systèmes connus.
L’invention vise en particulier à fournir, dans au moins un mode de réalisation, un système de refroidissement qui peut s’appliquer à un ensemble de piles pouvant délivrer chacune un niveau de puissance très différent les uns des autres.
L’invention vise en particulier à fournir, dans au moins un mode de réalisation, un système de refroidissement qui ne nécessite pas une pompe de régulation dédiée à chaque pile.
L’invention vise aussi à fournir un procédé de refroidissement d’un ensemble de piles à combustible.
Exposé de l’invention
Pour ce faire, l’invention concerne un système de refroidissement d’un ensemble de piles à combustible d’un véhicule de transport, tel qu’un aéronef, comprenant :
- une boucle de circulation d’un fluide de refroidissement, dite boucle de refroidissement,
- un échangeur thermique de refroidissement configuré pour pouvoir assurer des échanges thermiques entre ladite boucle de refroidissement et un canal de circulation d’un air de refroidissement prélevé à l’extérieur du véhicule de transport.
Le système de refroidissement selon l’invention est caractérisé en ce qu’il comprend en outre, agencées sur ladite boucle de refroidissement :
- une pompe à vitesse variable d’alimentation de ladite boucle de refroidissement en fluide de refroidissement en fonction d’une mesure représentative du besoin de refroidissement dudit ensemble des piles à combustible,
- pour chaque pile à combustible dudit ensemble de piles, une vanne 3 voies de régulation du débit de fluide de refroidissement alimentant cette pile en fonction d’une mesure représentative du besoin de refroidissement de cette pile.
Le système selon l’invention comprend donc une seule boucle de refroidissement alimentée en fluide de refroidissement par une pompe unique pilotée en fonction d’une mesure représentative du besoin de refroidissement de l’ensemble des piles. En outre, chaque pile de l’ensemble des piles est alimentée en fluide de refroidissement par une vanne de régulation agencée sur la boucle de refroidissement et pilotée en fonction d’une mesure représentative du besoin de refroidissement de cette pile.
En d’autres termes, le système selon l’invention allie une régulation globale de l’ensemble des piles en fonction d’une mesure du besoin de refroidissement de l’ensemble des piles avec une régulation locale de chaque pile en fonction du besoin de refroidissement de chaque pile.
Cette architecture particulière permet de ne disposer que d’une seule pompe d’alimentation de la boucle de refroidissement pour la régulation globale et d’une vanne de régulation par pile pour la régulation locale.
En outre, cette architecture équipée d’une seule pompe de régulation du débit global et de plusieurs vannes 3 voies de régulation du débit local permet d’assurer un contrôle optimisé du refroidissement d’une pluralité de piles à combustible qui peuvent délivrer des niveaux de puissance très différents les unes des autres.
En d’autres termes, l’invention permet de contrôler la puissance totale de refroidissement nécessaire à l’ensemble des piles, quels que soient leurs arrangements et la puissance qu’elles développent.
Avantageusement et selon l’invention, le système comprend en outre une vanne 3 voies, dite vanne de dérivation, agencée sur ladite boucle de refroidissement en amont de l’échangeur thermique, associée à une conduite de by- pass de l’échangeur thermique, de manière à pouvoir réguler la température du fluide de refroidissement en amont dudit ensemble de piles.
Cette variante avantageuse permet de réguler la température du fluide de refroidissement en amont de l’ensemble des piles quelle que soit la température de l’air de refroidissement circulant dans le canal de circulation de l’air de refroidissement. En effet, le pilotage de la vanne de dérivation permet de contrôler la quantité du fluide de refroidissement en échange thermique avec l’air de refroidissement et donc de piloter la température du fluide de refroidissement qui alimente les différentes vannes 3 voies de régulation des différentes piles de l’ensemble des piles à combustible.
En d’autres termes, le débit de fluide de refroidissement est déterminé par la pompe à vitesse variable pilotée par une mesure représentative du besoin de refroidissement de l’ensemble des piles et la température du fluide de refroidissement est déterminée par la vanne de dérivation.
L’invention permet également de disposer d’un mode chauffage dans lequel au moins une pile de l’ensemble des piles chauffe les autres piles, par pilotage des vannes 3 voies.
Avantageusement et selon l’invention, le système comprend en outre un calculateur de pilotage de ladite pompe à vitesse variable, de l’ensemble des vannes 3 voies de régulation et de ladite vanne de dérivation.
Selon cette variante, le calculateur est configuré pour déterminer la puissance totale des pertes des piles et pour définir le débit total de fluide de refroidissement nécessaire dans la boucle de refroidissement et la température d’entrée des différentes piles de l’ensemble de piles. Le calculateur assure ainsi le contrôle (ou pilotage) de la pompe, de la vanne de dérivation et des différentes vannes 3 voies associées respectivement à chaque pile de l’ensemble de piles.
Avantageusement et selon l’invention, le système comprend en outre au moins un capteur de température agencé en sortie de chaque pile à combustible dudit ensemble des piles à combustible de manière à pouvoir fournir une mesure de température du fluide de refroidissement en sortie de pile formant ladite mesure représentative du besoin de refroidissement de cette pile.
Selon cette variante, la mesure représentative du besoin de refroidissement de chaque pile de l’ensemble des piles est une mesure de température en sortie de pile. Cette mesure de température permet ainsi au calculateur de réguler le débit envoyé à chaque pile afin de maintenir une température visée.
Avantageusement et selon l’invention, le système comprend en outre au moins un capteur de température agencé sur la boucle de refroidissement en amont dudit ensemble de piles à combustible de manière à pouvoir fournir une mesure de température du fluide de refroidissement de la boucle de refroidissement formant ladite mesure représentative du besoin de refroidissement dudit ensemble de piles.
Selon cette variante, la mesure représentative du besoin de refroidissement de l’ensemble des piles est une mesure de température du fluide de refroidissement de la boucle de refroidissement en amont dudit ensemble de piles. Cette mesure de température permet ainsi au calculateur de réguler la température d’entrée des piles.
L’invention concerne aussi un procédé de refroidissement d’un ensemble de piles à combustible d’un véhicule de transport, tel qu’un aéronef, comprenant les étapes suivantes :
- mise en circulation d’un fluide de refroidissement dans une boucle, dite boucle de refroidissement,
- échange thermique entre ledit fluide de refroidissement de ladite boucle de refroidissement et un air prélevé à l’extérieur du véhicule de transport.
Le procédé selon l’invention est caractérisé en ce qu’il comprend en outre les étapes suivantes :
- régulation dudit débit de fluide de refroidissement circulant dans ladite boucle de refroidissement en fonction d’une mesure représentative du besoin de refroidissement dudit ensemble des piles à combustible,
- régulation du débit de fluide de refroidissement alimentant chaque pile à combustible à partir de ladite boucle de refroidissement en fonction d’une mesure représentative du besoin de refroidissement de cette pile.
Le procédé selon l’invention est avantageusement mis en œuvre par un système selon l’invention et le système selon l’invention met avantageusement en œuvre un procédé selon l’invention. Les avantages et effets techniques d’un système selon l’invention s’appliquent mutatis mutandis à un procédé selon l’invention.
Avantageusement et selon l’invention, le procédé comprend en outre une étape de régulation de la température dudit fluide de refroidissement en amont dudit ensemble de piles à combustible par régulation du débit de fluide en échange thermique avec ledit air de refroidissement prélevé à l’extérieur du véhicule de transport.
Un procédé selon cette variante est avantageusement mis en œuvre par un système équipé d’une vanne de dérivation selon l’invention. Les avantages et effets techniques d’un système selon cette variante de l’invention équipé d’une vanne de dérivation s’appliquent mutatis mutandis à un procédé selon cette variante de l’invention.
Avantageusement et selon l’invention, le procédé comprend en outre, pour chaque pile à combustible dudit ensemble de piles, ladite mesure représentative du besoin de refroidissement de cette pile à combustible consiste en une mesure de la température du fluide de refroidissement en sortie de cette pile.
Un procédé selon cette variante est avantageusement mis en œuvre par un système équipé de capteurs de températures agencés en sortie des piles dudit ensemble de piles. Les avantages et effets techniques d’un système selon cette variante de l’invention équipé de capteurs de température en sortie des piles s’appliquent mutatis mutandis à un procédé selon cette variante de l’invention.
L’invention s’étend également à un ensemble de piles à combustibles montées en série (même courant délivré par les différentes piles) ou en parallèle (même tension délivrée par les différentes piles) ou une combinaison de piles montées en série et en parallèle, caractérisé en ce qu’il est refroidi par un système de refroidissement selon l’invention.
Les avantages et effets techniques du système de refroidissement selon l’invention s’appliquent mutatis mutandis à un ensemble de piles à combustible selon l’invention.
L’invention peut être utilisée pour une génération électrique principale (pic de puissance lors du démarrage de certaines charges avion par exemple) ou pour une génération auxiliaire de puissance (alimentation de servitudes dans des conditions chaudes par exemple) ou pour une application de propulsion en tant que telle.
L’invention concerne aussi un véhicule de transport tel qu’un aéronef, caractérisé en ce qu’il comprend un ensemble de piles à combustible selon l’invention.
Les avantages et effets techniques d’un système selon l’invention et d’un ensemble de piles selon l’invention s’appliquent mutatis mutandis à un véhicule de transport tel qu’un aéronef selon l’invention. Un aéronef selon l’invention peut être équipé d’un ensemble de piles à combustible refroidi par un système de refroidissement selon l’invention pour une utilisation à titre de génération électrique principale, de génération électrique auxiliaire ou même de génération électrique de propulsion ou une combinaison de ces diverses utilisations.
L’invention concerne également un système et un procédé de refroidissement d’un ensemble de piles à combustible, un ensemble de piles à combustible et un véhicule de transport tel qu’un aéronef caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci- après.
Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées suivantes :
[Fig. 1] est une vue schématique d’un système de refroidissement d’un ensemble de piles à combustible selon un mode de réalisation de l’invention,
[Fig. 2] est une vue schématique d’un procédé de refroidissement d’un ensemble de piles à combustible selon un mode de réalisation de l’invention.
Description détaillée d’un mode de réalisation de l’invention
Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d’illustration et de clarté.
La figure 1 illustre schématiquement un système de refroidissement d’un ensemble 10 de piles à combustible selon un mode de réalisation de l’invention.
Cet ensemble 10 de piles à combustible comprend trois piles 10a, 10b, 10c selon le mode de réalisation de l’invention. Chaque pile 10a, 10b, 10c comprend classiquement (non représenté sur les figures) une anode équipée d’une entrée anodique destinée à être alimentée par un fluide combustible et une sortie anodique destinée à délivrer un fluide de produit anodique, une cathode équipée d’une entrée cathodique destinée à être alimentée par un fluide oxydant, et une sortie cathodique destinée à délivrer un fluide de produit cathodique.
Le système de refroidissement selon l’invention vise à refroidir l’anode et/ou la cathode de chaque pile de l’ensemble des piles à combustible. Les échanges thermiques entre l’anode et/ou la cathode et le fluide de refroidissement peuvent être obtenus par des échangeurs thermiques, des plaques de dissipation de chaleur accolées à l’anode et/ou la cathode de chaque pile, telles que des plaques bipolaires, ou tout moyen équivalent. Sur la figure 1, seuls les éléments principaux de l’ensemble des piles relatifs au système de refroidissement selon l’invention sont représentés.
Ainsi, le système comprend une boucle 20 de circulation d’un fluide de refroidissement, dite boucle de refroidissement. Cette boucle 20 de refroidissement est alimentée en fluide de refroidissement, tel que par exemple un liquide caloporteur, par une pompe 21 à vitesse variable.
La pompe 21 permet donc de réguler le débit de fluide de refroidissement qui circule dans la boucle 20 de refroidissement.
La pompe 21 à vitesse variable est pilotée par un calculateur 30 à partir d’une mesure représentative du besoin de refroidissement, telle que par exemple la mesure de la température du fluide de refroidissement fournie par un capteur 22 agencé sur la boucle 20 de refroidissement, en amont de l’ensemble des piles 10 et en aval de la pompe 21 à vitesse variable.
Les traits en pointillés sur la figure 1 illustrent schématiquement les signaux de commande du calculateur 30 à destination des équipements qu’il pilote.
Le capteur 22 peut être de tous types connus et est configuré pour transmettre au calculateur 30 la mesure de température par des moyens de communication non représentés sur la figure à des fins de clarté. La transmission de la mesure au calculateur peut être effectuée par des moyens filaires, des moyens sans-fils ou combinaison de moyens filaires et sans fils.
Le capteur 22 fournit donc au calculateur 30 une information représentative du besoin de refroidissement de l’ensemble 10 des piles à combustibles et permet de s’assurer que l’objectif en température est bien atteint.
Par ailleurs, chaque pile 10a, 10b, 10c est reliée à la boucle 20 de refroidissement par l’intermédiaire d’une conduite 13a, 13b, 13c et d’une vanne 3 voies de régulation 12a, 12b, 12c agencée sur la boucle 20 de refroidissement. Chaque vanne de régulation 12a, 12b, 12c est pilotée par le calculateur 30 à partir d’une mesure de la température du fluide de refroidissement fournie par un capteur l ia, 11b, 11c agencé en sortie de la pile 10a, 10b, 10c, sur la conduite 14a, 14b, 14c de retour vers la boucle 20 de refroidissement, en aval de l’ensemble 10 des piles.
Ces capteurs l ia, 11b, 11c peuvent être de tous types connus et sont configurés pour transmettre au calculateur 30 la mesure de température par des moyens de communication non représentés sur la figure à des fins de clarté. La transmission de la mesure au calculateur peut être effectuée par des moyens filaires, des moyens sans-fils ou combinaison de moyens filaires et sans fils.
Le capteur 22 fournit au calculateur une information représentative du besoin en refroidissement de l’ensemble des piles alors que les capteurs l ia, 11b, 1 le fournissent chacun une information représentative du besoin en refroidissement de chaque pile prise individuellement.
Selon d’autres variantes non représentées, l’information représentative du bresoin de refroidissement peut être fournie par d’autres moyens qu’un capteur de température.
Cette architecture particulière permet de ne disposer que d’une seule pompe d’alimentation de la boucle de refroidissement pour la régulation globale et d’une vanne de régulation par pile pour la régulation locale.
Le système selon l’invention comprend également un échangeur thermique 24 de refroidissement configuré pour pouvoir assurer des échanges thermiques entre le fluide de refroidissement circulant dans la boucle 20 de refroidissement et un air de refroidissement prélevé à l’extérieur du véhicule de transport et circulant dans un canal 25 de circulation d’air.
La flèche 26 de la figure 1 illustre schématiquement l’air de refroidissement prélevé à l’extérieur du véhicule de transport. Dans le cas d’un aéronef, cet air est un air dynamique, plus connu sous la dénomination anglaise de « RAM air » ou « Rammed air », c’est-à-dire littéralement un air extérieur qui rentre dans une ouverture ad hoc de l’aéronef du fait de la vélocité de l’aéronef et est véhiculé jusqu’à l’échangeur 24 par le canal de circulation 25. La circulation d’air dans le canal 25 peut être assurée, par exemple, par un ventilateur, non représenté sur la figure 1. Ce ventilateur peut être un ventilateur électrique ou un ventilateur porté par un arbre de turbomachine de l’aéronef, tel que par exemple une turbomachine d’un système de conditionnement d’air.
Une vanne de régulation de débit permet également de moduler le débit d’air du système et assure un premier niveau de régulation en température pour le capteur 22
L’échangeur thermique 24 peut être de tous types connus et n’est pas décrit ici en détail.
Le système de refroidissement selon le mode de réalisation de la figure 1 comprend également une vanne 3 voies, dite vanne 27 de dérivation, agencée sur la boucle 20 de refroidissement, entre la pompe 21 et l’échangeur 24.
Cette vanne 27 de régulation peut soit alimenter l’échangeur 24 en fluide de refroidissement, soit alimenter une conduite 28 de by-pass (aussi désignée par les termes de conduite de dérivation), qui est agencée de manière à contourner l’échangeur thermique 24.
Cette vanne 27 de régulation est pilotée par le calculateur 30. La combinaison de la vanne 27 de régulation, de l’échangeur thermique 24 et de la conduite de dérivation 28, permet de réguler la température du fluide de refroidissement en entrée des piles l ia, 11b, 11c, quelle que soit la température de l’air extérieur. Elle permet également le chauffage du circuit du fluide caloporteur (tel qu’un mélange éthylène, glycol et eau, plus connue sous l’acronyme anglais EGW pour « Ethylene Glycol Water), par exemple lors du démarrage par temps froid. Ainsi, une première pile monte en température et par bypass de l’échangeur principal, avec le circuit commun, les autres piles présentes dans le circuit sont réchauffées jusqu’à atteindre la température optimale d’utilisation.
Le système de refroidissement comprend également et selon le mode de réalisation de la figure 1, un filtre 29 configuré pour filtrer le fluide de refroidissement. Le filtre 29 permet de capturer les particules présentes dans la boucle liquide et qui pourraient polluer les piles. Un filtre De-ionisant peut également être agencé sur le circuit (non représenté sur les figures) et permet de maintenir les propriété di électrique du liquide de refroidissement.
Un système selon l’invention, et en particulier selon le mode de réalisation de la figure 1, permet d'ajuster précisément la température de sortie de chaque pile 10a, 10b, 10c quels que soient les transitoires de puissance des piles et de les protéger d'une sur-température en cas de surcharge ou de fonctionnement à très haute température.
Selon une mode de réalisation de l’invention, le débit de la pompe 21 est ajusté au besoin total de refroidissement de l’ensemble 10 des piles 10a, 10b, 10c. Ce débit est régulé à température constante par échange avec un débit d'air extérieur circulant dans le canal 25.
Le débit dans chaque pile 10a, 10b, 10c est ajusté afin de maintenir la température constante.
Le calculateur 30 assure la détermination du besoin en puissance froide, le contrôle de débit de la pompe 21, la régulation de température de chaque pile par la mesure des températures acquises par les capteurs 1 la, 1 lb, 1 le et 22, et le contrôle des différentes vannes 12a, 12b, 12c et 27 du système.
La pompe 21 à vitesse variable fournit le débit total adapté aux pertes de l'ensemble 10 des piles du système.
La température du fluide de refroidissement est régulée par l'évacuation des calories dans l’échangeur 24 refroidi par le débit d'air extérieur 26, ce qui permet d’évacuer les pertes totales des piles vers l'extérieur.
Le calculateur 30 évalue la puissance totale de perte des piles et définit le débit total nécessaire et la température d'entrée du fluide de refroidissement des piles.
Les vannes 3 voies 12a, 12b, 12c régulent chacune le débit de fluide dans chaque pile pour assurer l'évacuation des calories et définir la température en sortie de la pile.
Le débit total de la pompe 21 est réparti entre les piles 10a, 10b, 10c en fonction de leur besoin de refroidissement. Chaque pile reçoit ainsi le débit minimum nécessaire pour garantir la température interne souhaitée de la pile.
L’invention s’étend également à un véhicule de transport, notamment ferroviaire, automobile ou aérien, équipé d’un ensemble de piles à combustible refroidi par un système selon l’invention.
L’invention s’étend aussi à un procédé de refroidissement d’un ensemble de piles à combustible d’un véhicule de transport, tel qu’un aéronef.
Ce procédé représenté schématiquement par la figure 2 comprend les étapes suivantes :
- une étape 100 de mise en circulation d’un fluide de refroidissement dans une boucle 20 de refroidissement,
- une étape 110 d’échange thermique entre le fluide de refroidissement circulant dans la boucle de refroidissement et un air 26 prélevé à l’extérieur du véhicule de transport,
- une étape 120 de régulation du débit de fluide de refroidissement circulant dans la boucle 20 de refroidissement en fonction d’une mesure représentative du besoin de refroidissement de l’ensemble des piles à combustible,
- une étape 130 (optionnelle) de régulation de la température du fluide de refroidissement en amont de l’ensemble de piles à combustible par régulation du débit de fluide en échange thermique avec l’air de refroidissement prélevé à l’extérieur du véhicule de transport,
- une étape 140 de régulation du débit de fluide de refroidissement alimentant chaque pile à combustible à partir de la boucle de refroidissement en fonction d’une mesure représentative du besoin de refroidissement de cette pile.
Le procédé selon l’invention est avantageusement mis en œuvre par un système selon l’invention et le système selon l’invention met avantageusement en œuvre un procédé selon l’invention.
Un procédé et un système selon l’invention assurent une régulation de température précise de plusieurs piles reliées à une même boucle liquide. En outre, ils permettent de contrôler la puissance totale de refroidissement nécessaire à la combinaison des piles, quels que soient leurs arrangements et la puissance qu'elles développent. Un procédé et un système selon l’invention ne se limitent pas aux seuls modes de réalisation décrits et à la seule application aéronautique décrite. En particulier, le procédé et le système selon l’invention peuvent s’appliquer à tout type de véhicule, en particulier aérien, ferroviaire ou automobile et pour tout type d’application (génération principale d’énergie, génération auxiliaire d’énergie ou génération d’énergie de propulsion).

Claims

REVENDICATIONS
1. Système de refroidissement d’un ensemble (10) de piles à combustible d’un véhicule de transport, tel qu’un aéronef, comprenant : une boucle (20) de circulation d’un fluide de refroidissement, dite boucle de refroidissement, un échangeur thermique (24) de refroidissement configuré pour pouvoir assurer des échanges thermiques entre ladite boucle (20) de refroidissement et un canal (25) de circulation d’un air (26) de refroidissement prélevé à l’extérieur du véhicule de transport, caractérisé en ce qu’il comprend en outre, agencées sur ladite boucle (20) de refroidissement : une pompe (21) à vitesse variable d’alimentation de ladite boucle de refroidissement en fluide de refroidissement en fonction d’une mesure représentative du besoin de refroidissement dudit ensemble des piles à combustible, pour chaque pile (10a, 10b, 10c) à combustible dudit ensemble de piles, une vanne 3 voies (12a, 12b, 12c) de régulation du débit de fluide de refroidissement alimentant cette pile en fonction d’une mesure représentative du besoin de refroidissement de cette pile.
2. Système selon la revendication 1, caractérisé en ce qu’il comprend en outre une vanne 3 voies, dite vanne de dérivation (27), agencée sur ladite boucle (20) de refroidissement en amont de l’échangeur thermique (24), associée à une conduite (28) de by-pass de l’échangeur thermique, de manière à pouvoir réguler la température du fluide de refroidissement en amont dudit ensemble (10) de piles.
3. Système selon la revendication 2, caractérisé en ce qu’il comprend en outre un calculateur (30) de pilotage de ladite pompe (21) à vitesse variable, de l’ensemble des vannes 3 voies de régulation (12a, 12b, 12c) et de ladite vanne de dérivation (27).
4. Système selon l’une des revendications 1 à 3, caractérisé en ce qu’il comprend en outre au moins un capteur (l ia, 11b, 11c) de température agencé en sortie de chaque pile (10a, 10b, 10c) à combustible dudit ensemble (10) des piles à combustible de manière à pouvoir fournir une mesure de température du fluide de refroidissement en sortie de pile formant ladite mesure représentative du besoin de refroidissement de cette pile. Système selon l’une des revendications 1 à 4, caractérisé en ce qu’il comprend en outre au moins un capteur (22) de température agencé sur la boucle (20) de refroidissement en amont dudit ensemble (10) de piles à combustible de manière à pouvoir fournir une mesure de température du fluide de refroidissement de la boucle de refroidissement formant ladite mesure représentative du besoin de refroidissement dudit ensemble de piles. Procédé de refroidissement d’un ensemble (10) de piles à combustible d’un véhicule de transport, tel qu’un aéronef, comprenant les étapes suivantes : mise en circulation (100) d’un fluide de refroidissement dans une boucle, dite boucle (20) de refroidissement, assurer (110) des échanges thermiques entre ledit fluide de refroidissement de ladite boucle (20) de refroidissement et un air (26) prélevé à l’extérieur du véhicule de transport, caractérisé en ce que ledit procédé comprend en outre les étapes suivantes: régulation (120) dudit débit de fluide de refroidissement circulant dans ladite boucle (20) de refroidissement en fonction d’une mesure représentative du besoin de refroidissement dudit ensemble des piles à combustible, régulation (140) du débit de fluide de refroidissement alimentant chaque pile (10a, 10b, 10c) à combustible à partir de ladite boucle (20) de refroidissement en fonction d’une mesure représentative du besoin de refroidissement de cette pile. Procédé selon la revendication 6, caractérisé en ce qu’il comprend en outre une étape de régulation (130) de la température dudit fluide de refroidissement en amont dudit ensemble de piles à combustible par régulation du débit de fluide 17 en échange thermique avec ledit air de refroidissement prélevé à l’extérieur du véhicule de transport. Procédé de refroidissement selon l’une des revendications 6 ou 7, caractérisé en ce que, pour chaque pile (10a, 10b, 10c) à combustible dudit ensemble de piles, ladite mesure représentative du besoin de refroidissement de cette pile à combustible consiste en une mesure de la température du fluide de refroidissement en sortie de cette pile. Véhicule de transport tel qu’un aéronef comprenant un ensemble de piles à combustible, caractérisé en ce qu’il comprend en outre un système de refroidissement dudit ensemble de piles à combustible selon l’une des revendications 1 à 5.
EP21794588.0A 2020-10-26 2021-10-25 Système et procédé de refroidissement d'un ensemble de piles à combustible Pending EP4233112A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010966A FR3115635B1 (fr) 2020-10-26 2020-10-26 Système et procédé de refroidissement d’un ensemble de piles à combustible
PCT/EP2021/079573 WO2022090173A1 (fr) 2020-10-26 2021-10-25 Système et procédé de refroidissement d'un ensemble de piles à combustible

Publications (1)

Publication Number Publication Date
EP4233112A1 true EP4233112A1 (fr) 2023-08-30

Family

ID=74205991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21794588.0A Pending EP4233112A1 (fr) 2020-10-26 2021-10-25 Système et procédé de refroidissement d'un ensemble de piles à combustible

Country Status (5)

Country Link
US (1) US20230402625A1 (fr)
EP (1) EP4233112A1 (fr)
CN (1) CN116529919A (fr)
FR (1) FR3115635B1 (fr)
WO (1) WO2022090173A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087491B1 (fr) * 2018-10-18 2020-11-06 Safran Aircraft Engines Procede de commande d'une turbomachine comportant un moteur electrique
US11824234B1 (en) * 2022-09-29 2023-11-21 First Mode Ipp Limited Cooling multiple parallel hydrogen fuel cell stacks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792259B1 (fr) * 1999-04-15 2001-06-15 Valeo Thermique Moteur Sa Dispositif de refroidissement pour vehicule electrique a pile a combustible
US8298713B2 (en) * 2006-10-25 2012-10-30 GM Global Technology Operations LLC Thermally integrated fuel cell humidifier for rapid warm-up
CN108054411A (zh) * 2018-01-17 2018-05-18 中国重汽集团济南动力有限公司 一种商用车燃料电池热管理系统

Also Published As

Publication number Publication date
WO2022090173A1 (fr) 2022-05-05
FR3115635B1 (fr) 2022-09-23
US20230402625A1 (en) 2023-12-14
FR3115635A1 (fr) 2022-04-29
CN116529919A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2022090173A1 (fr) Système et procédé de refroidissement d'un ensemble de piles à combustible
EP2561575B1 (fr) Dispositif de stockage et de restitution d'energie electrique
EP3060700B1 (fr) Pilotage d'un électrolyseur à haute température
FR2940196A1 (fr) Dispositif et procede de refroidissement d'un organe thermique de vehicule automobile
EP3235032B1 (fr) Procédé de pilotage de pile à combustible
EP3235030B1 (fr) Système à pile à combustible
FR3101483A1 (fr) Système de piles à combustible pour un aéronef
WO2014044991A1 (fr) Systeme et procede de refroidissement pour chaine de traction hybride de vehicule automobile
EP2613391A1 (fr) Pile à combustible
JP5092335B2 (ja) 燃料電池システム及び燃料電池システム制御方法
EP3503276B1 (fr) Système de génération d'électricité incluant deux piles à combustible à temperatures de fonctionnement differentes
WO2006040502A1 (fr) Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile
EP1733447B1 (fr) Dispositif et procede de refroidissement d'un ensemble de generation d'electricite comprenant une pile a combustible.
EP4165707A1 (fr) Système de refroidissement d'une pile à combustible et pile à combustible équipée d'un tel système
EP1846972A1 (fr) Systeme pile a combustible et procede de commande associe
WO2021204684A1 (fr) Agencement pour refroidir une pile à combustible et un moteur électrique de traction et/ou de propulsion de véhicule
FR2944238A1 (fr) Dispositif de refroidissement pour vehicule automobile
FR3101482A1 (fr) Système de piles à combustible pour un aéronef
EP1733446B1 (fr) Dispositif et procede de refroidissement d'un module de puissance d'une pile a combustible
FR2893186A3 (fr) Dispositif de pile a combustible avec systeme de refroidissement et systeme de purification d'eau
EP4195335A1 (fr) Système de gestion thermique d'un système hybride pile à combustible batterie rechargeable
WO2022180057A1 (fr) Dispositif d'alimentation d'une pluralité de cathodes d'un système de pile à combustible
WO2015079139A1 (fr) Systeme d'humidification de l'air dans un volume donne
FR3133902A1 (fr) Système de gestion d’énergie thermique pour réguler la température d’une structure
FR3095012A1 (fr) Système de production d’électricité comprenant un générateur thermoélectrique par récupération d’énergie d’un gaz chaud.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)