EP4233103A1 - Électrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ion - Google Patents
Électrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ionInfo
- Publication number
- EP4233103A1 EP4233103A1 EP21794595.5A EP21794595A EP4233103A1 EP 4233103 A1 EP4233103 A1 EP 4233103A1 EP 21794595 A EP21794595 A EP 21794595A EP 4233103 A1 EP4233103 A1 EP 4233103A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- active materials
- current collector
- electrode
- lithiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 8
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 8
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 117
- 239000011262 electrochemically active material Substances 0.000 claims abstract description 45
- 229910052796 boron Inorganic materials 0.000 claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 30
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 30
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 30
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 30
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 30
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 30
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 30
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 30
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 30
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 239000011572 manganese Substances 0.000 claims abstract description 25
- 238000005554 pickling Methods 0.000 claims abstract description 22
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 19
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000011149 active material Substances 0.000 claims description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 36
- 229910052742 iron Inorganic materials 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 23
- 229910052748 manganese Inorganic materials 0.000 claims description 19
- 239000011148 porous material Substances 0.000 claims description 18
- 229910052715 tantalum Inorganic materials 0.000 claims description 16
- 229910052723 transition metal Inorganic materials 0.000 claims description 16
- 150000003624 transition metals Chemical class 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 14
- 239000010452 phosphate Substances 0.000 claims description 14
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- AWKHTBXFNVGFRX-UHFFFAOYSA-K iron(2+);manganese(2+);phosphate Chemical compound [Mn+2].[Fe+2].[O-]P([O-])([O-])=O AWKHTBXFNVGFRX-UHFFFAOYSA-K 0.000 claims description 9
- 239000011701 zinc Substances 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 7
- 229910006176 NixCo Inorganic materials 0.000 claims description 3
- 238000003486 chemical etching Methods 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 235000021317 phosphate Nutrition 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 8
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical class [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000003490 calendering Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910000398 iron phosphate Inorganic materials 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910014143 LiMn2 Inorganic materials 0.000 description 1
- 229910012223 LiPFe Inorganic materials 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/049—Manufacturing of an active layer by chemical means
- H01M4/0492—Chemical attack of the support material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the technical field of the present invention is that of positive electrodes (cathodes) intended for use in an electrochemical element, preferably of the lithium-ion type, said positive electrodes comprising a current collector which is covered on at least one of its faces by a composition of electrochemically active materials, at least one of which is based on a lithiated phosphate of manganese and iron.
- An electrochemical element also referred to by the term "element” in what follows, comprises an electrochemical bundle consisting of alternating cathodes and anodes framing a separator impregnated with electrolyte.
- Each cathode and anode consists of a metal current collector supporting on at least one of its faces at least one active material and generally a binder and an electronically conductive material.
- the lithiated oxides of transition metals are known as cathodic active material which can be used in rechargeable lithium electrochemical generators (secondary electrochemical elements).
- lithiated oxides of transition metals of general formula LiMCL are most often used as active material, where M represents at least one transition metal, such as Mn, Ni, Co, Al or a mixture of those -this.
- M represents at least one transition metal, such as Mn, Ni, Co, Al or a mixture of those -this.
- the lithiated iron phosphates of formula Li x Fei-yM y PO4 with 0.8 ⁇ x ⁇ 1.2;0 ⁇ y ⁇ 0.5 are known as cathode active material of lithium-ion elements.
- the iron element is the majority transition metal. It can be partially substituted by one or more elements symbolized by the symbol M.
- the lithiated iron phosphate in powder form is typically mixed with a binder which is generally polyvinylidene fluoride (PVDF) and with an electronically conductive compound.
- PVDF polyvinylidene fluoride
- the role of the binder is to ensure the cohesion of the particles of lithiated iron phosphates between them as well as their adhesion to the current collector of the electrode.
- Lithiated manganese and iron phosphates of formula Li x Mni- yz Fe y MzPO4 (LMFP) with 0.8 ⁇ x ⁇ 1.2;lyz>0.5;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2 are also known for their use as a cathodic active material of lithium-ion elements. These phosphates contain manganese, iron and one or more substituent elements symbolized by the symbol M. Manganese is the majority transition metal. Iron is in the minority. Lithiated manganese iron phosphates have a higher operating voltage than lithiated iron phosphates. Indeed, lithiated iron phosphates have a plateau voltage of 3.45V compared to Li + /Li. Lithiated manganese and iron phosphates can operate at a higher voltage, due to the existence of a voltage plateau at 4.1 V with respect to Li + /Li corresponding to the Mn 2+ /Mn 3+ couple.
- LMFP Li x Mni- yz Fe
- active materials of the LMFP type have a very high specific surface. Due to this high specific surface area, the electrode comprising the LMFP material alone generally exhibits high porosity, typically 40% or more.
- the active material composition includes the electrochemically active material(s), the binder(s) and the electronically conductive compound(s). This porosity value range of 40% or more typically corresponds to a composition of active material comprising from 80 to 90% of active material of LMFP type. This high porosity makes it difficult to produce electrodes for electrochemical elements with high energy density.
- an electrode can be defined by its weight. The grammage of an electrode corresponds to the mass of the composition of active materials deposited per unit area on at least one face of the current collector.
- a high grammage of electrode is desirable if one seeks to obtain an element typed "energy", that is to say an element for which one privileges the quantity of energy that it can deliver, without necessarily imposing minimum requirement in terms of the power it can deliver.
- An electrode comprising an active material based on LMFP which has a high basis weight is therefore sought.
- a third objective which is to obtain an electrode that retains its flexibility. Indeed, it is generally observed that the flexibility of an electrode decreases when its porosity decreases and/or when its weight increases. A good flexibility of the electrode is necessary to guarantee a regularity of the manufacturing process of the element on an industrial scale.
- the first subject of the invention is an electrode comprising a current collector consisting of a metal strip which is covered on at least one of its faces with a composition of electrochemically active materials, said composition comprising at least one lithiated phosphate of manganese and iron corresponding to the following formula: Li x Mni-y-zFe y MzPO4 where M is selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture, with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; said current collector having undergone chemical pickling of at least one of its faces.
- said composition of electrochemically active materials comprises a mixture comprising:
- lithiated manganese iron phosphate corresponding to the following formula: Li x Mni-y-zFe y MzPO4 where M is selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in admixture, with 0, 8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- a lithiated oxide of transition metals corresponding to one of the following formulas: i) Liw(NixCoyAl z Mt)O2, where 0.9 ⁇ w ⁇ 1.1;x>0;y>0;z>0;t>0; M being selected from the group consisting of B, Mg, Si, Ca, Ti, V , Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof; ii) Li w (NixMn y Co z Mt)O2 where 0.9 ⁇ w ⁇ 1.1;x>0;y>0;z>0;t>0; M being selected from the group consisting of Al, B , Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof; ii) Li w (NixMn y Co z
- said composition of electrochemically active materials comprises a mixture comprising:
- lithiated phosphate corresponding to the following formula: LixMni- yz Fe y MzPO4 where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture, with 0.8 ⁇ x ⁇ l, 2; 0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- a lithiated oxide of transition metals corresponding to one of the following formulas: i) Liw(NixCoyAlzMt)O2, where 0.9 ⁇ w ⁇ 1.1;x>0;y>0;z>0;t>0; M being selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn , Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof; ii) Li w (NixMn y CozMt)O2 where 0.9 ⁇ w ⁇ 1.1;x>0;y>0;z>0;t>0; M being selected from the group consisting of Al, B, Mg , Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof; ii) Li w (NixMn y CozMt)
- said composition of active materials comprises a mixture comprising:
- lithiated manganese iron phosphate corresponding to the following formula: Li x Mni-y-zFe y MzPO4 where M is selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in admixture, with 0, 8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- a lithiated oxide of transition metals corresponding to the following formula: Li w (NixCoyAl z Mt)O2, where 0.9 ⁇ w ⁇ 1.1; x >0; y >0; z >
- M being selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof .
- the current collector is a strip made of aluminum or an aluminum alloy.
- the current collector is covered on both sides by said composition of electrochemically active materials.
- the current collector has a recess rate of less than 10%.
- the current collector after chemical pickling has a thickness of between 5 ⁇ m and 35 ⁇ m.
- said composition of active materials has a basis weight of between 8 mg/cm 2 /side and 25 mg/cm 2 /side.
- the electrode has a porosity of less than 40%.
- the current collector is full.
- the current collector has pores whose diameter is less than 0.3 mm, preferably less than or equal to 100 ⁇ m, or less than or equal to 50 ⁇ m, or less than or equal to 20 ⁇ m.
- the current collector does not have a through hole.
- the second object of the invention is an electrochemical element comprising at least one electrode as defined above.
- the electrochemical element is of the lithium-ion type.
- a current collector consisting of a metal strip having undergone chemical pickling makes it possible to overcome the drawbacks encountered when using an active material composition of the LMFP type. Indeed, it has been found that the use of such a current collector which is covered with a composition of active material of the LMFP type, made it possible to obtain an electrode having a high basis weight and a lower porosity, while retaining its flexibility.
- the electrode according to the invention exhibited a reduced polarization.
- the electrode according to the invention has improved chargeability by inducing, at the end of charging, a reduction in the charging time at constant voltage (floating time) at the during which it remains exposed to a high potential, for example at least 4.3 V with respect to a lithium metal reference.
- FIG. 1 represents a scanning electron microscope (SEM) view of the surface of a current collector after pickling.
- FIG. 2 is a graph comparing the porosity (expressed in % on the ordinate axis) of an electrode according to the invention (comprising a current collector having undergone chemical pickling (points A)) with that of an electrode of reference (points B) whose current collector has not undergone chemical pickling, depending on the quantity of the composition of active materials (grammage expressed in mg/cm 2 /face on the abscissa axis).
- the composition of active materials comprises a mixture of active materials of LMFP and NCA type.
- FIG. 3a is a graph making it possible to compare the evolution of the voltage of an electrode according to the invention (solid line curves a, b, c) and of a reference electrode (dotted curves d, e, f) during the first cycle.
- This first cycle includes a charge consisting of a first stage of charging at a constant current of C/20 until a voltage of 4.3 V is reached and in a second stage at a constant voltage of 4.3 V.
- the second stage charging takes place at a constant voltage of 4.3 V as long as the measured charging current is greater than a threshold value.
- This threshold value is determined according to the capacitance of the electrode which can be for example C/100.
- a discharge is carried out until a cut-off voltage of 2.5 V is reached.
- the two electrodes comprise as active materials a mixture of active materials of the LMFP and NCA type.
- FIG. 3b is a graph making it possible to compare the evolution of the voltage of an electrode according to the invention (solid line curves a, b, c) and of a reference electrode (dotted curves d, e, f) during the third cycling cycle at room temperature.
- This third cycle includes a charge consisting of a first stage of charging at a constant current of C/5 until a voltage of 4.3V is reached and in a second stage at a constant voltage of 4.3V.
- the second stage of charging takes place at a constant voltage of 4.3 V as long as the measured charging current is greater than a threshold value.
- This threshold value is determined according to the capacitance of the electrode which can be for example C/100.
- a discharge is carried out until a cut-off voltage of 2.5 V is reached.
- the two electrodes comprise as active materials a mixture of active materials of the LMFP and NCA type.
- FIG. 4 is a photograph comparing the appearance of an electrode according to the invention with that of a reference electrode:
- an electrode according to the invention comprising a current collector having undergone chemical etching, which current collector is covered on both sides with a composition of active materials comprising a mixture of active materials of the LMFP and NCA type.
- the basis weight is 15.5 mg/cm 2 .
- a reference electrode comprising a current collector which has no not undergone chemical pickling, which collector is also covered on both sides with a composition of active materials comprising a mixture of active materials of the LMFP and NCA type.
- the basis weight is 12 mg/cm 2 .
- FIG. 5 is a series of photographs taken after carrying out a bending test consisting of bending the electrode around an axis of increasingly small diameter (6, 4 and 3 mm). This test is carried out on an electrode according to the invention (A) and on a reference electrode (B).
- the first subject of the invention is an electrode comprising a current collector consisting of a metal strip which is covered on at least one of its faces with a composition of electrochemically active materials, said composition comprising at least one lithiated phosphate of manganese and iron corresponding to the following formula: Li x Mni-y-zFe y MzPO4 where M is selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture, with 0.8 ⁇ x ⁇ 1.2;
- the current collector is a metal strip which can be made of aluminum or an alloy mainly comprising aluminum.
- the metal strip is made of aluminum.
- a material can be etched chemically, mechanically, thermally or electrochemically.
- the current collector used in the present invention has previously undergone a chemical pickling step. It is preferably an acid chemical pickling. For example by a solution of hydrochloric acid, sulfuric acid or ferric chloride.
- the current collector can be chemically etched on both sides.
- the current collector after having undergone chemical pickling may have a thickness less than or equal to 100 ⁇ m, preferably less than or equal to 50 ⁇ m, and more advantageously ranging from 5 ⁇ m to 35 ⁇ m.
- the current collector can be a solid current collector.
- Solid means a non-porous current collector, that is to say devoid of closed pores or open pores.
- the current collector can be porous.
- the pores of the current collector are not through holes. Pore depth measurement can be performed using a confocal microscope. According to one embodiment, the depth of the pores of the current collector can be between 5 and 10 ⁇ m.
- the current collector may have pores whose diameter is less than or equal to 0.3 mm, preferably less than or equal to 100 ⁇ m, or less than or equal to 50 ⁇ m, or less or equal to 20 pm.
- the current collector may have pores whose diameter is less than or equal to 0.3 mm, which pores are not through-holes.
- the current collector may have a recess rate of less than or equal to 10%, that is to say a reduction in the mass after stripping of 10% or less.
- the recess rate is determined by comparing the mass of a current collector according to the invention (having undergone chemical pickling) with the mass of a current collector before pickling.
- the current collector can be covered on both sides by said composition of electrochemically active materials.
- composition of electrochemically active materials is understood to mean the composition comprising all the compounds which cover the current collector on at least one of its faces. Generally this composition includes:
- one or more electronically conductive materials such as carbon.
- Said composition of electrochemically active materials comprises at least one lithium manganese iron phosphate (LMFP) corresponding to the following formula: Li x Mni-y-zFe y MzPO4 where M is chosen from the group consisting of B, Mg , Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or as a mixture, with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2. According to one embodiment, 0.7 ⁇ lyz ⁇ 0.9. According to another embodiment, 0.7 ⁇ lyz ⁇ 0.85.
- LMFP lithium manganese iron phosphate
- composition of electrochemically active materials may comprise, as sole active materials, one or more active materials of the LMFP type as described above.
- composition of electrochemically active materials may comprise a mixture comprising:
- lithiated manganese iron phosphate LMFP
- said lithiated phosphate corresponding to the following formula: Li x Mni-y- zFe y MzPO4 where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or as a mixture, with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- lithiated oxide corresponding to one of the following formulas: i) Li w (NixCoyAl z Mt)O2 (NC type active ingredient A), where 0.9 ⁇ w ⁇ 1.1; x >0; y >0; z >0; t >0; M being selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr,
- Li w (NixMn y CozMt)O2 NMC type active material
- M being selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof .
- composition of electrochemically active materials may comprise a mixture comprising:
- lithiated manganese iron phosphate LMFP
- said lithiated phosphate corresponding to the following formula: LixMni- yz Fe y MzPO4 where M is selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in admixture, with 0, 8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- a lithiated oxide of transition metals relative to the total weight of all the electrochemically active materials of the composition, said lithiated oxide corresponding to one of the following formulas: i) Li w (NixCo y Al z Mt)O2 (NC A type active ingredient), where 0.9 ⁇ w ⁇ 1.1; x >0; y >0; z >0; t >0; M being selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr,
- Li w (Ni x Mn y CozMt)O2 active material of NMC type) where 0.9 ⁇ w ⁇ 1.1; x >0; y >0; z >0; t >0; M being selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof .
- the active material of NMC type can be of formula Li w (NixMn y Co z M t )O2 (NMC) where 0.9 ⁇ w ⁇ l,l;x>0;y>0;z>0;t>0; M being selected from the group consisting of Al, B, Mg and mixtures thereof.
- M is Al and t ⁇ 0.05.
- the majority transition element is preferably nickel, that is to say x>0.5, even more preferably x>0.6.
- a high amount of nickel in the lithiated nickel oxide is preferable because it provides high energy to the lithiated nickel oxide.
- the active material of NMC type can correspond to the formula Li w (Ni x Mn y CozM t )O2 where 0.9 ⁇ w ⁇ 1,1;x>0.6;y>0,l;z>0,1;t>0; M being selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof . Mention may be made, for example, of: LiNio,eMno,2Coo,202 and LiNio,sMno,iCoo,i02.
- the composition of electrochemically active materials may comprise a mixture comprising: from 90% to 99% by weight of lithium manganese and iron phosphate relative to the total weight of all the electrochemically active materials of the composition, said lithiated phosphate (LMFP) corresponding to the following formula: Li x Mni- y -zFe y MzPO4 where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co , Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture, with; 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ lyz ⁇ 1;0.05 ⁇ y ⁇ 0.5 and 0 ⁇ z ⁇ 0.2; and
- a lithiated oxide of transition metals corresponding to the following formula: Li w (Ni x Co y Al z Mt)O2 (NCA), where 0.9 ⁇ w ⁇ 1.1; x >0; y >0; z >0; t >0; M being selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta and mixtures thereof .
- the active material of NCA type can be of formula Liw(Ni x CoyAl z Mt)O2 where 0.9 ⁇ w ⁇ 1.1;x>0;y>0;z>0;t>0; M being selected from the group consisting of B, Mg and mixtures thereof.
- M being selected from the group consisting of B, Mg and mixtures thereof.
- Mention may be made, for example: LiNio, sCoo, i5Alo, o502.
- the composition of electrochemically active materials comprises a mixture comprising: from 95 to 50% or from 90 to 50% or from 85 to 50% or from 80 to 60% or from 70 to 60% by weight of lithium manganese iron phosphate (LMFP) relative to the total weight of all the electrochemically active materials of the composition; from 5 to 50% or from 10 to 50% or 15 to 50% or from 20 to 40% or from 30 to 40% by weight of active materials of NCA or NMC type as described above, relative to the total weight of all the electrochemically active materials of the composition.
- LMFP lithium manganese iron phosphate
- the composition of electrochemically active materials comprises a mixture consisting of: approximately 90% by weight of active materials of the LMFP type as described above, relative to the total weight of all the active materials of the composition ; and about 10% by weight of active materials of NCA type as described above relative to the total weight of all the active materials of the composition.
- said composition of electrochemically active materials may have a basis weight of between 3 and 50 mg/cm 2 /side or between 8 and 25 mg/cm 2 /side, or between 10 and 20 mg/cm 2 /side.
- an electrode is manufactured by preparing an ink comprising one or more active materials mixed with one or more binders, with one or more electronically conductive materials and with a solvent. This ink is then coated on at least one side of a current collector. The solvent is evaporated. The thickness of the composition coated on at least one of the faces of the current collector is adjusted by passing the electrode between two rollers exerting pressure on the surface of the electrode (calendering step).
- the porosity of the electrode is defined as the percentage of the pore volume relative to the geometric volume of the electrode. Pore volume encompasses the void volume between the compound particles in the layer deposited on the electrode current collector and the pore volume within the compound particles in the layer deposited on the current collector of the electrode. Pores within the particles include accessible (open) pores and inaccessible (closed) pores.
- the porosity of the electrode can be obtained from the following two methods:
- the mercury technique is used to determine the pore volume.
- the geometric volume of the electrode is obtained by multiplying the thickness of the layer deposited on the current collector by the surface covered by the layer.
- the porosity is obtained by calculating the ratio between the pore volume and the geometric volume of the electrode.
- the theoretical density dtheo is calculated from the density of each compound of the coated layer on the current collector.
- the apparent density dapp is calculated by knowing the mass and the geometric volume of the coated layer on the current collector.
- the porosity of a cathode containing lithiated manganese iron phosphate as sole active material is generally at least 40%.
- the electrode according to the invention may have a porosity less than or equal to 40%, or greater than or equal to 30%, preferably equal to approximately 35%, as well as a basis weight between 3 and 50 mg/cm 2 /side or between 8 and 25 mg/cm 2 /side, or between 10 and 20 mg/cm 2 /side.
- the electrode according to the invention contains a higher quantity of active material per unit volume.
- the second object of the invention is an electrochemical element comprising at least one electrode as defined above.
- the electrochemical element can be of the lithium-ion type.
- the electrochemical element may comprise as positive electrode (cathode) an electrode as defined above.
- the reference electrode has a current collector that has not undergone chemical pickling.
- Figure 2 is a graph comparing the porosity (expressed in% on the ordinate axis) of an electrode according to the invention (comprising a current collector having undergone chemical pickling (points A)) with that of a reference electrode (points B) whose current collector has not undergone chemical pickling; depending on the amount of the composition of active materials (grammage expressed in mg/cm 2 /side on the abscissa axis. In both cases, the active material used is a mixture of active materials comprising 90% by weight of LM FP and 10% by weight of NC A.
- the reference electrode has a porosity of 45% while the porosity of the electrode according to the invention is between 35 and 38%.
- the electrode of the invention has a lower porosity than that of the reference electrode while maintaining a similar basis weight. It follows that the same quantity of composition of active materials can be deposited over a smaller thickness. Moreover, it is observed that the electrode according to the invention is flexible while the reference electrode is rigid.
- FIG. 4 makes it possible to highlight certain mechanical properties of the electrode of the invention. For this, the following electrodes were tested:
- a reference electrode (photograph on the right) with dimensions of 10 cm x 21 cm and the thickness of the strip of which is 20 ⁇ m.
- An electrode according to the invention (photograph on the left) with dimensions of 10 cm x 21 cm and the thickness of the strip of which is 30 ⁇ m.
- the reference electrode (photograph on the right) exhibits significant deformation of its lower right corner, due to internal mechanical stresses, where the electrode according to the invention (photograph on the left) does not exhibit any. Consequently, the electrode according to the invention has greater flexibility compared to the reference electrode. Therefore with a weight greater than that of the reference electrode and with a reduced thickness, the electrode according to the invention has good mechanical properties. canic. Thanks to these properties, the electrode can be used in an electrochemical element without increasing its rigidity. Indeed, the current collector of the invention makes it possible to attenuate the mechanical stresses of calendering and therefore to maintain optimum flexibility.
- the chemical etching applied to the current collector causes asperities which help to further retain the composition of active materials during the spiraling of the electrode, which is not the case for the electrode of reference where a loss of composition of active materials is observed.
- Obtaining good flexibility of the electrode improves the regularity of the industrial manufacturing process of the electrochemical element by reducing the risk of tearing the electrode.
- Electrochemical elements in button format have been manufactured.
- the anode is lithium.
- the cathode comprises a composition of active materials comprising a mixture of LMFP and NC A. This mixture comprises 10% by weight of active material of NC A type of formula LiNio,sCoo,i5 Alo,os02 and 90% by weight of active material of the LMFP type with the formula LiMno,sFeo,2P04.
- the cathode of the elements according to the invention comprises a current collector which is an aluminum strip which has undergone chemical pickling.
- the cathode of the reference elements is an aluminum strip that has not undergone chemical pickling.
- the electrolyte comprises a mixture of cyclic carbonates and linear carbonates to which LiPFe has been added at a concentration of 1 mol.L' 1 .
- the separator inserted between the anode and the cathode is of the polyolefin type.
- the cells were subjected to a first cycle starting with a charge consisting of a first stage at a constant current of C/20 until reaching a voltage of 4.3 V and a second stage at a constant voltage of 4.3 V.
- the second charging stage takes place at a constant voltage of 4.3 V as long as the measured charging current is greater than a threshold value.
- This threshold value is determined according to the capacitance of the electrode, for example C/100.
- the third cycling cycle begins with a charge consisting of a first step charging at constant current of C/5 until reaching a voltage of 4.3V and in a second stage at a constant voltage of 4.3V.
- the second stage of charging takes place at a constant voltage of 4.3V as long as the measured load current is greater than a threshold value.
- This threshold value is determined as a function of the capacitance of the electrode, for example C/100.
- Figures 3a and 3b show that in cycle 1 or 3 the electrode according to the invention (curves in solid lines a, b, c) makes it possible on the one hand to reduce the polarization of the element. Indeed, the difference between the charge voltage and the discharge voltage of the element for a given state of charge of the element is lower for the elements according to the invention than for the reference elements (dotted curves d , e, f). This difference is more marked in the 3 rd cycle carried out at a rate of C/5 than in the 1 st cycle carried out at a rate of C/20.
- the invention makes it possible to reduce the time during which the electrode is exposed to a high potential, in this case 4.3 V.
- the electrode according to the invention makes it possible to limit the oxidation of the electrolyte, the latter remaining exposed for less time to a high potential.
- the invention also makes it possible to reduce the degradation of the lamellar oxide NCA which is subjected to a high potential for a shorter period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
La présente invention porte sur une électrode comprenant un collecteur de courant constitué d'un feuillard métallique lequel est recouvert sur au moins une de ses faces par une composition de matières électrochimiquement actives, ladite composition comprenant au moins un phosphate lithié de manganèse et de fer répondant à la formule suivante : LixMn1-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8≤x≤1,2; 0,5≤1-y-z<1; 0,05≤y≤0,5 et 0≤z≤0,2; ledit collecteur de courant ayant subi un décapage chimique d'au moins une de ses faces.
Description
Description
Titre : ÉLECTRODE À BASE DE PHOSPHATE LITHIÉ DE MANGANÈSE ET DE FER POUR ÉLÉMENT ÉLECTROCHIMIQUE LITHIUM-ION
Domaine technique de l’invention
[0001] Le domaine technique de la présente invention est celui des électrodes positives (cathodes) destinées à être utilisées dans un élément électrochimique de préférence de type lithium-ion, lesdites électrodes positives comprenant un collecteur de courant lequel est recouvert sur au moins une de ses faces par une composition de matières électrochimique- ment actives dont l’une au moins est à base d’un phosphate lithié de manganèse et de fer.
Contexte de l'invention
[0002] Un élément électrochimique, encore désigné par le terme « élément » dans ce qui suit, comprend un faisceau électrochimique constitué d’une alternance de cathodes et d’anodes encadrant un séparateur imprégné d'électrolyte. Chaque cathode et anode est constituée d'un collecteur de courant métallique supportant sur au moins une de ses faces au moins une matière active et généralement un liant et un matériau conducteur électronique.
[0003] Les oxydes lithiés de métaux de transition sont connus comme matière active cathodique utilisable dans les générateurs électrochimiques rechargeables au lithium (éléments électrochimiques secondaires). Dans l'électrode positive, on utilise le plus souvent comme matière active des oxydes lithiés de métaux de transition de formule générale LiMCL, où M représente au moins un métal de transition, tel que Mn, Ni, Co, Al ou un mélange de ceux-ci. Ces matières actives permettent d’obtenir des performances élevées, notamment en termes de capacité réversible en cyclage et de durée de vie. Les oxydes lithiés de métaux de transition de formule LiMCL, où M représente les éléments nickel, cobalt et aluminium présentent une bonne durée de vie en cyclage mais présentent l’inconvénient d’être d’une part coûteux et d’autre part instables à haute température. L’instabilité à haute température de ce type de matériaux peut constituer un risque pour l’utilisateur du générateur électrochimique lorsque celui-ci fonctionne hors de ses conditions nominales.
[0004] D’autres types de matières actives d'un coût moindre et présentant une meilleure stabilité thermique ont été étudiés parmi lesquels les phosphates lithiés d’au moins un métal de transition, notamment les composés basés sur LiFePCL. Cependant l'utilisation de ces composés se heurte à leur faible capacité, leur faible conductivité électronique, et au fait que LiFePCL et FePCU sont de mauvais conducteurs électroniques. Il est donc nécessaire d'ajouter dans l'électrode une forte proportion d'un matériau conducteur électronique, ce qui pénalise ses performances, notamment ses caractéristiques en cyclage.
1
FEUILLE DE REMPLACEMENT (RÈGLE 26)
[0005] Les phosphates de fer lithiés de formule LixFei-yMyPO4 avec 0,8<x<l,2 ; 0<y<0,5 sont connus comme matière active cathodique d’éléments lithium-ion. Dans ces phosphates, l’élément fer est le métal de transition majoritaire. Il peut être partiellement substitué par un ou plusieurs éléments symbolisés par le symbole M. Lors de la fabrication de la cathode, le phosphate de fer lithié sous forme pulvérulente est typiquement mélangé à un liant qui est généralement du polyfluorure de vinylidène (PVDF) et à un composé conducteur électronique. Le rôle du liant est d’assurer la cohésion des particules de phosphates de fer lithié entre elles ainsi que leur adhésion au collecteur de courant de l’électrode.
[0006] Les phosphates lithiés de manganèse et de fer de formule LixMni-y.zFeyMzPO4 (LMFP) avec 0,8<x<l,2 ; l-y-z>0,5 ; 0,05<y<0,5 et 0<z<0,2 sont également connus pour leur utilisation comme matière active cathodique d’éléments lithium-ion. Ces phosphates contiennent du manganèse, du fer et un ou plusieurs éléments substituants symbolisés par le symbole M. Le manganèse est le métal de transition majoritaire. Le fer est minoritaire. Les phosphates lithiés de manganèse et de fer présentent une tension de fonctionnement supérieure à celle des phosphates de fer lithiés. En effet, les phosphates lithiés de fer présentent une tension de plateau de 3,45V par rapport à Li+/Li. Les phosphates lithiés de manganèse et de fer peuvent fonctionner à une tension supérieure, en raison de l’existence d’un plateau de tension à 4, 1 V par rapport à Li+/Li correspondant au couple Mn2+/Mn3+.
Toutefois, les matières actives de type LMFP présentent une surface spécifique très élevée. En raison de cette forte surface spécifique, l’électrode comprenant le matériau LMFP seul présente généralement une forte porosité, typiquement 40% ou plus. La composition de matière active inclut le ou les matières électrochimiquement actives, le ou les liants et le ou les composés conducteurs électroniques. Cette plage de valeur de porosité de 40 % ou plus correspond typiquement à une composition de matière active comprenant de 80 à 90% de matière active de type LMFP. Cette porosité élevée rend difficile la production d’électrodes pour éléments électrochimiques de forte densité d’énergie. En plus de sa porosité, une électrode peut être définie par son grammage. Le grammage d’une électrode correspond à la masse de la composition de matières actives déposées par unité de surface sur au moins une face du collecteur de courant. Un grammage élevé d’électrode est souhaitable si l’on cherche à obtenir un élément typé « énergie », c’est-à-dire un élément pour lequel on privilégie la quantité d’énergie qu’il peut délivrer, sans nécessairement imposer d’exigence minimale du point de vue de la puissance qu’il peut délivrer. On recherche donc une électrode comprenant une matière active à base de LMFP qui présente un grammage élevé. A ces deux objectifs que sont la recherche d’une électrode présentant une faible porosité et la recherche d’une électrode présentant un grammage élevé, vient s’ajouter un troisième objectif qui est l’obtention d’une électrode conservant sa flexibilité. En effet, on constate de manière générale que la flexibilité d’une électrode diminue lorsque sa porosité diminue et/ou que son grammage augmente. Une bonne flexibilité de l’électrode est nécessaire pour garantir une régularité du processus de fabrication de l’élément à l’échelle industrielle.
[0007] Il existe donc un besoin de fournir une électrode positive à base de phosphate lithié de
manganèse et de fer (LMFP) qui présenterait une porosité plus faible, un grammage plus élevé tout en conservant une bonne flexibilité.
Résumé de l’invention
[0008] L’invention a pour premier objet une électrode comprenant un collecteur de courant constitué d’un feuillard métallique lequel est recouvert sur au moins une de ses faces par une composition de matières électrochimiquement actives, ladite composition comprenant au moins un phosphate lithié de manganèse et de fer répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2 ; ledit collecteur de courant ayant subi un décapage chimique d’au moins une de ses faces.
[0009] Selon un mode de réalisation, ladite composition de matières électrochimiquement actives comprend un mélange comprenant :
- de 90% à 99% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ;x>0;y>0;z>0;t>0;M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ; ii) Liw(NixMnyCozMt)O2 où 0,9 < w < 1,1 ;x>0;y>0;z>0;t>0;M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[0010] Selon un autre mode de réalisation, ladite composition de matières électrochimiquement actives comprend un mélange comprenant :
- environ 50% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y.zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2; et
- environ 50% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ;x>0;y>0;z>0;t>0;M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ; ii) Liw(NixMnyCozMt)O2 où 0,9 < w < 1,1 ;x>0;y>0;z>0;t>0;M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce,
Ga, Ta et leurs mélanges.
[0011] Selon un mode de réalisation, ladite composition de matières actives comprend un mélange comprenant :
- de 90% à 99% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à la formule suivante: Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z >
0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[0012] Selon un mode de réalisation, le collecteur de courant est un feuillard constitué d’aluminium ou d’un alliage d’aluminium.
[0013] Selon un autre mode de réalisation, le collecteur de courant est recouvert sur ses deux faces par ladite composition de matières électrochimiquement actives.
[0014] Selon un mode de réalisation, le collecteur de courant présente un taux d’évidement inférieur à 10%.
[0015] Selon un mode de réalisation, le collecteur de courant après décapage chimique a une épaisseur comprise entre 5pm et 35 pm.
[0016] Selon un mode de réalisation, ladite composition de matières actives présente un grammage compris entre 8 mg/cm2/face et 25 mg/cm2/face.
[0017] Selon un mode de réalisation, l’électrode a une porosité inférieure à 40%.
[0018] Selon un mode de réalisation, le collecteur de courant est plein.
[0019] Selon un autre mode de réalisation, le collecteur de courant présente des pores dont le diamètre est inférieur à 0,3 mm, de préférence inférieur ou égal à 100pm, ou inférieur ou égal à 50pm, ou inférieur ou égale à 20pm.
[0020] Selon un mode de réalisation, le collecteur de courant ne présente pas de trou traversant.
[0021] L’invention a pour second objet un élément électrochimique comprenant au moins une électrode telle que définie ci-dessus.
[0022] Selon un mode de réalisation, l’élément électrochimique est de type lithium-ion.
La demanderesse a découvert de façon surprenante que l’utilisation d’un collecteur de courant constitué d’un feuillard métallique ayant subi un décapage chimique permettait de surmonter les inconvénients rencontrés lors de l’utilisation de composition de matière active de type LMFP. En effet, il a été constaté que l’utilisation d’un tel collecteur de courant lequel est recouvert d’une composition de matière active de type LMFP, permettait d’obtenir une électrode présentant un grammage élevé et une porosité plus faible, tout en conservant sa flexibilité.
Il a également été découvert que l’électrode selon l’invention présentait une polarisation réduite. L’électrode selon l’invention présente une chargeabilité améliorée en induisant en fin de charge une réduction du temps de charge en tension constante (floating time) au
cours duquel elle reste exposée à un potentiel élevé, par exemple au moins 4,3 V par rapport à une référence en lithium métal.
Brève description des figures
[0023] [Fig. 1] représente une vue au microscope électronique à balayage (MEB) de la surface d’un collecteur de courant après décapage.
[0024] [Fig. 2] est un graphique comparant la porosité (exprimée en % sur l’axe des ordonnées) d’une électrode selon l’invention (comprenant un collecteur de courant ayant subi un décapage chimique (points A)) avec celle d’une électrode de référence (points B) dont le collecteur de courant n’a pas subi de décapage chimique, en fonction de la quantité de la composition de matières actives (grammage exprimé en mg/cm2/face sur l’axe des abscisses). Dans les deux cas, la composition de matières actives comprend un mélange de matières actives de type LMFP et NCA.
[0025] [Fig. 3a] est un graphique permettant de comparer l’évolution de la tension d’une électrode selon l’invention (courbes en trait plein a, b, c) et d’une électrode de référence (courbes en pointillés d, e, f) au cours du premier cycle. Ce premier cycle comprend une charge consistant en une première étape de charge à un courant constant de C/20 jusqu’à atteindre une tension de 4,3 V et en une seconde étape à une tension constante de 4,3 V. La seconde étape de charge se déroule à tension constante de 4,3 V tant que le courant de charge mesuré est supérieur à une valeur seuil. Cette valeur seuil est déterminée en fonction de la capacité de l’électrode qui peut être par exemple de C/100. Lorsque le courant de charge devient inférieur à la valeur seuil, on effectue une décharge jusqu’à atteindre une tension de coupure de 2,5 V. Les deux électrodes comprennent comme matières actives un mélange de matières actives de type LMFP et NCA.
[0026] [Fig. 3b] est un graphique permettant de comparer l’évolution de la tension d’une électrode selon l’invention (courbes en trait plein a, b, c) et d’une électrode de référence (courbes en pointillés d, e, f) au cours du troisième cycle de cyclage à la température ambiante. Ce troisième cycle comprend une charge consistant en une première étape de charge à courant constant de C/5 jusqu’à atteindre une tension de 4,3V et en une seconde étape à une tension constante de 4,3 V. La seconde étape de charge se déroule à tension constante de 4,3 V tant que le courant de charge mesuré est supérieur à une valeur seuil. Cette valeur seuil est déterminée en fonction de la capacité de l’électrode qui peut être par exemple de C/100. Lorsque le courant de charge devient inférieur à la valeur seuil, on effectue une décharge jusqu’à atteindre une tension de coupure de 2,5 V. Les deux électrodes comprennent comme matières actives un mélange de matières actives de type LMFP et NCA.
[0027] [Fig. 4] est une photographie comparant l’aspect d’une électrode selon l’invention avec celui d’une électrode de référence :
- sur la gauche, une électrode selon l’invention comprenant un collecteur de courant ayant subi un décapage chimique, lequel collecteur de courant est recouvert sur ses deux faces par une composition de matières actives comprenant un mélange de matières actives de type LMFP et NCA. Sur chacune des deux faces du collecteur de courant, le grammage est de 15,5 mg/cm2.
- sur la droite, une électrode de référence comprenant un collecteur de courant qui n’a
pas subi un décapage chimique, lequel collecteur est également recouvert sur ses deux faces par une composition de matières actives comprenant un mélange de matières actives de type LMFP et NCA. Sur chacune des deux faces du collecteur de courant, le grammage est de 12 mg/cm2.
[0028] [Fig. 5] est une série de photographies prises après la réalisation d’un test de pliage consistant à plier l’électrode autour d’un axe de diamètre de plus en plus en petit (6, 4 et 3 mm). Ce test est effectué sur une électrode selon l’invention (A) et sur une électrode de référence (B).
Description des modes de réalisation de l’invention
[0029] L’invention a pour premier objet une électrode comprenant un collecteur de courant constitué d’un feuillard métallique lequel est recouvert sur au moins une de ses faces par une composition de matières électrochimiquement actives, ladite composition comprenant au moins un phosphate lithié de manganèse et de fer répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ;
0,5<l-y-z<l ; 0,05< y< 0,5 et 0<z<0,2 ; ledit collecteur de courant ayant subi un décapage chimique d’au moins une de ses faces.
[0030] Collecteur de courant
[0031] Le collecteur de courant est un feuillard métallique qui peut être constitué d’aluminium ou d’un alliage comprenant majoritairement de l’aluminium. De façon avantageuse, le feuillard métallique est en aluminium.
Il existe différents procédés de décapage d’un matériau connus de l’art antérieur. En effet, un matériau peut être décapé chimiquement, mécaniquement, thermiquement ou électrochimiquement.
Afin de répondre au problème que l’invention se propose de résoudre à savoir diminuer la porosité, augmenter le grammage tout en conservant la flexibilité de l’électrode, la demanderesse a découvert que le décapage chimique était le plus adapté à l’invention et permettait d’obtenir de meilleurs résultats.
Le collecteur de courant utilisé dans la présente invention a subi au préalable une étape de décapage chimique. Il s’agit de préférence d’un décapage chimique acide. Par exemple par une solution d’acide chlorhydrique, d’acide sulfurique ou de chlorure ferrique.
[0032] Selon un mode de réalisation, le collecteur de courant peut être chimiquement décapé sur ses deux faces.
[0033] Le collecteur de courant après avoir subi le décapage chimique, peut présenter une épaisseur inférieure ou égale à 100 pm, de préférence inférieure ou égale à 50 pm, et de façon plus avantageuse allant de 5 pm à 35 pm.
[0034] Selon un mode de réalisation de l’invention, le collecteur de courant peut être un collecteur de courant plein. On entend par « plein » un collecteur de courant non poreux, c’est-à-dire
dépourvu de pores fermés ou de pores ouverts.
[0035] Selon un autre mode de réalisation, le collecteur de courant peut être poreux. De préférence, les pores du collecteur de courant ne sont pas des trous traversants. La mesure de la profondeur des pores peut être réalisée grâce à un microscope confocal. Selon un mode de réalisation, la profondeur des pores du collecteur de courant peut être comprise entre 5 et 10 pm.
[0036] Selon un autre mode de réalisation, le collecteur de courant peut présenter des pores dont le diamètre est inférieur ou égal à 0,3 mm, de préférence inférieur ou égal à 100 pm, ou inférieur ou égal à 50 pm, ou inférieur ou égale à 20 pm.
[0037] Selon encore un autre mode de réalisation, le collecteur de courant peut présenter des pores dont le diamètre est inférieur ou égal à 0,3 mm, lesquels pores n’étant pas des trous traversants.
[0038] Selon un mode de réalisation, le collecteur de courant peut présenter un taux d’évidement inférieur ou égal à 10%, c’est-à-dire une réduction de la masse après décapage de 10 % ou moins.
[0039] Le taux d’évidement est déterminé en comparant la masse d’un collecteur de courant selon l’invention (ayant subi un décapage chimique) avec la masse d’un collecteur de courant avant décapage.
[0040] Le collecteur de courant peut être recouvert sur ses deux faces par ladite composition de matières électrochimiquement actives.
[0041] Composition de matières électrochimiquement actives
On entend par « composition de matières électrochimiquement actives » la composition comprenant l’ensemble des composés qui recouvrent le collecteur de courant sur au moins une de ses faces. Généralement cette composition comprend :
- une matière électrochimiquement active ou un mélange de matières électrochimiquement actives ;
- un ou plusieurs liants ; et
- un ou plusieurs matériaux conducteurs électroniques, tel que le carbone.
[0042] Ladite composition de matières électrochimiquement actives comprend au moins un phosphate lithié de manganèse et de fer (LMFP) répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y < 0,5 et 0<z<0,2. Selon un mode de réalisation, 0,7<l-y-z<0,9. Selon un autre mode de réalisation, 0,7<l-y-z<0,85. On peut citer par exemple LiMno,sFeo,2P04, LiMno,?Feo,3P04, LiMn2/3Fei/3PO4 et LiMno,5Feo,5P04.
[0043] Selon un mode de réalisation la composition de matières électrochimiquement actives peut comprendre comme seules matières actives, une ou plusieurs matières actives de type LMFP telles que décrites ci-dessus.
[0044] Selon un autre mode de réalisation, la composition de matières électrochimiquement actives peut comprendre un mélange comprenant :
- de 90% à 99% en poids de phosphate lithié de manganèse et de fer (LMFP) par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y < 0,5 et 0<z<0,2 ; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2 (matière active de type NC A), où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr,
Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ; ii) Liw(NixMnyCozMt)O2 (matière active de type NMC) où 0,9 < w < 1, 1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[0045] Selon un autre mode de réalisation, la composition de matières électrochimiquement actives peut comprendre un mélange comprenant :
- de 80% à 99% en poids de phosphate lithié de manganèse et de fer (LMFP) par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y.zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y < 0,5 et 0<z<0,2; et
- de 1 à 20% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2 (matière active de type NC A), où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr,
Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ; ii) Liw(NixMnyCozMt)O2 (matière active de type NMC) où 0,9 < w < 1, 1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[0046] La matière active de type NMC peut être de formule Liw(NixMnyCozMt)O2 (NMC) où 0,9<w<l,l ; x>0 ; y>0 ; z>0 ; t>0; M étant choisi dans le groupe constitué de Al, B, Mg et leurs mélanges. De préférence, M est Al et t<0,05. L'élément de transition majoritaire est
de préférence le nickel, c'est-à-dire x>0,5, encore plus préférentiellement x>0,6. Une quantité élevée de nickel dans l’oxyde lithié de nickel est préférable car elle fournit une énergie élevée à l’oxyde lithié de nickel. De préférence x< 0,9. La matière active de type NMC peut répondre à la formule Liw(NixMnyCozMt)O2 où 0,9<w<l,l ; x>0,6 ; y>0,l ; z>0,l ; t>0; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges. On peut citer par exemple : LiNio,eMno,2Coo,202 et LiNio,sMno,iCoo,i02.
[0047] Selon un mode de réalisation particulier, la composition de matières électrochimiquement actives peut comprendre un mélange comprenant : de 90% à 99% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié (LMFP) répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec ; 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y < 0,5 et 0<z<0,2 ; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à la formule suivante: Liw(NixCoyAlzMt)O2 (NCA), où 0,9 < w < 1,1 ; x > 0 ; y >0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[0048] La matière active de type NCA peut être de formule Liw(NixCoyAlzMt)O2 où 0,9<w<l, 1 ; x>0 ; y>0 ; z>0 ; t>0; M étant choisi dans le groupe constitué de B, Mg et leurs mélanges. De préférence, 0,70<x<0,95 ; 0,03<y<0,25 ; z<0,l ; t=0 et x+y+z+t=l. De manière davantage préférée 0,75<x<0,85 ; 0,10<y<0,20. On peut citer par exemple : LiNio,sCoo,i5Alo,o502.
[0049] Selon un mode de réalisation, la composition de matières électrochimiquement actives comprend un mélange comprenant : de 95 à 50 % ou de 90 à 50 % ou de 85 à 50 % ou de 80 à 60 % ou de 70 à 60 % en poids de phosphate lithié de manganèse et de fer (LMFP) par rapport au poids total de toutes les matières électrochimiquement actives de la composition ; de 5 à 50 % ou de 10 à 50 % ou 15 à 50% ou de 20 à 40 % ou de 30 à 40% en poids de matières actives de type NCA ou NMC telles que décrites ci-dessus, par rapport au poids total de toutes les matières électrochimiquement actives de la composition.
[0050] De manière plus avantageuse, la composition de matières électrochimiquement actives comprend un mélange constitué : d’environ 90% en poids de matières actives de type LMFP telles que décrites ci-dessus, par rapport au poids total de toutes les matières actives de la composition ; et d’environ 10% en poids de matières actives de type NCA telles que décrites ci-dessus par rapport au poids total de toutes les matières actives de la composition.
[0051] Selon un mode de réalisation, ladite composition de matières électrochimiquement actives
peut présenter un grammage compris entre 3 et 50 mg/cm2/face ou compris entre 8 et 25 mg/cm2/face, ou entre 10 et 20 mg/cm2/face.
[0052] L’électrode
De façon générale, une électrode est fabriquée en préparant une encre comprenant une ou plusieurs matières actives mélangées à un ou plusieurs liants, à un ou plusieurs matériaux conducteurs électroniques et à un solvant. Cette encre est ensuite enduite sur au moins une des faces d’un collecteur de courant. Le solvant est évaporé. L’épaisseur de la composition enduite sur au moins une des faces du collecteur de courant est ajustée par passage de l’électrode entre deux rouleaux exerçant une pression à la surface de l’électrode (étape de calandrage).
[0053] La porosité de l’électrode est définie comme le pourcentage du volume des pores par rapport au volume géométrique de l'électrode. Le volume des pores englobe le volume de vide présent entre les particules des composés dans la couche déposée sur le collecteur de courant de l'électrode et le volume des pores à l'intérieur des particules des composés dans la couche déposée sur le collecteur de courant de l’électrode. Les pores à l'intérieur des particules englobent les pores accessibles (ouverts) et les pores inaccessibles (fermés).
[0054] La porosité de l'électrode peut être obtenue à partir des deux méthodes suivantes :
- Dans une première méthode, la technique au mercure est utilisée pour déterminer le volume des pores. Le volume géométrique de l'électrode est obtenu en multipliant l'épaisseur de la couche déposée sur le collecteur de courant par la surface recouverte par la couche. La porosité est obtenue en calculant le rapport entre le volume des pores et le volume géométrique de l'électrode.
- Dans une deuxième méthode, la densité théorique dtheo est calculée à partir de la densité de chaque composé de la couche enduite sur le collecteur de courant. La densité apparente dapp est calculée en connaissant la masse et le volume géométrique de la couche enduite sur le collecteur de courant.
La relation qui relie la porosité à la densité théorique et à la densité apparente est la suivante: Porosité=l-(dapp/ dtheo).
La porosité d'une cathode contenant du phosphate lithié de manganèse et de fer comme unique matière active est généralement d'au moins 40%.
[0055] Selon un mode de réalisation, l’électrode selon l’invention peut présenter une porosité inférieure ou égale à 40%, ou supérieure ou égale à 30%, de préférence égale à environ 35%, ainsi qu’un grammage compris entre 3 et 50 mg/cm2/face ou compris entre 8 et 25 mg/cm2/face, ou compris entre 10 et 20 mg/cm2/face.
[0056] Grâce à la réduction de porosité, l’électrode selon l’invention contient une quantité plus élevée de matière active par unité de volume.
[0057] Elément électrochimique
[0058] L’invention a pour second objet un élément électrochimique comprenant au moins une
électrode telle que définie ci-dessus.
[0059] L’élément électrochimique peut être de type lithium-ion.
[0060] L’élément électrochimique peut comprendre comme électrode positive (cathode) une électrode telle que définie ci-dessus.
[0061] EXEMPLES
[0062] Afin d’évaluer les propriétés électrochimiques et mécaniques d’une électrode selon l’invention, des tests comparatifs ont été réalisés. Dans ces tests l’électrode de référence possède un collecteur de courant n’ayant pas subi de décapage chimique.
[0063] La figure 2 est un graphique comparant la porosité (exprimée en % sur l’axe des ordonnées) d’une électrode selon l’invention (comprenant un collecteur de courant ayant subi un décapage chimique (points A)) avec celle d’une électrode de référence (points B) dont le collecteur de courant n’a pas subi de décapage chimique ; en fonction de la quantité de la composition de matières actives (grammage exprimé en mg/cm2/face sur l’axe des abscisses. Dans les deux cas, la matière active utilisée est un mélange de matières actives comprenant 90% en poids de LM F P et 10% en poids de NC A.
[0064] On constate que l’électrode de référence présente une porosité de 45 % tandis que la porosité de l’électrode selon l’invention est comprise entre 35 et 38 %. Ainsi, l’électrode de l’invention présente une porosité inférieure à celle de l’électrode de référence tout en maintenant un grammage similaire. Il en découle qu’une même quantité de composition de matières actives peut être déposée sur une épaisseur plus réduite. De plus, on observe que l’électrode selon l’invention est flexible tandis que l’électrode de référence est rigide.
[0065] La figure 4 permet de mettre en évidence certaines propriétés mécaniques de l’électrode de l’invention. Pour cela les électrodes suivantes ont été testées :
- Une électrode de référence (photographie de droite) de dimensions 10 cm x 21 cm et dont l’épaisseur du feuillard est de 20 pm.
- Une électrode selon l’invention (photographie de gauche) de dimensions 10 cm x 21 cm et dont l’épaisseur du feuillard est de 30 pm.
Ces deux électrodes ont été préalablement placées dans une armoire de séchage ventilée de la marque BINDER, modèle FDL115 pendant 10 minutes à 110°C et ont subi ensuite un calandrage à 0.4 m.s'1 à température ambiante. Les photographies ont été prises après le séchage et le calandrage.
On constate que l’électrode de référence (photographie de droite) présente une déformation importante de son coin inférieur droit, due à des contraintes mécaniques internes, là où l’électrode selon l’invention (photographie de gauche) n’en présente aucune. Par conséquent l’électrode selon l’invention présente une plus grande souplesse par rapport à l’électrode de référence. Donc avec un grammage supérieur à celui de l’électrode de référence et avec une épaisseur réduite, l’électrode selon l’invention présente de bonnes propriétés mé-
caniques. Grâce à ces propriétés, l’électrode peut être utilisée dans un élément électrochimique sans augmenter sa rigidité. En effet, le collecteur de courant de l’invention permet d’atténuer les contraintes mécaniques de calandrage et donc de maintenir une flexibilité optimale.
De plus, il a été constaté que le décapage chimique appliqué au collecteur de courant provoque des aspérités qui aident à retenir davantage la composition de matières actives lors du spiralage de l’électrode, ce qui n’est pas le cas pour l’électrode de référence où une perte de composition de matières actives est observée. L’obtention d’une bonne flexibilité de l’électrode permet d’améliorer la régularité du processus industriel de fabrication de l’élément électrochimique en réduisant les risques de déchirure de l’électrode.
[0066] Afin de mettre davantage en évidence la flexibilité de l’électrode selon l’invention, un test complémentaire de pliage a été réalisé en utilisant un appareil Mandrel Bending Tester EQ- MBT-12-LD, commercialisé par la Société MTI. Les résultats de ce test sont présentés à la figure 5. Ce test de pliage consiste à plier l’électrode autour d’un axe de diamètre de plus en plus en petit (6 ; 4 et 3 mm) et d’observer visuellement les conséquences de ce pliage. Deux électrodes différentes ont subi ce test : une électrode selon l’invention (A) et une électrode de référence (B). Une fois les pliages effectués, les électrodes sont dépliées et photographiées. On peut observer que les zones non flexibles se traduisent sur la photographie par des marques blanches. Ce test montre que l’électrode de référence est nettement plus marquée par les plis que l’électrode de l’invention. Les électrodes comprenant le collecteur de courant selon l’invention sont donc plus flexibles que l’électrode de référence.
[0067] Des éléments électrochimiques au format bouton ont été fabriqués. L’anode est en lithium. La cathode comprend une composition de matières actives comprenant un mélange de LMFP et de NC A. Ce mélange comprend 10% en poids de matière active de type NC A de formule LiNio,sCoo,i5 Alo,os02 et 90% en poids de matière active de type LMFP de formule LiMno,sFeo,2P04. La cathode des éléments selon l’invention comprend un collecteur de courant qui est un feuillard en aluminium ayant subi un décapage chimique. La cathode des éléments de référence est un feuillard en aluminium n’ayant pas subi de décapage chimique. L’électrolyte comprend un mélange de carbonates cycliques et de carbonates linéaires auquel on a ajouté LiPFe à la concentration d’ 1 mol.L'1. Le séparateur intercalé entre l’anode et la cathode est de type polyoléfine.
Les éléments ont été soumis à un premier cycle commençant par une charge consistant en une première étape à un courant constant de C/20 jusqu’à atteindre une tension de 4,3 V et en une seconde étape à une tension constante de 4,3 V. La seconde étape de charge se déroule à tension constante de 4,3 V tant que le courant de charge mesuré est supérieur à une valeur seuil. Cette valeur seuil est déterminée en fonction de la capacité de l’électrode par exemple C/100. Lorsque le courant de charge devient inférieur à la valeur seuil, une décharge est effectuée jusqu’à atteindre une tension de coupure de 2,5 V.
[0068] Le troisième cycle du cyclage commence par une charge consistant en une première étape
de charge à courant constant de C/5 jusqu’à atteindre une tension de 4,3V et en une seconde étape à une tension constante de 4,3 V. La seconde étape de charge se déroule à une tension constante de 4,3 V tant que le courant de charge mesuré est supérieur à une valeur seuil. Cette valeur seuil est déterminée en fonction de la capacité de l’électrode par exemple C/100. Lorsque le courant de charge devient inférieur à la valeur seuil, une décharge est effectuée jusqu’à atteindre une tension de coupure de 2,5 V.
[0069] Les figures 3a et 3b montrent qu’au cycle 1 ou 3 l’électrode selon l’invention (courbes en trait plein a, b, c) permet d’une part de réduire la polarisation de l’élément. En effet, la différence entre la tension en charge et la tension en décharge de l’élément pour un état de charge donné de l’élément est plus faible pour les éléments selon l’invention que pour les éléments de référence (courbes en pointillés d, e, f). Cette différence est plus marquée au 3eme cycle réalisé à un régime de C/5 qu’au 1er cycle réalisé à un régime de C/20. D’autre part, on constate que l’invention permet de diminuer le temps durant lequel l’électrode est exposée à un potentiel élevé, en l’espèce 4,3 V.
[0070] Par conséquent l’électrode selon l’invention permet de limiter l’oxydation de l’électrolyte, celui-ci restant exposé moins longtemps à un potentiel élevé. L’invention permet également de réduire la dégradation de l’oxyde lamellaire NCA qui est soumis moins longtemps à un potentiel élevé.
Claims
[Revendication 1] Electrode comprenant un collecteur de courant constitué d’un feuillard métallique lequel est recouvert sur au moins une de ses faces par une composition de matières électrochimiquement actives, ladite composition comprenant au moins un phosphate lithié de manganèse et de fer répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y< 0,5 et 0<z<0,2; ledit collecteur de courant ayant subi un décapage chimique d’au moins une de ses faces.
[Revendication 2] Electrode selon la revendication 1, dans laquelle ladite composition de matières électrochimiquement actives comprend un mélange comprenant :
- de 90% à 99% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2 ; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ; ii) Liw(NixMnyCozMt)O2 où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[Revendication 3] Electrode selon la revendication 1, dans laquelle ladite composition de matières électrochimiquement actives comprend un mélange comprenant :
- environ 50% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2; et
- environ 50% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à l’une des formules suivantes: i) Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges ;
ii) Liw(NixMnyCozMt)O2 où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[Revendication 4] Electrode selon la revendication 2, dans laquelle ladite composition de matières actives comprend un mélange comprenant :
- de 90% à 99% en poids de phosphate lithié de manganèse et de fer par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit phosphate lithié répondant à la formule suivante : LixMni-y-zFeyMzPO4 où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange, avec 0,8<x<l,2 ; 0,5<l-y-z<l ; 0,05< y <0,5 et 0<z<0,2; et
- de 1 à 10% en poids d’un oxyde lithié de métaux de transition par rapport au poids total de toutes les matières électrochimiquement actives de la composition, ledit oxyde lithié répondant à la formule suivante:
Liw(NixCoyAlzMt)O2, où 0,9 < w < 1,1 ; x > 0 ; y > 0 ; z > 0 ; t > 0 ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta et leurs mélanges.
[Revendication 5] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant est un feuillard constitué d’aluminium ou d’un alliage d’aluminium.
[Revendication 6] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant est recouvert sur ses deux faces par ladite composition de matières électrochimiquement actives.
[Revendication 7] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant présente un taux d’évidement inférieur à 10%.
[Revendication 8] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant après décapage chimique a une épaisseur comprise entre 5pm et 35 pm.
[Revendication 9] Electrode selon l’une quelconque des revendications précédentes, dans laquelle ladite composition de matières actives présente un grammage compris entre 8 mg/cm2/face et 25 mg/cm2/face.
[Revendication 10] Electrode selon l’une quelconque des revendications précédentes, dans laquelle l’électrode a une porosité inférieure à 40%.
[Revendication 11] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant est plein.
[Revendication 12] Electrode selon l’une quelconque des revendications 1 à 10, dans laquelle le collecteur de courant présente des pores dont le diamètre est inférieur à 0,3 mm, de préférence inférieur ou égal à 100pm, ou inférieur ou égal à 50pm, ou inférieur ou égale à 20pm.
[Revendication 13] Electrode selon l’une quelconque des revendications précédentes, dans laquelle le collecteur de courant ne présente pas de trou traversant.
[Revendication 14] Elément électrochimique comprenant au moins une électrode telle que définie selon l’une quelconque des revendications 1 à 13.
[Revendication 15] Elément électrochimique selon la revendication 14 de type lithium-ion.
16
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2010962A FR3115633B1 (fr) | 2020-10-26 | 2020-10-26 | Electrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ion |
PCT/EP2021/079736 WO2022090267A1 (fr) | 2020-10-26 | 2021-10-26 | Électrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ion |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4233103A1 true EP4233103A1 (fr) | 2023-08-30 |
Family
ID=74205990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21794595.5A Pending EP4233103A1 (fr) | 2020-10-26 | 2021-10-26 | Électrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ion |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240021818A1 (fr) |
EP (1) | EP4233103A1 (fr) |
FR (1) | FR3115633B1 (fr) |
WO (1) | WO2022090267A1 (fr) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6051038B2 (ja) * | 2012-12-26 | 2016-12-21 | 三菱アルミニウム株式会社 | リチウムイオン二次電池の正極集電体用箔とその製造方法、及び、リチウムイオン二次電池 |
FR3036538B1 (fr) * | 2015-05-19 | 2017-05-19 | Accumulateurs Fixes | Electrode positive pour generateur electrochimique au lithium |
-
2020
- 2020-10-26 FR FR2010962A patent/FR3115633B1/fr active Active
-
2021
- 2021-10-26 EP EP21794595.5A patent/EP4233103A1/fr active Pending
- 2021-10-26 US US18/033,738 patent/US20240021818A1/en active Pending
- 2021-10-26 WO PCT/EP2021/079736 patent/WO2022090267A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022090267A1 (fr) | 2022-05-05 |
FR3115633B1 (fr) | 2023-04-14 |
US20240021818A1 (en) | 2024-01-18 |
FR3115633A1 (fr) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5306418B2 (ja) | 銅被覆鋼箔、負極用電極及び電池 | |
EP3050140B1 (fr) | Procede de realisation d'une electrode pour batterie lithium-ion | |
WO2006061940A1 (fr) | Batterie secondaire au lithium-ion et procédé de fabrication d'une électrode négative de celle-ci | |
WO2016184896A1 (fr) | Electrode positive pour generateur electrochimique au lithium | |
CN114846645B (zh) | 包含氧化的集流体的锂二次电池用负极及其制造方法 | |
EP2939296A1 (fr) | Electrode positive pour accumulateur au lithium | |
FR2906084A1 (fr) | Composition pour electrode negative d'accumulateur a electrolyte alcalin. | |
JP5726216B2 (ja) | 銅被覆鋼箔、負極用電極及び電池 | |
EP2718944A1 (fr) | Procede d'assemblage d'un supercondensateur hybride au lithium | |
EP4233103A1 (fr) | Électrode à base de phosphate lithié de manganèse et de fer pour élément électrochimique lithium-ion | |
JP2009272243A (ja) | 非水電解液二次電池 | |
EP3692585B1 (fr) | Element electrochimique lithium ion fonctionnant a haute temperature | |
FR2764442A1 (fr) | Electrode de nickel empatee | |
EP1763097B1 (fr) | Electrode positive pour accumulateur alcalin | |
EP3186846B1 (fr) | Batterie comprenant un materiau pour électrode négative adherant au collecteur de courant anodique | |
EP2754193A1 (fr) | Procédé de fabrication d'une électrode et encre pour électrode | |
FR3087949A1 (fr) | Electrode negative specifique a base de lithium et generateur electrochimique au lithium comprenant une telle electrode negative | |
WO2024126799A1 (fr) | Électrodes négatives à base de silicium et d'additif fluoré | |
FR3105882A1 (fr) | Electrode composite comprenant un métal et une membrane polymère, procédé de fabrication et batterie la contenant | |
FR3129780A3 (fr) | Elément électrochimique lithium-ion | |
WO2024200620A1 (fr) | Electrode positive pour élément électrochimique lithium-ion | |
EP4302343A1 (fr) | Générateur électrochimique secondaire zinc - dioxyde de manganèse - hydroxyde de nickel | |
FR3127331A1 (fr) | Formulation d’une composition pour cathode comprenant une matière active fonctionnant à haut potentiel | |
WO2019073160A1 (fr) | Composition d'electrode et procede de preparation pour batterie lithium-ion, electrode et batterie l'incorporant | |
EP2811553A1 (fr) | Electrode plastifiée pour accumulateur alcalin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230526 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240130 |