EP4230584A2 - Neuartige zementchemikalien - Google Patents
Neuartige zementchemikalien Download PDFInfo
- Publication number
- EP4230584A2 EP4230584A2 EP23184488.7A EP23184488A EP4230584A2 EP 4230584 A2 EP4230584 A2 EP 4230584A2 EP 23184488 A EP23184488 A EP 23184488A EP 4230584 A2 EP4230584 A2 EP 4230584A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- curing
- materials
- cementitious material
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004568 cement Substances 0.000 title description 46
- 239000000463 material Substances 0.000 claims abstract description 116
- 239000012190 activator Substances 0.000 claims abstract description 18
- 239000004571 lime Substances 0.000 claims abstract description 16
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims abstract description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 15
- 235000011941 Tilia x europaea Nutrition 0.000 claims abstract description 15
- 229910001678 gehlenite Inorganic materials 0.000 claims abstract description 12
- 229910052661 anorthite Inorganic materials 0.000 claims abstract description 11
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical group [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 claims abstract description 10
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims abstract description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 5
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 5
- 150000007529 inorganic bases Chemical class 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 44
- 239000000203 mixture Substances 0.000 abstract description 39
- 239000000126 substance Substances 0.000 abstract description 32
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 24
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 abstract description 19
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 abstract description 6
- 235000006408 oxalic acid Nutrition 0.000 abstract description 6
- 235000002906 tartaric acid Nutrition 0.000 abstract description 6
- 239000011975 tartaric acid Substances 0.000 abstract description 6
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 abstract description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 133
- 229910002092 carbon dioxide Inorganic materials 0.000 description 120
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 70
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 64
- 238000001723 curing Methods 0.000 description 53
- 238000000034 method Methods 0.000 description 52
- 239000012071 phase Substances 0.000 description 44
- 239000002131 composite material Substances 0.000 description 39
- 239000002245 particle Substances 0.000 description 37
- 239000007789 gas Substances 0.000 description 32
- 229910052882 wollastonite Inorganic materials 0.000 description 29
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 26
- 239000000377 silicon dioxide Substances 0.000 description 25
- 229910052918 calcium silicate Inorganic materials 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 239000002243 precursor Substances 0.000 description 23
- 239000011575 calcium Substances 0.000 description 21
- 235000012241 calcium silicate Nutrition 0.000 description 20
- 239000010456 wollastonite Substances 0.000 description 20
- 229910052681 coesite Inorganic materials 0.000 description 18
- 229910052906 cristobalite Inorganic materials 0.000 description 18
- 229910052682 stishovite Inorganic materials 0.000 description 18
- 229910052905 tridymite Inorganic materials 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229910052791 calcium Inorganic materials 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000000378 calcium silicate Substances 0.000 description 14
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 14
- 229910000019 calcium carbonate Inorganic materials 0.000 description 12
- 239000000945 filler Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000004567 concrete Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 9
- 238000010587 phase diagram Methods 0.000 description 9
- 239000000391 magnesium silicate Substances 0.000 description 8
- 229910052919 magnesium silicate Inorganic materials 0.000 description 8
- 235000019792 magnesium silicate Nutrition 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- -1 for example Chemical compound 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 5
- 239000001095 magnesium carbonate Substances 0.000 description 5
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000005325 percolation Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- 239000003570 air Substances 0.000 description 4
- 229910000171 calcio olivine Inorganic materials 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000012615 aggregate Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- NWXHSRDXUJENGJ-UHFFFAOYSA-N calcium;magnesium;dioxido(oxo)silane Chemical compound [Mg+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O NWXHSRDXUJENGJ-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052637 diopside Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010433 feldspar Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000010438 granite Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052909 inorganic silicate Inorganic materials 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 3
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 3
- 229910001719 melilite Inorganic materials 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- HZVVJJIYJKGMFL-UHFFFAOYSA-N almasilate Chemical compound O.[Mg+2].[Al+3].[Al+3].O[Si](O)=O.O[Si](O)=O HZVVJJIYJKGMFL-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000404 calcium aluminium silicate Substances 0.000 description 2
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 2
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 2
- 229940078583 calcium aluminosilicate Drugs 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 2
- 150000001674 calcium compounds Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000007704 wet chemistry method Methods 0.000 description 2
- 229910001720 Åkermanite Inorganic materials 0.000 description 2
- 229910014813 CaC2 Inorganic materials 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 229910020472 SiO7 Inorganic materials 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 1
- GUPPESBEIQALOS-UHFFFAOYSA-L calcium tartrate Chemical compound [Ca+2].[O-]C(=O)C(O)C(O)C([O-])=O GUPPESBEIQALOS-UHFFFAOYSA-L 0.000 description 1
- 235000011035 calcium tartrate Nutrition 0.000 description 1
- 239000001427 calcium tartrate Substances 0.000 description 1
- OSMSIOKMMFKNIL-UHFFFAOYSA-N calcium;silicon Chemical compound [Ca]=[Si] OSMSIOKMMFKNIL-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002421 finishing Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- LBYKSDNDLCSHIR-UHFFFAOYSA-L pentacalcium;carbonate;disilicate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]C([O-])=O.[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] LBYKSDNDLCSHIR-UHFFFAOYSA-L 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000012713 reactive precursor Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/02—Selection of the hardening environment
- C04B40/0231—Carbon dioxide hardening
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/10—Lime cements or magnesium oxide cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/18—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
- C04B28/186—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
- C04B28/188—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/28—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing organic polyacids, e.g. polycarboxylate cements, i.e. ionomeric systems
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
- C04B7/153—Mixtures thereof with other inorganic cementitious materials or other activators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/243—Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
- Y02P40/18—Carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the invention relates to cementitious/pozzalonic materials in general and particularly to cements that are cured in the present of an activator. and to cements that cure by reaction with carbon dioxide..
- Concrete is the second most utilized material on earth after water. Concrete is made of cement, water sand and aggregate. Among the concrete components, ordinary Portland cement (OPC) is produced in high temperature kilns and during cement production about 1 ton of CO 2 is emitted per ton of cement produced. Due to high volume of cement production worldwide, the cement industry is responsible for 5% of global CO 2 emissions. There have been attempts on reducing the CO 2 emission in the cement industry.
- OPC ordinary Portland cement
- Cement is typically made of limestone and shale to form the major phases of alite (C 3 S in cement chemist notation, Ca 3 SiO 5 , sometimes formulated as 3CaO ⁇ SiO 2 ) and belite (C2S in cement chemist notation, Ca 2 SiO 4 , sometimes formulated as 2CaO ⁇ SiO 2 ). Both alite and belite are rich in calcium and they hydrate in the presence of water.
- the invention features a cementitious material, comprising: a crystalline phase and an amorphous phase, and an activator selected from the group of materials comprising inorganic bases.
- the activator is a selected one of OPC (1-70 wt%), free lime (1-20 wt%), calcium hydroxide (1-20 wt%), and alkali hydroxides (NaOH, KOH 1 to 10 wt%), individually or in combination.
- the amorphous material comprises amorphous calcium aluminum silicate.
- the crystalline phase comprises in its majority crystalline gehlenite.
- the crystalline phase comprises in its majority crystalline anorthite.
- the invention features a method of curing a cementitious material that is cured by reaction with CO 2 and does not cure by reaction with water alone, comprising the steps of: providing a quantity of the cementitious material that is cured by reaction with CO 2 and does not cure by reaction with water alone in uncured form; and exposing said cementitious material to a curing agent comprising a reagent chemical that is synthesized from CO 2 for a time sufficient to cure said cementitious material.
- the reagent chemical that is synthesized from CO 2 is a compound that can be synthesized from CO 2 .
- the reagent chemical that is synthesized from CO 2 is oxalic acid.
- the reagent chemical that is synthesized from CO 2 is tartaric acid.
- the reagent chemical that is synthesized from CO 2 is water soluble.
- control of the reaction between the cementitious material and the reagent chemical that is synthesized from CO 2 is accomplished by one or more of the use of additives, by controlling the reactivity of the cementitious material by controlling its crystallinity, by control of a particle size of particles in the cementitious material, by control of the surface area of the particles in the cementitious material, and by control of the composition of the cementitious material.
- the invention in another aspect relates to a method of curing a cementitious material comprising the steps of: providing a quantity of a cementitious material comprised of at least one of a calcium silicate, a magnesium silicate, a calcium alumino silicate, a magnesium alumino silicate, gehlenite, and mellilite; adding a predetermined quantity of at least one of a material comprising Al content, a material comprising Mg content and a material comprising Fe content of the cementitious material; and exposing the cementitious material to a curing agent comprising a reagent chemical that is synthesized from CO 2 for a time sufficient to cure the cementitious material.
- amorphous phases are generally by-products such as flyash and slag.
- the problem with the by-products is their inconsistency in chemical composition, the abundance and availability (or lack of availability) of the starting materials, as well as geographical dependence.
- the present disclosure describes a continuous and reliable supply of the amorphous phase material which would be synthesized in a cement plant with the existing raw materials.
- One chemistry is based on gehlenite and the second one is based on anorthite.
- the starting materials to synthesize these two new chemistries are expected to be raw materials used in cement production such as limestone and shale, clay sand, and the like.
- gehlenite (Ca 2 Al 2 SiO 7 ), also referred to as melilite
- the starting compositions can be prepared taking into account the results of the chemical analysis.
- the chemical analysis can be performed in any convenient matter, such as wet chemistry, x-ray diffraction analysis, and EDAX.
- impurities such as iron, sodium, potassium, and other materials.
- This target chemistry will yield a reduction of ⁇ 40% in CO 2 emissions compared to ordinary Portland cement (OPC) produced in the most efficient kiln today.
- the major phases that are produced will be crystalline gehlenite and amorphous calcium aluminum silicate. It is expected that in some embodiments, there will be minor phases (probably less than 7%) including one or more of residual silica, free lime, C2S (belite Ca 2 SiO 4 ), CS (Wollastonite CaSiO 3 ), and C3S2 (rankinite Ca 3 Si 2 O 7 ).
- anorthite (CaAl 2 Si 2 O 8 )
- One can do chemical analysis on the starting materials which are expected to be by-products that would normally be considered to be waste materials.
- the starting compositions can be prepared taking into account the results of the chemical analysis.
- the chemical analysis can be performed in any convenient matter, such as wet chemistry, x-ray diffraction analysis, and EDAX.
- impurities such as iron, sodium, potassium, and other materials.
- This target chemistry will yield a reduction of ⁇ 60% in CO 2 emissions compared to ordinary Portland cement (OPC) produced in the most efficient kiln today.
- the major phases that are produced will be crystalline anorthite and amorphous calcium aluminum silicate. It is expected that in some embodiments, there will be minor phases (probably less than 7%) including one or more of residual silica, free lime, C2S (belite Ca 2 SiO 4 ), CS (Wollastonite CaSiO 3 ), and C3S2 (rankinite Ca 3 Si 2 O 7 ).
- the material formed will be a mixture of crystalline phases and an amorphous phase.
- the amorphous phase may comprise 30%, 40% or 50% of the product.
- the amorphous phase may comprise even higher percentages, for example, 60%, 70% or 80% of the product.
- the mixture of crystalline phases and an amorphous phase is then expected to be blended with activators as described hereinbelow.
- the process of producing the cement includes one of the reactions described to produced gehlenite or anorthite plus the amorphous phase.
- the blending can be done by co-grinding.
- the activators can be one of the following materials: OPC (1-70 wt%), free lime (1-20 wt%), calcium hydroxide (1-20 wt%), and alkali hydroxides (NaOH, KOH 1 to 10 wt%), individually or in combination.
- the activator may be an activator selected from the group of materials comprising inorganic and organic bases.
- the activators are expected to react with the amorphous phase resulting in a cementitious product.
- This invention provides apparatus and methods used to manufacture novel composite materials that are cured predominantly by a CO 2 consumption reaction.
- the materials exhibit useful properties and can be readily produced from widely available, low cost precursor materials by a process suitable for large-scale production with minimal environmental impact.
- the precursor materials include inexpensive and abundant calcium silicate rich materials, fine particles and coarse particles.
- the calcium silicate rich materials may be comprised of ground Wollastonite.
- the fine and coarse particles may be comprised of ground limestone or other calcium carbonate based materials, ground quartz or other SiO 2 based materials, sand and crushed rock.
- the fine and coarse particles may also be comprised of crushed minerals such as granite, mica and feldspar.
- Other process components include water and CO 2 .
- additives can be used to modify and fine-tune the physical appearance and/or mechanical properties of the resulting composite material, such as additives selected from one or more of pigments (e.g., black iron oxide, cobalt oxide and chromium oxide), colored glass and/or colored quartz. Additives regarding water usage reduction and changes in rheology can also be used.
- pigments e.g., black iron oxide, cobalt oxide and chromium oxide
- the composite materials can be produced, as disclosed herein, using the energy-efficient Hydrothermal Liquid Phase Sintering (HLPS) process to create bonding elements which hold together the various components of the composite material.
- the composite materials can be manufactured at low cost and with favorable environmental impact.
- CO 2 is used as a reactive species resulting in sequestration of CO 2 and the creation of bonding elements in the produced composite materials with in a carbon footprint unmatched by any existing production technology.
- the HLPS process is thermodynamically driven by the free energy of the chemical reaction(s) and reduction of surface energy (area) caused by crystal growth.
- the kinetics of the HLPS process proceed at a reasonable rate at low temperature because a solution (aqueous or nonaqueous) is used to transport reactive species instead of using a high melting point fluid or high temperature solid-state medium.
- calcium silicate refers to naturally-occurring minerals or synthetic materials that are comprised of one or more of a group of calcium-silicon-containing compounds including CaSiO 3 (also known as “Wollastonite” or “pseudo-wollastonite” and sometimes formulated as CaO ⁇ SiO 2 ), Ca 3 Si 2 O 7 (also known as “Rankinite” and sometimes formulated as 3CaO ⁇ 2SiO 2 ), Ca 2 SiO 4 (also known as "Belite” and sometimes formulated as 2CaO ⁇ SiO 2 ), Ca 3 SiO 5 (also known as "Alite” and sometimes formulated as 3CaO ⁇ SiO 2 ), and Ca 5 (SiO 4 ) 2 CO 3 (also known as "Spurrite” and sometimes formulated as 2Ca 2 SiO 4 ⁇ CaCO 3 ), each of which materials may include one or more other metal ions and oxides (e.g., aluminum, magnesium, iron or manganes), each of which materials may include one or
- magnesium silicate refers to nationally-occurring minerals or synthetic materials that are comprised of one or more of a groups of magnesium-silicon-containing compounds including, for example, Mg 2 SiO 4 (also known as “Fosterite”), Mg 3 Si 4 O 10 (OH) 2 ) (also known as “Talc”), and CaMgSiO 4 (also known as "Monticellite”), each of which materials may include one or more other metal ions and oxides (e.g., calcium, aluminum, iron or manganese oxides), or blends thereof, or may include an amount of calcium silicate in naturally-occurring or synthetic form(s) ranging from trace amount (1%) to about 50% or more by weight.
- Mg 2 SiO 4 also known as "Fosterite”
- Mg 3 Si 4 O 10 (OH) 2 ) also known as "Talc”
- CaMgSiO 4 also known as "Monticellite”
- quartz refers to any SiO 2 -based material, including common sands (construction and masonry), as well as glass and recycled glass.
- the term also includes any other recycled natural and synthetic materials that contain significant amounts of SiO 2 (e.g., mica sometimes formulated as KAl 2 (AlSi 3 O 10 )).
- the plurality of bonding elements are prepared by chemical transformation from ground Wollastonite (or a non-Wollastonite precursor calcium silicate or magnesium silicate) by reacting it with CO 2 via a gas-assisted HLPS process.
- the composite material is characterized by a compressive strength from about 90 MPa to about 175 MPa (e.g., about 90 MPa to about 150 MPa, about 90 MPa to about 140 MPa, about 90 MPa to about 130 MPa, about 90 MPa to about 120 MPa, about 90 MPa to about 110 MPa, about 100 MPa to about 175 MPa, about 120 MPa to about 175 MPa, about 130 MPa to about 175 MPa, about 140 MPa to about 175 MPa, about 150 MPa to about 175 MPa, about 160 MPa to about 175 MPa).
- the composite material is characterized by a flexural strength from about 5 MPa to about 30 MPa (e.g., about 5 MPa to about 25 MPa, about 5 MPa to about 20 MPa, about 5 MPa to about 15 MPa, about 5 MPa to about 10 MPa, about 10 MPa to about 30 MPa, about 20 MPa to about 30 MPa, about 25 MPa to about 30 MPa).
- a flexural strength from about 5 MPa to about 30 MPa (e.g., about 5 MPa to about 25 MPa, about 5 MPa to about 20 MPa, about 5 MPa to about 15 MPa, about 5 MPa to about 10 MPa, about 10 MPa to about 30 MPa, about 20 MPa to about 30 MPa, about 25 MPa to about 30 MPa).
- the composite material is characterized by water absorption of less than about 10% (e.g., less than about 8%, 5%, 4%, 3%, 2%, or 1%).
- the composite material may display one or more of desired textures, patterns and physical properties, in particular those that are characteristic of natural stone.
- the composite material exhibits a visual pattern similar to natural stone.
- Other characteristics include colors (e.g., black, white, blue, pink, grey (pale to dark), green, red, yellow, brown, cyan (bluish-green) or purple) and textures.
- FIG. 9 is a schematic diagram of a simple processing enclosure that allows the control of one or more of the CO 2 concentration, the humidity and the temperature that a material that is processed using the HLPS technology described herein.
- an enclosure 910 is provided, in which the material to be processed is enclosed.
- the enclosure can be a simple covering, as with a tarpaulin or plastic sheeting, or it can be a frame covered with simple walls and a roof.
- the enclosure is fed with a source of CO 2 920, a source of water vapor 930 and a thermal energy source 940 so that the material to be processed is provided with an environment having a predefined concentration of CO 2 , a predefined humidity and a predefined temperature.
- the predefined values are provided using an "open loop” control method, in which a "recipe” is followed, and in which measurements to check on the actual values of CO 2 concentration, humidity and temperature during the course of the curing process are rarely performed, or are not performed at all.
- a curing approach is useful when a "known good recipe" is available, for example one used repeatedly and known to provide adequate curing for a specific product.
- An example where such a curing method is useful is in the curing of large volume, low cost products that do not have to conform to a very tight standard, but simply have to be adequately cured so as to exceed a predefined standard of quality.
- one can check the adequacy of the curing by removing a small number of samples of the product and testing them to see if they are properly cured, and terminating the curing when the samples meet the predefined standard.
- industrial grade CO 2 at about 99% purity is used, which is provided by a variety of different industrial gas companies, such as Praxair, Inc., Linde AG, Air Liquide, and others.
- This supply can be held in large pressurized holding tanks in the form of liquid carbon dioxide regulated at a temperature such that it maintains a vapor pressure of approximately 300 PSIG.
- This gas is then piped to a CO 2 curing enclosure or chamber.
- CO 2 is flowed through the enclosure at a rate sufficient to displace the ambient air in the enclosure.
- the purge time will depend on the size of the enclosure and the rate that CO 2 gas is provided.
- this process of purging the enclosure of air can be performed in times measured in minutes to get the CO 2 concentration up to a reasonable level so that curing can be performed thereafter.
- CO 2 gas is then fed into the system at a predefined rate so s to maintain a concentration of CO 2 sufficient to drive the curing reaction.
- This method uses the measurement of CO 2 concentration in the system directly, and employs a controller such as a PLC to control the CO 2 concentration at a set point with an electronic/automated control valve.
- a measurement technique to measure CO 2 directly such as NDIR should preferably be employed.
- NDIR measurement method a gas sample stream is pulled from the system via a low flow pump.
- a chiller is used to drop moisture out of the gas stream before it is sampled by the NDIR instrument.
- a measurement of the humidity in the system gas flow can be performed using a dry bulb-wet bulb psychrometric technique, using a dry bulb-wet bulb humidity measurement device or using a different type of moisture sensor.
- the true CO 2 concentration can be calculated using the computer control system or PLC. Once the true CO 2 concentration is known, the actuated proportioning control valve can add dry CO 2 into the system when it has been consumed and has gone below the set point that is desired at that time. In various embodiments, the set point can vary with time, if necessary, based on experience in curing specific compositions, shape and sizes of composite material specimens.
- FIG. 10 is a schematic diagram of a CO 2 composite material curing chamber that provides humidification according to principles of the invention.
- a water supply is provided and water vapor is added to the atmosphere that is circulating within the curing chamber.
- the water can be any convenient source of potable water. In some embodiments, ordinary tap water is used.
- the water can be converted to vapor by flowing through a misting nozzle or an atomizing spray nozzle, an electric vapor generator, a gas fired vapor generator, or by being heated above the gas temperature in the chamber so as to cause evaporation from a liquid water supply an example being a drum reactor with an immersion heater.
- the CO 2 supply can be flowed into the systems after having been bubbled through a heated water supply in order to increase relative humidity of the incoming gas stream an example being a drum reactor configured for "flow through" or "open loop" processing.
- Relative humidity is an important parameter in both traditional concrete curing as well as in CO 2 composite material curing.
- a moist air atmosphere exists that is comprised of mostly nitrogen, oxygen, and water vapor.
- relative humidity is most often measured by a standard capacitive sensor technology.
- CO 2 curing chambers have a gas atmosphere comprised predominately of carbon dioxide that is incompatible with some types of these sensors.
- Sensing technology such as dry-bulb wet-bulb techniques that utilize the psychrometric ratios for carbon dioxide and water vapor or dipole polarization water vapor measurement instruments or chilled mirror hygrometers or capacitive humidity sensors can be used in the CO 2 composite material curing systems described herein.
- the humidity may need to be either decreased or increased and regulated to a specified set point.
- Set points may range anywhere from 1% to 99% relative humidity.
- Three different methods for humidity control may exist in CO 2 composite material curing processes that could be combined into a single system.
- One method for humidification in one embodiment of a CO 2 curing system is represented in FIG. 10 .
- Another method allows one to remove moisture from the system to cure the composite material products with CO 2 .
- a simple method of reducing the relative humidity is by displacing the humid gas in the system with a dry gas, such as carbon dioxide.
- a non-purging method which in one preferred embodiment is a chilled heat exchanger that performs water extraction.
- FIG. 11 is a schematic diagram of a curing chamber with multiple methods of humidity control as well as ability to control and replenish CO 2 using constant flow or pressure regulation and that can control the temperature according to principles of the invention.
- This system is an example of a system that can provide closed loop control or control using feedback, in which set values of operating parameters such as CO 2 concentration, humidity, and temperature that are desired at specific times in the process cycle are provided, and measurements are taken to see whether the actual value of the parameter being controlled is the desired value. If deviation from the desired value is measured, corrective action is taken to bring the value of the parameter into agreement with the desired value.
- Such control systems can be expensive and complex, and may be useful with regard to high value products or products that require very precise process conditions.
- temperature is measured utilizing a sensor such as a thermocouple or an RTD.
- the measurement signal is directed back to a controller or computer that is able to regulate energy into the heat exchanger and thereby adjust the temperature of the entire system over time.
- the blower is an important component of the heating system as it is able to help transfer the heat energy to the gas which transfers to the products and the chamber itself which is an important part of controlled moisture of the samples.
- the method of heating can be electric or gas fired. Jacket heaters may be utilized to control the temperature of the CO 2 that flows through a chamber in contact with the heating jacket, any convenient source of heat can be used.
- the means of external heating may include but are not limited to electric heating, hot water heating, or hot oil heating.
- Another control parameter is gas velocity across the material that is to be cured in the system.
- the gas velocity can be very dependent on process equipment variables including but not limited to chamber design, baffle design, fan size, fan speed/power, number of fans, temperature gradient within the system, rack design within the system, and sample geometry within the system.
- the simplest method to control the gas velocity within the chamber is by adjusting the blower speed (RPM's), typically done by utilization of a variable frequency drive to allow for control of the blower motor speed.
- the blower can be used to circulate gas at a desired velocity in the curing chamber.
- Gas velocity in the system is measured in the system via a variety of different techniques including but not limited to pitot tubes measurement and laser Doppler detection systems.
- the measurement signal for gas velocity can be sent back to a computer system or programmable logic controller and be utilized as a control parameter in the curing profile.
- the process includes: mixing a particulate composition and a liquid composition to create a slurry mixture; forming the slurry mixture into a desired shape, either by casting the slurry into a mold, pressing the slurry in a mold, pressing the slurry in a vibrating mold, extruding the slurry, slip forming the slurry, or using any other shape-forming method common in concrete production, and curing the formed slurry mixture at a temperature in the range from about 20°C to about 150°C for about 1 hour to about 80 hours under a vapor comprising water and CO 2 and having a pressure in the range from about ambient atmospheric pressure to about 50 psi above ambient atmospheric pressure and having a CO 2 concentration ranging from about 10% to about 90% to produce a composite material exhibiting a texture and/or a pattern and the desired physical properties related to compressive strength, flexural strength, density, resistance to degradation, and so forth.
- the particulate composition includes a ground calcium silicate having a median particle size in the range from about 1 ⁇ m to about 100 ⁇ m.
- the particulate composition may include a ground calcium carbonate or a SiO 2 bearing material having a median particle size in the range from about 3 ⁇ m to about 25 mm.
- the liquid composition includes water and may include a water-soluble dispersant.
- the process can further include, before curing the casted mixture, the step of drying the casted mixture.
- the particulate composition further comprises a pigment or a colorant as discussed herein.
- curing the formed slurry mixture is performed at a temperature in the range from about 30°C to about 120°C for about 1 hour to about 70 hours under a vapor comprising water and CO 2 and having a pressure in the range from about ambient atmospheric pressure to about 30 psi above ambient atmospheric pressure.
- curing the formed slurry mixture is performed at a temperature in the range from about 60°C to about 110°C for about 1 hour to about 70 hours under a vapor comprising water and CO 2 and having a pressure in the range from about ambient atmospheric pressure to about 30 psi above ambient atmospheric pressure.
- curing the formed slurry mixture is performed at a temperature in the range from about 80°C to about 100°C for about 1 hour to about 60 hours under a vapor comprising water and CO 2 and having a pressure in the range from about ambient atmospheric pressure to about 30 psi above ambient atmospheric pressure.
- curing the formed slurry mixture is performed at a temperature equal to or lower than about 60°C for about 1 hour to about 50 hours under a vapor comprising water and CO 2 and having an ambient atmospheric pressure.
- the ground calcium silicate has a median particle size from about 1 ⁇ m to about 100 ⁇ m (e.g., about 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 90 ⁇ m), a bulk density from about 0.6 g/mL to about 0.8 g/mL (loose) and about 1.0 g/mL to about 1.2 g/mL (tapped), a surface area from about 1.5 m 2 /g to about 2.0 m2/g.
- a median particle size from about 1 ⁇ m to about 100 ⁇ m (e.g., about 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 90 ⁇ m), a bulk density from about 0.6 g/mL to about 0.8 g/mL (loose) and about 1.0 g/mL to about 1.2
- the liquid composition includes water and a water-soluble dispersant comprising a polymer salt (e.g., an acrylic homopolymer salt) having a concentration from about 0.1% to about 2% w/w of the liquid composition.
- a polymer salt e.g., an acrylic homopolymer salt
- Composite materials prepared according to a process disclosed herein can exhibit a compressive strength from about 90 MPa to about 175 MPa and a flexural strength from about 5.4 MPa to about 20.6 MPa.
- any suitable precursor materials may be employed.
- calcium silicate particles formed primarily of Wollastonite, CaSiO 3 can react with carbon dioxide dissolved in water. It is believed that calcium cations are leached from the Wollastonite and transform the peripheral portion of the Wollastonite core into calcium-deficient Wollastonite. As the calcium cations continue to be leached from the peripheral portion of the core, the structure of the peripheral portion eventually become unstable and breaks down, thereby transforming the calcium-deficient Wollastonite peripheral portion of the core into a predominantly silica-rich first layer. Meanwhile, a predominantly calcium carbonate second layer precipitates from the water.
- CO 2 is introduced as a gas phase that dissolves into an infiltration fluid, such as water.
- the dissolution of CO 2 forms acidic carbonic species (such as carbonic acid, H 2 CO 3 ) that results in a decrease of pH in solution.
- the weakly acidic solution incongruently dissolves calcium species from CaSiO 3 .
- the released calcium cations and the dissociated carbonate species lead to the precipitation of insoluble carbonates.
- Silica-rich layers are thought to remain on the mineral particles as calcium depleted layers.
- CO 2 preferentially reacts with the calcium cations of the Wollastonite precursor core, thereby transforming the peripheral portion of the precursor core into a silica-rich first layer and a calcium carbonate-rich second layer.
- the presence of the first and second layers on the core act as a barrier to further reaction between Wollastonite and carbon dioxide, resulting in the bonding element having the core, first layer and second layer.
- silicate materials having metals other than Ca or in addition to Ca for example Fostcritc (Mg 2 SiO 4 ), Diopside (CaMgSi 2 O 6 ), and Talc (Mg 3 Si 4 O 10 (OH) 2 ) can react with carbon dioxide dissolved in water in a manner similar to the reaction of Wollastonite, as described above. It is believed that such silicate materials can be used, alone, in combination, and/or in combination with Wollastonite, as precursors for bonding elements according to principles of the invention.
- Fostcritc Mg 2 SiO 4
- Diopside CaMgSi 2 O 6
- Talc Mg 3 Si 4 O 10 (OH) 2
- gas-assisted HLPS processes utilize partially infiltrated pore space so as to enable gaseous diffusion to rapidly infiltrate the porous preform and saturate thin liquid interfacial solvent films in the pores with dissolved CO 2 .
- CO 2 -based species have low solubility in pure water (1.5 g/L at 25 °C, 1 atm.).
- a substantial quantity of CO 2 must be continuously supplied to and distributed throughout the porous preform to enable significant carbonate conversion.
- Utilizing gas phase diffusion offers a huge (about 100-fold) increase in diffusion length over that of diffusing soluble CO 2 an equivalent time in a liquid phase.
- Liquid water in the pores speeds up the reaction rate because it provides a medium for ionization of both carbonic acid and calcium species.
- water levels need to be low enough such that CO 2 gas can diffuse into the porous matrix prior to dissolution in the pore-bound water phase.
- the actively dissolving porous preform serves as a template for expansive reactive crystal growth.
- the bonding element and matrices can be formed with minimal distortion and residual stresses. This enables large and complex shapes to result, such as those needed for infrastructure and building materials, in addition to many other applications.
- various combinations of curing conditions may be devised to achieve the desired production process, including varied reaction temperatures, pressures and lengths of reaction.
- water is present in the precursor material (e.g., as residual water from prior mixing step) and liquid water is provided to precursor materials (e.g., to maintain water level and/or control the loss of water from evaporating) along with CO 2 and the curing process is conducted at about 90°C and about 20 psig ( i.e., 20 psi above ambient pressure) for times ranging from about 2 to 90 hours.
- water is present in the precursor material (e.g., as residual water from prior mixing step) and water vapor is provided to precursor materials (e.g., to maintain water level and/or control the loss of water from evaporating) along with CO 2 and the curing process is conducted at about 90°C and about 20 psig ( i.e., 20 psi above ambient pressure) for times ranging from about 2 to 90 hours.
- water is present in the precursor material ( e.g., as residual water from prior mixing step) and water vapor is provided to precursor materials ( e . g ., to maintain water level and/or control the loss of water from evaporating) along with CO 2 and the curing process is performed at about 25 to 90°C and 0 psig (at ambient atmospheric pressure) for about 2 to 72 hours.
- the time required for curing of a composite material object is determined by the ability of water vapor and CO 2 gas to diffuse throughout the object.
- thicker objects take longer to cure than thinner objects.
- objects with high density (and fewer open pore spaces) take longer to cure than objects with low density (and more open pore spaces).
- the following table provides examples of how the curing times may vary with respect to the smallest thickness (or wall thickness or section thickness) of the three dimensions and the bulk density of an object that is being manufactured.
- a bonding element includes a core (represented by the black inner portion), a first layer (represented by the white middle portion) and a second or encapsulating layer (represented by the outer portion).
- the first layer may include only one layer or multiple sub-layers and may completely or partially cover the core.
- the first layer may exist in a crystalline phase, an amorphous phase or a mixture thereof, and may be in a continuous phase or as discrete particles.
- the second layer may include only one layer or multiple sub-layers and may also completely or partially cover the first layer.
- the second layer may include a plurality of particles or may be of a continuous phase, with minimal discrete particles.
- a bonding element may exhibit any size and any regular or irregular, solid or hollow morphology depending on the intended application.
- Exemplary morphologies include: cubes, cuboids, prisms, discs, pyramids, polyhedrons or multifaceted particles, cylinders, spheres, cones, rings, tubes, crescents, needles, fibers, filaments, flakes, spheres, sub-spheres, beads, grapes, granulars, oblongs, rods, ripples, etc.
- a bonding element is produced from reactive precursor materials (e . g ., precursor particles) through a transformation process.
- precursor particles may have any size and shape as long as they meet the needs of the intended application.
- the transformation process generally leads to the corresponding bonding elements having similar sizes and shapes of the precursor particles.
- FIGs. 13A - 13F schematically illustrate an exemplary bonding matrix that includes fiber- or platelet- shaped bonding elements in different orientations possibly diluted by the incorporation of filler material, as represented by the spacing between the bonding elements.
- FIG. 13A illustrates a bonding matrix that includes fiber-shaped bonding elements aligned in a one-direction ("1-D") orientation ( e . g ., aligned with respect to the x direction).
- FIG. 1-D one-direction
- FIG. 13B illustrates a bonding matrix that includes platelet-shaped bonding elements aligned in a two-direction ("2-D") orientation (e .g., aligned with respect to the x and y directions).
- FIG. 13C illustrates a bonding matrix that includes platelet-shaped bonding elements aligned in a three-direction ("3-D") orientation ( e.g., aligned with respect to the x, y and z directions).
- FIG. 13D illustrates a bonding matrix that includes platelet-shaped bonding elements in a random orientation, wherein the bonding elements are not aligned with respect to any particular direction.
- FIG. 13E illustrates a bonding matrix that includes a relatively high concentration of platelet-shaped bonding elements that are aligned in a 3-D orientation.
- FIG. 13F illustrates a bonding matrix that includes a relatively low concentration of platelet- shaped bonding elements that are situated in a random orientation (a percolation network).
- the composite material of FIG. 13F achieves the percolation threshold because a large proportion of the bonding elements are touching one another such that a continuous network of contacts are formed from one end of the material to the other end
- the percolation threshold is the critical concentration above which bonding elements show long-range connectivity with either an ordered, e.g., FIG. 13E , or random orientation, e.g., Fig. 13F , of bonding elements. Examples of connectivity patterns can be found in, for example, Newnham, et al., "Connectivity and piezoelectric-pyroelectric composites", Mat. Res. Bull. vol. 13, pp. 525-536, 1978 ).
- the plurality of bonding elements may be chemically transformed from any suitable precursor materials, for example, from a precursor calcium silicate other than Wollastonite.
- the precursor calcium silicate may include one or more chemical elements of aluminum, magnesium and iron.
- the plurality of bonding elements may have any suitable median particle size and size distribution dependent on the desired composite material.
- the plurality of bonding elements have a median particle size in the range of about 5 ⁇ m to about 100 ⁇ m ( e . g ., about 5 ⁇ m to about 80 ⁇ m, about 5 ⁇ m to about 60 ⁇ m, about 5 ⁇ m to about 50 ⁇ m, about 5 ⁇ m to about 40 ⁇ m, about 5 ⁇ m to about 30 ⁇ m, about 5 ⁇ m to about 20 ⁇ m, about 5 ⁇ m to about 10 ⁇ m, about 10 ⁇ m to about 80 ⁇ m, about 10 ⁇ m to about 70 ⁇ m, about 10 ⁇ m to about 60 ⁇ m, about 10 ⁇ m to about 50 ⁇ m, about 10 ⁇ m to about 40 ⁇ m, about 10 ⁇ m to about 30 ⁇ m, about 10 ⁇ m to about 20 ⁇ m).
- a composite material includes: a plurality of bonding elements and a plurality of filler particles.
- Each bonding element includes: a core comprising primarily calcium silicate, a silica-rich first or inner layer, and a calcium carbonate-rich second or outer layer.
- the plurality of bonding elements and the plurality of filler particles together form one or more bonding matrices and the bonding elements and the filler particles are substantially evenly dispersed therein and bonded together, whereby the composite material exhibits one or more textures, patterns and physical properties.
- the bonding elements may have a core of magnesium silicate, and a silica-rich first or inner layer, and a magnesium carbonate-rich second or outer layer.
- the magnesium silicate can include aluminum, calcium, iron or manganese oxides.
- the plurality of filler particles may have any suitable median particle size and size distribution.
- the plurality of filler particles has a median particle size in the range from about 5 ⁇ m to about 7 mm ( e . g ., about 5 ⁇ m to about 5 mm, about 5 ⁇ m to about 4 mm, about 5 ⁇ m to about 3 mm, about 5 ⁇ m to about 2 mm, about 5 ⁇ m to about 1 mm, about 5 ⁇ m to about 500 ⁇ m, about 5 ⁇ m to about 300 ⁇ m, about 20 ⁇ m to about 5 mm, about 20 ⁇ m to about 4 mm, about 20 ⁇ m to about 3 mm, about 20 ⁇ m to about 2 mm, about 20 ⁇ m to about 1 mm, about 20 ⁇ m to about 500 ⁇ m, about 20 ⁇ m to about 300 ⁇ m, about 100 ⁇ m to about 5 mm, about 100 ⁇ m to about 4 mm, about 100 ⁇ m to about 3 mm, about 100 ⁇ m to
- the filler particles are made from a calcium carbonate-rich material such as limestone (e.g., ground limestone).
- the filler particles are made from one or more of SiO2-based or silicate-based material such as quartz, mica, granite, and feldspar (e.g., ground quartz, ground mica, ground granite, ground feldspar).
- filler particles may include natural, synthetic and recycled materials such as glass, recycled glass, coal slag, calcium carbonate-rich material and magnesium carbonate-rich material.
- the weight ratio of (bonding elements) : (filler particles) may be any suitable rations dependent on the desired composite material, for example, in the range of about (10 to 50) : about (50 to 90).
- these composite materials may display various patterns, textures and other characteristics, such as visual patterns of various colors.
- the composite materials of the invention exhibit compressive strength, flexural strength and water absorption properties similar to conventional concrete or the corresponding natural materials.
- the composite further includes a pigment.
- the pigment may be evenly dispersed or substantially unevenly dispersed in the bonding matrices, depending on the desired composite material.
- the pigment may be any suitable pigment including, for example, oxides of various metals (e.g., iron oxide, cobalt oxide, chromium oxide)
- the pigment may be of any color or colors, for example, selected from black, white, blue, gray, pink, green, red, yellow and brown.
- the pigment may be present in any suitable amount depending on the desired composite material, for example in an amount ranging from about 0.0% to about 10% by weight (e.g., about 0.0% to about 8%, about 0.0% to about 6%, about 0.0% to about 5%, about 0.0% to about 4%, about 0.0% to about 3%, about 0.0% to about 2%, about 0.0% to about 1%, about 0.0% to about 0.5%, about 0.0% to about 0.3%, about 0.0% to about 2%, about 0.0% to about 0.1%,).
- about 0.0% to about 10% by weight e.g., about 0.0% to about 8%, about 0.0% to about 6%, about 0.0% to about 5%, about 0.0% to about 4%, about 0.0% to about 3%, about 0.0% to about 2%, about 0.0% to about 1%, about 0.0% to about 0.5%, about 0.0% to about 0.3%, about 0.0% to about 2%, about 0.0% to about 0.1%,).
- the reaction takes place in the presence of water.
- water may or may not be consumed during the reaction depending on the product formed.
- Oxalic acid is an organic compound with the formula H 2 C 2 O 4 , and the structural formula
- the hydrate CaC 2 O 4 ⁇ H 2 O may be produced.
- Tartaric acid has the chemical formula C 4 H 6 O 6 , and the structural formula
- the reagent chemical synthesized from CO 2 preferably is sufficiently soluble in water to react with low lime cement, and one reaction product should preferably be an insoluble calcium compound.
- the cementitious precursor my comprise Al (aluminum), Si (silicon), and/or Mg (magnesium), impurities such as Sr (strontium) or Ba (barium) and other metal ions, and the product is an insoluble compound containing one or more of Al, Si, Mg, Sr and Ba.
- control of such reactions can be accomplished by one or more of: the use of additives, by controlling the reactivity of the cementitious material by controlling its crystallinity, by control of a particle size of particles in the cementitious material, and by control of the surface area of the particles in the cementitious material.
- one approach was to decrease the reactivity of the cement by increasing the melilite content by increasing the Al and/or Mg and/or Fe content of the cement.
- a 4"x8" cylinder was made with cement comprised of mainly melilite crystalline phase 80%, 5% larnite and 12% amorphous phase.
- the particle size distribution of the cement was, d10 3 microns, d50 11 microns, and d90 75 microns.
- the mixture of cement, sand and gravel was mixed with saturated tartaric acid solution and cast into a mold. The sample was cured for two days and tested for compression testing. The strength was 2000 psi.
- the modified cementitious material e.g., with added Al, Mg and/or Fe
- the curing agent is tartaric acid, oxalic acid, or some reagent chemical that is synthesized from CO 2 .
- the reagent chemical synthesized from CO 2 can be an organic acid or a compound that can be synthesized from CO 2 alone or possibly with other precursor materials.
- conventional cements can also be used, such as OPC, belite cement, or other conventional cements.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Geochemistry & Mineralogy (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662280296P | 2016-01-19 | 2016-01-19 | |
US201662281260P | 2016-01-21 | 2016-01-21 | |
EP17741863.9A EP3405446B1 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
PCT/US2017/013983 WO2017127454A1 (en) | 2016-01-19 | 2017-01-18 | Novel cement chemistries |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17741863.9A Division-Into EP3405446B1 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
EP17741863.9A Division EP3405446B1 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4230584A2 true EP4230584A2 (de) | 2023-08-23 |
EP4230584A3 EP4230584A3 (de) | 2023-12-13 |
Family
ID=59315152
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17741863.9A Active EP3405446B1 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
EP23184488.7A Pending EP4230584A3 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17741863.9A Active EP3405446B1 (de) | 2016-01-19 | 2017-01-18 | Neuartige zementchemikalien |
Country Status (5)
Country | Link |
---|---|
US (1) | US10233127B2 (de) |
EP (2) | EP3405446B1 (de) |
CN (1) | CN109153608B (de) |
CA (1) | CA3011251C (de) |
WO (1) | WO2017127454A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10000413B1 (en) * | 2015-12-16 | 2018-06-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon-enhanced cement clinker |
BR112018072656B1 (pt) * | 2016-05-05 | 2024-03-05 | Solidia Technologies, Inc | Pozolana sintética, métodos para fazer uma pozolana sintética e material compósito |
US11247940B2 (en) | 2016-10-26 | 2022-02-15 | The Regents Of The University Of California | Efficient integration of manufacturing of upcycled concrete product into power plants |
EA201991989A1 (ru) | 2017-03-23 | 2020-05-18 | Солидия Текнолоджиз, Инк. | Карбонизируемые цементы и бетоны на основе силиката кальция, содержащие минеральные добавки, и их способы |
US11230473B2 (en) | 2017-06-30 | 2022-01-25 | The Regents Of The University Of California | CO2 mineralization in produced and industrial effluent water by pH-swing carbonation |
BR112020003106A2 (pt) | 2017-08-14 | 2020-09-01 | The Regents Of The University Of California | métodos de fabricação e produtos de concreto |
EP3713894A1 (de) | 2017-11-21 | 2020-09-30 | Solidia Technologies, Inc. | Zusammensetzungen und verfahren zur verbesserung der ästhetik von zementen und betonen auf calciumsilikatbasis |
EP3713896A1 (de) | 2017-11-21 | 2020-09-30 | Solidia Technologies, Inc. | Zusammensetzungen und verfahren zur verbesserung der haltbarkeit von zementen und betons auf calciumsilikatbasis |
US11667573B2 (en) | 2017-11-21 | 2023-06-06 | Solidia Technologies, Inc | Compositions and method to improve the strength development of calcium silicate-based cements and concretes |
EA202091741A1 (ru) | 2018-02-22 | 2021-01-25 | Солидия Текнолоджиз, Инк. | Химический состав цемента |
WO2019165281A1 (en) * | 2018-02-22 | 2019-08-29 | Solidia Technologies, Inc. | Mitigation of corrosion in carbonated concrete based on low-calcium silicate cement |
US11384029B2 (en) | 2019-03-18 | 2022-07-12 | The Regents Of The University Of California | Formulations and processing of cementitious components to meet target strength and CO2 uptake criteria |
WO2020206541A1 (en) | 2019-04-12 | 2020-10-15 | Carbicrete Inc. | Carbonation curing method to produce wet-cast slag-based concrete products |
WO2020206540A1 (en) | 2019-04-12 | 2020-10-15 | Carbicrete Inc. | Production of wet-cast slag-based concrete products |
US11254028B2 (en) * | 2019-05-20 | 2022-02-22 | Saudi Arabian Oil Company | Systems and processes for accelerated carbonation curing of pre-cast cementitious structures |
US11358304B2 (en) | 2019-12-10 | 2022-06-14 | Carbicrete Inc | Systems and methods for curing a precast concrete product |
WO2021243441A1 (en) | 2020-06-03 | 2021-12-09 | Carbicrete Inc. | Method for making carbonated precast concrete products with enhanced durability |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US104469A (en) | 1870-06-21 | Improvement in rotary pumps | ||
US20090143211A1 (en) | 2007-11-15 | 2009-06-04 | Rutgers, The State University Of New Jersey | Systems and methods for carbon capture and sequestration and compositions derived therefrom |
US20090142578A1 (en) | 2007-11-15 | 2009-06-04 | Rutgers, The State University Of New Jersey | Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom |
WO2011053598A1 (en) | 2009-10-26 | 2011-05-05 | Rutgers, The State University Of New Jersey | Hydroxyapatite with controllable size and morphology |
WO2011090967A1 (en) | 2010-01-22 | 2011-07-28 | Rutgers, The State University Of New Jersey | Sequestration of a gas emitted by an industrial plant |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1537501A (en) * | 1974-12-28 | 1978-12-29 | Matsushita Electric Works Ltd | Compositions for forming hardened cement products and process for producing hardened cement products |
JPS58135120A (ja) * | 1982-02-01 | 1983-08-11 | Tokuyama Soda Co Ltd | 珪酸カルシウム |
JPS61111973A (ja) * | 1984-10-31 | 1986-05-30 | 黒崎窯業株式会社 | 耐火吹付け材の吹付け方法 |
JP2656782B2 (ja) * | 1988-02-22 | 1997-09-24 | 電気化学工業株式会社 | 低温水硬性組成物 |
DE69227582T2 (de) * | 1991-04-09 | 1999-05-12 | Nihon Cement Co., Ltd., Tokio/Tokyo | Bauzementzusammensetzung mit geringer abbindewärme |
JPH07126048A (ja) * | 1993-10-29 | 1995-05-16 | Toyo Chem Co Ltd | 無機硬化組成物 |
CN1277779C (zh) * | 2000-09-13 | 2006-10-04 | 电气化学工业株式会社 | 水泥组合物 |
US7048900B2 (en) * | 2001-01-31 | 2006-05-23 | G.R. International, Inc. | Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment |
WO2004108621A2 (en) * | 2003-05-20 | 2004-12-16 | Cemex, Inc. | Process for fly ash beneficiation |
CA2658733A1 (en) * | 2006-08-08 | 2008-02-21 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Curable composition, paste, and oxidatively carbonated composition |
CN102442794B (zh) * | 2006-11-09 | 2016-10-19 | 电化株式会社 | 速凝剂及使用其的喷涂方法 |
WO2009132692A1 (en) * | 2008-04-28 | 2009-11-05 | Carbstone Innovation Nv | Production of an article by carbonation of alkaline materials |
KR100999438B1 (ko) * | 2010-10-27 | 2010-12-09 | (주)대우건설 | Csa계 조강결합재 및 이를 이용한 프리캐스트 콘크리트 제조공법 |
RU2599742C2 (ru) * | 2010-12-17 | 2016-10-10 | Католический Университет Америки | Геополимерный композит для бетона ультравысокого качества |
WO2013049401A2 (en) * | 2011-09-28 | 2013-04-04 | Calera Corporation | Cement and concrete with calcium aluminates |
US20140127450A1 (en) * | 2012-10-04 | 2014-05-08 | Richard E. Riman | Marble-like composite materials and methods of preparation thereof |
BR112015023237A2 (pt) * | 2013-03-13 | 2017-07-18 | Solidia Technologies Inc | materiais compósito de bloco e pavers e métodos de preparação dos mesmos |
US20140272439A1 (en) * | 2013-03-15 | 2014-09-18 | Serious Energy, Inc. | Low embodied energy wallboard |
US10315335B2 (en) * | 2013-06-07 | 2019-06-11 | Solidia Technologies, Inc. | Rapid curing of thin composite material sections |
EP3099459B1 (de) * | 2013-08-21 | 2020-04-01 | Solidia Technologies, Inc. | Verfahren zur herstellung von belüfteten verbundmaterialien |
EA036120B1 (ru) * | 2014-08-04 | 2020-09-30 | Солидиа Текнолоджиз, Инк. | Карбонизируемые композиции на основе силиката кальция и способы их изготовления и использования |
FR3030497B1 (fr) * | 2014-12-23 | 2019-06-07 | Saint-Gobain Weber | Liant a base de compose mineral solide riche en oxyde alcalino-terreux avec activateurs phosphates |
MX2017011886A (es) * | 2015-03-20 | 2018-05-22 | Solidia Technologies Inc | Clinkeres microestructurables de silicato de calcio carbonatado y metodos de los mismos. |
BR112018072656B1 (pt) * | 2016-05-05 | 2024-03-05 | Solidia Technologies, Inc | Pozolana sintética, métodos para fazer uma pozolana sintética e material compósito |
-
2017
- 2017-01-18 WO PCT/US2017/013983 patent/WO2017127454A1/en active Application Filing
- 2017-01-18 CN CN201780018447.3A patent/CN109153608B/zh active Active
- 2017-01-18 EP EP17741863.9A patent/EP3405446B1/de active Active
- 2017-01-18 CA CA3011251A patent/CA3011251C/en active Active
- 2017-01-18 US US15/409,352 patent/US10233127B2/en active Active
- 2017-01-18 EP EP23184488.7A patent/EP4230584A3/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US104469A (en) | 1870-06-21 | Improvement in rotary pumps | ||
US20090143211A1 (en) | 2007-11-15 | 2009-06-04 | Rutgers, The State University Of New Jersey | Systems and methods for carbon capture and sequestration and compositions derived therefrom |
US20090142578A1 (en) | 2007-11-15 | 2009-06-04 | Rutgers, The State University Of New Jersey | Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom |
WO2009102360A2 (en) | 2007-11-15 | 2009-08-20 | Rutgers, The State University Of New Jersey | Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom |
US8114367B2 (en) | 2007-11-15 | 2012-02-14 | Rutgers, The State University Of New Jersey | Systems and methods for carbon capture and sequestration and compositions derived therefrom |
WO2011053598A1 (en) | 2009-10-26 | 2011-05-05 | Rutgers, The State University Of New Jersey | Hydroxyapatite with controllable size and morphology |
WO2011090967A1 (en) | 2010-01-22 | 2011-07-28 | Rutgers, The State University Of New Jersey | Sequestration of a gas emitted by an industrial plant |
Non-Patent Citations (3)
Title |
---|
"Handbook of chemistry and physics", 2006, CRC |
NEWNHAM ET AL.: "Connectivity and piezoelectric-pyroelectric composites", MAT. RES. BULL., vol. 13, 1978, pages 525 - 536, XP024077496, DOI: 10.1016/0025-5408(78)90161-7 |
VITRUVIUS: "The Ten Books of Architecture", 1914, HARVARD UNIVERSITY PRESS |
Also Published As
Publication number | Publication date |
---|---|
EP3405446A4 (de) | 2019-12-04 |
US10233127B2 (en) | 2019-03-19 |
EP3405446B1 (de) | 2023-08-16 |
EP3405446A1 (de) | 2018-11-28 |
US20170204010A1 (en) | 2017-07-20 |
CA3011251C (en) | 2023-02-28 |
EP4230584A3 (de) | 2023-12-13 |
CN109153608A (zh) | 2019-01-04 |
WO2017127454A1 (en) | 2017-07-27 |
CN109153608B (zh) | 2021-09-21 |
CA3011251A1 (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10233127B2 (en) | Cement chemistries | |
US10787390B2 (en) | Aerated composite materials, methods of production and uses thereof | |
US10315335B2 (en) | Rapid curing of thin composite material sections | |
US20240010564A1 (en) | Composite materials and bonding elements from carbonation of calcium silicate and methods thereof | |
US10851022B2 (en) | Aerated composite materials, methods of production and uses thereof | |
EP3052454B1 (de) | Hohlkernplatten und verfahren zu ihrer herstellung | |
EP3004019B1 (de) | Methode zur herstellung von durchlässigen kompositmaterialien | |
EP2970008B1 (de) | Verfahren zur herstellung von pflastersteinen blockverbundstoffen | |
JP2023159143A (ja) | 複合材料、製造方法およびその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230710 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3405446 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C01F0011180000 Ipc: C04B0028180000 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C01F 11/18 20060101ALI20231107BHEP Ipc: C04B 12/00 20060101ALI20231107BHEP Ipc: C04B 7/24 20060101ALI20231107BHEP Ipc: C04B 7/153 20060101ALI20231107BHEP Ipc: C04B 28/10 20060101ALI20231107BHEP Ipc: C04B 40/02 20060101ALI20231107BHEP Ipc: C04B 28/18 20060101AFI20231107BHEP |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOLIDIA TECHNOLOGIES, INC. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |