EP4218035A1 - Magnet device based on the bitter principle and use of a magnet device based on the bitter principle - Google Patents

Magnet device based on the bitter principle and use of a magnet device based on the bitter principle

Info

Publication number
EP4218035A1
EP4218035A1 EP21766121.4A EP21766121A EP4218035A1 EP 4218035 A1 EP4218035 A1 EP 4218035A1 EP 21766121 A EP21766121 A EP 21766121A EP 4218035 A1 EP4218035 A1 EP 4218035A1
Authority
EP
European Patent Office
Prior art keywords
ring
rings
contact
layer
magnetic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21766121.4A
Other languages
German (de)
French (fr)
Inventor
Tabea Arndt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP4218035A1 publication Critical patent/EP4218035A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Definitions

  • the invention relates to a magnetic device based on the bitter principle and the use of such a magnetic device based on the bitter principle.
  • magnets are known from the prior art in order to be able to generate high continuous magnetic fields.
  • fields are limited to about 2 Tesla.
  • magnets made of copper or copper alloys with a Bitter design are used, so-called Bitter electromagnets or Bitter solenoids (Bitter magnets for short), which can generate strong magnetic continuous fields up to 40 Tesla and are mainly used in science.
  • (Bitter) magnets with superconductors are manufactured as sheet coils or stacked disc coils.
  • the result of this winding architecture is that a large number of layers made of different materials follow one another in the radial direction (e.g. inner winding body, potting compound, insulation, electro-thermal stabilization e.g. copper, mechanical stabilization (e.g. substrate), buffer layers, (high-temperature ) Superconductor layer or filaments, cap layer made of silver or gold, copper, insulation).
  • Each material has different thicknesses, mechanical strengths and coefficients of thermal expansion, which can lead to high (transverse) stresses and disintegration of the winding or to delamination and degradation of the superconductor.
  • This object is achieved by a magnet device based on the bitter principle.
  • a first embodiment of a magnet device based on the Bitter principle according to the invention has an arrangement which is formed from a plurality of conductor layers and a plurality of substrate layers.
  • each substrate layer carries a conductor layer and is formed with this as a ring.
  • the ring has a radial slot that extends through the entire ring. “Supports” means that the conductor layer is formed in two layers with the substrate layer and the more stable substrate layer forms a basis for the conductor layer.
  • Three or more rings form a spiral arrangement with one ring each at the beginning of the spiral arrangement (initial ring) and a ring at the end of the spiral arrangement (end ring) at least one or more rings between the starting ring and the end ring (middle rings), the starting ring and the end ring each having one of its ends adjacent to the slot with a middle ring at its slot-adjoining end through a contact section in current conductive being in contact, and each central ring being in current-conducting contact at both of its ends adjacent to the slot with two other rings through a contact portion.
  • the spiral arrangement is preferably a helix arrangement and has a circular-cylindrical basic shape; but there are also other basic forms, such.
  • the rings are arranged alternately in the arrangement, in that a ring with a conductor layer pointing upwards is followed by a ring with a conductor layer pointing downwards.
  • the spiral which is formed in the magnet device according to the invention by the arrangement of the individual current-carrying rings, allows continuous current transport.
  • the rings are homogeneous in the radial direction and inhomogeneous in the axial direction, which avoids mechanical transverse stresses.
  • center through-holes are aligned, in a magnet assembly mounting arrangement, they enclose a cylindrical space for experimental equipment or other devices to be exposed to the magnetic field formed in this cylindrical space.
  • the device according to the invention is referred to herein as a Bitter principle-based magnetic device, since it follows the Bitter principle, which is known from the prior art. It is a layer principle in which plates or plate-shaped rings are assembled into layered magnets with insulating materials in between.
  • the spiral arrangement according to the invention creates a magnet device with a significantly lower overall resistance and losses than in the case of the previously used Bitter magnets from the prior art.
  • the magnet device based on the Bitter principle thus allows a high winding current density and higher magnetic fields.
  • the power supply can be dimensioned with less power than in the prior art, and the magnetic device has low thermal dissipation due to the use of high-temperature superconductors.
  • the rings are oriented alternately in such a way that the conductor layers and the substrate layers come into contact with one another:
  • the initial ring begins with an orientation "conductor layer on top” and the following middle ring leads the arrangement with an orientation " Conductor layer below” continued, whereby a very compact design is made possible.
  • the space requirement is optimized and less or no insulating material is required overall.
  • the good heat dissipation leads to greater quenching safety with high winding current densities, ie greater than 200 A/mm 2 , especially when using high-temperature superconductors.
  • cooling can be carried out with various cryogens that are economical to use, such as e.g.
  • two contacting rings overlap at the contact section.
  • An overlap provides improved electrical contact between two facing conductor layers and allows for continuity of current transport in the magnetic device.
  • the magnetic device according to the invention is on the contact portion, respectively. on the surface between the overlapping rings, a contact material is applied over the entire surface.
  • the mutually facing conductor layers of the two contacting rings can be sintered together at the contact section. In this way, an integral connection can be established. Both the application of a contact material and the sintering serve to improve the electrical contact and thus a continuous current flow and to keep it low-loss.
  • the contact material is a material that is superconductive during operation of the magnet device based on the Bitter principle.
  • the material can be a thin layer, especially ders preferably an indium or niobium layer, for example an Agln solder. It can also be used simple solder or solder joints, such.
  • the thin layer acts like an interposed foil, which is pressed between two rings in the finished magnetic device and thus already produces a good frictional contact between the ends of two rings that are in contact and bordering on the slot.
  • the rings have further through-holes in their annular surface.
  • the rings are arranged one above the other in the spiral arrangement in such a way that these further through-holes form cooling channels because they are aligned with one another.
  • a further embodiment of the magnet device according to the invention provides that in the spiral arrangement between the rings starting ring, end ring and one or more middle rings, apart from the contact sections, distances are provided in which a filling material is arranged to stabilize the spiral arrangement.
  • the filling material is preferably an insulating or thermally conductive material.
  • Filler material is particularly preferably selected from a group of materials that includes wax, resin and epoxy resins.
  • the epoxy resins can, for. B. be filled with AI2O3.
  • conductor layers are preferably superconductor layers made of superconducting material.
  • the conductor layers are particularly preferably high-temperature superconductor layers which have 2G high-temperature superconductors.
  • RE-123 is preferably used, where RE stands for Rare Earth and denotes rare earths, with the exception of praseodymium.
  • This superconductor achieves high current densities, a high upper critical magnetic field and a wide operating temperature range with simultaneous anisotropic behavior and crystal structure.
  • the superconducting materials are embedded in a specific layer structure and form a coated conductor (so-called "coated conductor").
  • This structure begins with a metal substrate in the form of a carrier tape on which a ceramic buffer layer is applied and on which the actual superconductor is deposited.
  • a protective layer protects the superconductor from damage and simplifies electrical contacting.
  • high-temperature superconductors means that there are no ohmic losses in relation to the main path of the current.
  • any normally conductive electrical contacts that may be used to feed current to the start and end ring, which are necessary for the magnetic device to be connected to a power source.
  • normally conductive transition contacts for example made of an Agln solder, can be provided between the rings.
  • a crystallographic c-axis of the high-temperature superconductor layer is aligned parallel to a longitudinal axis of the spiral arrangement.
  • the result of the alignment of the high-temperature superconductor layer is that material and thermal expansion coefficients are homogeneous and constant in the radial direction for a constant axial position, so that transverse stresses and shear stresses are prevented and degradation problems are avoided.
  • the cooling channels extend through the filling material.
  • the magnetic device is cooled with a cryogen, such as liquid nitrogen (LN2), liquid neon (LNe), liquid hydrogen (LH2) to allow the conductor layer to be brought into the superconducting state when made of a superconducting material. or liquid helium (LHe).
  • a cryogen such as liquid nitrogen (LN2), liquid neon (LNe), liquid hydrogen (LH2) to allow the conductor layer to be brought into the superconducting state when made of a superconducting material. or liquid helium (LHe).
  • This cryogen can flow through the cooling channels and thus not only cool the magnet device from the outside, but can also easily reach inner areas, depending on the dimensions of the magnet device.
  • the substrate layers consist of stainless steel, nickel, a nickel alloy or highly corrosion-resistant nickel-molybdenum alloys (Hastelloy®).
  • the insulation materials are preferably made of Kapton, PEEK and polyimide.
  • the magnet device according to the invention provides that the starting ring and the end ring are connected to an electrical contact device at their ends that are not in current-conducting contact with a central ring. Additionally or alternatively, the electrical contact device can have a persistent mode bridge. The persistent mode bridge allows the magnet to be disconnected from the power source when energized.
  • the magnet device according to the invention can advantageously be scaled to the respectively desired operating current and magnetic field generation by selecting a corresponding number of rings and different dimensions of the rings.
  • the rings can be made in different sizes to suit different applications to generate the desired magnetic field flux density. Dimensions are thus possible in which the smallest dimension of the inner through-opening is smaller than the radial dimension of the rings or the dimension of the inner through-opening is three times the radial dimension of the rings.
  • the invention provides that the magnet device according to the invention can be used in a rotor or stator in a rotor-stator arrangement of an electrical machine.
  • FIG. 5 is a perspective view of the spiral assembly of the magnet device with filler material.
  • FIG. 1 and 5 show a magnet device 1 according to the invention, which is based on the Bitter principle and is made up of a plurality of rings 4 .
  • Each ring 4 as also shown in FIG. 2, is composed of two layers: a conductor layer 2 and a substrate layer 3.
  • Each ring 4 has a circular geometry with a central through hole 44, each ring 4 having a radial slot 5 extending extends through the entire ring 4, namely starting from the outer annulus, which describes the circumference, to the inner annulus, which delimits the through hole 44 in the center of the ring 4.
  • the ends 51 , 52 of the ring 4 adjoin the slot 5 . These ends 51, 52 serve as contact points between conductor layers 2 of two rings 4 arranged one above the other.
  • each ring 4 is arranged on its neighboring ring 4 in such a way that a ring 4 with a conductor layer 2 pointing upwards adjoins a ring 4 with a conductor layer 2 pointing downwards.
  • the structure provides that the conductor layer 2 of the starting ring 41 points downwards in the figure and the middle ring 43 following it is offset rotationally symmetrically and arranged with its downward-pointing conductor layer 2 on the starting ring 41 .
  • the initial ring 41 and the following middle ring 43 have an overlap, which forms a contact section A and whose dimensions correspond to the offset.
  • Figure 4 shows a contact material 6 in the gap provided between the contacting ring surfaces.
  • the two conductor layers 2 of the two adjacent rings 41, 43 are in electrical contact, so that a continuous current flows through the magnetic device 1 can flow when the magnet device 1 is energized.
  • the contact material 6 can be a thin metallic layer.
  • the conductor layers 2 of the two adjacent rings 41, 43 can be sintered together in the contact section A in order to produce good electrical contact.
  • An insulating layer 10 is introduced between the substrate layers 3 of the starting ring 41 and the middle ring 43 (see FIGS. 1 and 3). It serves to electrically isolate the two rings 41, 43 from one another and to avoid current redistribution currents.
  • one end 52 of the initial ring 41 rests on the other end 51 of the middle ring 43 .
  • This is repeated at the next central ring 43, one end of which now rests on one end of the ring 43 and thus overlaps in the contact section A there. Due to the rotationally symmetrical displacement of the individual rings 41, 42, 43, a spiral arrangement is formed.
  • the rings 41, 42, 43 are arranged relative to one another in such a way that the odd-numbered rings 41, 42, 43 with the conductor layer 2 point upwards and the even-numbered rings 42, 43 with the substrate layer 3 point upwards.
  • the magnetic device 1 is closed off with an end ring 42 which is arranged in such a way that its substrate layer 3 faces upwards in FIG. 4 shows how the individual layers of the individual rings 41, 42, 43 are superimposed.
  • the overlap in the contact section A, in which the intermediate contact material 6 is present, is again clearly shown here in order to improve the electrical contact between the conductor layers 2 that are in contact with one another.
  • a filling material 7, such as an epoxy resin, is provided, which gives the magnetic device 1 stability.
  • the layering of the rings 41, 42, 43 of the magnetic device 1 together with the filling material 7 is shown in FIG.
  • electrical connections 11 are arranged at one end 51 of the starter ring 41 and the end 52 of the end ring 42, as shown in FIG. In this way, the spiral arrangement of the magnet device 1 can be connected to a power supply source or a persistent mode bridge and permanent current operation can be established.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

The present invention provides a magnet device (1) based on the Bitter principle, which is made of an assembly of a plurality of conductor layers (2) and a plurality of substrate layers (3). One substrate layer (3) supports one conductor layer (2) and is formed together with the latter as a ring (4) having a radial slit (5) extending through the entire ring (4). Three or more rings (4) form a spiral arrangement with in each case a start ring (41) and an end ring (42) and one or more middle rings (43). The start ring (41) and the end ring (42) are each in current-conductive contact, by one of their ends (51, 52) adjacent to the slit (5), with a middle ring (43) at its end (51, 52) adjacent to the slit, by means of a contact portion, and both ends (51, 52) adjacent to the slit (5) of each middle ring (43) are in current-conductive contact with two other rings (4, 41, 42, 43) by means of a contact portion. Furthermore, the rings (4, 41, 42, 43) are arranged alternately in the arrangement in that a ring (4, 41, 42, 43) with a downward facing conductor layer (2) follows a ring (4, 41, 42, 43) with an upward facing conductor layer (2).

Description

BITTERPRINZIPBASIERTE MAGNETVORRICHTUNG UND VERWENDUNG EINER BITTERPRINZIPBASIERTEN MAGNETVORRICHTUNG BITTER PRINCIPLE BASED MAGNETIC DEVICE AND USE OF A BITTER PRINCIPLE BASED MAGNETIC DEVICE
Die Erfindung betrifft eine bitterprinzipbasierte Magnetvorrichtung und die Verwendung einer solchen bitterprinzipbasierten Magnetvorrichtung. The invention relates to a magnetic device based on the bitter principle and the use of such a magnetic device based on the bitter principle.
Aus dem Stand der Technik sind verschiedene Magnetbauarten bekannt, um hohe kontinuierliche Magnetfelder erzeugen zu können. In mit Kupfer gewickelten Elektromagneten mit Eisenkern sind die Felder auf etwa 2 Tesla beschränkt. Für höhere Felder werden Magnete aus Kupfer oder Kupferlegierungen mit Bitter-Design verwendet, sogenannte Bitter-Elektromagnete oder Bitter-Solenoide (kurz Bitter-Magnete), die starke magnetische kontinuierliche Felder bis zu 40 Tesla erzeugen können und hauptsächlich in der Wissenschaft verwendet werden. Various types of magnets are known from the prior art in order to be able to generate high continuous magnetic fields. In copper-wound iron-core electromagnets, fields are limited to about 2 Tesla. For higher fields, magnets made of copper or copper alloys with a Bitter design are used, so-called Bitter electromagnets or Bitter solenoids (Bitter magnets for short), which can generate strong magnetic continuous fields up to 40 Tesla and are mainly used in science.
Konventionelle Bitter-Magnete bestehen aus geschlitzten und übereinander gestapelten Platten aus Kupfer oder Kupferlegierungen und werden mit Wasser gekühlt. Sie benötigen eine Isolierung zwischen den einzelnen Kupferplatten. Auf Grund ihres Ohm'schen Widerstands benötigt ein solches Magnetsystem Stromversorgungen mit Leistungen bis zu 30MW. Die mit dem hohen Widerstand einhergehende hohe Wärmelast erlaubt nur Stromdichten bis zu ca. 30 A/mm2 und erfordert eine intensive Kühlung. Conventional Bitter magnets consist of slit and stacked plates of copper or copper alloys and are cooled with water. You need insulation between each copper plate. Due to its ohmic resistance, such a magnet system requires power supplies with outputs of up to 30MW. The high thermal load associated with the high resistance only allows current densities of up to approx. 30 A/mm 2 and requires intensive cooling.
(Bitter-)Magnete mit Supraleitern werden als Lagenspulen oder gestapelte Scheibenspulen hergestellt. Diese Wicklungsarchitektur hat zur Folge, dass in radialer Richtung eine Vielzahl Schichten aus unterschiedlichen Materialien aufeinander folgt (bspw. innerer Wickelkörper, Vergussmasse, Isolation, elektro-thermische Stabilisierung z. B. Kupfer, mechanische Stabilisierung (z.B. Substrat), Pufferschichten, (Hochtemperatur-)Supraleiter- Schicht oder -Filamente, Cap-Schicht z. B. aus Silber oder Gold, Kupfer, Isolation). Jedes Material hat unterschiedliche Dicken, mechanische Festigkeiten und thermische Ausdehnungskoeffizienten, was zu hohen (Quer-)Spannungen sowie zur Desintegration der Wicklung bzw. zur Delamination und Degradation des Supraleiters führen kann. (Bitter) magnets with superconductors are manufactured as sheet coils or stacked disc coils. The result of this winding architecture is that a large number of layers made of different materials follow one another in the radial direction (e.g. inner winding body, potting compound, insulation, electro-thermal stabilization e.g. copper, mechanical stabilization (e.g. substrate), buffer layers, (high-temperature ) Superconductor layer or filaments, cap layer made of silver or gold, copper, insulation). Each material has different thicknesses, mechanical strengths and coefficients of thermal expansion, which can lead to high (transverse) stresses and disintegration of the winding or to delamination and degradation of the superconductor.
In weiter entwickelten "Quasi-Bitter-Spulen" aus Hochtemperatur-Supraleitern wird nicht dem Bitter-Prinzip eines durchgängigen Stromtransports durch gestapelte Scheiben ge- folgt, sondern einzelne Dauerströme in einzelnen Ringen mit zwischen gelegten Isolierungsscheiben erzeugt. In further developed "quasi-Bitter coils" made of high-temperature superconductors, the Bitter principle of continuous current transport through stacked discs is not used. follows, but generates individual continuous currents in individual rings with insulating washers placed between them.
Der Nachteil der vorgenannten Magnetkonstruktionen ist eine große Wärmedissipation, die mit Höhe des Magnetfelds, das erzeugt werden soll, steigt. Um die Wärmedissipation zu verringern, muss die die Windungsstromdichte jeder Wicklung bzw. jeder gestapelten Schicht herabgesetzt werden. Dies hat aber wiederum ein niedrigeres maximal erreichbares Magnetfeld zur Folge. Ferner benötigen sie sehr hohe Antriebsströme. The disadvantage of the aforementioned magnet constructions is a large heat dissipation, which increases with the magnitude of the magnetic field to be generated. In order to reduce heat dissipation, the turn current density of each winding or stacked layer must be reduced. However, this in turn results in a lower maximum achievable magnetic field. They also require very high drive currents.
Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, eine verbesserte bitterprinzipbasierte Magnetvorrichtung bereitzustellen, die eine geringe thermische Dissipation hat, eine hohe Windungsstromdichte erlaubt und dadurch höhere Magnetfelder ermöglicht. Proceeding from this prior art, it is the object of the present invention to provide an improved magnet device based on the Bitter principle, which has low thermal dissipation, allows a high winding current density and thereby enables higher magnetic fields.
Diese Aufgabe wird durch eine bitterprinzipbasierte Magnetvorrichtung mit den Merkmalen des Anspruchs 1 gelöst. This object is achieved by a magnet device based on the bitter principle.
Weiterbildungen und bevorzugte Ausführungsformen der bitterprinzipbasierte Magnetvorrichtung sind in den Unteransprüchen ausgeführt. Further developments and preferred embodiments of the magnet device based on the Bitter principle are set out in the dependent claims.
Eine erste Ausführungsform einer erfindungsmäßen bitterprinzipbasierten Magnetvorrichtung weist eine Anordnung auf, die aus mehreren Leiterschichten und mehreren Substratschichten ausgebildet ist. Dabei trägt jede Substratschicht eine Leiterschicht und ist mit dieser als Ring ausgebildet. Der Ring weist einen radialen Schlitz auf, der sich durch den gesamten Ring erstreckt. „Trägt“ meint dabei, dass die Leiterschicht mit der Substratschicht zweilagig ausgebildet ist und die stabilere Substratschicht für die Leiterschicht eine Basis bildet. A first embodiment of a magnet device based on the Bitter principle according to the invention has an arrangement which is formed from a plurality of conductor layers and a plurality of substrate layers. In this case, each substrate layer carries a conductor layer and is formed with this as a ring. The ring has a radial slot that extends through the entire ring. “Supports” means that the conductor layer is formed in two layers with the substrate layer and the more stable substrate layer forms a basis for the conductor layer.
Drei oder mehr Ringe (bevorzugt eine gerade Anzahl, hierin jeweils Kreisringe als Flächenstück zwischen zwei verschiedenen Kreisen mit gleichem Mittelpunkt, wobei der Kreis mit dem kleineren Durchmesser ein mittleres Durchgangsloch bildet) bilden eine Spiralanordnung mit je einem Ring am Anfang der Spiralanordnung (Anfangsring) und einem Ring am Ende der Spiralanordnung (Endring) mindestens einem oder mehreren Ringen zwischen Anfangsring und Endring (Mittelringen), wobei der Anfangsring und der Endring mit je einem seiner an den Schlitz angrenzenden Enden mit einem Mittelring an dessen Schlitz angrenzenden Ende durch einen Kontaktabschnitt in Strom leitendem Kontakt stehen, und wobei jeder Mittelring mit seinen beiden an den Schlitz angrenzenden Enden mit zwei anderen Ringen durch einen Kontaktabschnitt in Strom leitendem Kontakt steht. Die Spiralanordnung ist bevorzugt eine Helixanordnung und hat eine kreiszylindrische Grundform; es sind aber auch andere Grundformen, wie z. B. eine ellipsoide, recht- oder mehreckige Grundform möglich, deren Ecken abgerundet sein können. Three or more rings (preferably an even number, here circular rings as a surface piece between two different circles with the same center, the circle with the smaller diameter forming a central through hole) form a spiral arrangement with one ring each at the beginning of the spiral arrangement (initial ring) and a ring at the end of the spiral arrangement (end ring) at least one or more rings between the starting ring and the end ring (middle rings), the starting ring and the end ring each having one of its ends adjacent to the slot with a middle ring at its slot-adjoining end through a contact section in current conductive being in contact, and each central ring being in current-conducting contact at both of its ends adjacent to the slot with two other rings through a contact portion. The spiral arrangement is preferably a helix arrangement and has a circular-cylindrical basic shape; but there are also other basic forms, such. B. an ellipsoidal, rectangular or polygonal basic shape possible, the corners can be rounded.
Dabei sind in der Anordnung die Ringe alternierend angeordnet, indem auf einen Ring mit einer nach oben weisenden Leiterschicht ein Ring mit einer nach unten weisenden Leiterschicht folgt. The rings are arranged alternately in the arrangement, in that a ring with a conductor layer pointing upwards is followed by a ring with a conductor layer pointing downwards.
Die Spirale, die in der erfindungsgemäßen Magnetvorrichtung durch die Anordnung der einzelnen stromführenden Ringe gebildet wird, erlaubt durchgängigen Stromtransport. In radialer Richtung sind die Ringe homogen und axialer Richtung sind die Ringe inhomogen, wodurch mechanische Querspannungen vermieden werden. Mindestens drei Ringe, bevorzugt vier, fünf oder noch mehr solcher Ringe, die geometrisch gleich sind und deren mittlere Durchgangslöcher in der erfindungsgemäßen Spiralanordnung fluchten, sind erforderlich um sie zu bilden. The spiral, which is formed in the magnet device according to the invention by the arrangement of the individual current-carrying rings, allows continuous current transport. The rings are homogeneous in the radial direction and inhomogeneous in the axial direction, which avoids mechanical transverse stresses. At least three rings, preferably four, five or even more such rings, which are geometrically identical and whose central through-holes are aligned in the spiral arrangement according to the invention, are required to form it.
Weil die mittleren Durchgangsslöcher fluchten, umgeben sie in einer Montageanordnung der Magnetvorrichtung einen zylindrischen Raum für experimentelle Einrichtungen oder andere Vorrichtungen, die dem Magnetfeld, das in diesem zylindrischen Raum gebildet wird, ausgesetzt werden sollen. Because the center through-holes are aligned, in a magnet assembly mounting arrangement, they enclose a cylindrical space for experimental equipment or other devices to be exposed to the magnetic field formed in this cylindrical space.
Die erfindungsgemäße Vorrichtung wird hierin als bitterprinzipbasierte Magnetvorrichtung bezeichnet, da sie dem Bitter-Prinzip, das aus dem Stand der Technik bekannt ist, folgt. Es handelt sich um ein Schichtprinzip, bei dem Platten oder plattenförmige Ringe mit Zwischenlage von Isoliermaterialien zu geschichteten Magneten zusammengesetzt werden. The device according to the invention is referred to herein as a Bitter principle-based magnetic device, since it follows the Bitter principle, which is known from the prior art. It is a layer principle in which plates or plate-shaped rings are assembled into layered magnets with insulating materials in between.
Durch die spiralige erfindungsgemäße Anordnung wird eine Magnetvorrichtung mit deutlich geringerem Gesamtwiderstand und Verlusten geschaffen als bei bisher verwendeten Bitter-Magneten aus dem Stand der Technik. Die bitterprinzipbasierte Magnetvorrichtung erlaubt dadurch eine hohe Windungsstromdichte und höhere Magnetfelder. Ferner kann durch den geringeren Gesamtwiderstand die Stromversorgung leistungsmäßig kleiner als im Stand der Technik dimensioniert werden und die Magnetvorrichtung weist durch die Verwendung von Hochtemperatur-Supraleitern geringe thermische Dissipation auf. Um einen durchgängigen Stromtransport in der Spiralanordnung zu erreichen, sind die Ringe abwechselnd so orientiert, dass jeweils die Leiterschichten und die Substratschichten zueinander in Kontakt kommen: Der Anfangsring beginnt mit einer Orientierung "Leiterschicht oben" und der nachfolgende Mittelring führt die Anordnung mit einer Orientierung "Leiterschicht unten" fort, wodurch eine sehr kompakte Bauweise ermöglicht wird. Der Platzbedarf wird optimiert und es ist weniger oder kein Isoliermaterial insgesamt notwendig. Die gute Wärmeableitung führt zu einer größeren Quenchsicherheit bei großen Windungsstromdichten, d. h. größer 200 A/mm2, gerade bei der Nutzung von Hochtemperatur-Supraleitern. Die Kühlung kann je nach Einsatztemperatur (so auch je nach Strombedarf) mit verschiedenen Kryogenen erfolgen, die günstig im Verbrauch sind, wie z. B. flüssiger Stickstoff, flüssigem Neon, flüssigem Wasserstoff oder flüssigem Helium. Ferner können dadurch höhere Betriebsströme als im Stand der Technik verwendet werden und damit höhere magnetische Felder erreicht werden, z. B. 3 T bei 100 A/mm2 in einem Volumen von ca. 10 cm3. The spiral arrangement according to the invention creates a magnet device with a significantly lower overall resistance and losses than in the case of the previously used Bitter magnets from the prior art. The magnet device based on the Bitter principle thus allows a high winding current density and higher magnetic fields. Furthermore, due to the lower overall resistance, the power supply can be dimensioned with less power than in the prior art, and the magnetic device has low thermal dissipation due to the use of high-temperature superconductors. In order to achieve a continuous current transport in the spiral arrangement, the rings are oriented alternately in such a way that the conductor layers and the substrate layers come into contact with one another: The initial ring begins with an orientation "conductor layer on top" and the following middle ring leads the arrangement with an orientation " Conductor layer below" continued, whereby a very compact design is made possible. The space requirement is optimized and less or no insulating material is required overall. The good heat dissipation leads to greater quenching safety with high winding current densities, ie greater than 200 A/mm 2 , especially when using high-temperature superconductors. Depending on the application temperature (also depending on the power requirement), cooling can be carried out with various cryogens that are economical to use, such as e.g. B. liquid nitrogen, liquid neon, liquid hydrogen or liquid helium. Furthermore, as a result, higher operating currents than in the prior art can be used and thus higher magnetic fields can be achieved, e.g. B. 3 T at 100 A/mm 2 in a volume of approx. 10 cm 3 .
In einer weiteren Ausführungsform der erfindungsgemäßen Magnetvorrichtung überlappen jeweils zwei sich kontaktierende Ringe an dem Kontaktabschnitt. Ein Überlapp stellt einen verbesserten elektrischen Kontakt zwischen zwei zueinander gewandten Leiterschichten her und ermöglicht in der Magnetvorrichtung einen durchgängigen Stromtransport. In Grenzflächen zwischen zwei aufeinanderliegenden Leiterschichten kann eine Isolierungsschicht oder elektrisch schlecht leitfähige Schicht vorliegen, mit Ausnahme des Kontaktabschnitts. Hierdurch können große Zeitkonstanten bei Änderung des Betriebsstromes und folgender Stromumverteilung verhindert werden. In a further embodiment of the magnet device according to the invention, two contacting rings overlap at the contact section. An overlap provides improved electrical contact between two facing conductor layers and allows for continuity of current transport in the magnetic device. In interfaces between two conductor layers lying on top of one another, there can be an insulating layer or a layer with poor electrical conductivity, with the exception of the contact section. This can prevent large time constants when changing the operating current and subsequent redistribution of current.
Nach einer weiteren Ausführungsform der erfindungsgemäßen Magnetvorrichtung ist an dem Kontaktabschnitt, resp. an der Fläche zwischen den sich überlappenden Ringen, ein Kontaktmaterial flächig aufgebracht. Alternativ können an dem Kontaktabschnitt die einander zugewandten Leiterschichten der beiden sich kontaktierenden Ringe miteinander versintert sein. Hierdurch kann eine stoffschlüssige Verbindung hergestellt werden. Sowohl die Aufbringung eines Kontaktmaterials als auch die Versinterung, dienen dazu, den elektrischen Kontakt und damit einen durchgängigen Stromfluss zu verbessern und verlustarm zu halten. According to a further embodiment of the magnetic device according to the invention is on the contact portion, respectively. on the surface between the overlapping rings, a contact material is applied over the entire surface. Alternatively, the mutually facing conductor layers of the two contacting rings can be sintered together at the contact section. In this way, an integral connection can be established. Both the application of a contact material and the sintering serve to improve the electrical contact and thus a continuous current flow and to keep it low-loss.
In einer bevorzugten weiteren Ausführungsform der erfindungsgemäßen Magnetvorrichtung ist das Kontaktmaterial ein Material, das beim Betrieb der bitterprinzipbasierten Magnetvorrichtung supraleitend ist. Das Material kann eine dünne Schicht sein, beson- ders bevorzugt eine Indium- oder Niobschicht, so bspw. ein Agln-Lot. Es können auch einfache Lote oder Lotverbindungen verwendet werden, so z. B. Lote, die Blei oder Zinn enthalten. Die dünne Schicht wirkt wie eine zwischengelegte Folie, die in der fertigen Magnetvorrichtung zwischen zwei Ringe eingepresst ist und damit bereits einen guten reibschlüssigen Kontakt zwischen den sich kontaktierenden an den Schlitz angrenzenden Enden zweier Ringe herstellt. In a preferred further embodiment of the magnet device according to the invention, the contact material is a material that is superconductive during operation of the magnet device based on the Bitter principle. The material can be a thin layer, especially ders preferably an indium or niobium layer, for example an Agln solder. It can also be used simple solder or solder joints, such. B. Solders containing lead or tin. The thin layer acts like an interposed foil, which is pressed between two rings in the finished magnetic device and thus already produces a good frictional contact between the ends of two rings that are in contact and bordering on the slot.
Nach einer weiteren Ausführungsform der erfindungsgemäßen Magnetvorrichtung weisen die Ringe in ihrer Ringfläche weitere Durchgangslöcher auf. Die Ringe sind in der Spiralanordnung so übereinander angeordnet, dass diese weiteren Durchgangslöcher Kühlkanäle bilden, weil sie miteinander fluchten. Eine weitere Ausführungsform der erfindungsgemäßen Magnetvorrichtung sieht vor, dass in der Spiralanordnung zwischen den Ringen Anfangsring, Endring und einem oder mehreren Mittelringen außer an den Kontaktabschnitten Abstände vorgesehen sind, in denen ein Füllmaterial zur Stabilisierung der Spiralanordnung angeordnet ist. Das Füllmaterial ist bevorzugt ein isolierendes bzw. thermisch leitfähiges Material. Besonders bevorzugt ist Füllmaterial aus einer Gruppe Materialien ausgewählt, die Wachs, Harz und Epoxidharze aufweist. Die Epoxidharze können z. B. mit AI2O3 gefüllt sein. According to a further embodiment of the magnet device according to the invention, the rings have further through-holes in their annular surface. The rings are arranged one above the other in the spiral arrangement in such a way that these further through-holes form cooling channels because they are aligned with one another. A further embodiment of the magnet device according to the invention provides that in the spiral arrangement between the rings starting ring, end ring and one or more middle rings, apart from the contact sections, distances are provided in which a filling material is arranged to stabilize the spiral arrangement. The filling material is preferably an insulating or thermally conductive material. Filler material is particularly preferably selected from a group of materials that includes wax, resin and epoxy resins. The epoxy resins can, for. B. be filled with AI2O3.
Ferner sieht eine weitere Ausführungsform der erfindungsgemäßen Magnetvorrichtung vor, dass Leiterschichten bevorzugt Supraleiter-Schichten sind, die aus supraleitendem Material bestehen. Besonders bevorzugt sind die Leiterschichten Hochtemperatur- Supraleiterschichten, die 2G-Hochtemperatur-Supraleiter aufweisen. Bevorzugt wird RE- 123 verwendet, wobei RE für Rare Earth steht und Seltene Erden, ausgenommen Praseodym, bezeichnet. Dieser Supraleiter erreicht hohe Stromdichten, ein hohes oberes kritisches Magnetfeld und einen weiten Temperatureinsatzbereich bei gleichzeitig anisotropem Verhalten und Kristallstruktur. Die supraleitenden Materialien sind in einen bestimmten Schichtaufbau eingebettet und bilden einen beschichteten Leiter (sog. "Coated Conductor"). Dieser Aufbau beginnt mit einem Metallsubstrat in Form eines Trägerbandes, auf dem eine keramische Pufferschicht aufgebracht ist und auf die der eigentliche Supraleiter abgeschieden wird. Mittels einer Schutzschicht wird der Supraleiter vor Beschädigungen geschützt bzw. die elektrische Kontaktierung vereinfacht. Furthermore, a further embodiment of the magnet device according to the invention provides that conductor layers are preferably superconductor layers made of superconducting material. The conductor layers are particularly preferably high-temperature superconductor layers which have 2G high-temperature superconductors. RE-123 is preferably used, where RE stands for Rare Earth and denotes rare earths, with the exception of praseodymium. This superconductor achieves high current densities, a high upper critical magnetic field and a wide operating temperature range with simultaneous anisotropic behavior and crystal structure. The superconducting materials are embedded in a specific layer structure and form a coated conductor (so-called "coated conductor"). This structure begins with a metal substrate in the form of a carrier tape on which a ceramic buffer layer is applied and on which the actual superconductor is deposited. A protective layer protects the superconductor from damage and simplifies electrical contacting.
Durch die Verwendung von Hochtemperatur-Supraleitern entstehen keine ohm'schen Verluste, bezogen auf den Hauptpfad des Stromes. Ausgenommen sind eventuell genutzte normalleitende elektrische Kontakte zur Stromeinspeisung an Anfangs- und Endring, die dazu nötig sind, dass die Magnetvorrichtung mit einer Stromquelle verbunden werden kann. Ferner können normalleitende Übergangskontakte, bspw. aus einem Agln-Lot, zwischen den Ringen vorgesehen sein. The use of high-temperature superconductors means that there are no ohmic losses in relation to the main path of the current. Excluded are any normally conductive electrical contacts that may be used to feed current to the start and end ring, which are necessary for the magnetic device to be connected to a power source. Furthermore, normally conductive transition contacts, for example made of an Agln solder, can be provided between the rings.
Ferner ist erfindungsgemäß eine kristallographische C-Achse der Hochtemperatur- Supraleiterschicht parallel zu einer Längsachse der Spiralanordnung ausgerichtet. Die Ausrichtung der Hochtemperatur-Supraleiterschicht hat zur Folge, dass in radialer Richtung für eine konstante axiale Position Material- und thermische Ausdehnungskoeffizienten homogen und konstant sind, so dass Querspannungen und Scherspannungen verhindert und Degradationsprobleme vermieden werden. Furthermore, according to the invention, a crystallographic c-axis of the high-temperature superconductor layer is aligned parallel to a longitudinal axis of the spiral arrangement. The result of the alignment of the high-temperature superconductor layer is that material and thermal expansion coefficients are homogeneous and constant in the radial direction for a constant axial position, so that transverse stresses and shear stresses are prevented and degradation problems are avoided.
Nach noch einer Ausführungsform der erfindungsgemäßen Magnetvorrichtung erstrecken sich die Kühlkanäle durch das Füllmaterial. Die Magnetvorrichtung wird, damit die Leiterschicht, wenn sie aus einem supraleitenden Material hergestellt ist, in den supraleitenden Zustand versetzt werden kann, mit einem Kryogen gekühlt, so etwa mit flüssigem Stickstoff (LN2), flüssigem Neon (LNe), flüssigem Wasserstoff (LH2) oder flüssigem Helium (LHe). Dieses Kryogen kann durch die Kühlkanäle strömen und die Magnetvorrichtung somit nicht nur von außen kühlen, sondern auch innere Bereiche gut erreichen, je nach Abmessung der Magnetvorrichtung. According to yet another embodiment of the magnet device according to the invention, the cooling channels extend through the filling material. The magnetic device is cooled with a cryogen, such as liquid nitrogen (LN2), liquid neon (LNe), liquid hydrogen (LH2) to allow the conductor layer to be brought into the superconducting state when made of a superconducting material. or liquid helium (LHe). This cryogen can flow through the cooling channels and thus not only cool the magnet device from the outside, but can also easily reach inner areas, depending on the dimensions of the magnet device.
Die Substratschichten bestehen in einer weiteren Ausführungsform der erfindungsgemäßen Magnetvorrichtung aus Edelstahl, Nickel, einer Nickel-Legierung oder hochkorrosionsbeständigen Nickel-Molybdän-Legierungen (Hastelloy®). Die Isolationsmaterialien sind bevorzugt aus Kapton, PEEK und Polyimide. In a further embodiment of the magnet device according to the invention, the substrate layers consist of stainless steel, nickel, a nickel alloy or highly corrosion-resistant nickel-molybdenum alloys (Hastelloy®). The insulation materials are preferably made of Kapton, PEEK and polyimide.
Die erfindungsgemäße Magnetvorrichtung sieht nach noch einer weiteren Ausführungsform vor, dass der Anfangsring und der Endring an ihren Enden, die nicht mit einem Mittelring in Strom leitendem Kontakt stehen, mit einer elektrischen Kontaktvorrichtung verbunden sind. Zusätzlich oder alternativ kann die elektrische Kontaktvorrichtung eine Per- sistent-Mode-Brücke aufweisen. Mit der Persistent-Mode-Brücke kann der Magnet in auferregtem Zustand von der Stromquelle getrennt werden. According to yet another embodiment, the magnet device according to the invention provides that the starting ring and the end ring are connected to an electrical contact device at their ends that are not in current-conducting contact with a central ring. Additionally or alternatively, the electrical contact device can have a persistent mode bridge. The persistent mode bridge allows the magnet to be disconnected from the power source when energized.
Vorteilhaft ist die erfindungsgemäße Magnetvorrichtung durch Auswahl einer entsprechenden Anzahl Ringe und unterschiedlicher Abmessung der Ringe skalierbar auf den jeweilig gewünschten Betriebsstrom und die Magnetfelderzeugung. Die Ringe können in verschiedenen Größen hergestellt werden, um für unterschiedliche Anwendungen die gewünschte Magnetfeld-Flussdichte zu erzeugen. So sind Abmessungen möglich, wobei die kleinste Abmessung der inneren Durchgangsöffnung kleiner ist als die radiale Abmessung der Ringe oder die Abmessung der inneren Durchgangsöffnung dreimal so groß ist wie die radiale Abmessung der Ringe. Die Erfindung sieht vor, dass die erfindungsgemäße Magnetvorrichtung in einem Rotor oder Stator in einer Rotor-Stator-Anordnung einer elektrischen Maschine eingesetzt werden kann. The magnet device according to the invention can advantageously be scaled to the respectively desired operating current and magnetic field generation by selecting a corresponding number of rings and different dimensions of the rings. The rings can be made in different sizes to suit different applications to generate the desired magnetic field flux density. Dimensions are thus possible in which the smallest dimension of the inner through-opening is smaller than the radial dimension of the rings or the dimension of the inner through-opening is three times the radial dimension of the rings. The invention provides that the magnet device according to the invention can be used in a rotor or stator in a rotor-stator arrangement of an electrical machine.
Weitere Ausführungsformen der bitterprinzipbasierte Magnetvorrichtung sowie einige der Vorteile, die mit diesen und weiteren Ausführungsformen verbunden sind, werden durch die nachfolgende ausführliche Beschreibung unter Bezug auf die begleitenden Figuren deutlich und besser verständlich. Gegenstände oder Teile derselben, die im Wesentlichen gleich oder ähnlich sind, können mit denselben Bezugszeichen versehen sein. Die Figuren sind lediglich schematische Darstellungen von Ausführungsformen der Erfindung. Further embodiments of the bitter principle based magnetic device, as well as some of the advantages associated with these and other embodiments, will become apparent and better understood from the following detailed description with reference to the accompanying figures. Items or parts thereof that are substantially the same or similar may be given the same reference numbers. The figures are merely schematic representations of embodiments of the invention.
Dabei zeigen: show:
Fig. 1 eine perspektivische Ansicht der Spiralanordnung der Magnetvorrichtung ohne Füllmaterial, 1 shows a perspective view of the spiral arrangement of the magnet device without filling material,
Fig. 2 eine perspektivische Ansicht eines Rings der Magnetvorrichtung, 2 shows a perspective view of a ring of the magnetic device,
Fig. 3 eine schematische Ansicht zweier Ringe aus der Spiralanordnung der Magnetvorrichtung, 3 shows a schematic view of two rings from the spiral arrangement of the magnet device,
Fig. 4 einen schematischen Teilschnitt durch die Magnetvorrichtung, und 4 shows a schematic partial section through the magnetic device, and
Fig. 5 eine perspektivische Ansicht der Spiralanordnung der Magnetvorrichtung mit Füllmaterial. 5 is a perspective view of the spiral assembly of the magnet device with filler material.
In Fig. 1 und Fig. 5 ist eine erfindungsgemäße bitterprinzipbasierte Magnetvorrichtung 1 gezeigt, die aus mehreren Ringen 4 aufgebaut ist. Jeder Ring 4, wie auch Fig. 2 zeigt, ist aus zwei Schichten aufgebaut: Einer Leiterschicht 2 und einer Substratschicht 3. Jeder Ring 4 hat eine kreisförmige Geometrie mit einem mittleren Durchgangsloch 44, wobei jeder Ring 4 einen radialen Schlitz 5 aufweist, der sich durch den gesamten Ring 4 erstreckt, nämlich ausgehend von dem äußeren Kreisring, der den Umfang beschreibt, zu dem inneren Kreisring, der das Durchgangsloch 44 in der Mitte des Rings 4 begrenzt. An den Schlitz 5 grenzen die Enden 51 , 52 des Rings 4 an. Diese Enden 51, 52 dienen als Kontaktstellen zwischen Leiterschichten 2 zweier übereinander angeordneter Ringe 4. In Fig. 3 ist gezeigt, wie die Ringe 4 derart aufeinandergelegt werden, dass sie eine Spiralanordnung, wie in Fig. 1 dargestellt, bilden. Jeder Ring 4 ist dabei so an seinem benachbarten Ring 4 angeordnet, dass ein Ring 4 mit einer nach oben weisenden Leiterschicht 2 an einen Ring 4 mit einer nach unten weisenden Leiterschicht 2 angrenzt. Die Struktur sieht dabei vor, dass die Leiterschicht 2 des Anfangsrings 41 in der Figur nach unten weist und der auf ihn folgende Mittelring 43 um einen Versatz rotationssymmetrisch versetzt und mit seiner nach unten weisenden Leiterschicht 2 an dem Anfangsring 41 angeordnet ist. 1 and 5 show a magnet device 1 according to the invention, which is based on the Bitter principle and is made up of a plurality of rings 4 . Each ring 4, as also shown in FIG. 2, is composed of two layers: a conductor layer 2 and a substrate layer 3. Each ring 4 has a circular geometry with a central through hole 44, each ring 4 having a radial slot 5 extending extends through the entire ring 4, namely starting from the outer annulus, which describes the circumference, to the inner annulus, which delimits the through hole 44 in the center of the ring 4. The ends 51 , 52 of the ring 4 adjoin the slot 5 . These ends 51, 52 serve as contact points between conductor layers 2 of two rings 4 arranged one above the other. In FIG. 3 it is shown how the rings 4 are placed one on top of the other in such a way that they form a spiral arrangement as shown in FIG. Each ring 4 is arranged on its neighboring ring 4 in such a way that a ring 4 with a conductor layer 2 pointing upwards adjoins a ring 4 with a conductor layer 2 pointing downwards. The structure provides that the conductor layer 2 of the starting ring 41 points downwards in the figure and the middle ring 43 following it is offset rotationally symmetrically and arranged with its downward-pointing conductor layer 2 on the starting ring 41 .
Der Anfangsring 41 und der nachfolgende Mittelring 43 weisen einen Überlapp auf, der einen Kontaktabschnitt A bildet und der in seiner Abmessung dem Versatz entspricht. Figur 4 zeigt in dem Spalt, der zwischen den sich kontaktierenden Ringflächen vorgesehen ist, hier ein Kontaktmaterial 6. In diesem Kontaktabschnitt A stehen die beiden Leiterschichten 2 der beiden benachbarten Ringe 41, 43 in elektrischem Kontakt, so dass in der Magnetvorrichtung 1 ein durchgängiger Strom fließen kann, wenn die Magnetvorrichtung 1 mit Strom beaufschlagt wird. Das Kontaktmaterial 6 kann eine dünne metallische Schicht sein. Alternativ können im Kontaktabschnitt A die Leiterschichten 2 der beiden benachbarten Ringe 41 , 43 miteinander versintert sein, um einen guten elektrischen Kontakt herzustellen. The initial ring 41 and the following middle ring 43 have an overlap, which forms a contact section A and whose dimensions correspond to the offset. Figure 4 shows a contact material 6 in the gap provided between the contacting ring surfaces. In this contact section A, the two conductor layers 2 of the two adjacent rings 41, 43 are in electrical contact, so that a continuous current flows through the magnetic device 1 can flow when the magnet device 1 is energized. The contact material 6 can be a thin metallic layer. Alternatively, the conductor layers 2 of the two adjacent rings 41, 43 can be sintered together in the contact section A in order to produce good electrical contact.
Zwischen den Substratschichten 3 des Anfangsringes 41 sowie des Mittelringes 43 ist eine Isolierschicht 10 eingebracht (siehe Fig. 1 und 3). Sie dient dazu, die beiden Ringe 41 , 43 elektrisch voneinander zu trennen und Stromumverteilungsströme zu vermeiden. In dem Kontaktabschnitt A liegt das eine Ende 52 des Anfangsringes 41 auf dem anderen Ende 51 des Mittelringes 43 auf. Dies wiederholt sich beim nächsten Mittelring 43, dessen einen Ende nun auf dem einen Ende des Ringes 43 auf liegt und damit in dem dortigen Kontaktabschnitt A überlappt. Durch das rotationssymmetrische Versetzen der einzelnen Ringe 41 ,42,43, bildet sich eine spiralförmige Anordnung. Dabei sind die Ringe 41 , 42, 43 so zueinander angeordnet, dass die ungeradzahligen Ringe 41,42,43 mit der Leiterschicht 2 nach oben weisen und die geradzahligen Ringe 42, 43 mit der Substratschicht 3 nach oben weisen. An insulating layer 10 is introduced between the substrate layers 3 of the starting ring 41 and the middle ring 43 (see FIGS. 1 and 3). It serves to electrically isolate the two rings 41, 43 from one another and to avoid current redistribution currents. In the contact section A, one end 52 of the initial ring 41 rests on the other end 51 of the middle ring 43 . This is repeated at the next central ring 43, one end of which now rests on one end of the ring 43 and thus overlaps in the contact section A there. Due to the rotationally symmetrical displacement of the individual rings 41, 42, 43, a spiral arrangement is formed. The rings 41, 42, 43 are arranged relative to one another in such a way that the odd-numbered rings 41, 42, 43 with the conductor layer 2 point upwards and the even-numbered rings 42, 43 with the substrate layer 3 point upwards.
Abgeschlossen wird die Magnetvorrichtung 1 mit einem Endring 42, der so angeordnet ist, dass seine Substratschicht 3 in der Fig. 1 nach oben weist. Fig. 4 zeigt, wie die einzelnen Schichten der einzelnen Ringe 41 , 42, 43 übereinandergelegt sind. So ist hier der Überlapp im Kontaktabschnitt A nochmals deutlich dargestellt, in dem das zwischenliegende Kontaktmaterial 6 vorliegt, um den elektrischen Kontakt zwischen den sich kontaktierenden Leiterschichten 2 zu verbessern. Zwischen den Abschnit- ten der Ringe 41 , 42, 43, die sich nicht kontaktieren, ist ein Füllmaterial 7, wie bspw. ein Epoxidharz, vorgesehen, dass der Magnetvorrichtung 1 Stabilität verleiht. In Fig. 5 ist die Schichtung der Ringe 41 , 42, 43 der Magnetvorrichtung 1 zusammen mit dem Füllmaterial 7 gezeigt. Um die Magnetvorrichtung 1 mit Strom zu versorgen, sind elektrische Anschlüsse 11 an einem Ende 51 des Anfangsrings 41 und dem Ende 52 des Endrings 42 angeordnet, wie Fig. 1 zeigt. Hiermit lässt sich die Spiralanordnung der Magnetvorrichtung 1 mit einer stromgebenden Quelle oder eine Persistent Mode-Brücke verbinden und ein Dauerstrombetrieb herstellen. The magnetic device 1 is closed off with an end ring 42 which is arranged in such a way that its substrate layer 3 faces upwards in FIG. 4 shows how the individual layers of the individual rings 41, 42, 43 are superimposed. The overlap in the contact section A, in which the intermediate contact material 6 is present, is again clearly shown here in order to improve the electrical contact between the conductor layers 2 that are in contact with one another. Between the sections of the rings 41, 42, 43 that do not contact one another, a filling material 7, such as an epoxy resin, is provided, which gives the magnetic device 1 stability. The layering of the rings 41, 42, 43 of the magnetic device 1 together with the filling material 7 is shown in FIG. In order to supply the magnetic device 1 with electricity, electrical connections 11 are arranged at one end 51 of the starter ring 41 and the end 52 of the end ring 42, as shown in FIG. In this way, the spiral arrangement of the magnet device 1 can be connected to a power supply source or a persistent mode bridge and permanent current operation can be established.
BEZUGSZEICHENLISTE REFERENCE LIST
1 Magnetvorrichtung 1 magnetic device
2 Leiterschicht 2 conductor layer
3 Substratschicht 3 substrate layer
4 Ring 4 rings
41 Anfangsring 41 initial ring
42 Endring 42 end ring
43 Mittelring 43 middle ring
44 mittleres Durchgangsloch 44 center through hole
5 Schlitz 5 slot
51 an Schlitz angrenzendes Ende51 end adjacent slot
52 an Schlitz angrenzendes Ende52 end adjacent slot
6 Kontaktmaterial 6 contact material
7 Füllmaterial 7 filling material
8 Durchgangslöcher 8 through holes
9 Kühlkanäle 9 cooling channels
10 Isolierungsschicht 10 insulation layer
11 Elektrische Kontaktvorrichtung 11 Electrical contact device

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Bitterprinzipbasierte Magnetvorrichtung (1), die aus einer Anordnung aus 1. Bitter principle-based magnetic device (1), consisting of an arrangement
- einer Mehrzahl Leiterschichten (2), und - a plurality of conductor layers (2), and
- einer Mehrzahl Substratschichten (3), ausgebildet ist, wobei jede Substratschicht (3) eine Leiterschicht (2) trägt, und mit dieser als Ring (4, 41 , 42, 43) ausgebildet ist, der einen radialen Schlitz (5), der sich durch den gesamten Ring (4, 41 , 42, 43) erstreckt, aufweist, und wobei drei oder mehr Ringe (4, 41 , 42, 43) eine Spiralanordnung mit je einem Anfangsring (41) und einem Endring (42) und einem oder mehreren Mittelringen (43) bildet, wobei der Anfangsring (41) und der Endring (42) mit je einem seiner an den- A plurality of substrate layers (3) is formed, each substrate layer (3) carrying a conductor layer (2), and with this as a ring (4, 41, 42, 43) is formed, which has a radial slot (5) which extends through the entire ring (4, 41, 42, 43), and wherein three or more rings (4, 41, 42, 43) have a spiral arrangement, each with an initial ring (41) and an end ring (42) and a or more middle rings (43), wherein the initial ring (41) and the end ring (42) with one of its at the
Schlitz (5) angrenzenden Enden (51 , 52) mit einem Mittelring (43) an dessen Schlitz angrenzenden Ende (51 , 52) durch einen Kontaktabschnitt (A) in Strom leitendem Kontakt stehen, und wobei jeder Mittelring (43) mit seinen beiden an den Schlitz (5) angrenzenden Enden (51 , 52) mit zwei anderen Ringen (4, 41 , 42, 43) durch einen Kontaktabschnitt (A) in Strom leitendem Kontakt steht, und wobei in der Anordnung die Ringe (4, 41 , 42, 43) alternierend angeordnet sind, indem auf einen Ring (4, 41 , 42, 43) mit einer nach oben weisenden Leiterschicht (2) ein Ring (4, 41 , 42, 43) mit einer nach unten weisenden Leiterschicht (2) folgt. Slot (5) adjacent ends (51, 52) with a center ring (43) at the slot adjacent end (51, 52) through a contact portion (A) in current conductive contact, and each center ring (43) with its two the ends (51, 52) adjoining the slot (5) are in current-conducting contact with two other rings (4, 41, 42, 43) through a contact section (A), and in the arrangement the rings (4, 41, 42 , 43) are arranged alternately by a ring (4, 41, 42, 43) with a downward-pointing conductor layer (2) following a ring (4, 41, 42, 43) with an upward-pointing conductor layer (2). .
2. Magnetvorrichtung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass an dem Kontaktabschnitt (A) die beiden sich kontaktierenden Ringe (4, 41 , 42, 43) sich überlappen und/oder an dem Kontaktabschnitt (A) ein Kontaktmaterial (6) flächig aufgebracht ist oder an dem Kontaktabschnitt (A) die einander zugewandten Leiterschichten (2) der beiden sich kontaktierenden Ringe (4, 41 , 42, 43) miteinander versintert sind. 2. Magnetic device (1) according to claim 1, characterized in that on the contact section (A) the two contacting rings (4, 41, 42, 43) overlap and/or on the contact section (A) a contact material (6) is applied over a large area or on the contact section (A) the mutually facing conductor layers (2) of the two contacting rings (4, 41, 42, 43) are sintered together.
3. Magnetvorrichtung (1) nach Anspruch 2, dadurch gekennzeichnet, dass wobei das Kontaktmaterial (6) ein Material, bevorzugt eine dünne Schicht (6) ist, das bzw. die bei einem Betrieb der bitterprinzipbasierten Magnetvorrichtung (1) supraleitend ist, wobei bevorzugt die dünne Schicht (6) eine Indium-, Zinn-, Blei- oder Niobschicht ist. . Magnetvorrichtung (1) nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ringe (4, 41 , 42, 43) in ihrer Ringfläche Durchgangslöcher (8) aufweisen, und die Ringe in der Spiralanordnung so übereinander angeordnet sind, dass die Durchgangslöcher (8) der Ringe (4, 41 , 42, 43) miteinander so fluchten, dass sie Kühlkanäle (9) bilden. 3. Magnetic device (1) according to claim 2, characterized in that the contact material (6) is a material, preferably a thin layer (6), which is superconducting during operation of the bitter principle-based magnetic device (1), the thin layer (6) preferably being an indium, tin, lead or niobium layer. . Magnet device (1) according to at least one of Claims 1 to 3, characterized in that the rings (4, 41, 42, 43) have through holes (8) in their annular surface, and the rings are arranged one above the other in the spiral arrangement in such a way that the Through-holes (8) of the rings (4, 41, 42, 43) are aligned with one another in such a way that they form cooling channels (9).
5. Magnetvorrichtung (1) nach zumindest einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in der Spiralanordnung zwischen den Ringen (4, 41 , 42, 43) Anfangsring (41), Endring (42) und einem oder mehreren Mittelringen (43) außer an den Kontaktabschnitten (A) Abstände vorgesehen sind, in denen ein Füllmaterial (7) zur Stabilisierung der Spiralanordnung angeordnet ist, wobei bevorzugt das Füllmaterial (7) ein isolierendes und/oder thermisch leitfähiges Material ist. . Magnetvorrichtung (1) nach Anspruch 5, dadurch gekennzeichnet, dass die Kühlkanäle (9) sich durch das Füllmaterial (7) erstrecken. 5. Magnet device (1) according to at least one of Claims 1 to 4, characterized in that in the spiral arrangement between the rings (4, 41, 42, 43) there are an initial ring (41), an end ring (42) and one or more middle rings (43 ) Apart from the contact sections (A), spacings are provided in which a filling material (7) is arranged to stabilize the spiral arrangement, the filling material (7) preferably being an insulating and/or thermally conductive material. . Magnetic device (1) according to Claim 5, characterized in that the cooling channels (9) extend through the filling material (7).
7. Magnetvorrichtung (1) nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Leiterschichten (2) bevorzugt Supraleiter-Schichten, besonders bevorzugt Hochtemperatur-Supraleiterschichten sind, die einen 2G-Hochtemperatur-Supraleiter, bevorzugt RE-123 aufweisen, wobei eine kristallographische C-Achse der Hochtemperatur-Supraleiterschicht parallel zu einer Längsachse der Spiralanordnung ausgerichtet ist. 7. Magnetic device (1) according to at least one of claims 1 to 6, characterized in that the conductor layers (2) are preferably superconductor layers, particularly preferably high-temperature superconductor layers, which have a 2G high-temperature superconductor, preferably RE-123, wherein a crystallographic c-axis of the high-temperature superconductor layer is oriented parallel to a longitudinal axis of the spiral assembly.
8. Magnetvorrichtung (1) nach zumindest einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Substratschichten (3) aus Edelstahl, Nickel, Nickel-, oder Nickel-Molybdän- Legierungen bestehen. Magnetvorrichtung (1) nach zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Anfangsring (41) und der Endring (42) an ihren Enden, die nicht mit einem Mittelring (43) in Strom leitendem Kontakt stehen, mit einer elektrischen Kontaktvorrichtung (11) verbunden sind, und/oder die elektrische Kontaktvorrichtung (11) eine Persistent-Mode-Brücke ist. Verwendung einer Magnetvorrichtung als Spule in einer Rotor-Stator-Anordnung einer elektrischen Maschine, dadurch gekennzeichnet, dass die Magnetvorrichtung eine Magnetvorrichtung (1) nach einem der Ansprüche 1 bis 9 ist. 8. Magnetic device (1) according to at least one of claims 1 to 7, characterized in that the substrate layers (3) consist of stainless steel, nickel, nickel or nickel-molybdenum alloys. Magnetic device (1) according to at least one of Claims 1 to 8, characterized in that the starting ring (41) and the end ring (42) are connected to an electrical contact device at their ends which are not in current-conducting contact with a central ring (43). (11) are connected, and/or the electrical contact device (11) is a persistent mode bridge. Use of a magnet device as a coil in a rotor-stator arrangement of an electrical machine, characterized in that the magnet device is a magnet device (1) according to one of Claims 1 to 9.
EP21766121.4A 2020-09-24 2021-08-18 Magnet device based on the bitter principle and use of a magnet device based on the bitter principle Pending EP4218035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020124852.0A DE102020124852A1 (en) 2020-09-24 2020-09-24 Bitter principle based magnetic device and use of a bitter principle based magnetic device
PCT/EP2021/025312 WO2022063425A1 (en) 2020-09-24 2021-08-18 Magnet device based on the bitter principle and use of a magnet device based on the bitter principle

Publications (1)

Publication Number Publication Date
EP4218035A1 true EP4218035A1 (en) 2023-08-02

Family

ID=77655521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21766121.4A Pending EP4218035A1 (en) 2020-09-24 2021-08-18 Magnet device based on the bitter principle and use of a magnet device based on the bitter principle

Country Status (4)

Country Link
US (1) US20230377785A1 (en)
EP (1) EP4218035A1 (en)
DE (1) DE102020124852A1 (en)
WO (1) WO2022063425A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8724126D0 (en) 1987-10-14 1987-11-18 Evetts J E Superconducting structures
JP3468978B2 (en) * 1996-04-10 2003-11-25 新日本製鐵株式会社 Continuous casting method of molten metal
US6925316B2 (en) 2002-04-08 2005-08-02 Christopher M. Rey Method of forming superconducting magnets using stacked LTS/HTS coated conductor

Also Published As

Publication number Publication date
WO2022063425A1 (en) 2022-03-31
DE102020124852A1 (en) 2022-03-24
US20230377785A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
EP2132866B1 (en) Linear machine having a primary part and a secondary part
DE102008029722B3 (en) Conductor arrangement for a resistive switching element with at least two conductor composites of superconducting conductor strips
DE69924898T2 (en) Resistive fault current limiter
DE69333128T2 (en) Power supply line for superconducting magnet system without liquid helium
DE19641438A1 (en) Passive magnet bearing structure, superconducting at high temperature, for radially holding rotor relative to stator
DE1932086C3 (en) Waveguide made of superconductor material and a metal that is normally electrically conductive at the operating temperature of the superconductor material
WO2014053307A1 (en) Superconductive coil device and production method
DE10035634A1 (en) Superconducting device with inductive current limiter unit using high-Tc superconducting material
EP0348465B1 (en) Current accumulator
EP0485395B1 (en) Superconducting homogeneous intense-field magnetic coil
EP2041808B1 (en) Superconducting current-limiting device of the resistive type with holding element
DE1275118B (en) Electrical circuit breaker for plant and network technology
DE4209518C2 (en) Magnetic coil structure
WO2022063425A1 (en) Magnet device based on the bitter principle and use of a magnet device based on the bitter principle
DE102018212764A1 (en) Superconducting magnet, method for its production, electrical machine and hybrid electric aircraft
WO2017088993A1 (en) Superconducting rolling bearing and rolling bearing arrangement
EP2721725B1 (en) Electrical machine and method for operating it
WO2004006345A2 (en) Bifilar conductor strip structure of a high-temperature superconductor for current limiting
WO2020038909A1 (en) Rotor with superconducting winding for continuous current mode operation
WO2020035309A1 (en) Superconducting current lead
WO2020089165A1 (en) Rotor, machine and method for magnetization
WO2010094262A1 (en) Coil for a superconducting magnet bearing
DE2056287C3 (en) Superconducting magnet coil with a two-pole or multi-pole winding
WO1989005044A1 (en) High-current switch
DE102015208470A1 (en) Electric coil device for current limitation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)