EP0348465B1 - Current accumulator - Google Patents

Current accumulator Download PDF

Info

Publication number
EP0348465B1
EP0348465B1 EP89900210A EP89900210A EP0348465B1 EP 0348465 B1 EP0348465 B1 EP 0348465B1 EP 89900210 A EP89900210 A EP 89900210A EP 89900210 A EP89900210 A EP 89900210A EP 0348465 B1 EP0348465 B1 EP 0348465B1
Authority
EP
European Patent Office
Prior art keywords
coil
current
accumulator
accumulator according
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89900210A
Other languages
German (de)
French (fr)
Other versions
EP0348465A1 (en
Inventor
Peter Ehrhart
Andreas GRÜNDEL
Götz Heidelberg
Weck Werner
Dr. Gerhard Reiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberg Motor GmbH
Original Assignee
Heidelberg Motor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6340925&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0348465(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heidelberg Motor GmbH filed Critical Heidelberg Motor GmbH
Publication of EP0348465A1 publication Critical patent/EP0348465A1/en
Application granted granted Critical
Publication of EP0348465B1 publication Critical patent/EP0348465B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/01Superconductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/703Microelectronic device with superconducting conduction line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/869Power supply, regulation, or energy storage system
    • Y10S505/87Power supply, regulation, or energy storage system including transformer or inductor

Definitions

  • the invention relates to a current storage device in the form of a superconducting storage coil which is constructed with superconductors of very small diameter or very small layer thickness, characterized in that the storage coil is constructed with a plurality of coil segments which follow one another in the longitudinal direction of the storage coil and which are individually prefabricated and with electrical circuitry are assembled to form the storage coil.
  • a current storage device in the form of a superconducting storage coil, which is constructed with superconductors of very small layer thickness, is known from document USA-3 205 461.
  • the structure and manufacture of the storage coil are simplified due to the invention.
  • the coil segments can be magnetically coupled to one another, for example have a common coil core.
  • Particularly suitable, small diameters or small layer thicknesses of the superconductors are less than 20 ⁇ m, preferably less than 10 ⁇ m.
  • a particularly preferred embodiment of the invention consists in constructing the storage coil with high-temperature superconductors.
  • High-temperature superconductors are those that are superconducting even at temperatures that are considerably higher than was previously thought possible.
  • a transition temperature of 80 ° K can be specified for these materials, i.e. the temperature of the transition from the superconducting to the normal conducting state. It is typical that high-temperature superconductors are still superconducting at a temperature just below the boiling point of liquid nitrogen.
  • La 1.85 Sr 0.15 CuO4 which has a transition temperature of approx. 40 ° K and is not a high-temperature superconductor in the above definition. These materials are usually so-called layer conductors or two-dimensional superconductors. High-temperature superconductors are known per se, as are conventional superconductors, whose transition temperature is in the range of a few degrees Kelvin, for which more concrete examples do not have to be given because they are generally known.
  • the small diameter or small layer thickness of the superconductors of the storage coil means that the eddy current losses in the superconductors are kept as small as possible even when energy is drawn in the form of very short energy pulses.
  • Preferred ways of producing such superconductors according to the invention are vapor deposition, local mechanical removal or etching away of areas from a larger area and winding of the storage coil from very thin wires, so-called filament wires.
  • the vapor deposition and the local layer removal give the possibility of having a plurality of superconductors or superconductor rings on one another in the radial direction in consideration of a storage coil cross section in order to increase the storage capacity per unit length of the storage coil, for example by repeated evaporation or repeated layer application and local Material removal.
  • the superconducting filament wires In the case of a winding structure of the storage coil, it is preferred to alternately wind the superconducting filament wires with very thin, normally conductive metal wires.
  • the normally conductive metal wires should advantageously be at least as thin as the superconducting filament wires in order to keep the eddy current losses as small as possible even in the normally conductive metal wires.
  • the term "alternating" is not only to be understood in the strict sense of the word. Rather, it should be stated that a matrix-like structure of partially superconducting and partially normal-conducting filament wires is sought, without a superconducting filament wire necessarily having to alternate with a normal-conducting filament wire in the axial direction and / or in the radial direction. The result of this structure is that even if the superconductivity breaks down in the superconducting filament wires, at least the normal line remains in the normal-conducting metal wires.
  • a construction of the storage coil from coil segments gives the preferred possibility of interconnecting a part or all of the coil segments for loading the storage coil and / or of having different connection of the coil segments when loading and unloading the storage coil, the coil segments active during loading being identical to those during unloading active coil segments do not have to be identical.
  • a particularly preferred possibility is to load the storage coil with a part or all of the coil segments connected in series and to discharge it in parallel with part or all of the coil segments. In this way, one has n times the discharge current of an individual coil segment when discharging with n coil segments.
  • the number of coil segments directly involved in the discharge can be selected by switching modules, so that the size of the discharge current can be set in this simple manner. The The charging current is generally unchanged.
  • Magnetic flux quanta can be introduced into the storage coil in particular according to the flow pump principle, that is to say distributed over time in such small "portions" that the superconducting state of the superconductors does not collapse.
  • Preferred technical possibilities for this are a pulsating magnetic field, preferably generated by a rotatable magnetic ring with permanent magnets, or a pulsating field of a current conductor, which leads to the inductive introduction of magnetic flux quanta. It is also possible to use the rotating mass of the magnetic ring for energy storage.
  • the magnetic ring is preferably driven mechanically or by an electric motor, in particular driven directly.
  • the storage coil can be loaded by a flywheel storage device, either in the form that the above-described magnetic ring is part of the flywheel of the flywheel storage device, which is preferably charged by an integrated electric motor while increasing the speed, or in the form of electric current that is operated with a generator of the flywheel storage is generated, the storage coil is fed.
  • the toroidal shape leads to a particularly compact power storage and also offers particularly favorable, geometrical-functional conditions for charging according to the flow pump principle.
  • the term “in the longitudinal direction of the storage coil” used in the present text is to be understood such that this longitudinal direction runs in a circular manner in accordance with the circular shape of the central axis of the coil.
  • the ratio between the radial thickness of the superconductor-occupied space and the storage coil diameter is small.
  • the diameter of the entire storage coil in the case of the toroidal shape measured by a cross section of the toroidal ring) is made as large as possible and the radial thickness of the actual coil or the actual coil segments is as small as possible.
  • the storage coil can be designed as a coreless coil or air coil.
  • the storage coil is preferably formed with a core constructed with superconducting material, in particular in the form of a layer-by-layer change between insulating material and very thin, superconducting layers.
  • the core forces the magnetic field of the coil or the coil segments to the outside and therefore leads to a magnetic field concentration.
  • the storage coil preferably has one or more superconducting discharge coils which are (are) magnetically coupled to the superconductors. These can be coil segments of the storage coil itself. However, it is also possible to provide separate discharge coils between the actual windings or coil segments of the storage coils. You can take advantage of a transformer effect with different number of turns.
  • the technical design of the storage coil is such that at least its superconductors are arranged in a helium bath or - in the case of high-temperature superconductors - in a nitrogen bath.
  • the design is usually such that this bath can dissipate the heat-producing losses from the sources in question without the superconducting state in the storage coil and / or in its core collapsing.
  • Such heat sources are, in particular, the eddy currents in the superconductors which cannot be completely eliminated, the current heat losses in the metal filaments of the coil, the losses, in particular eddy current losses, in the core of the coil, the heat which arises and flows in in the area of the current supply and current dissipation, etc. This also applies for the state that the core material has been converted into the normally conductive state.
  • the laser or maser device mentioned above can be arranged in the core material and can be suitably shielded from the superconductors of the actual coil, so that this device does not impair the superconducting state of the coil material during its operation.
  • the storage coil according to the invention is preferably discharged using one or more superconducting high-current switches.
  • This high-current switch can have superconducting material in the form of thin layers, thin wires or powder in a non-conductive matrix. It has a device with which the superconducting material can be converted from the superconducting state to the non-superconducting state and vice versa. Cooling passages are preferably present between the layers or wires or powder arrangements of the superconducting material.
  • the power storage device is preferably used to supply power to a power consumer in the form of electrical energy coils, each with a very short period of time.
  • Particularly suitable, short durations of the respective energy pulses are less than 10 ms, preferably less than 5 ms, most preferably less than 1 ms.
  • the current storage device enables extremely low-loss storage and also discontinuous current draw with a high storage capacity based on volume or weight.
  • the energy pulses extracted when the storage coil is discharged can be so short in time that the evasive movements of the flux tubes in the superconducting material of the actual coil and possibly of the core are reduced, and thereby the associated losses are reduced.
  • the storage coil according to the invention is particularly suitable for supplying power to consumers who require brief current pulses of high energy.
  • a typical example is high-energy workpiece processing machines.
  • Typical values are more than 108 W per energy pulse, preferably 108 to 1011 W.
  • the storage coil 2 shown in FIG. 1 is toroidal and has a circular toroidal cross section according to II-II.
  • the supporting structure of the storage coil 2 consists of an insulator material and can be illustrated geometrically as a hollow cylinder bent in a circular shape.
  • the support structure can be designed in such a way that it becomes clearer from the embodiment according to FIG. 2.
  • Coil segments 4 are arranged in succession on the support structure along the torus ring, each of which is considered circular in itself. These coil segments are, for example, wound from very thin filament wires or constructed with a radially successive layer sequence of insulating material and conductive material, cf. also embodiment according to FIG. 2. The coil segments 4 are connected to one another in an electrically conductive manner, the type of connection being explained in more detail below.
  • the current conductors of the coil segments 4 consist of superconducting material, preferably high-temperature superconducting material.
  • Either the entire storage coil 2 is arranged in a bath made of liquid helium or - in the case of high-temperature superconductors - made of liquid nitrogen. Or the cooling of the superconductors takes place with smaller cooling rooms through which liquid helium or liquid nitrogen flows, as is illustrated, for example, in the embodiment according to FIG. 2.
  • Connections to an outer, primary charging circuit and to an outer, secondary discharge circuit are not shown, but are available.
  • FIG. 2 A preferred construction of a coil segment 4 is illustrated in more detail in FIG. 2.
  • the insulating support structure which has already been mentioned above, is designated by 6.
  • a superconducting ring 8 thereon, for example as a vapor-deposited thin layer or ceramic layer applied in some other way or as a remaining ring residue of a coating of superconducting material which is initially applied continuously along the storage coil 4.
  • Radially outside the Rings 8 has an annular or cylindrical coolant space 10 through which liquid helium or nitrogen flows.
  • the outermost coolant space 10 is enclosed by a housing 12.
  • the superconducting rings 8 can be electrically connected individually. However, it is also possible, for example, to electrically interrupt each superconducting ring 8 at a circumferential point and, as it were, to simulate a coil with radially successive turns by corresponding electrical connection of the individual interrupted rings.
  • segment-shaped carrier insulators 14 Between the two carrier insulators 14 there is a core 13, and this is very similar to the structure of the actual coil segments 4, a layer sequence of insulator layers 16, superconducting, very thin layers 18 and Flat cold rooms through which liquid helium or liquid nitrogen flows.
  • a coil segment 4 wound from very thin, superconducting filament wires can also be provided, optionally with more or less strictly alternating, normally conducting, very thin metal filaments.
  • FIG. 3 and 4 illustrate how the individual coil segments 4, which together form the toroidal storage coil 2, are interconnected.
  • FIG. 3 When charging, a series connection of the coil segments is preferred (FIG. 3), while when the storage coil 2 is being discharged, a parallel connection of the individual coil segments 4 is preferred (FIG. 4).
  • FIG. 4 When charging, a series connection of the coil segments is preferred (FIG. 3), while when the storage coil 2 is being discharged, a parallel connection of the individual coil segments 4 is preferred (FIG. 4). 3 and 4, one can also see the ends of the primary circuit 22 and the secondary circuit 24.
  • connection of the coil segments 4 is such that it can be switched from series connection to parallel connection and vice versa. It goes without saying that the connection can also be carried out in such a way that either all or only a smaller or larger part of the coil segments 4 is used directly during the discharge, for example only every second or every third coil segment 4, as a result of which the current load is distributed uniformly along the torus becomes.
  • the torus must be cut open at one point and thought of as being rectilinear.
  • a superconducting plate 26 which is very thin in accordance with the superconductor thickness and whose plane is perpendicular to the axis of the torus ring, projects radially outward beyond the coil segment 4 in question.
  • a magnetic ring 28 is concentric rotatable to the torus ring axis 30.
  • the magnetic ring has a row of permanent magnet north poles, circumferentially spaced in front of the drawing plane of FIG. 5, and a row of permanent magnetic south poles distributed in the same way circumferentially behind the drawing plane of FIG. 5.
  • a solenoid-shaped storage coil can be charged quite analogously, the magnet ring 28 rotating about the rectilinear solenoid axis.
  • the magnet ring 28 shown can be rotated along the torus, that is to say about an axis perpendicular to the plane of the drawing in FIG. 5 through the center of the torus ring.
  • the plate 26 in FIG. 5 would have to be tilted upwards by 90 °; the north poles were above and the south poles below the plate 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electromechanical Clocks (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Amplifiers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PCT No. PCT/EP88/01051 Sec. 371 Date Jul. 20, 1989 Sec. 102(e) Date Jul. 20, 1989 PCT Filed Nov. 18, 1988 PCT Pub. No. WO89/05033 PCT Pub. Date Jun. 1, 1989.A process for supplying a current consumer with current from an accumulator for electrical energy, in which electrical energy pulses of very short duration each are supplied to the current consumer from a superconducting accumulator (2) made with superconductors (8) of very small diameter or very small layer thickness. The superconductors (8) are preferably high-temperature superconductors.

Description

Gegenstand der Erfindung ist ein Stromspeicher in Form einer supraleitenden Speicherspule, die mit Supraleitern sehr kleinen Durchmessers oder sehr kleiner Schichtdicke aufgebaut ist, dadurch gekennzeichnet, daß die Speicherspule mit mehreren, in Längsrichtung der Speicherspule aufeinanderfolgenden Spulensegmenten aufgebaut ist, die einzeln vorgefertigt und unter elektrischer Verschaltung zu der Speicherspule zusammengefügt sind.The invention relates to a current storage device in the form of a superconducting storage coil which is constructed with superconductors of very small diameter or very small layer thickness, characterized in that the storage coil is constructed with a plurality of coil segments which follow one another in the longitudinal direction of the storage coil and which are individually prefabricated and with electrical circuitry are assembled to form the storage coil.

Ein Stromspeicher in Form einer supraleitenden Speicherspule, die mit Supraleitern sehr kleiner Schichtdicke aufgebaut ist, ist aus dem Dokument USA-3 205 461 bekannt.A current storage device in the form of a superconducting storage coil, which is constructed with superconductors of very small layer thickness, is known from document USA-3 205 461.

Aus dem Dokument FR-A-2 112 054 ist es bekannt, mehrere supraleitende Speicherspulen in Serie geschaltet zu laden und parallel geschaltet zu entladen.From document FR-A-2 112 054 it is known to charge several superconducting storage coils connected in series and to discharge them connected in parallel.

Aus dem Dokument IEEE Transactions on Magnets, Vol. MAG-23, No. 2, März 1987, S. 553 bis 556, ist eine supraleitende Speicherspule bekannt, die impulsförmig mit 2 Hz geladen und entladen wird.From the document IEEE Transactions on Magnets, Vol. MAG-23, No. 2, March 1987, pp. 553 to 556, a superconducting storage coil is known which is charged and discharged in pulses at 2 Hz.

Aus dem Dokument IEEE Transactions on Energy Conversion, Vol. EG-1, No. 4, Dezember 1986, ist eine supraleitende Speicherspule bekannt, die vier radial aufeinanderfolgende, elektrisch in Serie geschaltete Lagen aufweist.From the document IEEE Transactions on Energy Conversion, Vol. EG-1, No. 4, December 1986, a superconducting storage coil is known which has four radially successive, electrically connected layers.

Aufgrund der Erfindung vereinfacht sich der Aufbau und die Fertigung der Speicherspule. Außerdem lassen sich auf besonders einfache Weise nach dem Baukastenprinzip wahlweise Speicherspulen mit kleinerem oder größerem Speichervermögen bauen.The structure and manufacture of the storage coil are simplified due to the invention. In addition, Build storage coils with smaller or larger storage capacity in a particularly simple manner using the modular principle.

Die Spulensegmente können magnetisch miteinander gekoppelt sein, beispielsweise einen gemeinsamen Spulenkern haben.The coil segments can be magnetically coupled to one another, for example have a common coil core.

Besonders geeignete, kleine Durchmesser oder kleine Schichtdicken der Supraleiter sind weniger als 20 µm, vorzugsweise weniger als 10 µm.Particularly suitable, small diameters or small layer thicknesses of the superconductors are less than 20 μm, preferably less than 10 μm.

Eine besonders bevorzugte Ausgestaltung der Erfindung besteht darin, die Speicherspule mit Hochtemperatur--Supraleitern aufzubauen. Unter Hochtemperatur-Supraleitern versteht man solche, die noch bei erheblich höheren Temperaturen, als man es bis vor einiger Zeit für grundsätzlich möglich gehalten hat, supraleitend sind. Als griffige Grenze kann man für diese Materialien eine Sprungtemperatur, also Temperatur des Übergangs vom supraleitenden in den normalleitenden Zustand, von 80 °K angeben. Typisch ist, daß Hochtemperatur-Supraleiter bei einer Temperatur knapp unterhalb des Siedepunktes von flüssigem Stickstoff noch supraleitend sind. Typische Materialien für Hochtemperatur- Supraleiter sind ABa₂Cu₃O₇ (mit A = YLa, Nd, Sm, Eu, Gd, Ho, Er, Lu) sowie Y1,2Ba0,8CuO₄. Als weiteres Beispiel sei La1,85Sr0,15CuO₄ erwähnt, das eine Sprungtemperatur von ca. 40 °K aufweist und in obiger Definition kein Hochtemperatur-Supraleiter ist. Diese Materialien sind in der Regel sogenannte Schichtleiter oder zweidimensionale Supraleiter. Hochtemperatur-Supraleiter sind an sich bekannt, wie auch herkömmliche Supraleiter, deren Sprungtemperatur im Bereich von einigen Grad Kelvin liegt, wofür konkretere Beispiele, weil allgemein bekannt, nicht angegeben werden müssen.A particularly preferred embodiment of the invention consists in constructing the storage coil with high-temperature superconductors. High-temperature superconductors are those that are superconducting even at temperatures that are considerably higher than was previously thought possible. As a non-slip limit, a transition temperature of 80 ° K can be specified for these materials, i.e. the temperature of the transition from the superconducting to the normal conducting state. It is typical that high-temperature superconductors are still superconducting at a temperature just below the boiling point of liquid nitrogen. Typical materials for high-temperature superconductors are ABa₂Cu₃O₇ (with A = YLa, Nd, Sm, Eu, Gd, Ho, Er, Lu) and Y 1.2 Ba 0.8 CuO₄. Another example is La 1.85 Sr 0.15 CuO₄, which has a transition temperature of approx. 40 ° K and is not a high-temperature superconductor in the above definition. These materials are usually so-called layer conductors or two-dimensional superconductors. High-temperature superconductors are known per se, as are conventional superconductors, whose transition temperature is in the range of a few degrees Kelvin, for which more concrete examples do not have to be given because they are generally known.

Der kleine Durchmesser bzw. kleine Schichtdicke der Supraleiter der Speicherspule führt dazu, daß auch bei Energieentnahme in Form zeitlich sehr kurzer Energiepulse die Wirbelstromverluste in den Supraleitern möglichst klein gehalten werden. Erfindungsgemäß bevorzugte Möglichkeiten der Herstellung derartiger Supraleiter sind das Aufdampfen, das lokale mechanische Abtragen oder Wegätzen von Bereichen aus einer großflächigeren Schicht und das Wickeln der Speicherspule aus sehr dünnen Drähten, sogenannten Filamentdrähten. Nicht nur das Wickeln sondern auch das Aufdampfen und das lokale Schichtentfernen gibt die Möglichkeit, bei einem betrachteten Speicherspulenquerschnitt in Radialrichtung mehrere Supraleiter bzw. Supraleiterringe aufeinander zu haben, um das Speichervermögen pro Längeineinheit der Speicherspule zu erhöhen, beispielsweise durch wiederholtes Aufdampfen oder wiederholte Schichtaufbringung und lokale Materialentfernung. Zwischen den einzelnen Supraleiterlagen befinden sich in der Regel isolierende Zwischenlagen, die beispielsweise aufgedampft werden können und die beispielsweise aus Aluminiumoxid bestehen können. Man kann derartige Herstellungstechniken so führen, daß sich bei den radial aufeinanderfolgenden Schichten bzw. Lagen elektrisch ein wicklungsförmiger Aufbau ergibt. Herstellungsgünstiger ist es jedoch häufig, ringartige Schichten oder Lagen auszubilden und diese jeweils elektrisch zu kontaktieren bzw. anzuschließen. Im Fall eines Wicklungsaufbaus der Speicherspule ist es bevorzugt, die supraleitenden Filamentdrähte im Wechsel mit sehr dünnen, normalleitenden Metalldrähten zu wickeln. Die normalleitenden Metalldrähte sollten günstigerweise mindestens so dünn wie die supraleitenden Filamentdrähte sein, um auch in den normalleitenden Metalldrähten die Wirbelstromverluste möglichst klein zu halten. Die Bezeichnung "im Wechsel" ist nicht nur im strengen Wortsinn zu verstehen. Es soll vielmehr ausgesagt werden, daß ein matrixartiger Aufbau von teils supraleitenden teils normalleitenden Filamentdrähten angestrebt wird, ohne daß in Axialrichtung und/oder in Radialrichtung unbedingt jeweils ein supraleitender Filamentdraht exakt mit einem normalleitenden Filamentdraht abwecheln muß. Dieser Aufbau hat zur Folge, daß selbst bei einem Zusammenbruch der Supraleitung in den supraleitenden Filamentdrähten wenigstens noch die Normalleitung in den normalleitenden Metalldrähten vorhanden bleibt.The small diameter or small layer thickness of the superconductors of the storage coil means that the eddy current losses in the superconductors are kept as small as possible even when energy is drawn in the form of very short energy pulses. Preferred ways of producing such superconductors according to the invention are vapor deposition, local mechanical removal or etching away of areas from a larger area and winding of the storage coil from very thin wires, so-called filament wires. Not only the winding, but also the vapor deposition and the local layer removal give the possibility of having a plurality of superconductors or superconductor rings on one another in the radial direction in consideration of a storage coil cross section in order to increase the storage capacity per unit length of the storage coil, for example by repeated evaporation or repeated layer application and local Material removal. There are usually insulating intermediate layers between the individual superconductor layers, which are vapor-deposited, for example can and which can consist of aluminum oxide, for example. Manufacturing techniques of this type can be carried out in such a way that the radially successive layers or layers result in an electrically winding-like structure. However, it is often more economical to produce ring-like layers or layers and to contact or connect them electrically. In the case of a winding structure of the storage coil, it is preferred to alternately wind the superconducting filament wires with very thin, normally conductive metal wires. The normally conductive metal wires should advantageously be at least as thin as the superconducting filament wires in order to keep the eddy current losses as small as possible even in the normally conductive metal wires. The term "alternating" is not only to be understood in the strict sense of the word. Rather, it should be stated that a matrix-like structure of partially superconducting and partially normal-conducting filament wires is sought, without a superconducting filament wire necessarily having to alternate with a normal-conducting filament wire in the axial direction and / or in the radial direction. The result of this structure is that even if the superconductivity breaks down in the superconducting filament wires, at least the normal line remains in the normal-conducting metal wires.

Ein Aufbau der Speicherspule aus Spulensegmenten gibt die bevorzugte Möglichkeit, für das Laden der Speicherspule einen Teil oder alle Spulensegmente zusammenzuschalten und/oder die Verschaltung der Spulensegmente beim Laden und beim Entladen der Speicherspule unterschiedlich zu haben, wobei die beim Laden aktiven Spulensegmente mit den beim Entladen aktiven Spulensegmenten nicht identisch sein müssen. Eine besonders bevorzugte Möglichkeit besteht darin, die Speicherspule mit Serienschaltung eines Teils oder aller Spulensegmente zu laden und in Parallelschaltung eines Teils oder aller Spulensegmente zu entladen. Auf diese Weise hat man beim Entladen bei n Spulensegmenten den n-fachen Entladestrom eines einzelnen Spulensegments. Außerdem kann man durch Schaltbausteine die Anzahl der beim Entladen direkt mitwirkenden Spulensegmente wählbar machen, so daß auf diese einfache Art die Größe des Entladestroms eingestellt werden kann. Der Ladestrom ist in der Regel im wesentlichen unverändert.A construction of the storage coil from coil segments gives the preferred possibility of interconnecting a part or all of the coil segments for loading the storage coil and / or of having different connection of the coil segments when loading and unloading the storage coil, the coil segments active during loading being identical to those during unloading active coil segments do not have to be identical. A particularly preferred possibility is to load the storage coil with a part or all of the coil segments connected in series and to discharge it in parallel with part or all of the coil segments. In this way, one has n times the discharge current of an individual coil segment when discharging with n coil segments. In addition, the number of coil segments directly involved in the discharge can be selected by switching modules, so that the size of the discharge current can be set in this simple manner. The The charging current is generally unchanged.

Es ist möglich, mehrere, magnetisch gekoppelte Speicherspulen zusammenzuschalten, insbesondere zum Entladen.It is possible to interconnect several magnetically coupled storage coils, in particular for unloading.

Die einfachste Möglichkeit zum Laden der Speicherspule besteht darin, daß diese an einen primärstromkreis angeschlossen ist. Alternativ oder zusätzlich ist es möglich und bei vielen Einsatzzwecken sogar bevorzugt, die Speicherspule mittels einer Ladeeinrichtung magnetisch oder induktiv zu laden. Magnetische Flußquanten können insbesondere nach dem Flußpumpenprinzip in die Speicherspule eingebracht werden, also zeitlich verteilt in so kleinen "Portionen", daß der supraleitende Zustand der Supraleiter nicht zusammenbricht. Bevorzugte technische Möglichkeiten hierzu sind ein pulsierendes Magnetfeld, erzeugt vorzugsweise durch einen rotierbaren Magnetring mit Dauermagneten, oder ein pulsierendes Feld eines Stromleiters, was zur induktiven Einbringung von magnetischen Flußquanten führt. Es ist möglich, die rotierende Masse des Magnetrings zusätzlich zur Energiespeicherung zu nutzen. Der Magnetring wird vorzugsweise mechanisch oder elektromotorisch angetrieben, insbesondere direkt angetrieben. Das Laden der Speicherspule kann durch einen Schwungradspeicher erfolgen, entweder in der Form, daß der vorstehend geschilderte Magnetring Bestandteil des Schwungrads des Schwungradspeichers ist, der vorzugsweise durch einen integrierten Elektromotor unter Drehzahlerhöhung geladen wird, oder in der Form, daß elektrischer Strom, der mit Generatorbetrieb des Schwungradspeichers erzeugt wird, der Speicherspule zugeleitet wird.The easiest way to charge the storage coil is to connect it to a primary circuit. As an alternative or in addition, it is possible and in many cases even preferred to charge the storage coil magnetically or inductively by means of a charging device. Magnetic flux quanta can be introduced into the storage coil in particular according to the flow pump principle, that is to say distributed over time in such small "portions" that the superconducting state of the superconductors does not collapse. Preferred technical possibilities for this are a pulsating magnetic field, preferably generated by a rotatable magnetic ring with permanent magnets, or a pulsating field of a current conductor, which leads to the inductive introduction of magnetic flux quanta. It is also possible to use the rotating mass of the magnetic ring for energy storage. The magnetic ring is preferably driven mechanically or by an electric motor, in particular driven directly. The storage coil can be loaded by a flywheel storage device, either in the form that the above-described magnetic ring is part of the flywheel of the flywheel storage device, which is preferably charged by an integrated electric motor while increasing the speed, or in the form of electric current that is operated with a generator of the flywheel storage is generated, the storage coil is fed.

Bevorzugte geometrische Konfigurationen der Speicherspule sind die Torusform (= ringförmig gekrümmter Hohlzylinder) und Solenoidform (= Hohlzylinder). Die Torusform führt zu einem besonders kompakten Stromspeicher und bietet außerdem besonders günstige, geometrisch-funktionelle Verhältnisse für das Laden nach dem Flußpumpenprinzip. Im Fall der Torusform der Speicherspule ist der im vorliegenden Text verwendete Begriff "in Längsrichtung der Speicherspule" so zu verstehen, daß diese Längsrichtung entsprechend der Kreisgestalt der Mittelachse der Spule kreisförmig verläuft.Preferred geometric configurations of the storage coil are the toroidal shape (= annularly curved hollow cylinder) and the solenoid shape (= hollow cylinder). The toroidal shape leads to a particularly compact power storage and also offers particularly favorable, geometrical-functional conditions for charging according to the flow pump principle. In the case of the toroidal shape of the storage coil, the term “in the longitudinal direction of the storage coil” used in the present text is to be understood such that this longitudinal direction runs in a circular manner in accordance with the circular shape of the central axis of the coil.

Besonders günstige Bedingungen unter dem Aspekt der Minimierung der Randeffekte der Spule erhält man, wenn - wie bevorzugt - das Verhältnis zwischen der radialen Dicke des supraleiterbesetzten Raums und dem Speicherspulendurchmesser klein ist. Man macht also, abhängig vom gewünschten Speichervermögen der Speicherspule, den Durchmesser der gesamten Speicherspule (im Fall der Torusform gemessen an einem Querschnitt des Torusrings) möglichst groß und die radiale Dicke der eigentlichen Spule bzw. der eigentlichen Spulensegmente möglichst klein.Particularly favorable conditions from the aspect of minimizing the edge effects of the coil are obtained if, as is preferred, the ratio between the radial thickness of the superconductor-occupied space and the storage coil diameter is small. Depending on the desired storage capacity of the storage coil, the diameter of the entire storage coil (in the case of the toroidal shape measured by a cross section of the toroidal ring) is made as large as possible and the radial thickness of the actual coil or the actual coil segments is as small as possible.

Die Speicherspule kann als kernlose Spule bzw. Luftspule ausgebildet sein. Vorzugsweise ist die Speicherspule mit einem mit supraleitendem Material aufgebauten Kern ausgebildet, insbesondere in Form eines schichtweisen Wechsels zwischen Isoliermaterial und sehr dünnen, supraleitenden Schichten. Der Kern drängt das Magnetfeld der Spule bzw. der Spulensegmente nach außen und führt daher zu einer Magnetfeldkonzentration.The storage coil can be designed as a coreless coil or air coil. The storage coil is preferably formed with a core constructed with superconducting material, in particular in the form of a layer-by-layer change between insulating material and very thin, superconducting layers. The core forces the magnetic field of the coil or the coil segments to the outside and therefore leads to a magnetic field concentration.

Es ist möglich, die Stromhöhe in der Speicherspule durch Übergang des Materials des Kerns vom supraleitenden Zu- stand in den normalleitenden Zustand und umgekehrt zu ändern bzw. einzustellen. Dies geht im Prinzip durch Temperaturänderung des Kerns, insbesondere durch Wärmeenergieeinstrah- lung. Besonders bevorzugt ist eine Einrichtung zum Aufbringen eines genügend starken Magnetfelds auf den Kern, das den supraleitenden Zustand des Kerns zusammenbrechen läßt. Weitere Möglichkeiten sind Einleiten eines genügend genügend starken Stromimpulses oder eines Zusatzstromimpulses in den Kern, Einstrahlen eines Hochfrequenzfeldes in den Kern, Einwirkenlassen eines Laserstrahls auf den Kern und/oder Einwirkenlassen eines Maserstrahls auf den Kern. Insgesamt gilt, daß die im Material des Kerns der Speicherspule erzeugten Feldstärken und/oder Temperaturen den gewünschten, supraleitenden Zustand der Speicherspule nicht beeinflussen sollen.It is possible to change or adjust the current level in the storage coil by changing the material of the core from the superconducting state to the normal conducting state and vice versa. In principle, this can be done by changing the temperature of the core, in particular by thermal energy. A device for applying a sufficiently strong magnetic field to the core, which causes the superconducting state of the core to collapse, is particularly preferred. Further possibilities are the introduction of a sufficiently strong current pulse or an additional current pulse into the core, irradiation of a high-frequency field in the core, exposure of a laser beam to the core and / or exposure of a maser beam to the core. All in all, the field strengths and / or temperatures generated in the material of the core of the storage coil should not influence the desired superconducting state of the storage coil.

Vorzugsweise weist die Speicherspule eine oder mehere, supraleitende Entladespulen auf, die magnetisch an die Supraleiter angekoppelt ist (sind). Dabei kann es sich um Spulensegmente der Speicherspule selbst handeln. Es ist aber auch möglich, zwischen den eigentlichen Wicklungen oder Spulensegmenten der Speicherspulen gesonderte Entladespulen vorzusehen. Dabei kann man sich bei unterschiedlicher Windungszahl einen Transformatoreffekt zunutze machen.The storage coil preferably has one or more superconducting discharge coils which are (are) magnetically coupled to the superconductors. These can be coil segments of the storage coil itself. However, it is also possible to provide separate discharge coils between the actual windings or coil segments of the storage coils. You can take advantage of a transformer effect with different number of turns.

In den meisten Fällen ist die technische Ausführung der Speicherspule so, daß zumindest deren Supraleiter in einem Heliumbad oder - im Fall von Hochtemperatur-Supraleitern - in einem Stickstoffbad angeordnet sind. Man kann die gesamte Speicherspule in einem derartigen Bad anordnen. Die Auslegung ist dabei üblicherweise so, daß dieses Bad die sich in Wärmeerzeugung äußernden Verluste aus den in Frage kommenden Quellen abführen kann, ohne daß der supraleitende Zustand in der Speicherspule und/oder in deren Kern zusammenbricht. Solche Wärmequellen sind insbesondere die nicht vollständig eliminierbaren Wirbelströme in den Supraleitern, die Stromwärmeverluste in den Metallfilamenten der Spule, die Verluste, insbesondere Wirbelstromverluste, im Kern der Spule, die im Bereich der Stromzuführung und der Stromabführung entstehende und einfließende Wärme, etc. Dies gilt auch für den Zustand, daß das Kernmaterial in den normalleitenden Zustand überführt worden ist.In most cases, the technical design of the storage coil is such that at least its superconductors are arranged in a helium bath or - in the case of high-temperature superconductors - in a nitrogen bath. One can store the entire storage coil in one Arrange bathroom. The design is usually such that this bath can dissipate the heat-producing losses from the sources in question without the superconducting state in the storage coil and / or in its core collapsing. Such heat sources are, in particular, the eddy currents in the superconductors which cannot be completely eliminated, the current heat losses in the metal filaments of the coil, the losses, in particular eddy current losses, in the core of the coil, the heat which arises and flows in in the area of the current supply and current dissipation, etc. This also applies for the state that the core material has been converted into the normally conductive state.

Die weiter vorn angesprochene Laser- oder Maser-Einrichtung kann im Kernmaterial angeordnet und geeignet von den Supraleitern der eigentlichen Spule abgeschirmt sein, so daB diese Einrichtung bei ihrem Betrieb nicht den supraleitenden Zustand des Spulenmaterials beeinträchtigt.The laser or maser device mentioned above can be arranged in the core material and can be suitably shielded from the superconductors of the actual coil, so that this device does not impair the superconducting state of the coil material during its operation.

Vorzugsweise wird die erfindungsgemäße Speicherspule mit Hilfe eines oder mehrerer supraleitender Hochstromschalter entladen. Dieser Hochstromschalter kann Supraleitmaterial in Form von Dünnschichten, dünnen Drähten oder Pulver in nichtleitender Matrix aufweisen. Er weist eine Einrichtung auf, mit der das Supraleitmaterial vom supraleitenden Zustand in den nicht-supraleitenden Zustand und umgekehrt überführbar ist. Vorzugsweise sind Kühlpassagen zwischen den Lagen bzw. Drähten bzw. Pulveranordnungen des Supraleitmaterials vorhanden.The storage coil according to the invention is preferably discharged using one or more superconducting high-current switches. This high-current switch can have superconducting material in the form of thin layers, thin wires or powder in a non-conductive matrix. It has a device with which the superconducting material can be converted from the superconducting state to the non-superconducting state and vice versa. Cooling passages are preferably present between the layers or wires or powder arrangements of the superconducting material.

Vorzugsweise wird der erfindungsgemäße Stromspeicher zur Stromversorgung eines Stromverbrauchers in Form von elektrischen Energiespulen mit jeweils sehr kurzer Zeitdauer verwendet. Besonders geeignete, kurze Zeitdauern der jeweiligen Energiepulse sind weniger als 10 ms, vorzugsweise weniger als 5 ms, höchst vorzugsweise weniger als 1 ms.The power storage device according to the invention is preferably used to supply power to a power consumer in the form of electrical energy coils, each with a very short period of time. Particularly suitable, short durations of the respective energy pulses are less than 10 ms, preferably less than 5 ms, most preferably less than 1 ms.

Der erfindungsgemäße Stromspeicher ermöglicht bei hohem, auf das Volumen bzw. Gewicht bezogenem Speichervermögen eine extrem verlustarme Speicherung und auch eine diskontinuierliche Stromentnahme.The current storage device according to the invention enables extremely low-loss storage and also discontinuous current draw with a high storage capacity based on volume or weight.

Die beim Entladen der Speicherspule entnommenen Energiepulse können zeitlich so kurz sein, daß die Ausweichbewegungen der Flußschläuche im supraleitenden Material der eigentlichen Spule und ggf. des Kerns reduziert und dadurch hiermit einhergehende Verluste erniedrigt werden.The energy pulses extracted when the storage coil is discharged can be so short in time that the evasive movements of the flux tubes in the superconducting material of the actual coil and possibly of the core are reduced, and thereby the associated losses are reduced.

Die erfindungsgemäße Speicherspule eignet sich ganz besonders zur Stromversorgung von Verbrauchern, die kurzzeitige Strompulse hoher Energie benötigen. Als ein typisches Beispiel seien Hochenergie-Werkstückbearbeitungsmaschinen genannt.The storage coil according to the invention is particularly suitable for supplying power to consumers who require brief current pulses of high energy. A typical example is high-energy workpiece processing machines.

Trotz der sehr kurzen Energiepulsdauer, mit der beim Entladen der erfindungsgemäßen Speicherspule vorzugsweise gearbeitet wird, ist wegen des beträchtlichen Energieinhalts pro Energiepuls und wegen der großen Anzahl von möglichen, aufeinanderfolgenden Energiepulsen eine hohe Energieentnahme bzw. Leistungsentnahme möglich. Typische Werte sind mehr als 10⁸ W pro Energiepuls, vorzugsweise 10⁸ bis 10¹¹ W.Despite the very short energy pulse duration with which the storage coil according to the invention is preferably discharged, a high energy consumption or power consumption is possible because of the considerable energy content per energy pulse and because of the large number of possible successive energy pulses. Typical values are more than 10⁸ W per energy pulse, preferably 10⁸ to 10¹¹ W.

Die Erfindung und Weiterbildungen der Erfindung werden im folgenden anhand von schematisiert zeichnerisch dargestellten Ausführungsbeispielen noch näher erläutert.
Es zeigt:

Fig. 1
in perspektivischer Darstellung einen Teil einer torusförmigen Speicherspule;
Fig. 2
einen Querschnitt einer Speicherspule, beispielsweise einen Querschnitt längs II-II in Fig. 1, mit einem supraleitenden Spulenkern;
Fig. 3
die elektrische Verschaltung von Spulensegmenten beim Laden der Speicherspule;
Fig. 4
die elektrische Verschaltung von Spulensegmenten der Speicherspule beim Entladen;
Fig. 5
eine Speicherspule im Querschnitt, beispielsweise längs II-II in Fig. 1, zur schematischen Veranschaulichung der Einbringung von magnetischen Flußquanten in die Speicherspule.
The invention and further developments of the invention are explained in more detail below with the aid of schematically illustrated exemplary embodiments.
It shows:
Fig. 1
a perspective view of part of a toroidal storage coil;
Fig. 2
a cross section of a storage coil, for example a cross section along II-II in Fig. 1, with a superconducting coil core;
Fig. 3
the electrical connection of coil segments when loading the storage coil;
Fig. 4
the electrical connection of coil segments of the storage coil when discharging;
Fig. 5
a storage coil in cross section, for example along II-II in Fig. 1, for the schematic illustration of the introduction of magnetic flux quanta in the storage coil.

Die in Fig. 1 dargestellte Speicherspule 2 ist torusförmig und hat einen kreisrunden Torusquerschnitt gemäß II-II. Die Tragstruktur der Speicherspule 2 besteht aus einem Isolatormaterial und kann geometrisch als in Kreisform gebogener Hohlzylinder veranschaulicht werden. Die Tragstruktur kann so ausgebildet sein, wie es anhand der Ausführungsform gemäß Fig. 2 deutlicher wird.The storage coil 2 shown in FIG. 1 is toroidal and has a circular toroidal cross section according to II-II. The supporting structure of the storage coil 2 consists of an insulator material and can be illustrated geometrically as a hollow cylinder bent in a circular shape. The support structure can be designed in such a way that it becomes clearer from the embodiment according to FIG. 2.

Auf der Tragstruktur sind entlang des Torusrings aufeinanderfolgend Spulensegmente 4 angeordnet, die jeweils für sich betrachtet kreisförmig sind. Diese Spulensegmente sind beispielsweise aus sehr dünnen Filamentdrähten gewickelt oder mit einer radial aufeinanderfolgenden Schichtenfolge von isolierendem Material und leitendem Material aufgebaut, vgl. auch Ausführungsform gemäß Fig. 2. Die Spulensegmente 4 sind elektrisch leitend miteinander verbunden, wobei die Art der Verschaltung nachfolgend noch genauer erläutert wird.Coil segments 4 are arranged in succession on the support structure along the torus ring, each of which is considered circular in itself. These coil segments are, for example, wound from very thin filament wires or constructed with a radially successive layer sequence of insulating material and conductive material, cf. also embodiment according to FIG. 2. The coil segments 4 are connected to one another in an electrically conductive manner, the type of connection being explained in more detail below.

Die Stromleiter der Spulensegmente 4 bestehen aus supraleitendem Material, vorzugsweise hochtemperatur-supraleitendem Material. Entweder die gesamte Speicherspule 2 ist in einem Bad aus flüssigem Helium oder - im Fall von Hochtemperatur-Supraleitern - aus flüssigem Stickstoff angeordnet. Oder die Kühlung der Supraleiter erfolgt mit kleineren, mit flüssigem Helium oder flüssigem Stickstoff durchströmten Kühlräumen, wie es beispielsweise bei der Ausführungsform gemäß Fig. 2 veranschaulicht ist. Anschlüsse an einen äußeren, primären Ladestromkreis und an einen äußeren, sekundären Entladestromkreis sind nicht eingezeichnet, aber vorhanden.The current conductors of the coil segments 4 consist of superconducting material, preferably high-temperature superconducting material. Either the entire storage coil 2 is arranged in a bath made of liquid helium or - in the case of high-temperature superconductors - made of liquid nitrogen. Or the cooling of the superconductors takes place with smaller cooling rooms through which liquid helium or liquid nitrogen flows, as is illustrated, for example, in the embodiment according to FIG. 2. Connections to an outer, primary charging circuit and to an outer, secondary discharge circuit are not shown, but are available.

In Fig. 2 wird ein bevorzugter Aufbau eines Spulensegments 4 detaillierter veranschaulicht. Mit 6 ist die bereits weiter vorn grundsätzlich angesprochene, isolierende Tragstruktur bezeichnet. Hierauf befindet sich ein supraleitender Ring 8, beispielsweise als aufgedampfte Dünnschicht oder auf andere Weise aufgebrachte keramische Schicht oder als stehengebliebener Ringrest eines längs der Speicherspule 4 zunächst durchgehend aufgebrachten Belags aus supraleitendem Material. Radial außerhalb des Rings 8 befindet sich ein ringförmiger bzw. zylindrischer Kühlmittelraum 10, der von flüssigem Helium oder Stickstoff durchströmt wird.A preferred construction of a coil segment 4 is illustrated in more detail in FIG. 2. The insulating support structure, which has already been mentioned above, is designated by 6. There is a superconducting ring 8 thereon, for example as a vapor-deposited thin layer or ceramic layer applied in some other way or as a remaining ring residue of a coating of superconducting material which is initially applied continuously along the storage coil 4. Radially outside the Rings 8 has an annular or cylindrical coolant space 10 through which liquid helium or nitrogen flows.

Radial weiter nach außen fortschreitend wiederholt sich der geschilderte Aufbau ein weiteres Mal oder mehrere weitere Male. Ganz außen ist der äußerste Kühlmittelraum 10 durch ein Gehäuse 12 umschlossen.Progressing radially outward, the structure described repeats itself one or more times. The outermost coolant space 10 is enclosed by a housing 12.

Die supraleitenden Ringe 8 können einzeln elektrisch angeschlossen sein. Man kann aber beispielsweise auch jeden supraleitenden Ring 8 an einer Umfangsstelle elektrisch unterbrechen und durch entsprechende elektrische Verbindung der einzelnen unterbrochenen Ringe sozusagen eine Spule mit radial aufeinanderfolgenden Windungen nachbilden.The superconducting rings 8 can be electrically connected individually. However, it is also possible, for example, to electrically interrupt each superconducting ring 8 at a circumferential point and, as it were, to simulate a coil with radially successive turns by corresponding electrical connection of the individual interrupted rings.

Im Inneren der Tragstruktur 6 befinden sich im dargestellten Querschnitt segmentförmige Trägerisolatoren 14. Zwischen den beiden Trägerisolatoren 14 befindet sich ein Kern 13, und zwar ganz ähnlich wie beim Aufbau der eigentlichen Spulensegmente 4, eine Schichtfolge von Isolatorschichten 16, supraleitenden, sehr dünnen Schichten 18 und von flüssigem Helium oder flüssigem Stickstoff durchströmten, flachen Kühlräumen 20.Inside the support structure 6, in the cross section shown, there are segment-shaped carrier insulators 14. Between the two carrier insulators 14 there is a core 13, and this is very similar to the structure of the actual coil segments 4, a layer sequence of insulator layers 16, superconducting, very thin layers 18 and Flat cold rooms through which liquid helium or liquid nitrogen flows.

Bei den Spulensegmenten 4 kann statt des beschriebenen Schichtaufbaus aus Isolatormaterial 6 und supraleitendem Material 8 auch ein aus sehr dünnen, supraleitenden Filamentdrähten gewickeltes Spulensegment 4 vorgesehen sein, ggf. mit mehr oder weniger streng im Wechsel damit angeordneten, normalleitenden, sehr dünnen Metallfilamenten.In the case of the coil segments 4, instead of the described layer structure of insulator material 6 and superconducting material 8, a coil segment 4 wound from very thin, superconducting filament wires can also be provided, optionally with more or less strictly alternating, normally conducting, very thin metal filaments.

Die Fig. 3 und 4 veranschaulichen, wie die einzelnen Spulensegmente 4, die zusammen die torusförmige Speicherspule 2 bilden, miteinander verschaltet sind. Beim Laden ist eine Serienschaltung der Spulensegmente bevorzugt (Fig. 3), während beim Entladen der Speicherspule 2 eine Parallelschaltung der einzelnen Spulensegmente 4 bevorzugt ist (Fig. 4). In den Fig. 3 und 4 erkennt man auch die Enden des Primärstromkreises 22 und des Sekundärstromkreises 24.3 and 4 illustrate how the individual coil segments 4, which together form the toroidal storage coil 2, are interconnected. When charging, a series connection of the coil segments is preferred (FIG. 3), while when the storage coil 2 is being discharged, a parallel connection of the individual coil segments 4 is preferred (FIG. 4). 3 and 4, one can also see the ends of the primary circuit 22 and the secondary circuit 24.

Wenn man nicht zum Laden und zum Entladen der Speicherspule 2 gesonderte Spulensegmente 4 vorsieht, ist eine Ausbildung der Verschaltung der Spulensegmente 4 derart, daß von Serienschaltung auf Parallelschaltung und umgekehrt übergegangen werden kann, günstig. Es versteht sich, daß man die Verschaltung auch so vornehmen kann, daß wahlweise beim Entladen alle oder nur ein kleinerer oder größerer Teil der Spulensegmente 4 unmittelbar herangezogen wird, beispielsweise nur jedes zweite oder jedes dritte Spulensegment 4, wodurch die Strombelastung längs des Torus gleichmäßig verteilt wird.If one does not provide separate coil segments 4 for loading and unloading the storage coil 2, a configuration of the connection of the coil segments 4 is such that it can be switched from series connection to parallel connection and vice versa. It goes without saying that the connection can also be carried out in such a way that either all or only a smaller or larger part of the coil segments 4 is used directly during the discharge, for example only every second or every third coil segment 4, as a result of which the current load is distributed uniformly along the torus becomes.

Wenn die Speicherspule nicht, wie dargestellt, torusförmig sondern solenoidförmig ist, muß man sich den Torus an einer Stelle aufgeschnitten und in geradlinige Form gebracht denken.If the storage coil is not, as shown, toroidal but solenoid-shaped, the torus must be cut open at one point and thought of as being rectilinear.

Fig. 5 veranschaulicht schematisch eine weiter bevorzugte Möglichkeit zum Laden der Speicherspule 2. Ein entsprechend der Supraleiterdicke sehr dünnes, supraleitendes Plättchen 26, dessen Ebene senkrecht zur Torusringachse verläuft, ragt radial nach außen über das betreffende Spulensegment 4 hinaus. Ein Magnetring 28 ist konzentrisch zur Torusringachse 30 rotierbar. Der Magnetring weist vor der Zeichenebene der Fig. 5 umfangsmäßig beabstandet eine Reihe von Dauermagnet-Nordpolen und hinter der Zeichenebene der Fig. 5 in gleicher Weise umfangsmäßig verteilt eine Reihe dauermagnetischer Südpole auf. Jedesmal wenn ein derartiges Paar von Nordpol und Südpol das Plättchen 26 mit geringem Luftspalt passiert, werden Magnetquanten auf dem PLättchen 26 deponiert und wandern in das elektrisch mit dem Plättchen 26 verbundene Spulensegment 4. Auf diese Weise läßt sich zeitlich verteilt das betreffende Spulensegment 4 laden.
Ganz analog läßt sich eine solenoidförmige Speicherspule laden, wobei der Magnetring 28 um die geradlinige Solenoidachse rotiert.
5 schematically illustrates a further preferred possibility for loading the storage coil 2. A superconducting plate 26, which is very thin in accordance with the superconductor thickness and whose plane is perpendicular to the axis of the torus ring, projects radially outward beyond the coil segment 4 in question. A magnetic ring 28 is concentric rotatable to the torus ring axis 30. The magnetic ring has a row of permanent magnet north poles, circumferentially spaced in front of the drawing plane of FIG. 5, and a row of permanent magnetic south poles distributed in the same way circumferentially behind the drawing plane of FIG. 5. Each time such a pair of north pole and south pole passes the plate 26 with a small air gap, magnetic quanta are deposited on the plate 26 and migrate into the coil segment 4 electrically connected to the plate 26. In this way, the respective coil segment 4 can be charged over time.
A solenoid-shaped storage coil can be charged quite analogously, the magnet ring 28 rotating about the rectilinear solenoid axis.

Alternativ kann man bei der dargestellten torusförmigen Speicherspule 2 den dargestellten Magnetring 28 längs des Torus rotieren lassen, also um eine in Fig. 5 senkrecht auf der Zeichenebene stehende Achse durch das Zentrum des Torusrings. In diesem Fall wäre das Plättchen 26 in Fig. 5 um 90° nach oben gekippt vorzustellen; die Nordpole lägen oberhalb und die Südpole unterhalb des Plättchens 26.Alternatively, in the toroidal storage coil 2 shown, the magnet ring 28 shown can be rotated along the torus, that is to say about an axis perpendicular to the plane of the drawing in FIG. 5 through the center of the torus ring. In this case, the plate 26 in FIG. 5 would have to be tilted upwards by 90 °; the north poles were above and the south poles below the plate 26.

Claims (26)

  1. A current accumulator in the form of a superconducting accumulator coil (2) composed with superconductors (8) of very small diameter or very small layer thickness,
    characterized in that the accumulator coil (2) is composed with a plurality of coil segments (4) which are arranged successively in the longitudinal direction of the accumulator coil (2) and which are prefabricated individually and joined together so as to be electrically connected to form the accumulator coil (2).
  2. A current accumulator according to claim 1,
    characterized in that the coil segments (4) are connected in such a manner that the accumulator coil (2) can be charged in a series connection of a plurality, in particular all, of the coil segments (4) and discharged in a parallel connection of a plurality, in particular all, of the coil segments (4).
  3. A current accumulator according to claim 2,
    characterized in that the number of the coil segments (4) connected in parallel during discharge is adjustable.
  4. A current accumulator according to any one of claims 1 to 3,
    characterized in that the accumulator coil (2) comprises one or several superconducting discharging coils magnetically coupled to the accumulator coil segments (4).
  5. A current accumulator according to any one of claims 1 to 4,
    characterized in that, for discharging, there is (are) provided one or several high-current switches composed with superconducting material and having a means through which the superconducting material can be transferred from the superconducting state to the non-superconducting state and vice versa.
  6. A current accumulator according to any one of claims 1 to 5,
    characterized in that the superconductors (8) are high-temperature superconductors, preferably having a transition temperature of more than 80 °K.
  7. A current accumulator according to any one of claims 1 to 6,
    characterized in that the superconductors (8) have a diameter or a layer thickness of less than 20 µm, preferably less than 10 µm.
  8. A current accumulator according to any one of claims 1 to 7,
    characterized in that the superconductors (8) are provided in the form of applied layers.
  9. A current accumulator according to any one of claims 1 to 8,
    characterized in that superconductors (8) are provided which are formed from a layer applied across a large area, by local mechanical removal or by local etching.
  10. A current accumulator according to any one of claims 1 to 9,
    characterized in that, when viewing an accumulator coil cross-section, several superconductor layers (8) are provided following each other in radial direction.
  11. A current accumulator according to claim 10,
    characterized in that the superconductor layers (8) are formed successively, with an insulating intermediate layer (6) each being provided therebetween, and are each electrically terminated.
  12. A current accumulator according to any one of claims 1 to 7,
    characterized in that the accumulator coil (2) is composed with wound, thin, superconducting filament wires.
  13. A current accumulator according to claim 12,
    characterized in that the superconducting filament wires are provided substantially in alternating manner with very thin normal-conduction metal wires.
  14. A current accumulator according to any one of claims 1 to 13,
    characterized in that the coil segments (4) are magnetically coupled.
  15. A current accumulator according to any one of claims 1 to 14,
    characterized in that the accumulator coil (2) is of toroidal or solenoid configuration.
  16. A current accumulator according to any one of claims 1 to 15,
    characterized in that the accumulator coil (2) is connected to a primary circuit for charging.
  17. A current accumulator according to any one of claims 1 to 15
    characterized in that for charging the accumulator coil (2) there is provided a charging means (28) through which magnetic flow quanta can be introduced according to the flow pump principle.
  18. A current accumulator according to claim 17,
    characterized in that a pulsating DC magnetic field is provided for charging the accumulator coil (2).
  19. A current accumulator according to claim 18,
    characterized in that, with a toroidal accumulator coil (2), the pulsating magnetic field is provided by a rotatable magnet ring (28) comprising permanent magnets.
  20. A current accumulator according to claim 17,
    characterized in that a pulsating field of a current conductor is provided for charging the accumulator coil (2) by means of induction.
  21. A current accumulator according to any one of claims 1 to 20,
    characterized in that the ratio between the radial thickness of the space equipped with superconductors and the accumulator coil diameter is small.
  22. A current accumulator according to any one of claims 1 to 21,
    characterized in that the accumulator coil (2) has a core (13) composed with superconducting material (18).
  23. A current accumulator according to claim 22,
    characterized in that the current intensity in the accumulator coil (2) can be altered by the transition of the superconducting material (18) of the core (13) from the superconducting state to the normal-conduction state and vice versa.
  24. A current accumulator according to claim 23,
    characterized in that for producing said transition there is provided a means for applying a magnetic field to the core, for introducing a current pulse into the core, for irradiating a radio-frequency field into the core, for irradiating thermal radiation into the core, for subjecting the core to the influence of a laser beam or for subjecting the core to the influence of a maser beam.
  25. The use of a current accumulator according to any one of claims 1 to 24 for supplying current to a current consumer in the form of electrical energy pulses of very short duration each.
  26. The use according to claim 25,
    characterized in that the pulse duration is less than 10 ms, preferably less than 1 ms.
EP89900210A 1987-11-20 1988-11-18 Current accumulator Revoked EP0348465B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19873739411 DE3739411A1 (en) 1987-11-20 1987-11-20 POWER STORAGE
DE3739411 1987-11-20
PCT/EP1988/001051 WO1989005033A1 (en) 1987-11-20 1988-11-18 Current accumulator

Publications (2)

Publication Number Publication Date
EP0348465A1 EP0348465A1 (en) 1990-01-03
EP0348465B1 true EP0348465B1 (en) 1994-08-24

Family

ID=6340925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89900210A Revoked EP0348465B1 (en) 1987-11-20 1988-11-18 Current accumulator

Country Status (7)

Country Link
US (1) US5011820A (en)
EP (1) EP0348465B1 (en)
JP (1) JPH02502957A (en)
AT (1) ATE110491T1 (en)
AU (1) AU2810589A (en)
DE (2) DE3739411A1 (en)
WO (1) WO1989005033A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536469C1 (en) * 1995-09-29 1997-04-17 Siemens Ag Superconducting toroidal magnet system
US7305836B2 (en) 2004-05-19 2007-12-11 Eden Innovations Ltd. Cryogenic container and superconductivity magnetic energy storage (SMES) system
WO2013185783A1 (en) 2012-06-11 2013-12-19 Arano-Trade Ltd. Energy transformation system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829207A1 (en) * 1988-08-29 1990-03-08 Licentia Gmbh Current-limiting induction coil
US5326986A (en) * 1991-03-05 1994-07-05 University Of Houston - University Park Parallel N-junction superconducting interferometer with enhanced flux-to-voltage transfer function
GB9113223D0 (en) * 1991-06-19 1991-08-07 Oxford Instr Ltd Energy storage device
US5639046A (en) * 1992-07-21 1997-06-17 Fabio Perini S.P.A. Machine and method for the formation of coreless logs of web material
US5831362A (en) * 1994-11-01 1998-11-03 The University Of Houston Magnet-superconductor flywheel and levitation systems
AT8638U1 (en) * 2005-03-04 2006-10-15 Magna Steyr Fahrzeugtechnik Ag KRYO STORAGE WITH SUPERCONDITIONING WINDING FOR MOTOR VEHICLES
DE102006036463A1 (en) * 2006-08-04 2007-08-02 Mahesh Chandra Dwivedi Device for the collection storage and release of various forms of electromagnetic energy has collecting and storage arrangement with a conductor to supply electrical users with electrical energy that forms a closed current circuit
US10566120B2 (en) 2015-06-08 2020-02-18 Rolls-Royce North American Technologies, Inc. Fault tolerant superconducting magnetic energy storage (SMES) device
US10790078B2 (en) 2017-10-16 2020-09-29 The Boeing Company Apparatus and method for magnetic field compression
US10680400B2 (en) 2017-10-16 2020-06-09 The Boeing Company Apparatus and method for generating a high power energy beam based laser
US10726986B2 (en) * 2017-10-16 2020-07-28 The Boeing Company Apparatus and method for magnetic field compression using a toroid coil structure

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH404778A (en) * 1963-02-04 1965-12-31 Bbc Brown Boveri & Cie Method for manufacturing a superconducting body
US3205461A (en) * 1963-04-24 1965-09-07 Univ Minnesota Thin film magnetic energy accumulator
US3395000A (en) * 1965-01-27 1968-07-30 Rca Corp Composite metal articles
US3667029A (en) * 1970-04-15 1972-05-30 Wilfried H Bergmann Method and means for charging or discharging superconducting windings
FR2112054B1 (en) * 1970-08-14 1975-01-10 Commissariat Energie Atomique
US4122512A (en) * 1973-04-13 1978-10-24 Wisconsin Alumni Research Foundation Superconductive energy storage for power systems
US3800256A (en) * 1973-04-24 1974-03-26 Atomic Energy Commission Energy storage and switching with superconductors
US4032959A (en) * 1974-12-18 1977-06-28 Wisconsin Alumni Research Foundation Shielded superconducting inductor device
US4195334A (en) * 1977-11-25 1980-03-25 Electric Power Research Institute, Inc. High-voltage DC transmission system and method
JPS5627720Y2 (en) * 1978-04-07 1981-07-02
US4336561A (en) * 1980-01-28 1982-06-22 Westinghouse Electric Corp. Superconducting transformer
JPS57199438A (en) * 1981-06-03 1982-12-07 Mitsubishi Electric Corp Superconductive power storage facility
US4414461A (en) * 1981-08-21 1983-11-08 The United States Of America As Represented By The Secretary Of The Navy Laser pumped superconductive energy storage system
JPS58154345A (en) * 1982-03-09 1983-09-13 三菱電機株式会社 Energy transferring circuit between coils
JPS58154344A (en) * 1982-03-09 1983-09-13 三菱電機株式会社 Energy transferring device between coils
US4599519A (en) * 1984-05-16 1986-07-08 The United States Of America As Represented By The United States Department Of Energy Superconducting magnetic energy storage for asynchronous electrical systems
JP2543336B2 (en) * 1985-05-15 1996-10-16 三菱電機株式会社 Superconducting coil energy storage circuit
FR2618955B1 (en) * 1987-07-29 1990-05-11 Hitachi Ltd SUPERCONDUCTING ENERGY STORAGE DEVICE
FR2625047B1 (en) * 1987-12-21 1990-05-18 Centre Nat Etd Spatiales DEVICE FOR STORING ELECTRICAL ENERGY IN A SUPERCONDUCTOR
US4954727A (en) * 1988-08-01 1990-09-04 General Dynamics Corp., Space Systems Division Hybrid transformer current zero switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536469C1 (en) * 1995-09-29 1997-04-17 Siemens Ag Superconducting toroidal magnet system
US6222434B1 (en) 1995-09-29 2001-04-24 Siemens Aktiengesellschaft Superconducting toroidal magnet system
US7305836B2 (en) 2004-05-19 2007-12-11 Eden Innovations Ltd. Cryogenic container and superconductivity magnetic energy storage (SMES) system
WO2013185783A1 (en) 2012-06-11 2013-12-19 Arano-Trade Ltd. Energy transformation system

Also Published As

Publication number Publication date
DE3739411A1 (en) 1989-06-01
WO1989005033A1 (en) 1989-06-01
DE3739411C2 (en) 1992-03-19
US5011820A (en) 1991-04-30
EP0348465A1 (en) 1990-01-03
DE3851224D1 (en) 1994-09-29
JPH02502957A (en) 1990-09-13
ATE110491T1 (en) 1994-09-15
AU2810589A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
EP0348465B1 (en) Current accumulator
EP0293723B1 (en) Magnetic coil system of an NMR imaging system, with superconducting coils and a shield for protection against eddy currents
DE69924898T2 (en) Resistive fault current limiter
DE2822421A1 (en) DEVICE FOR GENERATING A MAGNETIC FIELD
DE102010042598A1 (en) Superconductive magnetic resonance-magnet arrangement for use in magnetic resonance-magnet system, has slot dividing dual pancake coil into partial coils that are rotated and/or displaced with dual coil to produce spatial field pattern
WO2001020756A1 (en) Supraconducting machine with a multipole winding arrangement
EP2885791A1 (en) Superconductive coil device and production method
EP3772071B1 (en) Magnetic coil system with integrated joints, in particular hts-lts joints, and associated magnet assembly
DE102015218019B4 (en) A magnetostrated cryostat comprising an LTS region and an HTS region
DE3923456A1 (en) SUPRAL-CONDUCTING HOMOGENEOUS HIGH-FIELD MAGNETIC COIL
EP0574478B1 (en) Inductive superconducting current accumulator
WO2016135311A1 (en) Electric coil system for inductive-resistive current limitation
EP3399528B1 (en) Superconductive solenoid assembly with multiple layer-wound strip-shaped superconductors
DE10125429A1 (en) Superconducting high field magnetic coil with HTS coil section and manufacturing process
EP3889633B1 (en) Shim device having a high temperature superconducting shim conductor track, a magnet arrangement and a method of loading an hts shim device
DE102018218473A1 (en) Rotor, machine and method for magnetizing
DE3739412C2 (en)
CH639772A5 (en) SUPER-CONDUCTIVE COIL FOR A SPECTROMETER.
EP3622543B1 (en) Coil device and winding support for low-pole rotor
WO2020038909A1 (en) Rotor with superconducting winding for continuous current mode operation
WO2019091842A1 (en) Rotor and machine having p-pole rotor winding
DE1489738A1 (en) Superconducting coil
DE102020124852A1 (en) Bitter principle based magnetic device and use of a bitter principle based magnetic device
DE1564722C (en) Superconducting coil
DE2434451C2 (en) Internal contact between two coils in adjacent winding layers of a superconducting magnet winding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920122

ITTA It: last paid annual fee
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940824

REF Corresponds to:

Ref document number: 110491

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3851224

Country of ref document: DE

Date of ref document: 19940929

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941130

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941103

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19950321

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981219

Year of fee payment: 11

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990917

Year of fee payment: 12

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991130

Year of fee payment: 12

27W Patent revoked

Effective date: 19990805

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 990805

NLR2 Nl: decision of opposition