EP4214010B1 - Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts - Google Patents

Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts Download PDF

Info

Publication number
EP4214010B1
EP4214010B1 EP21772737.9A EP21772737A EP4214010B1 EP 4214010 B1 EP4214010 B1 EP 4214010B1 EP 21772737 A EP21772737 A EP 21772737A EP 4214010 B1 EP4214010 B1 EP 4214010B1
Authority
EP
European Patent Office
Prior art keywords
metallic product
cooling nozzles
group
spray device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21772737.9A
Other languages
English (en)
French (fr)
Other versions
EP4214010A1 (de
Inventor
Dirk Letzel
Uwe Plociennik
Volker Mers
Axel Stavenow
Ina HÜLLEN
Harminder Singh
Ingo OLGEMÖLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4214010A1 publication Critical patent/EP4214010A1/de
Application granted granted Critical
Publication of EP4214010B1 publication Critical patent/EP4214010B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1243Accessories for subsequent treating or working cast stock in situ for cooling by using cooling grids or cooling plates

Definitions

  • the invention relates to a method for the thermal surface treatment of a metallic product according to the preamble of claim 1, and a spray device provided for this purpose according to the preamble of claims 21, 22 and 27.
  • a steel product treated in this way has increased strength and toughness with a preferred structure including a significant proportion of fine-grained bainite.
  • Further processes and devices for thermal surface treatment of a metallic product are also from the documents WO 00/03042 A1 , EP 3 184 202 A1 and WO 2012/069234 A1 known.
  • the invention is based on the object of optimizing the production of a metallic product with regard to its thermal surface treatment in order to be able to influence a resulting material or microstructure of the metallic product.
  • the invention provides a method for the thermal surface treatment of a metallic product, in particular in the form of a casting strand or a slab formed therefrom, in which the metallic product is moved in a transport direction through a treatment section of a spray device equipped with cooling nozzles and cooling fluid is passed through the cooling nozzles of the spray device is applied to the surfaces of the metallic product.
  • the metallic product has - viewed in the transport direction of the metallic product - a front section and a trailing rear section. When performing this process, the rear portion of the metallic product is cooled more than the front portion of the metallic product.
  • the cooling nozzles are arranged at least in a first group and in a second group. It is provided here that the second group of cooling nozzles - viewed in the transport direction of the metallic product - is arranged downstream of the first group of cooling nozzles.
  • the cooling nozzles are connected to at least one frequency-controlled pump for supplying cooling fluid, with which the cooling fluid is conveyed to the cooling nozzles with a predetermined amount and a predetermined pressure. It can be provided here that separate frequency-controlled pumps are provided for the first group of cooling nozzles and for the second group of cooling nozzles.
  • the first and second groups of cooling nozzles are fed with cooling fluid by only one central frequency-controlled pump, with at least one control valve being provided in a line between the frequency-controlled pump and the cooling nozzles of the first and second groups, respectively in which a targeted amount of water and/or a predetermined pressure can be set for the cooling nozzles of the first or second group in relation to the cooling fluid.
  • the present invention also provides a spray device for the thermal surface treatment of a metallic product, in particular in the form of a casting strand or a slab formed therefrom, comprising a treatment section with an inlet area and an outlet area, the metallic product being sprayed along the treatment section from the inlet area in the direction of the outlet area can be moved in a transport direction, and a plurality of cooling nozzles, from each of which a cooling fluid can be applied to the surfaces of the metallic product.
  • the cooling nozzles are arranged at least in a first group and in a second group, with the second group of cooling nozzles - seen in the transport direction of the metallic product - downstream of the first group Cooling nozzles are arranged.
  • the cooling nozzles of the first group and the cooling nozzles of the second group are each connected to separate frequency-controlled pumps. With these respective frequency-controlled pumps, a predetermined quantity and/or a predetermined pressure for the cooling nozzles of the first group or for the cooling nozzles of the second group can be set, preferably regulated, with respect to the cooling fluid.
  • An alternative embodiment of the invention which has an independent meaning, provides a spray device for the thermal surface treatment of a metallic product, in particular in the form of a casting strand or a slab formed therefrom, comprising a treatment section with an inlet area and an outlet area, the metallic product being sprayed along the treatment section which can be moved in the direction of the outlet area in a transport direction, and a plurality of cooling nozzles, from each of which a cooling fluid can be applied to the surfaces of the metallic product.
  • the cooling nozzles are arranged at least in a first group and in a second group, with the second group of cooling nozzles - viewed in the transport direction of the metallic product - being arranged downstream of the first group of cooling nozzles.
  • the cooling nozzles of the first group and the cooling nozzles of the second group are connected to at least one frequency-controlled pump, with at least one control valve being provided in a line between the frequency-controlled pump and the cooling nozzles of the first and second groups, with which the cooling fluid is connected a quantity of water and/or a pressure for the cooling nozzles of the first or second group is adjustable, preferably controllable.
  • a control device is provided with which the frequency-controlled pump, or the frequency-controlled pumps, and / or the control valve is or are in signal connection.
  • process parameters of the metallic product may include the temperature upstream and/or downstream of the spray device, the temperature at the top and/or bottom, and/or a ferrite content that was measured downstream of the spray device.
  • the invention is based on the essential finding that the metallic product, which can be a continuous or endless casting strand or an isolated slab formed from it, is cooled unevenly with respect to its longitudinal extent. Specifically, in the method according to the invention, this occurs in such a way that the rear section of the metallic product - viewed in the transport direction of the metallic product - is cooled more strongly than its front section, with the result that in between the front and rear sections of the Metallic product extending length range of the metallic product a targeted microstructure is achieved, namely an essentially uniform ferrite proportion.
  • the cooling nozzles are arranged at least in a first group and in a second group, whereby these groups of cooling nozzles - seen in the transport direction of the metallic product - can each be fed with different amounts of cooling fluid.
  • This is achieved either by a suitable control of the separate frequency-controlled pumps to which the cooling nozzles of the respective first and second groups are connected, or by a suitable control of the at least one control valve, which is in a line between the frequency-controlled pump and the cooling nozzles of the first or second group is provided.
  • a further aim is that the energy content of the metallic product with regard to a further Processing following thermal surface treatment is as large as possible.
  • the metallic product is only cooled to the extent required for the desired constant structural transformation, thereby maintaining the uniform ferrite content in the material of the metallic product at a predetermined depth thereof, for example 5-10 mm, over one to achieve a length range extending between the front section and the rear section of the metallic product.
  • a plurality of cooling nozzles are arranged in the treatment section of the spray device above the metallic product and/or below the metallic product along the transport direction of the metallic product.
  • a cooling fluid is sprayed under pressure from these cooling nozzles onto the surfaces of the metallic product.
  • This cooling fluid is expediently used in the form of water or based on water.
  • the amount and / or the pressure for the cooling fluid for the cooling nozzles of the first Group are set larger than for the cooling nozzles in the second group.
  • Such a supply of the cooling nozzles of the first group of cooling nozzles with a larger amount of cooling fluid and/or a greater pressure than in comparison to the second group of cooling nozzles is expediently set for the cooling nozzles both on the top and on the bottom of the metallic product.
  • the temperature of the metallic product is measured. This can be done - viewed in the transport direction of the metallic product - upstream and/or downstream of the spray device. Furthermore, the can Temperature of the metallic product can be measured at its top and/or bottom. In any case, the temperature measurement for the metallic product is carried out for the purpose of adjusting or regulating the amount of cooling fluid that is applied from the cooling nozzles of the spray device onto the surfaces of the metallic product depending on this measured temperature of the metallic product.
  • the transport speed of a metallic product in the form of a separated slab, or the change in this transport speed for the slab within the treatment section of the spray device can also be adjusted or regulated.
  • the transport speed at which an isolated slab is guided past the cooling nozzles provided therein in the treatment section of the spray device or by specifically changing them, it can be achieved that the front section of the slab is guided past these cooling nozzles faster than the rear section of the slab, with the result that - as explained - the rear section of the slab is then cooled more strongly.
  • Another possibility for a targeted influence on the cooling of the metallic product is that - viewed in the transport direction of the metallic product - the surface quality of the metallic product is measured downstream of the spraying device in relation to the proportion of ferrite.
  • the cooling nozzles are arranged along the treatment section of the spray device on both sides of the metallic product, i.e. above and below it, it is expedient that the amount of water and / or the pressure for the cooling nozzles is below metallic product are chosen to be larger than for the cooling nozzles, which are arranged above the metallic product.
  • This can be achieved by supplying the cooling nozzles, which are arranged on the bottom of the metallic product, with cooling fluid from their own frequency-controlled pump, which means that the cooling nozzles, which are arranged on the top of the metallic product, are supplied by a separate one Frequency-controlled pump can be fed with cooling fluid.
  • the different supply of the cooling nozzles on the underside of the metallic product compared to the cooling nozzles on the top of the metallic product is achieved in that the cooling nozzles, which are arranged below and above the metallic product, are each supplied to different frequency-controlled pumps connected with cooling fluid.
  • the thickness of the metallic product for which the characteristic thermal surface treatment is implemented is at least 250 mm and/or that a width of the metallic product is at least 3000 mm.
  • the cooling fluid is intermittently applied from the cooling nozzles to the surfaces of the metallic product. This leads to the advantage that a controlled local heat removal can be achieved by means of intensive water cooling, for example at a specific point on the metallic product in relation to its longitudinal extent.
  • a spray device for the thermal surface treatment of a metallic product in the form of a separated slab comprising a treatment section with an inlet area and an outlet area, the metallic product being moved along the treatment section on a roller table of the inlet area can be moved towards the outlet area in a transport direction, and a plurality of cooling nozzles, from each of which a cooling fluid can be applied to the surfaces of the metallic product.
  • At least one roller element of the roller table is equipped with a motor drive.
  • the roller element equipped with the motor drive can be arranged adjacent to the treatment section.
  • a control device is provided with which the motor drive of the roller element is in signal connection, namely such that the speed or the peripheral speed of the roller element depends on at least one process parameter of the metallic Product or the isolated slab can be controlled and preferably regulated.
  • the at least one process parameter of the metallic product can be selected from the group consisting of temperature, ferrite content in the material of the metallic Product and/or geometry of the metallic product, in particular in relation to its cross section perpendicular to the transport direction.
  • the present invention creates a technology for targeted thermal surface treatment that enables automated adjustment of the temperature for a metallic product and its resulting metal structure. For example, the targeted delivery of a larger amount of cooling fluid through the cooling nozzles of the first group than through the cooling nozzles of the second group causes the rear section of the metallic product to undergo locally controlled, more intensive cooling than the front section of the metallic product.
  • the present invention makes it possible to influence the surface quality and structure of a steel casting strand produced on a vertical, vertical bend (i.e. system with a vertical area), a horizontal or curved continuous casting system (without a vertical area), in particular a casting strand of any product format.
  • a spray device 10 and a corresponding method for thermal surface treatment of a metallic product according to the present invention are shown and explained in order to achieve a targeted structural transformation or a desired structure, namely a substantially uniform ferrite content, for the metallic product.
  • the same features in the drawing are each provided with the same reference numbers. At this point it should be noted that the drawing is simply simplified and, in particular, shown without a scale.
  • Fig. 1 basically shows a simplified side view of a continuous casting system 100, which is equipped with the spray device 10.
  • the continuous casting system 100 includes Fig. 1 a mold that has a lower opening and thereby a vertical outlet downwards.
  • the mold is filled with liquid metal up to a level or liquid metal, for example steel or a steel alloy.
  • a metallic product 1 emerges through the lower opening of the mold in the form of a casting strand 2, which then runs through a supporting strand guide and is thereby transferred to the horizontal.
  • the continuous casting system 100 comprises a roller table 8 with a plurality of roller elements 9, on which the casting strand 2 is moved further in the transport direction T after it has been transferred to the horizontal.
  • a continuous casting plant 100 can be a thick slab plant with which a casting strand 2 with a thickness of preferably 250 mm, or possibly even larger casting thicknesses, can be produced.
  • the spray device 10 according to the invention is arranged in a part of the continuous casting system 100 in which the casting strand 2 has already been transferred to the horizontal.
  • This spray device 10 is used for the thermal surface treatment of the casting strand 2 and for this purpose is equipped with a plurality of cooling nozzles 16 which are provided in a treatment section 12 of the spray device 10.
  • the spray device 10 comprises a housing G.
  • an inlet region 14 is formed for the casting strand 2
  • an outlet area 15 is formed in a front region of this - seen in the transport direction T of the casting strand 2 - rear region of the housing G.
  • temperature measuring devices 13 Adjacent to the inlet area 14 and the outlet area 15, temperature measuring devices 13 are provided within the housing G, with which the Temperature of the casting strand 2 can be determined both when entering the housing G and when leaving the housing G. These temperature measuring devices 13 can each be arranged above and below the casting strand 2 or the roller table 8, on which the casting strand 2 is also moved in the transport direction T within the treatment section 12 of the spray device 10.
  • the metallic product 1 if it is within the treatment section 12 the spray device 10, has a front section 4 - seen in the transport direction T of the casting strand 2 - with which the metallic product 1 enters the treatment section 12.
  • the metallic product has a rear section 5 - seen in the transport direction T of the casting strand 2 - which lags behind the front section 4 or - again seen in the transport direction T of the casting strand 2 - is located upstream of the front section 4 .
  • the individual cooling nozzles 16 are combined into at least two groups within the treatment section 12 of the spray device 10, namely in a first group 16.1 and in a second group 16.2.
  • the second group 16.2 of the cooling nozzles 16 - seen in the transport direction T of the casting strand 2 - is arranged downstream of the first group 16.1 of the cooling nozzles 16.
  • Both the first group 16.1 and the second group 16.2 each contain cooling nozzles 16, which are arranged both on the top 6 of the casting strand 2 and on its underside 7.
  • the top 6 and the bottom 7 of the casting strand are, for example, in the Fig. 2 and Fig. 3 referred to as such.
  • the continuous casting system 100 comprises a separating device in the form of scissors S, which - seen in the transport direction T of the casting strand 2 - is arranged upstream of the spray device 10.
  • a cleaning device 22 for example in the form of a descaler, is also arranged upstream of the spray device 10.
  • FIG Fig. 2 A first embodiment for the spray device 10 according to the invention is shown in FIG Fig. 2 shown.
  • separate frequency-controlled pumps 18 are provided, with which the cooling nozzles 16 on the one hand of the first group 16.1 and on the other hand of the second group 16.2 are supplied with cooling fluid separately.
  • the cooling nozzles 16 of the first group 16.1 and the second group 16.2 are each connected via a line 17 to the frequency-controlled pump 18 assigned to them.
  • the two frequency-controlled pumps 18 are connected to a control device 20 for signaling purposes. Both of these pumps 18 are connected by unspecified lines to a tank or the like in which cooling fluid is contained. Operation of these pumps 20 can thus be suitably controlled or regulated by the control device 20 in order to thereby supply the cooling nozzles 16 of both the first group 16.1 and the second group 16.2 with cooling fluid.
  • control valves 19 are provided, which are also connected to the control device in terms of signaling 20 are connected and can thereby be actuated.
  • a suitable operating position of these control valves 19 can be used to control whether cooling fluid is applied to the surfaces of the casting strand 2 or not.
  • Fig. 3 shows a second embodiment for the spray device 10 according to the invention.
  • the cooling nozzles 16 of both the first group 16.1 and the second group 16.2 are now connected to a common frequency-controlled pump 18 for the purpose of supplying cooling fluid.
  • a control valve 19 which is provided in a line 17 between the frequency-controlled pump 18 and the two groups 16.1 and 16.2 of the cooling nozzles 16, it is possible to adjust the amount and at what pressure the cooling fluid is supplied to the cooling nozzles 16 of the first group 16.1 and is fed to the second group 16.2.
  • the frequency-controlled pump 18 and the control valve 17 are each controlled or regulated by the control device 20.
  • At least one roller element 9 of the roller table 8 is equipped with a motor drive M. Accordingly, this driven roller element is shown in the illustrations Fig. 2 and Fig. 3 each labeled "9(M)".
  • This driven roller element 9 (M) is also in signal connection with the control device 20, as shown, for example, in the Fig. 3 is symbolized by the dotted line and can be controlled accordingly by means of the control device 20.
  • a metallic product 1 is first produced in the form of a casting strand 2, which, after leaving the mold, first passes through the supporting strand guide and, after being transferred to the horizontal on the roller table 8, is moved further in the transport direction T. It can be provided here that the surfaces of the casting strand 2 are cleaned by means of the cleaning device 22, for example by applying water under high pressure.
  • the metallic product 1 also passes through the treatment section 12 of the spray device 10.
  • a thermal surface treatment for the metallic product 1 is carried out in that cooling fluid 16 is directed onto the surfaces through the cooling nozzles of the first group 16.1 and the second group 16.2 of the metallic product 1 is applied.
  • the metallic product 1 can be a casting strand 2 that has not yet been separated and accordingly represents an endless profile. This is in the representation of Fig. 4 illustrated, in which such an endless casting strand 2 is moved on the roller table 8 in the transport direction T.
  • the thermal surface treatment of the casting strand 2 within the treatment section 12 of the spray device 10 can be carried out in such a way that cooling fluid is applied to the surfaces of the casting strand 2 from the cooling nozzles 16 of the first group 16.1 with a larger amount and/or a greater pressure than in the comparison from the Cooling nozzles 16 of the second group 16.2.
  • This then has the consequence that the trailing rear section 5 of the casting strand 2 within the treatment section 12 of the spray device 10 is cooled more strongly than its front section 4.
  • This cooling strategy the result is achieved that in the material of the casting strand 2 at a predetermined depth of this, over a length range that extends between the front section 4 and the rear section 5, a substantially uniform ferrite proportion is established.
  • thermal surface treatment is also possible for an isolated slab 3, which has previously been formed from the casting strand 2, within the treatment section 12 of the spray device 10.
  • the casting strand 2 is separated by means of the scissors S before it reaches the spray device 10 on the roller table 8, so that a correspondingly separated slab 3 then enters the treatment section 12 of the spray device 10 or its housing G.
  • Moving the separated slab 3 within the treatment section 12 of the spraying device 10 in the transport direction T can be achieved by the driven roller element 9 (M). This is, for example, in the representation of Fig. 5 illustrated.
  • this cooling strategy can be achieved by moving the isolated slab 3 into the treatment section 12 of the spray device 10 or into its housing G in such a way that the front section 4 of the slab 3 passes the cooling nozzles 16 faster than the trailing one rear section 5 of the slab 5. This can be achieved with a suitable control of the driven roller element 9 (M) by the control device 20.
  • Fig. 6 shows a simplified perspective view of a quick-change frame 24 in which a group of cooling nozzles 16 are arranged.
  • a line 17 for cooling fluid leads laterally into such a quick-change frame 24 and is connected to spray pipes to which the individual cooling nozzles 16 are attached.
  • the line 17 is connected to a frequency-controlled pump 18 in order to thereby supply the cooling nozzles 16 with cooling fluid.
  • Fig. 6 clarifies that the quick-change frame 24 is designed in cross section in the form of a rectangular profile that encloses a central opening.
  • the roller table 8, which is in the for simplification Fig. 6 is not shown, extends through this central opening.
  • the top 6 and the bottom 7 of the metallic product 1 can be supplied with cooling fluid when this cooling fluid is discharged through the cooling nozzles 16 in the direction of the metallic product 1.
  • the quick-change frame 24 is equipped with a height adjustment device H.
  • This height adjustment device H acts on the spray pipes, which are arranged above the roller table 8. Accordingly, by activating this height adjustment device H, it is possible to change the distance between the cooling nozzles 16, which are arranged above the metallic product 1, relative to the top side 6 of the metallic product 1.
  • Fig. 7 shows a perspective view of the spray device 10 according to a further embodiment, in which - seen in the transport direction T of the metallic product - a total of three groups of cooling nozzles 16 are arranged.
  • a third group 16.3 of cooling nozzles 16 is now also provided, which - viewed in the transport direction T of the metallic product - is arranged downstream of the second group 16.2.
  • a quick-change frame 24 is also required for this purpose Fig. 6 can be used to arrange the cooling nozzles 16 above and below the metallic product 1.
  • cooling fluid is discharged from the cooling nozzles 16 of the third group 16.3 with a smaller amount and/or a smaller pressure than from the cooling nozzles 16 of the second group 16.2 .
  • the amount of cooling fluid discharged from the cooling nozzles 16 and/or its pressure for the three groups 16.1, 16.2 and 16.3, in this order are continuously reduced along the transport direction T.
  • cooling nozzles 16 of the second group 16.2 are then located approximately in an area between the front section 4 and the rear section 5 of the metallic product 1.
  • the quick-change frames 24 are positioned along the roller table 8 in such a way that they are integrated into the housing G of the spray device 10 and thereby a closed housing chamber K is formed at least in the area of the treatment section 12 of the spray device 10.
  • a cover is provided, which is shown in the illustration Fig. 7 marked with the designation “D”.
  • the inlet area 14 and the outlet area 15 of the housing chamber K are each equipped with a lock function in order to prevent the metallic product 1 from entering into the housing chamber K or the metallic product 1 from running out out of the housing chamber K to ensure.
  • the housing G can be equipped with a water vapor suction direction (not shown). It is therefore possible that water vapor, which can form within the closed housing chamber K when a metallic product 1 is inside the treatment section 12 of the Spray device 10 is subjected to a thermal surface treatment, is suctioned off suitably by means of this water vapor suction direction.
  • a defined heat removal for the metallic product 1 can be achieved using an adjustable amount of water.
  • this can also be achieved by means of an adjustable transport speed with which the slab 3 is moved into the treatment section 12 of the spray device 10 and thereby moved past the cooling nozzles 16.
  • the flowchart from Fig. 8 that it is possible by means of individual process parameters, which can include the geometry, the measured temperature of the metallic product 1 within the spray device 10 in its inlet area 14 and/or outlet area 15 and/or the surface quality of the metallic product 1 measured downstream of the spray device 10 is to implement automated process control that influences the operation of the continuous casting plant 100.

Description

  • Die Erfindung betrifft ein Verfahren zur thermischen Oberflächenbehandlung eines metallischen Produkts nach dem Oberbegriff von Anspruch 1, und eine zu diesem Zweck vorgesehene Sprüheinrichtung nach dem Oberbegriff jeweils von Anspruch 21, 22 und 27.
  • Nach dem Stand der Technik ist es bekannt, metallische Produkte, beispielsweise Stranggießprodukte, einer Wärmebehandlung in Form einer thermischen Oberflächenbehandlung zu unterziehen. Zu diesem Zweck kann ein metallisches Produkt durch eine Sprühkammervorrichtung hindurchgeführt werden, wobei das metallische Produkt innerhalb dieser Sprühkammervorrichtung durch Ausbringen von Wasser auf eine Oberfläche des Produkts kontinuierlich gekühlt wird. Hierbei wird eine Oberflächenabschreckung der äußeren Schicht des metallischen Produkts erreicht. Eine solche Technologie ist beispielsweise aus EP 0 650 790 B1 bekannt.
  • Zum Bearbeiten von heiß gewalztem Stahl in Form eines Stahl-Zwischenproduktes ist es beispielsweise aus DE 196 81 466 T1 bekannt, den Stahl nach einem Walzschritt einer beschleunigten Abkühlung mit einer Geschwindigkeit von 12°C bis 20°C /Sekunde zu unterziehen, um eine Austrittstemperatur im Bereich von etwa 470 °C bis etwa 570 °C zu erreichen. Ein somit behandeltes Stahlprodukt erhält hierdurch eine erhöhte Festigkeit und Zähigkeit mit einer bevorzugten Struktur einschließlich eines wesentlichen Anteils an feinkörnigem Bainit. Weitere Verfahren sowie Vorrichtungen zur thermischen Oberflächenbehandlung eines metallischen Produkt sind auch aus den Dokumente WO 00/03042 A1 , EP 3 184 202 A1 und WO 2012/069234 A1 bekannt.
  • Bei dem vorstehend genannten Stand der Technik verhält es sich so, dass die Wärmebehandlung für ein metallisches Produkt über dessen Länge gesehen im Wesentlichen gleichförmig bzw. mit gleichen Abkühlraten erfolgt. Insoweit besteht diesbezüglich ein Nachteil darin, dass ein möglicher unterschiedlicher Energiegehalt, der bei einem zu kühlenden metallischen Produkt über dessen Länge vorliegen kann, im Zuge der Produktion bzw. Herstellung des metallischen Produkts nicht genügend berücksichtigt wird.
  • Entsprechend liegt der Erfindung die Aufgabe zugrunde, die Herstellung eines metallischen Produkts hinsichtlich seiner thermischen Oberflächenbehandlung zu optimieren, um dadurch eine resultierende Material- bzw. Gefügestruktur des metallischen Produkts beeinflussen zu können.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 und durch eine Sprüheinrichtung mit den Merkmalen von jeweils einem der Ansprüche 21, 22 und 27 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Die Erfindung sieht ein Verfahren zur thermischen Oberflächenbehandlung eines metallischen Produkts insbesondere in Form eines Gießstrangs oder einer hieraus gebildeten Bramme vor, bei dem das metallische Produkt in einer Transportrichtung durch einen mit Kühldüsen ausgestatteten Behandlungsabschnitt einer Sprüheinrichtung hindurch bewegt wird und dabei Kühlfluid durch die Kühldüsen der Sprüheinrichtung auf die Oberflächen des metallischen Produkts ausgebracht wird. Das metallische Produkt weist - in der Transportrichtung des metallischen Produkts gesehen - einen vorderen Abschnitt und einen nacheilenden hinteren Abschnitt auf. Bei Durchführung dieses Verfahrens wird der hintere Abschnitt des metallischen Produkts stärker gekühlt als der vordere Abschnitt des metallischen Produkts. Dies hat zur Folge, dass sich durch den Wärmeentzug mittels des auf die Oberflächen des metallischen Produkts ausgebrachten Kühlfluids in dem Material des metallischen Produkts in einer vorbestimmten Tiefe hiervon über einen Längenbereich, der sich zwischen dem vorderen Abschnitt und dem hinteren Abschnitt des metallischen Produkts erstreckt, ein im Wesentlichen gleichmäßiger Ferrit-Anteil einstellt.
  • In vorteilhafter Weiterbildung des erfindungsgemäßen Verfahrens sind die Kühldüsen zumindest in einer ersten Gruppe und in einer zweiten Gruppe angeordnet. Hierbei ist vorgesehen, dass die zweite Gruppe der Kühldüsen - in der Transportrichtung des metallischen Produkts gesehen - stromabwärts von der ersten Gruppe der Kühldüsen angeordnet ist.
  • In vorteilhafter Weiterbildung des erfindungsgemäßen Verfahrens sind die Kühldüsen zur Versorgung mit Kühlfluid an zumindest eine frequenzgeregelte Pumpe angeschlossen, mit der das Kühlfluid mit einer vorbestimmten Menge und einem vorbestimmten Druck zu den Kühldüsen gefördert wird. Hierbei kann vorgesehen sein, dass für die erste Gruppe der Kühldüsen und für die zweite Gruppe der Kühldüsen jeweils separate frequenzgeregelte Pumpen vorgesehen sind. Alternativ hierzu kann auch vorgesehen sein, dass die erste und zweite Gruppe von Kühldüsen von nur einer zentralen frequenzgeregelten Pumpe mit Kühlfluid gespeist werden, wobei in einer Leitung zwischen der frequenzgeregelten Pumpe und den Kühldüsen der ersten bzw. zweiten Gruppe zumindest ein Stellventil vorgesehen ist, mit dem in Bezug auf das Kühlfluid eine gezielte Wassermenge und/oder ein vorbestimmter Druck für die Kühldüsen der ersten bzw. zweiten Gruppe eingestellt werden kann.
  • Die vorliegende Erfindung sieht auch eine Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts insbesondere in Form eines Gießstrangs oder einer hieraus gebildeten Bramme vor, umfassend einen Behandlungsabschnitt mit einem Einlaufbereich und einem Auslaufbereich, wobei das metallische Produkt entlang des Behandlungsabschnitts von dem Einlaufbereich in Richtung des Auslaufbereichs in einer Transportrichtung bewegt werden kann, und eine Mehrzahl von Kühldüsen, aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts ausgebracht werden kann. Die Kühldüsen sind zumindest in einer ersten Gruppe und in einer zweiten Gruppe angeordnet, wobei die zweite Gruppe der Kühldüsen - in der Transportrichtung des metallischen Produkts gesehen - stromabwärts von der ersten Gruppe der Kühldüsen angeordnet ist. Hierbei sind die Kühldüsen der ersten Gruppe und die Kühldüsen der zweiten Gruppe jeweils an separate frequenzgeregelte Pumpen angeschlossen. Mit diesen jeweiligen frequenzgeregelten Pumpen ist in Bezug auf das Kühlfluid eine vorbestimmten Menge und/oder ein vorbestimmter Druck für die Kühldüsen der ersten Gruppe bzw. für die Kühldüsen der zweiten Gruppe einstellbar, vorzugsweise regelbar.
  • Eine alternative Ausführungsform der Erfindung, der eine eigenständige Bedeutung zukommt, sieht eine Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts insbesondere in Form eines Gießstrangs oder einer hieraus gebildeten Bramme vor, umfassend einen Behandlungsabschnitt mit einem Einlaufbereich und einem Auslaufbereich, wobei das metallische Produkt entlang des Behandlungsabschnitts von dem in Richtung des Auslaufbereichs in einer Transportrichtung bewegt werden kann, und eine Mehrzahl von Kühldüsen, aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts ausgebracht werden kann. Die Kühldüsen sind zumindest in einer ersten Gruppe und in einer zweiten Gruppe angeordnet, wobei die zweite Gruppe der Kühldüsen - in der Transportrichtung des metallischen Produkts gesehen - stromabwärts von der ersten Gruppe der Kühldüsen angeordnet ist. Hierbei sind die Kühldüsen der ersten Gruppe und die Kühldüsen der zweiten Gruppe an zumindest eine frequenzgeregelte Pumpe angeschlossen, wobei in einer Leitung zwischen der frequenzgeregelten Pumpe und den Kühldüsen der ersten bzw. zweiten Gruppe zumindest ein Stellventil vorgesehen ist, mit dem in Bezug auf das Kühlfluid eine Wassermenge und/oder ein Druck für die Kühldüsen der ersten bzw. zweiten Gruppe einstellbar, vorzugsweise regelbar ist.
  • In vorteilhafter Weiterbildung der erfindungsgemäßen Sprüheinrichtung ist eine Steuereinrichtung vorgesehen, mit der die frequenzgeregelte Pumpe, oder die frequenzgeregelten Pumpen, und/oder das Stellventil in Signalverbindung steht bzw. stehen. Hierdurch ist es möglich, dass der Betrieb dieser Pumpen und/oder des Stellventils in Abhängigkeit von zumindest einem Prozessparameter des metallischen Produkts gesteuert, vorzugsweise geregelt werden kann. Zu diesen Prozessparametern des metallischen Produkts kann die Temperatur stromaufwärts und/oder stromabwärts der Sprüheinrichtung, die Temperatur an der Oberseite und/oder an der Unterseite, und/oder ein Ferritanteil, welcher stromabwärts von der Sprüheinrichtung gemessen worden ist, gehören.
  • Der Erfindung liegt die wesentliche Erkenntnis zugrunde, dass das metallische Produkt, bei dem es sich um einen noch durchgehenden bzw. endlosen Gießstrang oder um eine hieraus gebildete vereinzelte Bramme handeln kann, in Bezug auf seine Längserstreckung ungleichmäßig gekühlt wird. Konkret stellt sich dies bei dem erfindungsgemäßen Verfahren so dar, dass der - in der Transportrichtung des metallischen Produkts gesehen - hintere Abschnitt des metallischen Produkts stärker gekühlt wird als dessen vorderer Abschnitt, mit der Folge, dass damit in einem zwischen dem vorderen und hinteren Abschnitt des metallischen Produkts sich erstreckenden Längenbereich des metallischen Produkts eine gezielte Gefügestruktur erreicht wird, nämlich ein im wesentlichen gleichmäßiger Ferrit-Anteil. Genau zu diesem Zweck sind bei der erfindungsgemäßen Sprüheinrichtung die Kühldüsen zumindest in einer ersten Gruppe und in einer zweiten Gruppe angeordnet, wobei diese Gruppen von Kühldüsen - in der Transportrichtung des metallischen Produkts gesehen - mit jeweils unterschiedlichen Mengen an Kühlfluid gespeist werden können. Dies wird entweder durch eine geeignete Steuerung der separaten frequenzgeregelten Pumpen, an denen die Kühldüsen der jeweiligen ersten und zweiten Gruppe angeschlossen sind, erreicht, oder durch eine geeignete Ansteuerung des zumindest einen Stellventils, welches in einer Leitung zwischen der frequenzgeregelten Pumpe und den Kühldüsen der ersten bzw. zweiten Gruppe vorgesehen ist.
  • Im Zuge der vorstehend genannten thermischen Oberflächenbehandlung, die für die vorliegende Erfindung charakteristisch ist, besteht ein weiteres Ziel darin, dass der Energiegehalt des metallischen Produkts im Hinblick auf eine weitere Bearbeitung im Anschluss an die thermische Oberflächenbehandlung so groß wie möglich ist. Anders ausgedrückt, wird das metallische Produkt nur in dem Maße gekühlt, wie es für die gewünschte konstante Gefügeumwandlung erforderlich ist, um dadurch den gleichmäßigen Ferrit-Anteil in dem Material des metallischen Produkts in einer vorbestimmten Tiefe hiervon, beispielsweise 5-10 mm, über einen sich zwischen dem vorderen Abschnitt und dem hinteren Abschnitt des metallischen Produkts sich erstreckenden Längenbereich zu erreichen.
  • In vorteilhafter Weiterbildung des erfindungsgemäßen Verfahrens sind in dem Behandlungsabschnitt der Sprüheinrichtung oberhalb des metallischen Produkts und/oder unterhalb des metallischen Produkts jeweils eine Mehrzahl von Kühldüsen entlang der Transportrichtung des metallischen Produkts angeordnet. Hierbei wird aus diesen Kühldüsen jeweils ein Kühlfluid unter Druck auf die Oberflächen des metallischen Produkts gespritzt. Dieses Kühlfluid wird zweckmäßigerweise in Form von Wasser oder auf Basis von Wasser eingesetzt.
  • Zur Realisierung der vorstehend genannten charakteristischen Kühlung des metallischen Produkts, die an dessen hinteren Abschnitt stärker bzw. intensiver ist als an dessen vorderen Abschnitt, ist gemäß der vorliegenden Erfindung vorgesehen, dass die Menge und/oder der Druck für das Kühlfluid für die Kühldüsen der ersten Gruppe größer eingestellt sind als für die Kühldüsen in der zweiten Gruppe. Eine solche Versorgung der Kühldüsen der ersten Gruppe von Kühldüsen mit einer größeren Menge von Kühlfluid und/oder einem größeren Druck als im Vergleich zur zweiten Gruppe von Kühldüsen wird zweckmäßigerweise für die Kühldüsen sowohl an der Oberseite als auch an der Unterseite des metallischen Produkts eingestellt.
  • In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass die Temperatur des metallischen Produkts gemessen wird. Dies kann - in der Transportrichtung des metallischen Produkts gesehen - stromaufwärts und/oder stromabwärts von der Sprüheinrichtung erfolgen. Des Weiteren kann die Temperatur des metallischen Produkts an seiner Oberseite und/oder an seiner Unterseite gemessen werden. Jedenfalls erfolgt die Temperaturmessung für das metallische Produkt zu dem Zweck, dass in Abhängigkeit dieser gemessenen Temperatur des metallischen Produkts die Menge an Kühlfluid, welches aus den Kühldüsen der Sprüheinrichtung auf die Oberflächen des metallischen Produkts ausgebracht wird, eingestellt oder geregelt wird.
  • In gleicher Weise kann in Abhängigkeit einer gemessenen Temperatur des metallischen Produkts auch die Transportgeschwindigkeit eines metallischen Produkts in Form einer vereinzelten Bramme, oder aber die Veränderung dieser Transportgeschwindigkeit für die Bramme innerhalb des Behandlungsabschnitts der Sprüheinrichtung, eingestellt oder geregelt werden. Diesbezüglich ist zu verstehen, dass mittels der Transportgeschwindigkeit, mit der eine vereinzelte Bramme in dem Behandlungsabschnitt der Sprüheinrichtung an den darin vorgesehenen Kühldüsen vorbeigeführt wird, oder aber deren gezielten Veränderung erreicht werden kann, dass der vordere Abschnitt der Bramme an diesen Kühldüsen schneller vorbeigeführt wird als der hintere Abschnitt der Bramme, mit der Folge, dass damit - wie erläutert - dann der hintere Abschnitt der Bramme stärker gekühlt wird.
  • Eine weitere Möglichkeit für eine gezielte Beeinflussung der Kühlung des metallischen Produkts besteht darin, dass - in der Transportrichtung des metallischen Produkts gesehen - stromabwärts von der Sprüheinrichtung die Oberflächengüte des metallischen Produkts in Bezug auf den Anteil an Ferritanteil gemessen wird. Hierdurch ist es möglich, dass dann die Menge an Kühlfluid, welches aus den Kühldüsen der Sprüheinrichtung auf die Oberflächen des metallischen Produkts ausgebracht wird, und/oder dessen Druck und/oder die Transportgeschwindigkeit der Bramme oder die Veränderung dieser Transportgeschwindigkeit entlang des Behandlungsabschnitts der Sprüheinrichtung in Abhängigkeit des gemessenen Anteils an Ferrit eingestellt oder geregelt werden.
  • Für den Fall, dass gemäß einer vorteilhaften Weiterbildung der Erfindung die Kühldüsen entlang des Behandlungsabschnitts der Sprüheinrichtung auf beiden Seiten des metallischen Produkts, d.h. oberhalb und unterhalb davon angeordnet sind, ist es zweckmäßig, dass die Wassermenge und/oder der Druck für die Kühldüsen unterhalb des metallischen Produkts größer gewählt sind als für die Kühldüsen, die oberhalb des metallischen Produkts angeordnet sind. Dies kann dadurch erreicht werden, dass die Kühldüsen, welche an der Unterseite des metallischen Produkts angeordnet sind, von einer eigenen frequenzgeregelten Pumpe mit Kühlfluid versorgt werden, was bedeutet, dass die Kühldüsen, welche an der Oberseite des metallischen Produkts angeordnet sind, von einer separaten frequenzgeregelten Pumpe mit Kühlfluid gespeist werden. Anders ausgedrückt, wird die unterschiedliche Versorgung der Kühldüsen an der Unterseite des metallischen Produkts im Vergleich zu den Kühldüsen an der Oberseite des metallischen Produkts dadurch erreicht, dass die Kühldüsen, welche unterhalb und oberhalb des metallischen Produkts angeordnet sind, jeweils an unterschiedliche frequenzgeregelte Pumpen zur Versorgung mit Kühlfluid angeschlossen sind.
  • In vorteilhafter Weiterbildung der Erfindung kann vorgesehen sein, dass die Dicke des metallischen Produkts, für welches die charakteristische thermische Oberflächenbehandlung realisiert wird, zumindest 250 mm beträgt, und/oder das eine Breite des metallischen Produkts zumindest 3000 mm beträgt.
  • In vorteilhafter Weiterbildung der Erfindung kann auch vorgesehen sein, dass das Kühlfluid aus den Kühldüsen intermittierend auf die Oberflächen des metallischen Produkts ausgebracht wird. Dies führt zu dem Vorteil, dass ein gesteuerter örtlicher Wärmeentzug mittels intensiver Wasserkühlung beispielsweise an einer bestimmten Stelle des metallischen Produkts in Bezug auf seine Längserstreckung erreicht werden kann.
  • Gemäß einer weiteren alternativen Ausführungsform der Erfindung, der eine eigenständige Bedeutung zukommt, ist eine Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts in Form einer vereinzelten Bramme, umfassend einen Behandlungsabschnitt mit einem Einlaufbereich und einem Auslaufbereich, wobei das metallische Produkt entlang des Behandlungsabschnitts auf einem Rollgang von dem Einlaufbereich in Richtung des Auslaufbereichs in einer Transportrichtung bewegt werden kann, und eine Mehrzahl von Kühldüsen, aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts ausgebracht werden kann. Hierbei ist zumindest ein Rollenelement des Rollgangs mit einem motorischen Antrieb ausgestattet. Vorzugsweise kann das mit dem motorischen Antrieb ausgestattete Rollenelement angrenzend zu dem Behandlungsabschnitt angeordnet sein.
  • Bei der zuletzt genannten Ausführungsform der erfindungsgemäßen Sprüheinrichtung kann durch eine Ansteuerung des motorischen Antriebs, mit dem zumindest ein Rollenelement des Rollgangs ausgerüstet ist, erreicht werden, dass eine vereinzelte Bramme mit ihrem - in der Transportrichtung gesehen - vorderen Abschnitt an den in dem Behandlungsabschnitt angeordneten Kühldüsen schneller vorbeigeführt wird als der hintere Abschnitt der vereinzelten Bramme. Im Ergebnis führt dies dazu, dass dann der hintere Abschnitt der vereinzelten Bramme stärker gekühlt wird als deren vordere Abschnitt, mit der Folge, dass sich damit, wie vorstehend an anderer Stelle bereits erläutert, in dem Material der Bramme in einer vorbestimmten Tiefe hiervon über einen Längenbereich, der sich zwischen dem vorderen Abschnitt und dem hinteren Abschnitt der Bramme erstreckt, ein im Wesentlichen gleichmäßiger Ferrit-Anteil einstellt.
  • In vorteilhafter Weiterbildung der zuletzt genannten Ausführungsform der erfindungsgemäßen Sprüheinrichtung ist eine Steuereinrichtung vorgesehen, mit welcher der motorische Antrieb des Rollenelements in Signalverbindung steht, nämlich derart, dass die Drehzahl bzw. die Umfangsgeschwindigkeit des Rollenelement in Abhängigkeit von zumindest einem Prozessparameter des metallischen Produkts bzw. der vereinzelten Bramme gesteuert und vorzugsweise geregelt werden kann.
  • In vorteilhafter Weiterbildung der Erfindung kann der zumindest eine Prozessparameter des metallischen Produkts, in Abhängigkeit dessen die Menge und/oder der Druck für das Kühlfluid eingestellt oder geregelt werden können, gewählt sein aus der Gruppe bestehend aus Temperatur, Ferrit-Anteil in dem Material des metallischen Produkts und/oder Geometrie des metallischen Produkts insbesondere in Bezug auf seinen Querschnitt senkrecht zur Transportrichtung.
  • Mittels der vorliegenden Erfindung wird eine Technologie für eine gezielte thermische Oberflächenbehandlung geschaffen, die eine automatisierte Einstellung der Temperatur für ein metallisches Produkt und dessen daraus resultierendes Metallgefüge ermöglicht. Beispielsweise bewirkt das gezielte Ausbringen einer größeren Menge von Kühlfluid durch die Kühldüsen der ersten Gruppe als im Vergleich durch die Kühldüsen der zweiten Gruppe, dass der hintere Abschnitt des metallischen Produkts einer örtlich gesteuerten intensiveren Kühlung unterzogen wird als der vordere Abschnitt des metallischen Produkts.
  • Die vorliegende Erfindung ermöglicht eine Beeinflussung der Oberflächenqualität und Struktur eines auf einer Vertikal-, Vertikal-Abbiege (also Anlage mit einem senkrechten Bereich), einer Horizontal- oder Bogenstranggießanlage (ohne senkrechten Bereich), erzeugten Gießstranges aus Stahl, insbesondere eines Gießstranges jedweden Produktformates.
  • Nachstehend sind Ausführungsbeispiele der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben. Es zeigen:
  • Fig. 1
    eine schematisch vereinfachte Seitenansicht einer Stranggießanlage, die eine erfindungsgemäße Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts umfasst, und mit der ein erfindungsgemäßes Verfahren durchführbar ist,
    Fig. 2
    eine vergrößerte Darstellung der Sprüheinrichtung von Fig. 1 gemäß einer ersten Ausführungsform,
    Fig. 3
    eine vergrößerte Darstellung der Sprüheinrichtung von Fig. 1 gemäß einer zweiten Ausführungsform,
    Fig. 4
    eine vereinfachte Seitenansicht eines Rollgangs, der Teil der Stranggießanlage von Fig. 1 ist,
    Fig. 5
    eine vereinfachte Seitenansicht eines Rollgangs, der Teil der Stranggießanlage von Fig. 1 ist, gemäß einer weiteren Ausführungsform,
    Fig. 6
    eine Perspektivansicht eines Schnellwechselrahmens, der Teil der Sprüheinrichtung von Fig. 2 ist, und
    Fig. 7
    eine Perspektivansicht einer Mehrzahl von Schnellwechselrahmen wie in Fig. 6 gezeigt, die zu einer Sprüheinrichtung gemäß Fig. 2 zusammengefasst sind, und
    Fig. 8
    ein Flussdiagramm zur Veranschaulichung eines erfindungsgemäßen Verfahrens und dessen Durchführung.
  • Nachstehend sind unter Bezugnahme auf die Fig. 1-8 bevorzugte Ausführungsformen einer Sprüheinrichtung 10 und eines entsprechenden Verfahrens zur thermischen Oberflächenbehandlung eines metallischen Produkts gemäß der vorliegenden Erfindung dargestellt und erläutert, um damit für das metallische Produkt eine gezielte Gefügeumwandlung bzw. ein gewünschtes Gefüge, nämlich einen im Wesentlichen gleichmäßigen Ferrit-Anteil zu erreichen. Gleiche Merkmale in der Zeichnung sind jeweils mit gleichen Bezugszeichen versehen. An dieser Stelle wird gesondert darauf hingewiesen, dass die Zeichnung lediglich vereinfacht und insbesondere ohne Maßstab dargestellt ist.
  • Fig. 1 zeigt prinzipiell vereinfacht eine Seitenansicht einer Stranggießanlage 100, die mit der Sprüheinrichtung 10 ausgestattet ist.
  • In bekannter Weise umfasst die Stranggießanlage 100 nach Fig. 1 eine Kokille, die eine untere Öffnung und hierdurch einen vertikalen Ausgang nach unten aufweist. In die Kokille wird bis zu einem Gießspiegel bzw. flüssiges Metall eingefüllt, z.B. Stahl oder eine Stahllegierung. Durch die untere Öffnung der Kokille tritt ein metallisches Produkt 1 in Form eines Gießstrangs 2 aus, der anschließend durch eine stützende Strangführung hindurchläuft und dabei in die Horizontale überführt wird.
  • Die Stranggießanlage 100 umfasst einen Rollgang 8 mit einer Vielzahl von Rollenelementen 9, auf denen der Gießstrang 2 nach seinem Überführen in die Horizontale weiter in der Transportrichtung T bewegt wird.
  • Bei der Stranggießanlage 100 gemäß Fig. 1 kann es sich um eine Dickbrammenanlage handeln, mit der ein Gießstrang 2 mit einer Dicke von vorzugsweise 250 mm, oder ggf. noch größeren Gießdicken, hergestellt werden kann.
  • Die erfindungsgemäße Sprüheinrichtung 10 ist in einem Teil der Stranggießanlage 100 angeordnet, in dem der Gießstrang 2 bereits in die Horizontale überführt ist. Diese Sprüheinrichtung 10 dient zur thermischen Oberflächenbehandlung des Gießstrangs 2 und ist zu diesem Zweck mit einer Mehrzahl von Kühldüsen 16 ausgestattet, die in einem Behandlungsabschnitt 12 der Sprüheinrichtung 10 vorgesehen sind.
  • Die Sprüheinrichtung10 umfasst ein Gehäuse G. In einem - in der Transportrichtung T des Gießstrangs 2 gesehen - vorderen Bereich hiervon ist ein Einlaufbereich 14 für den Gießstrang 2 ausgebildet, wobei in einem - in der Transportrichtung T des Gießstrangs 2 gesehen - hinteren Bereich des Gehäuses G ein Auslaufbereich 15 ausgebildet ist.
  • Angrenzend zum Einlaufbereich 14 und zum Auslaufbereich 15 sind innerhalb des Gehäuses G jeweils Temperatur-Messeinrichtungen 13 vorgesehen, mit denen die Temperatur des Gießstrangs 2 sowohl beim Einlaufen in das Gehäuse G als auch beim Verlassen des Gehäuses G bestimmt werden kann. Diese Temperatur-Messeinrichtungen 13 können jeweils oberhalb und unterhalb des Gießstrangs 2 bzw. des Rollgangs 8, auf dem der Gießstrang 2 auch innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 in der Transportrichtung T bewegt wird, angeordnet sein.
  • Ungeachtet dessen, ob der Gießstrang 2 als endloses Produkt, d.h. vor einer Vereinzelung zu einer Bramme, in den Behandlungsabschnitt 12 der Sprüheinrichtung 10 einläuft oder bereits als vereinzelte Bramme, ist grundsätzlich festzustellen, dass das metallische Produkt 1, wenn es sich innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 befindet, einen - in der Transportrichtung T des Gießstrangs 2 gesehen - vorderen Abschnitt 4 aufweist, mit dem das metallische Produkt 1 voran in den Behandlungsabschnitt 12 einläuft. In gleicher Weise weist das metallische Produkt einen - in der Transportrichtung T des Gießstrangs 2 gesehen - hinteren Abschnitt 5 auf, der dem vorderen Abschnitt 4 nacheilt bzw. sich - wiederum in der Transportrichtung T des Gießstrangs 2 gesehen - stromaufwärts von dem vorderen Abschnitt 4 befindet.
  • Die einzelnen Kühldüsen 16 sind innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 in zumindest zwei Gruppen zusammengefasst, nämlich in einer ersten Gruppe 16.1 und in einer zweiten Gruppe 16.2. Hierbei ist die zweite Gruppe 16.2 der Kühldüsen 16 - in der Transportrichtung T des Gießstrangs 2 gesehen - stromabwärts von der ersten Gruppe 16.1 der Kühldüsen 16 angeordnet.
  • Sowohl die erste Gruppe 16.1 als auch die zweite Gruppe 16.2 enthalten jeweils Kühldüsen 16, die sowohl an der Oberseite 6 des Gießstrangs 2 als auch an dessen Unterseite 7 angeordnet sind. Die Oberseite 6 und die Unterseite 7 des Gießstrangs sind beispielsweise in den Fig. 2 und Fig. 3 als solche bezeichnet.
  • Die Stranggießanlage 100 umfasst eine Trenneinrichtung in Form einer Schere S, die - in der Transportrichtung T des Gießstrangs 2 gesehen - stromaufwärts von der Sprüheinrichtung 10 angeordnet ist. In gleicher Weise ist stromaufwärts von der Sprüheinrichtung 10 auch eine Reinigungseinrichtung 22, beispielsweise in Form eines Entzunderers, angeordnet.
  • Nachfolgend sind unter Bezugnahme auf die Fig. 2 und Fig. 3 verschiedene Ausführungsformen für die erfindungsgemäße Sprüheinrichtung 10 dargestellt und erläutert. Soweit diese beiden Ausführungsformen die vorstehend bereits im Zusammenhang mit der Fig. 1 erläuterten Merkmale aufweisen und diesbezüglich übereinstimmen, werden diese Merkmale nicht nochmals erläutert.
  • Eine erste Ausführungsform für die erfindungsgemäße Sprüheinrichtung 10 ist in der Fig. 2 gezeigt. Bei dieser Ausführungsform sind separate frequenzgeregelte Pumpen 18 vorgesehen, mit denen eine jeweils getrennte Versorgung der Kühldüsen 16 einerseits der ersten Gruppe 16.1 und andererseits der zweiten Gruppe 16.2 mit Kühlfluid erfolgt. Hierzu sind die Kühldüsen 16 der ersten Gruppe 16.1 bzw. der zweiten Gruppe 16.2 jeweils über eine Leitung 17 an die ihnen zugeordneten frequenzgeregelte Pumpe 18 angeschlossen.
  • Die beiden frequenzgeregelten Pumpen 18 sind signaltechnisch mit einer Steuereinrichtung 20 verbunden. Beide dieser Pumpen 18 sind durch nicht näher bezeichnete Leitungen mit einem Tank oder dergleichen verbunden, in dem Kühlfluid enthalten ist. Somit kann ein Betrieb dieser Pumpen 20 durch die Steuereinrichtung 20 geeignet gesteuert oder geregelt werden, um dadurch die Kühldüsen 16 sowohl der ersten Gruppe 16.1 als auch der zweiten Gruppe 16.2 mit Kühlfluid zu versorgen.
  • In den Leitungen 17 zwischen den frequenzgeregelten Pumpen 18 und der ersten Gruppe 16.1 bzw. der zweiten Gruppe 16.2 von Kühldüsen 16 sind jeweils Stellventile 19 vorgesehen, die ebenfalls signaltechnisch mit der Steuereinrichtung 20 verbunden sind und hierdurch aktuiert werden können. Durch eine geeignete Betriebsstellung dieser Stellventile 19 kann gesteuert werden, ob Kühlfluid auf die Oberflächen des Gießstrangs 2 ausgebracht wird oder nicht.
  • Fig. 3 zeigt eine zweite Ausführungsform für die erfindungsgemäße Sprüheinrichtung 10. Im Unterschied zur ersten Ausführungsform gemäß Fig. 2 sind nun bei der zweiten Ausführungsform die Kühldüsen 16 sowohl der ersten Gruppe 16.1 als auch der zweiten Gruppe 16.2 an eine gemeinsame frequenzgeregelte Pumpe 18 angeschlossen, zwecks einer Versorgung mit Kühlfluid. Mittels eines Stellventils 19, das in einer Leitung 17 zwischen der frequenzgeregelten Pumpe 18 und den beiden Gruppen 16.1 und 16.2 der Kühldüsen 16 vorgesehen ist, lässt sich einstellen, in welcher Menge und mit welchem Druck das Kühlfluid den Kühldüsen 16 jeweils der ersten Gruppe 16.1 und der zweiten Gruppe 16.2 zugeführt wird.
  • In gleicher Weise wie bei der ersten Ausführungsform von Fig. 2 können auch bei der zweiten Ausführungsform gemäß Fig. 3 die frequenzgeregelte Pumpe 18 und das Stellventil 17 jeweils von der Steuereinrichtung 20 angesteuert bzw. geregelt werden.
  • Bei beiden Ausführungsformen der Sprüheinrichtung 10 gemäß der Fig. 2 und Fig. 3 kann vorgesehen sein, dass zumindest ein Rollenelement 9 des Rollgangs 8 mit einem motorischen Antrieb M ausgestattet ist. Entsprechend ist dieses angetriebene Rollenelement in den Darstellungen von Fig. 2 und Fig. 3 jeweils mit "9(M)" bezeichnet. Dieses angetriebene Rollenelement 9(M) steht ebenfalls mit der Steuereinrichtung 20 in Signalverbindung, wie es beispielsweise in der Fig. 3 durch die Punktlinie symbolisiert ist, und kann entsprechend mittels der Steuereinrichtung 20 angesteuert werden.
  • Die Erfindung funktioniert nun wie folgt:
  • Im Betrieb der Stranggießanlage 100 wird zunächst ein metallisches Produkt 1 in Form eines Gießstrangs 2 erzeugt, der nach dem Verlassen der Kokille zunächst durch die stützende Strangführung hindurch und nach dem Überführen in die Horizontale auf dem Rollgang 8 weiter in der Transportrichtung T bewegt wird. Hierbei kann vorgesehen sein, dass die Oberflächen des Gießstrangs 2 mittels der Reinigungseinrichtung 22 gereinigt werden, beispielsweise durch Ausbringen von Wasser unter hohem Druck.
  • Bei seiner Bewegung auf dem Rollgang 8 durchläuft das metallische Produkt 1 auch den Behandlungsabschnitt 12 der Sprüheinrichtung 10. Eine thermische Oberflächenbehandlung für das metallische Produkt 1 erfolgt dadurch, dass Kühlfluid 16 durch die Kühldüsen der ersten Gruppe 16.1 und der zweiten Gruppe 16.2 gezielt auf die Oberflächen des metallischen Produkts 1 ausgebracht wird.
  • Bei dem metallischen Produkt 1 kann es sich um einen Gießstrang 2 handeln, der noch nicht vereinzelt worden ist und entsprechend ein Endlos-Profil darstellt. Dies ist in der Darstellung von Fig. 4 veranschaulicht, in der ein solcher Endlos-Gießstrang 2 auf dem Rollgang 8 in der Transportrichtung T bewegt wird.
  • Die thermische Oberflächenbehandlung des Gießstrangs 2 innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 kann derart erfolgen, dass aus den Kühldüsen 16 der ersten Gruppe 16.1 Kühlfluid mit einer größeren Menge und/oder einen größeren Druck auf die Oberflächen des Gießstrangs 2 ausgebracht wird als im Vergleich aus den Kühldüsen 16 der zweiten Gruppe 16.2. Dies hat dann zur Folge, dass der nacheilende hintere Abschnitt 5 des Gießstrangs 2 innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 stärker gekühlt wird als dessen vorderer Abschnitt 4. Mit dieser Kühlstrategie wird das Ergebnis erreicht, dass in dem Material des Gießstrangs 2 in einer vorbestimmten Tiefe hiervon über einen Längenbereich, der sich zwischen dem vorderen Abschnitt 4 und dem hinteren Abschnitt 5 erstreckt, sich ein im Wesentlichen gleichmäßiger Ferrit-Anteil einstellt.
  • Im Zuge der vorliegenden Erfindung ist innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 eine thermische Oberflächenbehandlung auch für eine vereinzelte Bramme 3 möglich, die zuvor aus dem Gießstrang 2 gebildet worden ist. Hierbei wird der Gießstrang 2, bevor er auf dem Rollgang 8 die Sprüheinrichtung 10 erreicht, mittels der Schere S vereinzelt, so dass dann eine entsprechend vereinzelte Bramme 3 in den Behandlungsabschnitt 12 der Sprüheinrichtung 10 bzw. deren Gehäuse G einläuft.
  • Ein Bewegen der vereinzelten Bramme 3 innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 in der Transportrichtung T kann durch das angetriebene Rollenelement 9(M) erreicht werden. Dies ist beispielsweise in der Darstellung von Fig. 5 veranschaulicht.
  • Auch für den Fall, dass ein metallisches Produkt 1 in Form einer bereits vereinzelten Bramme 3 in der Sprüheinrichtung 10 einer thermischen Oberflächenbehandlung unterzogen wird, kann die vorstehend bereits erläuterten Kühlstrategie verfolgt werden, wonach ein hinterer Abschnitt 5 der Bramme 3 stärker gekühlt wird als der vorderer Abschnitt 4 hiervon. Dies kann dadurch erreicht werden, dass, wie bereits erläutert, aus den Kühldüsen 16 der ersten Gruppe 16.1 Kühlfluid mit größerer Menge und/oder größerem Druck auf die Oberflächen der Bramme 3 ausgebracht wird als im Vergleich aus den Kühldüsen 16 der zweiten Gruppe 16.2. Ergänzend oder alternativ kann diese Kühlstrategie dadurch erreicht werden, dass die vereinzelte Bramme 3 derart in den Behandlungsabschnitt 12 der Sprüheinrichtung 10 bzw. in deren Gehäuse G hinein bewegt wird, dass der vorderer Abschnitt 4 der Bramme 3 schneller an den Kühldüsen 16 vorbeitritt als der nacheilende hintere Abschnitt 5 der Bramme 5. Dies kann mit einer geeigneten Ansteuerung des angetriebenen Rollenelements 9(M) durch die Steuereinrichtung 20 erreicht werden.
  • In den Fig. 6 und 7 sind weitere Merkmale für die erfindungsgemäße Sprüheinrichtung 10 gezeigt und erläutert, die bei allen der vorstehend bereits genannten Ausführungsformen realisiert sein können.
  • Fig. 6 zeigt in einer vereinfachten Perspektivdarstellung einen Schnellwechselrahmen 24, in dem eine Gruppe von Kühldüsen 16 angeordnet sind. Eine Leitung 17 für Kühlfluid führt seitlich in einen solchen Schnellwechselrahmen 24 hinein und ist mit Spritzrohren verbunden, an denen die einzelnen Kühldüsen 16 angebracht sind. Wie vorstehend bereits erläutert, ist die Leitung 17 an eine frequenzgeregelte Pumpe 18 angeschlossen, um dadurch die Kühldüsen 16 mit Kühlfluid zu speisen.
  • Die Perspektivdarstellung von Fig. 6 verdeutlicht, dass der Schnellwechselrahmen 24 im Querschnitt in Form eines Rechteck-Profils ausgebildet ist, das eine mittige Öffnung umschließt. Diesbezüglich ist zu verstehen, dass sich der Rollgang 8, der zur Vereinfachung in der Fig. 6 nicht gezeigt ist, durch diese mittige Öffnung hindurch erstreckt. Somit können die Oberseite 6 und die Unterseite 7 des metallischen Produkts 1 mit Kühlfluid beaufschlagt werden, wenn dieses Kühlfluid durch die Kühldüsen 16 in Richtung des metallischen Produkts 1 ausgebracht wird.
  • Der Schnellwechselrahmen 24 ist mit einer Höhenverstelleinrichtung H ausgestattet. Diese Höhenverstelleinrichtung H wirkt auf die Spritzrohre, die oberhalb des Rollgangs 8 angeordnet sind. Entsprechend ist es mit einer Betätigung dieser Höhenverstelleinrichtung H möglich, den Abstand der Kühldüsen 16, die oberhalb des metallischen Produkts 1 angeordnet sind, relativ zur Oberseite 6 des metallischen Produkts 1 zu verändern.
  • In Bezug auf einen Schnellwechselrahmen 24 gemäß Fig. 6 darf an dieser Stelle gesondert darauf hingewiesen werden, dass dieser für die Kühldüsen 16 der ersten Gruppe 16.1 als auch für die Kühldüsen 16 der zweiten Gruppe 16.2 eingesetzt werden kann. Dies bedeutet, dass dann bei den Ausführungsformen gemäß Fig. 2 und Fig. 3 insgesamt zwei Schnellwechselrahmen 24 zum Einsatz kommen, nämlich einerseits für die Kühldüsen 16 der ersten Gruppe 16.1 und andererseits für die Kühldüsen 16 der zweiten Gruppe 16.2.
  • Fig. 7 zeigt eine perspektivische Ansicht der Sprüheinrichtung 10 gemäß einer weiteren Ausführungsform, bei der - in der Transportrichtung T des metallischen Produkts gesehen - insgesamt drei Gruppen von Kühldüsen 16 angeordnet sind. Neben den bereits genannten Gruppen 16.1 und 16.2 ist nun auch eine dritte Gruppe 16.3 von Kühldüsen 16 vorgesehen, die - in der Transportrichtung T des metallischen Produkts gesehen - stromabwärts von der zweiten Gruppe 16.2 angeordnet ist.
  • Für die dritte Gruppe 16.3 von Kühldüsen 16 versteht sich, dass hierzu auch ein Schnellwechselrahmen 24 gemäß Fig. 6 verwendet werden kann, um damit die Kühldüsen 16 oberhalb und unterhalb des metallischen Produkts 1 anzuordnen.
  • Bei der Ausführungsform von Fig. 7, bei der wie soeben erläutert insgesamt drei Gruppen von Kühldüsen 16 vorgesehen sind, versteht sich, dass hierbei aus den Kühldüsen 16 der dritten Gruppe 16.3 Kühlfluid mit einer kleineren Menge und/oder einem kleineren Druck ausgebracht wird als aus den Kühldüsen 16 der zweiten Gruppe 16.2. Anders ausgedrückt, werden die Menge des aus den Kühldüsen 16 ausgebrachten Kühlfluids und/oder dessen Druck für die drei Gruppen 16.1, 16.2 und 16.3, in dieser Reihenfolge, entlang der Transportrichtung T stetig vermindert.
  • In Bezug auf die dritte Gruppe 16.3 von Kühldüsen 16 kann vorgesehen sein, dass diese dem vorderen Abschnitt 4 des metallischen Produkts 1 zugeordnet ist. Entsprechend befinden sich dann die Kühldüsen 16 der zweiten Gruppe 16.2 in etwa in einem Bereich zwischen dem vorderen Abschnitt 4 und dem hinteren Abschnitt 5 des metallischen Produkts 1.
  • Die Positionierung der Schnellwechselrahmen 24 entlang des Rollgangs 8 erfolgt in der Weise, dass diese in das Gehäuse G der Sprüheinrichtung 10 integriert sind und sich hierdurch zumindest im Bereich des Behandlungsabschnitts 12 der Sprüheinrichtung 10 eine geschlossene Gehäusekammer K ausgebildet. Im oberen Bereich dieser Gehäusekammer K ist ein Deckel vorgesehen, der in der Darstellung von Fig. 7 mit der Bezeichnung "D" versehen ist.
  • Im Hinblick auf die vorstehend genannte geschlossene Gehäusekammer K versteht sich, dass der Einlaufbereich 14 und der Auslaufbereich 15 der Gehäusekammer K jeweils mit einer Schleusenfunktion ausgestattet sind, um ein Einlaufen des metallischen Produkts 1 hinein in die Gehäusekammer K bzw. ein Herauslaufen des metallischen Produkts 1 heraus aus der Gehäusekammer K zu gewährleisten.
  • In Bezug auf die einzelnen Gruppen von Kühldüsen 16 darf an dieser Stelle gesondert darauf hingewiesen werden, dass - in der Transportrichtung T gesehen - ein Abstand dieser Gruppen relativ zueinander einstellbar verändert werden kann. Dies gilt in gleicher Weise sowohl für die Ausführungsform von Fig. 2 und Fig. 3, bei denen jeweils eine erste Gruppe 16.1 und eine zweite Gruppe 16.2 von Kühldüsen 16 vorgesehen sind, als auch für die Ausführungsform von Fig. 7, bei der für die Kühldüsen 16 insgesamt drei Gruppen 16.1, 16.2 und 16.3 vorgesehen sind. Eine solche Verstellung eines Abstands der Gruppen von Kühldüsen 16 lässt sich in einfacher Weise realisieren, wenn für diese Gruppen, wie erläutert, jeweils ein Schnellwechselrahmen 24 gemäß Fig. 6 verwendet wird.
  • Bei allen der vorstehend genannten Ausführungsformen der erfindungsgemäßen Sprüheinrichtung 10 das Gehäuse G mit einer (nicht gezeigten) Wasserdampfabsaugrichtung ausgestattet sein kann. Somit ist es möglich, dass Wasserdampf, der sich innerhalb der geschlossenen Gehäusekammer K bilden kann, wenn ein metallisches Produkt 1 innerhalb des Behandlungsabschnitts 12 der Sprüheinrichtung 10 einer thermischen Oberflächenbehandlung unterzogen wird, geeignet mittels dieser Wasserdampfabsaugrichtung abgesaugt wird.
  • Weitere Merkmale zur Durchführung eines erfindungsgemäßen Verfahrens zur thermischen Oberflächenbehandlung sind in dem Flussdiagramm von Fig. 8 genannt. In Bezug auf die Sprüheinrichtung 10 darf hierzu hervorgehoben werden, dass ein definierter Wärmeentzug für das metallische Produkt 1 durch eine regelbare Wassermenge erreicht werden kann. Im Falle der Behandlung einer vereinzelten Bramme 3 kann dies auch mittels einer regelbaren Transportgeschwindigkeit erreicht werden, mit der die Bramme 3 in den Behandlungsabschnitt 12 der Sprüheinrichtung 10 hineinbewegt und dabei an den Kühldüsen 16 vorbeibewegt wird.
  • Des Weiteren verdeutlicht das Flussdiagramm von Fig. 8, dass es mittels einzelner Prozessparameter, zu denen die Geometrie, die gemessene Temperatur des metallischen Produkts 1 innerhalb der Sprüheinrichtung 10 in deren Einlaufbereich 14 und/oder Auslaufbereich 15 und/oder die stromabwärts der Sprüheinrichtung 10 gemessene Oberflächengüte des metallischen Produkts 1 zählen können, möglich ist, eine automatisierte Prozessführung zu realisieren, die Einfluss auf den Betrieb der Stranggießanlage 100 hat.
  • Bezugszeichenliste
  • 1
    metallisches Produkt
    2
    Gießstrang
    3
    Bramme
    4
    vorderer Abschnitt (des metallischen Produkts 1)
    5
    nacheilender hintere Abschnitt (des metallischen Produkts 1)
    6
    Oberseite (des metallischen Produkts 1)
    7
    Unterseite (des metallischen Produkts 1)
    8
    Rollgang
    9
    Rollenelement
    10
    Sprüheinrichtung
    12
    Behandlungsabschnitt
    13
    Temperatur-Messeinrichtung
    14
    Einlaufbereich
    15
    Auslaufbereich
    16
    Kühldüsen
    16.1
    erste Gruppe von Kühldüsen 16
    16.2
    zweite Gruppe von Kühldüsen 16
    16.3
    dritte Gruppe von Kühldüsen 16
    17
    Leitung
    18
    frequenzgeregelte Pumpe
    19
    Stellventil
    20
    Steuereinrichtung
    22
    Reinigungseinrichtung (z.B. Entzunderer)
    24
    Schnellwechselrahmen
    100
    Stranggießanlage
    D
    Deckel
    G
    Gehäuse
    H
    Höhenverstelleinrichtung
    K
    Gehäusekammer
    M
    motorischer Antrieb (für ein Rollenelement)
    R
    Spritzrohre
    S
    Schere
    T
    Transportrichtung
    v
    Transportgeschwindigkeit (der Bramme 3)

Claims (32)

  1. Verfahren zur thermischen Oberflächenbehandlung eines metallischen Produkts (1) insbesondere in Form eines Gießstrangs (2) oder einer hieraus gebildeten Bramme (3), bei dem das metallische Produkt (1) in einer Transportrichtung (T) durch einen mit Kühldüsen (16) ausgestatteten Behandlungsabschnitt (12) einer Sprüheinrichtung (10) hindurch bewegt wird und dabei Kühlfluid durch die Kühldüsen (16) der Sprüheinrichtung (10) auf die Oberflächen des metallischen Produkts (1) ausgebracht wird, wobei das metallische Produkt (1) - in der Transportrichtung (T) des metallischen Produkts (1) gesehen - einen vorderen Abschnitt (4) und einen nacheilenden hinteren Abschnitt (5) aufweist,
    dadurch gekennzeichnet,
    dass der hintere Abschnitt (5) des metallischen Produkts (1) stärker gekühlt wird als der vordere Abschnitt (4) des metallischen Produkts (1), derart, dass sich durch den Wärmeentzug mittels des auf die Oberflächen des metallischen Produkts (1) ausgebrachten Kühlfluids in dem Material des metallischen Produkts (1) in einer vorbestimmten Tiefe hiervon über einen Längenbereich, der sich zwischen dem vorderen Abschnitt (4) und dem hinteren Abschnitt (5) des metallischen Produkts (1) erstreckt, ein im Wesentlichen gleichmäßiger Ferrit-Anteil einstellt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in dem Behandlungsabschnitt (12) der Sprüheinrichtung (10) oberhalb des metallischen Produkts (1) und/oder unterhalb des metallischen Produkts (1) eine Mehrzahl von Kühldüsen (16) entlang der Transportrichtung (T) des metallischen Produkts (1) angeordnet sind, wobei aus den Kühldüsen (16) jeweils Kühlfluid insbesondere in Form von oder auf Basis von Wasser unter Druck auf die Oberflächen des metallischen Produkts (1) gespritzt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Kühldüsen (16) zumindest in einer ersten Gruppe (16.1) und in einer zweiten Gruppe (16.2) angeordnet sind, wobei die zweite Gruppe (16.2) der Kühldüsen (16) - in der Transportrichtung (T) des metallischen Produkts (1) gesehen - stromabwärts von der ersten Gruppe (16.1) der Kühldüsen (16) angeordnet ist.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Kühldüsen (16) zur Versorgung mit Kühlfluid an zumindest eine frequenzgeregelte Pumpe (18) angeschlossen sind, mit der das Kühlfluid mit einer vorbestimmten Menge und einem vorbestimmten Druck zu den Kühldüsen (16) gefördert wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass für die erste Gruppe (16.1) und zweite Gruppe (16.2) der Kühldüsen (16) jeweils separate frequenzgeregelte Pumpen (18) vorgesehen sind.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in einer Leitung (17) zwischen der frequenzgeregelten Pumpe (18) und den Kühldüsen (16) der ersten bzw. zweiten Gruppe (16.1, 16.2) zumindest ein Stellventil (19) vorgesehen ist, mit dem in Bezug auf das Kühlfluid eine Wassermenge und/oder ein Druck für die Kühldüsen (16) der ersten bzw. zweiten Gruppe (16.1, 16.2) einstellbar ist.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Wassermenge und/oder der Druck für das Kühlfluid bei den Kühldüsen (16) der ersten Gruppe (16.1) größer gewählt ist bzw. sind als wie bei den Kühldüsen (16) der zweiten Gruppe (16.2), so dass dadurch der hintere Abschnitt (5) des metallischen Produkts (1) stärker gekühlt wird als sein vorderer Abschnitt (4).
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das metallische Produkt (1) - in seiner Transportrichtung (T) gesehen - stromaufwärts von der Sprüheinrichtung (10) geschnitten und somit zu einer Bramme (3) vereinzelt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Transportgeschwindigkeit (v) der Bramme (3) in dem Behandlungsabschnitt (12) der Sprüheinrichtung (10) verändert wird, derart, dass der vordere Abschnitt (4) der Bramme (3) an den Kühldüsen (16) schneller vorbeigeführt wird als der hintere Abschnitt (5) der Bramme (3).
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das metallische Produkt (1) - in seiner Transportrichtung (1) gesehen - stromaufwärts von der Sprüheinrichtung (10) gereinigt, vorzugsweise entzundert wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des metallischen Produkts (1) - in seiner Transportrichtung gesehen - stromaufwärts von der Sprüheinrichtung (10) gemessen wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des metallischen Produkts (1) - in seiner Transportrichtung (T) gesehen - stromabwärts von der Sprüheinrichtung (10) gemessen wird.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Temperatur des metallischen Produkts (1) an seiner Oberseite (6) gemessen wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Temperatur des metallischen Produkts (1) an seiner Unterseite (7) gemessen wird.
  15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Menge an Kühlfluid, welches aus den Kühldüsen (16) der Sprüheinrichtung (10) auf die Oberflächen des metallischen Produkts (1) ausgebracht wird, in Abhängigkeit von der gemessenen Temperatur des metallischen Produkts (1) eingestellt oder geregelt wird.
  16. Verfahren nach einem der Ansprüche 11 bis 15, soweit rückbezogen auf Anspruch 9, dadurch gekennzeichnet, dass die Transportgeschwindigkeit (v) der Bramme (3) oder die Veränderung dieser Transportgeschwindigkeit (v) innerhalb des Behandlungsabschnitts (12) der Sprüheinrichtung (10) in Abhängigkeit der gemessenen Temperatur des metallischen Produkts (1) eingestellt oder geregelt wird.
  17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass - in der Transportrichtung (T) des metallischen Produkts (1) gesehen - stromabwärts von der Sprüheinrichtung (10) die Oberflächengüte des metallischen Produkts (1) in Bezug auf den Anteil an Ferritanteil gemessen wird, wobei die Menge an Kühlfluid, welches aus den Kühldüsen (16) der Sprüheinrichtung (10) auf die Oberflächen des metallischen Produkts (1) ausgebracht wird, und/oder dessen Druck und/oder die Transportgeschwindigkeit der Bramme (3) oder die Veränderung dieser Transportgeschwindigkeit (v) entlang des Behandlungsabschnitts (12) der Sprüheinrichtung (10) in Abhängigkeit des gemessenen Anteils an Ferrit eingestellt oder geregelt werden.
  18. Verfahren nach einem der Ansprüche 2 bis 17, dadurch gekennzeichnet, dass die Kühldüsen (16) entlang des Behandlungsabschnitts (12) der Sprüheinrichtung (10) sowohl oberhalb des metallischen Produkts (1) als auch unterhalb des metallischen Produkts (1) angeordnet sind, wobei die Wassermenge und/oder der Druck für die Kühldüsen (16) unterhalb des metallischen Produkts (1) größer gewählt sind als für die Kühldüsen (16) oberhalb des metallischen Produkts (1), vorzugsweise, dass die unterhalb des metallischen Produkts (1) angeordneten Kühldüsen (16) und die oberhalb des metallischen Produkts (1) angeordneten Kühldüsen (16) an jeweils unterschiedliche frequenzgeregelte Pumpen (18) angeschlossen sind.
  19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke des metallischen Produkts (1) zumindest 250 mm beträgt und/oder dass eine Breite des metallischen Produkts (1) zumindest 3000 mm beträgt.
  20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlfluid aus den Kühldüsen (16) intermittierend auf die Oberflächen des metallischen Produkts (1) ausgebracht wird.
  21. Sprüheinrichtung (10) zur thermischen Oberflächenbehandlung eines metallischen Produkts (1) insbesondere in Form eines Gießstrangs (2) oder einer hieraus gebildeten Bramme (3) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 20, umfassend
    einen Behandlungsabschnitt (12) mit einem Einlaufbereich (14) und einem Auslaufbereich (15), wobei das metallische Produkt (1) entlang des Behandlungsabschnitts (12) von dem Einlaufbereich (14) in Richtung des Auslaufbereichs (15) in einer Transportrichtung (T) bewegbar ist, und
    eine Mehrzahl von Kühldüsen (16), aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts (1) ausbringbar ist,
    dadurch gekennzeichnet,
    dass die Kühldüsen (16) zumindest in einer ersten Gruppe (16.1) und in einer zweiten Gruppe (16.2) angeordnet sind, wobei die zweite Gruppe (16.2) der Kühldüsen (16) - in der Transportrichtung (T) des metallischen Produkts (1) gesehen - stromabwärts von der ersten Gruppe (16.1) der Kühldüsen (16) angeordnet ist, und
    dass die Kühldüsen (16) der ersten Gruppe (16.1) und die Kühldüsen (16) der zweiten Gruppe (16.2) jeweils an separate frequenzgeregelte Pumpen (18) angeschlossen sind, wobei mit den jeweiligen frequenzgeregelten Pumpen (18) in Bezug auf das Kühlfluid eine vorbestimmten Menge und/oder ein vorbestimmter Druck für die Kühldüsen (16) der ersten Gruppe (16.1) bzw. für die Kühldüsen (16) der zweiten Gruppe (16.2) einstellbar, vorzugsweise regelbar ist.
  22. Sprüheinrichtung (10) zur thermischen Oberflächenbehandlung eines metallischen Produkts (1) insbesondere in Form eines Gießstrangs (2) oder einer hieraus gebildeten Bramme (3) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 20, umfassend
    einen Behandlungsabschnitt (12) mit einem Einlaufbereich (14) und einem Auslaufbereich (15), wobei das metallische Produkt (1) entlang des Behandlungsabschnitts (12) von dem Einlaufbereich (14) in Richtung des Auslaufbereichs (15) in einer Transportrichtung (T) bewegbar ist, und
    eine Mehrzahl von Kühldüsen (16), aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts (1) ausbringbar ist,
    dadurch gekennzeichnet,
    dass die Kühldüsen (16) zumindest in einer ersten Gruppe (16.1) und in einer zweiten Gruppe (16.2) angeordnet sind, wobei die zweite Gruppe (16.2) der Kühldüsen (16) - in der Transportrichtung (T) des metallischen Produkts (1) gesehen - stromabwärts von der ersten Gruppe (16.1) der Kühldüsen (16) angeordnet ist, und
    dass die Kühldüsen (16) der ersten Gruppe (16.1) und die Kühldüsen (16) der zweiten Gruppe (16.2) an zumindest eine frequenzgeregelte Pumpe (18) angeschlossen sind und in einer Leitung (17) zwischen der frequenzgeregelten Pumpe (18) und den Kühldüsen (16) der ersten bzw. zweiten Gruppe (16.1, 16.2) zumindest ein Stellventil (19) vorgesehen ist, mit dem in Bezug auf das Kühlfluid eine Wassermenge und/oder ein Druck für die Kühldüsen (16) der ersten bzw. zweiten Gruppe (16.1, 16.2) einstellbar, vorzugsweise regelbar ist.
  23. Sprüheinrichtung (10) nach Anspruch 21 oder 22, gekennzeichnet durch eine Steuereinrichtung (20), mit der die frequenzgeregelte(n) Pumpe bzw. Pumpen (18) und/oder das Stellventil (19) in Signalverbindung steht bzw. stehen, derart, dass der Betrieb dieser Pumpe(n) (18) und/oder des Stellventils (19) in Abhängigkeit von zumindest einem Prozessparameter des metallischen Produkts (1) steuerbar, vorzugsweise regelbar ist.
  24. Sprüheinrichtung (10) nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass das metallische Produkt entlang des Behandlungsabschnitts (12) auf einem Rollgang (8) von dem Einlaufbereich (14) in Richtung des Auslaufbereichs (15) in der Transportrichtung (T) bewegbar ist, wobei zumindest ein Rollenelement (9) des Rollgangs (8) mit einem motorischen Antrieb (M) ausgestattet ist, vorzugsweise, dass das mit dem motorischen Antrieb (M) ausgestattete Rollenelement (9) angrenzend zu dem Behandlungsabschnitt (12) angeordnet ist.
  25. Sprüheinrichtung (10) nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass die erste Gruppe (16.1) von Kühldüsen (16) und die zweite Gruppe (16.2) von Kühldüsen (16) jeweils in separaten Schnellwechselrahmen (24) aufgenommen sind.
  26. Sprüheinrichtung (10) nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass ein Abstand der ersten Gruppe (16.1) von Kühldüsen (16) und der zweiten Gruppe (16.2) von Kühldüsen (16) in der Transportrichtung (T) des metallischen Produkts (1) relativ zueinander einstellbar veränderlich ist.
  27. Sprüheinrichtung (10) zur thermischen Oberflächenbehandlung eines metallischen Produkts (1) in Form einer vereinzelten Bramme (3) zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 20, umfassend
    einen Behandlungsabschnitt (12) mit einem Einlaufbereich (14) und einem Auslaufbereich (15), wobei das metallische Produkt (1) entlang des Behandlungsabschnitts (12) auf einem Rollgang (8) von dem Einlaufbereich (14) in Richtung des Auslaufbereichs (15) in einer Transportrichtung (T) bewegbar ist, und
    eine Mehrzahl von Kühldüsen (16), aus denen jeweils ein Kühlfluid auf die Oberflächen des metallischen Produkts (1) ausbringbar ist,
    dadurch gekennzeichnet,
    dass zumindest ein Rollenelement (9) des Rollgangs (8) mit einem motorischen Antrieb (M) ausgestattet ist, vorzugsweise, dass das mit dem motorischen Antrieb (M) ausgestattete Rollenelement (9) angrenzend zu dem Behandlungsabschnitt (12) angeordnet ist.
  28. Sprüheinrichtung (10) nach Anspruch 27, dadurch gekennzeichnet, dass eine Steuereinrichtung (20) vorgesehen ist, mit welcher der motorische Antrieb (M) des Rollenelements (9) in Signalverbindung steht, derart, dass die Drehzahl bzw. die Umfangsgeschwindigkeit des Rollenelements (9) in Abhängigkeit von zumindest einem Prozessparameter des metallischen Produkts (1) steuerbar, vorzugsweise regelbar ist.
  29. Sprüheinrichtung (10) nach Anspruch 23 oder 27, dadurch gekennzeichnet, dass der zumindest ein Prozessparameter des metallischen Produkts (1) gewählt ist aus der Gruppe bestehend aus Temperatur, Ferrit-Anteil in dem Material des metallischen Produkts (1) und/oder Geometrie des metallischen Produkts (1) insbesondere in Bezug auf seinen Querschnitt senkrecht zur Transportrichtung (T).
  30. Sprüheinrichtung (10) nach einem der Ansprüche 21 bis 29, gekennzeichnet durch ein Gehäuse (G), in dem der Behandlungsabschnitt (12) vorgesehen ist, vorzugsweise, dass das Gehäuse mit einer Wasserdampfabsaugeinrichtung ausgestattet ist, weiter vorzugsweise, dass das Gehäuse (G) in Form einer Kammer (K) und im Wesentlichen geschlossen ausgebildet ist, wobei der Einlaufbereich (14) und der Auslaufbereich (15) der Gehäusekammer (K) jeweils mit einer Schleusenfunktion ausgestattet sind, um ein Einlaufen des metallischen Produkts hinein in die Gehäusekammer (K) bzw. ein Herauslaufen des metallischen Produkts (1) heraus aus der Gehäusekammer (K) zu gewährleisten.
  31. Sprüheinrichtung (10) nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass die Kühldüsen (16) in zumindest einem Schnellwechselrahmen (24) angeordnet sind.
  32. Sprüheinrichtung (10) nach einem der Ansprüche 21 bis 31, gekennzeichnet durch eine Höhenverstelleinrichtung (H), mit der Kühldüsen (16), die an einer Oberseite (6) des metallischen Produkts (1) angeordnet sind, in ihrer Höhe verstellbar angeordnet sind, so dass damit ein Abstand dieser Kühldüsen (16) relativ zum Rollgang (8) einstellbar ist.
EP21772737.9A 2020-09-18 2021-08-31 Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts Active EP4214010B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020211720.9A DE102020211720A1 (de) 2020-09-18 2020-09-18 Verfahren und Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts
PCT/EP2021/073941 WO2022058152A1 (de) 2020-09-18 2021-08-31 Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts

Publications (2)

Publication Number Publication Date
EP4214010A1 EP4214010A1 (de) 2023-07-26
EP4214010B1 true EP4214010B1 (de) 2024-02-28

Family

ID=77801697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21772737.9A Active EP4214010B1 (de) 2020-09-18 2021-08-31 Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts

Country Status (4)

Country Link
US (1) US20230330743A1 (de)
EP (1) EP4214010B1 (de)
DE (1) DE102020211720A1 (de)
WO (1) WO2022058152A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846424B (zh) * 2022-11-15 2023-07-28 郑州大学 一种用于高通量连铸连轧铝合金板材温度控制装置及工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE222152T1 (de) 1993-10-29 2002-08-15 Danieli Off Mecc Verfahren und vorrichtung zur thermischen oberflächenbehandlung eines stranges
US5810951A (en) 1995-06-07 1998-09-22 Ipsco Enterprises Inc. Steckel mill/on-line accelerated cooling combination
US6374901B1 (en) * 1998-07-10 2002-04-23 Ipsco Enterprises Inc. Differential quench method and apparatus
DE102010052247A1 (de) * 2010-11-23 2012-05-24 Sms Siemag Ag Vorrichtung und Verfahren zur geregelten Sekundärkühlung einer Stranggießanlage
DE102015223788A1 (de) * 2015-11-30 2017-06-01 Sms Group Gmbh Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang

Also Published As

Publication number Publication date
US20230330743A1 (en) 2023-10-19
EP4214010A1 (de) 2023-07-26
WO2022058152A1 (de) 2022-03-24
DE102020211720A1 (de) 2022-03-24

Similar Documents

Publication Publication Date Title
EP0367967B1 (de) Verfahren und Vorrichtung zur Kühlung und Schmierung von Walzen und Walzgut beim Kaltwalzen
EP3495086B1 (de) Verfahren und vorrichtung zur herstellung eines bandförmigen verbundmaterials
EP1957220B1 (de) Verfahren zum betrieb einer zweiwalzengiessmaschine zum vergiessen von metallschmelzen zu gegossenem band
EP2462248A1 (de) Verfahren und vorrichtung zum herstellen eines mikrolegierten stahls, insbesondere eines röhrenstahls
EP2934778B1 (de) Vorrichtung zum kühlen von walzgut
EP4214010B1 (de) Verfahren und sprüheinrichtung zur thermischen oberflächenbehandlung eines metallischen produkts
EP2310152B1 (de) Verfahren zum längsführen eines walzgutes, insbesondere eines warmgewalzten stahlbandes und warmwalzwerk zur durchführung des verfahrens
WO2015158795A1 (de) Verfahren und vorrichtung zur herstellung eines bandstahls
DE2009424A1 (de) Vorrichtung zum Verteilen von Flüssigkeit über eine Oberfläche
DE10310357A1 (de) Gießwalzanlage zur Erzeugen eines Stahlbandes
EP2445664A1 (de) Vorrichtung und verfahren zum horizontalen giessen eines metallbandes
DE2046441A1 (de) Verfahren und Vorrichtung zum Abstreifen einer Flüssigkeit von der Oberfläche eines bewegten Bleches
EP1827735B1 (de) Verfahren und vorrichtung zum bandgiessen von metallen
WO2019101486A1 (de) Kühlbalken und kühlprozess mit variabler abkühlrate für stahlbleche
DE3023571C2 (de) Verfahren und Vorrichtung zum Abkühlen von Bandstahl
DE4320638A1 (de) Verfahren und Anlage zum raschen Abkühlen eines in einem Warmwalzwerk verarbeitenden Walzgutes
EP2006029B1 (de) Vorrichtung zum Auftragen eines Auftragmittels auf ein Substrat
DE2418853A1 (de) Verfahren und vorrichtung zum kontinuierlichen giessen und walzen eines products aus nichteisenmetall
DE2426828C3 (de) Vorrichtung zum Kühlen von Stangenmaterial
EP3983145B1 (de) Sequenzielles kühlen von metallischen breitflachprodukten
EP2334448A2 (de) Entzunderungsvorrichtung
EP3429772B1 (de) Vorrichtung und verfahren zum erzeugen eines werkstücks eines vorbestimmten typs
DE60303630T2 (de) Vorrichtung sowie Verfahren zur Erzeugung von dünnem Bimetallband mit einer 2-Rollen-Giessvorrichtung
DE102022204686A1 (de) Zwei-Rollen-Gießeinrichtung zur Erzeugung eines gegossenen Metallbandes, und Verfahren zur Kühlung und/oder Reinigung einer Außenoberfläche einer Gießrolle einer Zwei-Rollen-Gießeinrichtung
EP4348148A1 (de) Forcierte luftkühlung zur kühlung von langstahlerzeugnissen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230823

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 37/74 20060101ALI20230818BHEP

Ipc: B22D 11/22 20060101ALI20230818BHEP

Ipc: B22D 11/124 20060101AFI20230818BHEP

INTG Intention to grant announced

Effective date: 20230921

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002846

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN