EP4206337A1 - Plate and thermomechanical processing method of a raw material for producing a plate - Google Patents
Plate and thermomechanical processing method of a raw material for producing a plate Download PDFInfo
- Publication number
- EP4206337A1 EP4206337A1 EP21218236.4A EP21218236A EP4206337A1 EP 4206337 A1 EP4206337 A1 EP 4206337A1 EP 21218236 A EP21218236 A EP 21218236A EP 4206337 A1 EP4206337 A1 EP 4206337A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- cooling rate
- thickness
- rolling
- heavy plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000000930 thermomechanical effect Effects 0.000 title claims abstract description 23
- 238000003672 processing method Methods 0.000 title 1
- 239000002994 raw material Substances 0.000 title 1
- 238000001816 cooling Methods 0.000 claims abstract description 82
- 238000005096 rolling process Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000007858 starting material Substances 0.000 claims abstract description 25
- 229910000851 Alloy steel Inorganic materials 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 7
- 239000010955 niobium Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000004566 building material Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Definitions
- the invention relates to a heavy plate and a thermomechanical treatment method of a starting material, in particular a slab, for the production of a heavy plate consisting of a steel alloy.
- thermomechanical treatment process In order to increase the toughness, especially the low-temperature toughness, of a heavy plate made of a steel alloy, WO2011/079341A2 a thermomechanical treatment process is known in which the starting material is hot-rolled in several stages and accelerated between two hot-rolling passes to below the Ar3 temperature and then inductively heated to above the Ac3 temperature. After the last hot rolling pass, a two-stage cooling to room temperature takes place - first with an accelerated cooling rate by water quenching to a cooling stop temperature below Ar3 and finally with cooling at room temperature.
- these heavy plates have the disadvantage of low uniform elongation Ag, which limits their use in earthquake zones, for example.
- thermomechanical treatment process for the production of a heavy plate with which an improved uniform elongation Ag can be achieved reproducibly on the heavy plate despite high toughness values.
- the invention solves the problem set by the features of claim 1.
- the steel alloy in each case in % by weight) 0.02 to 0.1 carbon (C), 1.0 to 2.0 manganese (Mn), 0.1 to 0.80 silicon (Si), 0.010 to 0.15 aluminum (Al), ⁇ 0.050 Phosphorus (P) and ⁇ 0.010 Sulfur (S) on.
- the steel alloy can be used individually or in combination from the group (each in % by weight): 0 to 0.75 copper (Cu) 0 to 3.0 Nickel (Ni) 0 to 0.20 vanadium (V) 0 to 0.003 boron (B) exhibit.
- the desired microstructure consisting of ferrite, bainite and optionally martensite, can be produced more reproducibly in the steel alloy according to the invention in order to achieve high uniform elongation Ag with high toughness.
- the lower limit for the cooling rate KR2 of the starting material can be 16 °C/s for a heavy plate with a thickness of 25 mm.
- the lower limit for the cooling rate KR2 of the starting material can be 3.9 °C/s for a heavy plate with a thickness of 80 mm.
- An exemplary upper limit based on the above formula for cooling rates KR2 for a heavy plate with a thickness of 25 mm is 78.6 °C/s - for a heavy plate with a thickness of 80 mm this is 5.9 °C/s.
- the range for the second cooling rate KR2 for the thinner heavy plate (starting material after final forming) is in the range from 16 °C/s to 78.6 °C/s and for the thicker heavy plate (starting material after the final forming) can be in the range from 3.9 °C/s to 5.9 °C/s according to the invention.
- the thicknesses are to be used in mm (millimeters) and the temperatures in °C and the cooling rates in °C/s.
- the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 2:1, this can further increase the uniform elongation Ag if the toughness is sufficiently high.
- the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 3:1, this can lead to an optimum balance between toughness and uniform elongation Ag in the case of stressed steel alloys.
- the first cooling rate (KR1) is preferably ⁇ 5° C./s, particularly preferably ⁇ 3° C./s, which makes it easier to handle the method and can also further improve the reproducibility for a high uniform elongation Ag with high toughness.
- the first temperature is T1 in degrees Celsius ⁇ are 1 + 0.1 ⁇ are 3 ⁇ are 1 2 and ⁇ are 1 + 1.9 ⁇ are 3 ⁇ are 1 2
- a first temperature T1 in this range can, among other things, reproducibly lead to a maximum of uniform elongation Ag in the steel alloy according to the invention.
- the second temperature T2 is preferably in the range from 450° C. to 100° C., preferably in the range from 400° C. to 150° C., particularly preferably in the range from 400° C. to 250° C., in order to set the structure for high toughness and in this way an optimum combination of high strength, uniform elongation and toughness can be set.
- Cooling from the second temperature to room temperature in a third stage at a third cooling rate KR3, with the third cooling rate KR3 ⁇ second cooling rate KR2, can further improve the mechanical characteristics of the steel alloy.
- the third cooling rate KR3 is ⁇ 5° C./s, preferably ⁇ 3° C./s, because—in terms of process technology—the cooling can be carried out unaccelerated in air.
- the starting material can be inductively heated for this purpose, which can be advantageous for the overall duration of the production route, since this reduces both the cycle time and the heating rate can be set very high.
- heating can also take place via thermal radiation - this represents a particularly simple and robust method for heating.
- End forming is preferably carried out to a thickness of the plate in the range from 8 to 150 mm (millimeters), in particular to a thickness of the plate in the range from 25 to 120 mm.
- the invention solves the problem set by the features of claim 14.
- the heavy plate produced by the thermomechanical treatment process can have a yield strength ratio (R p0.2 /R m ) of ⁇ 0.7.
- This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of ⁇ 0.70.
- This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of ⁇ 0.65.
- the heavy plate has a thickness in the range from 8 to 150 mm.
- the heavy plate can have a thickness in the range from 25 to 120 mm.
- the heavy plate preferably has a yield point R p0.2 >550 N/mm 2 (Newton per square millimeter), in particular a yield point R p0.2 (0.2% yield point) >590 N/mm 2 , in order to have a comparatively high to guarantee strength.
- This heavy plate can therefore be particularly suitable as a longitudinally welded pipe for a natural gas pipeline or as a construction material, especially in a seismically active region.
- the respective cooling rate (KR1, KR2, KR3) or heating rate from the initial temperature to the final temperature is an average value, namely a cooling rate or heating rate from the initial temperature to the final temperature averaged over the thickness of the starting material.
- Both heavy plates A, B have the same steel alloy 0.04% by weight (C) carbon, 1.63% by weight (Mn) manganese, 0.34% by weight (Si) silicon, 0.04% by weight (Al) aluminum, 0.012% by weight (P) phosphorus, 0.001% by weight (S) sulphur, 0.17% by weight (Cr) chromium, 0.02% by weight (Mo) molybdenum, 0.035% by weight (Nb) niobium, 0.014% by weight (Ti)titanium, 0.0003% by weight (B) boron, 0.0045% by weight (N) nitrogen and the remainder iron (Fe) and impurities that are unavoidable as a result of production, each with a maximum of 0.05% by weight and a maximum of 0.15% by weight in total.
- the primary material, namely the slab, of the respective heavy plate A, B is heated 4 to above the Ac3 temperature, namely 1100° C. (degrees Celsius), for example with a slab heating device.
- the starting material is then partially formed by first rolling W1.
- accelerated cooling 5 namely quenching, preferably water quenching, with which the starting material is cooled from the first final rolling temperature, which is above Ac3, to below the Ar3 temperature, namely - as in 1 recognizable - the primary material is cooled or quenched to below the Ar1 temperature.
- quenching preferably water quenching
- the starting material leaves the second rolling W2 with a second final rolling temperature EW2 ⁇ Ar3, namely 830 °C.
- EW2 ⁇ Ar3 a second final rolling temperature
- other heating sources are also conceivable, for example sources with radiant heat. This rapid heating, be it inductive or with radiant heat etc., takes place at a minimum of 12°C/min.
- This second roll W2 which can also be referred to as end rolls, is followed by two different multi-stage coolings 3 to room temperature (which is usually between 0 and 60 degrees Celsius, for example 20 degrees Celsius in these processes).
- the starting material of the heavy plate A is accelerated from the second final rolling temperature to a temperature below Ar1 by water quenching at 30° C./s, namely quenched. This is followed by cooling at 0.1° C./s in still air at ambient temperature as the second immediately following second stage 7b of cooling 3 to room temperature RT.
- the multi-stage cooling 3 according to the invention can be seen from the starting material of the heavy plate B.
- the starting material is cooled at a first cooling rate KR1, namely 0.6 °C/s, from the second final rolling temperature EW2 to a first temperature T1 between Ar3 and Ar1, namely 720 °C (Centigrade).
- the starting material is quenched from the first temperature T1 to a second temperature T2 ⁇ Ar1, namely 150° C., at a second cooling rate KR2, namely 30° C./s.
- a second cooling rate KR2 namely 30° C./s.
- room temperature RT which has not been detailed.
- the first cooling rate KR1 ⁇ second cooling rate KR2 specifically by a factor of 3 less than the second cooling rate KR2.
- a third stage 8c with a third cooling rate KR3 from the second temperature T2 to room temperature RT in still air at ambient temperature can be seen in the multi-stage cooling.
- the third cooling rate KR3 is preferably 0.1° C./s.
- accelerated cooling can be understood to mean faster cooling than cooling at room temperature and still air, which is also often referred to as quenching.
- a block or a billet is also conceivable as the starting material.
- first and/or second rolling can consist of one or more part-rolls with possibly several part-rolling steps (passes), which is possible, for example, by reversing rolling.
- the uniform elongation A g of the heavy plate B was increased from 8.9% to 14.7%, ie by 5.8% compared to heavy plate A. Heavy plate B therefore enables a significantly higher energy dissipation capacity, ie energy absorption capacity.
- heavy plate B undergoes plastic deformation more quickly than heavy plate A (cf. 0.2% yield strength R p0.2 ), but it still occurs with heavy plate B much later to failure (cf. A g ).
- This property is particularly advantageous when used in earthquake-prone regions or seismically active regions, where the dissipation capacity of the material is crucial.
- the heavy plate B produced according to the invention can therefore be particularly suitable, for example, as longitudinally welded pipes for natural gas pipelines or in steel construction in seismically active regions. Due to the high uniform elongations, components made from this heavy plate B have a high energy dissipation capacity. It is also conceivable to use it as a building material in steel construction in the production of welded I-beams with advantageous behavior in the event of a hole reveal failure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Es wird ein Grobblech und ein thermomechanisches Behandlungsverfahren eines Vormaterials, insbesondere einer Bramme, zur Herstellung des Grobblechs bestehend aus einer Stahllegierung gezeigt. Um vorteilhafte mechanische Kennwerte am Grobblech schaffen zu können, wird vorgeschlagen, dass eine mehrstufige Abkühlung mit optional zumindest einem Richten nach dem Endumformen erfolgt, in dem in einer ersten Stufe (8a) nach dem zweite Walzen (W2) mit einer ersten Abkühlrate (KR1) von einer zweiten Endwalztemperatur, insbesondere ≥ Ar3, des zweiten Walzens (W2) auf eine erste Temperatur (T1) zwischen Ar3 und Ar1 abgekühlt und in einer nachfolgenden zweiten Stufe (8b) mit einer zweiten Abkühlrate (KR2) von der ersten Temperatur (T1) auf eine zweite Temperatur (T2) < Ar1 abgekühlt wird, wobei erste Abkühlrate (KR1) < zweite Abkühlrate (KR2) ist.A heavy plate and a thermomechanical treatment method of a starting material, in particular a slab, for the production of the heavy plate consisting of a steel alloy are shown. In order to be able to create advantageous mechanical parameters on the heavy plate, it is proposed that a multi-stage cooling with optionally at least one straightening takes place after the final forming, in which in a first stage (8a) after the second rolling (W2) with a first cooling rate (KR1) cooled from a second final rolling temperature, in particular ≥ Ar3, of the second rolling (W2) to a first temperature (T1) between Ar3 and Ar1 and in a subsequent second stage (8b) at a second cooling rate (KR2) from the first temperature (T1) is cooled to a second temperature (T2) < Ar1, where first cooling rate (KR1) < second cooling rate (KR2).
Description
Die Erfindung betrifft ein Grobblech und ein thermomechanisches Behandlungsverfahren eines Vormaterials, insbesondere einer Bramme, zur Herstellung eines Grobblechs bestehend aus einer Stahllegierung.The invention relates to a heavy plate and a thermomechanical treatment method of a starting material, in particular a slab, for the production of a heavy plate consisting of a steel alloy.
Um die Zähigkeit, besonders die Tieftemperaturzähigkeit, eines Grobblechs aus einer Stahllegierung zu erhöhen, ist aus der
Es ist daher die Aufgabe der Erfindung, ein thermomechanisches Behandlungsverfahren zur Herstellung eines Grobblechs zu schaffen, mit dem reproduzierbar am Grobblech trotz hoher Zähigkeitswerte eine verbesserte Gleichmaßdehnung Ag erreicht werden kann.It is therefore the object of the invention to create a thermomechanical treatment process for the production of a heavy plate with which an improved uniform elongation Ag can be achieved reproducibly on the heavy plate despite high toughness values.
Die Erfindung löst die gestellte Aufgabe durch die Merkmale des Anspruchs 1.The invention solves the problem set by the features of claim 1.
Indem bei einer mehrstufigen Abkühlung in einer ersten Stufe nach dem zweiten Walzen mit einer ersten Abkühlrate KR1 von einer zweiten Endwalztemperatur, insbesondere ≥ Ar3, des zweiten Walzens auf eine erste Temperatur zwischen Ar3 und Ar1 abgekühlt und in einer nachfolgenden zweiten Stufe mit einer zweiten Abkühlrate KR2 von der ersten Temperatur auf eine zweite Temperatur < Ar1 abgekühlt wird, wobei erste Abkühlrate KR1 < zweite Abkühlrate KR2 ist, kann im Gegensatz zum Stand der Technik eine verzögerte Gefügeumwandlung angestoßen werden, die zu einer erheblichen Verbesserung in der Gleichmaßdehnung Ag des Grobblechs führt. Es wird angenommen, dass durch die vergleichsweise geringe erste Abkühlrate KR1 sich aus dem austenitischen Gefüge Ferrit ausscheiden kann, welcher eine geringere Löslichkeit für Kohlenstoff (C) besitzt als dies bei Austenit der Fall ist. Daher kann sich Kohlenstoff vom Ferrit in den verbliebenen Austenit verlagern und sich dort anreichern. Bei Anwendung einer vergleichsweise hohen zweiten Abkühlrate KR2 zur weiteren Abkühlung des Vormaterials kann sich dann ein mehrphasiges Gefüge bestehend aus Ferrit und Bainit oder Ferrit und Martensit (in Abhängigkeit der Legierung, Dicke des Grobblechs, Abkühlrate KR2 und ersten Temperatur für diesen Kühlbeginn) ausbilden. Eine gegenüber der zweiten Abkühlrate reduzierte erste Abkühlrate auf eine Temperatur zwischen Ar3 und Ar1 lässt nämlich gerade jene Gefügeumwandlung zu, die für die Gleichmaßdehnung ausschlaggebend ist. In der nachfolgenden zweiten Stufe wird das Vormaterial beschleunigt abgekühlt, beispielsweise abgeschreckt, was den Zähigkeitsverlust am Grobblech beschränken kann. Je nach Bedarf (also optional) kann die mehrstufigen Abkühlung auch ein Richten oder andere Verfahrensschritte umfassen. Das erfindungsgemäße Grobblech mit einer Stahllegierung, aufweisend (jeweils in Gew.-%)
- 0,01 bis 0,20 Kohlenstoff (C),
- 0,5 bis 2,50 Mangan (Mn),
- 0,05 bis 0,80 Silizium (Si),
- 0,01 bis 0,20 Aluminium (Al),
- < 0,05 Phosphor (P),
- < 0,01 Schwefel (S) und
- 0.01 to 0.20 carbon (C),
- 0.5 to 2.50 manganese (Mn),
- 0.05 to 0.80 silicon (Si),
- 0.01 to 0.20 aluminum (Al),
- < 0.05 phosphorus (P),
- < 0.01 sulfur (S) and
In einer bevorzugten Ausführungsform weist die Stahllegierung (jeweils in Gew.-%))
Optional kann die Stahllegierung einzeln oder in Kombination aus der Gruppe (jeweils in Gew.-%):
Indem beispielsweise die zweite Abkühlrate (KR2) in Grad Celsius
Beispielhaft kann die Untergrenze für die Abkühlrate KR2 des Vormaterials 16 °C/s für ein Grobblech mit einer Dicke von 25 mm betragen. Die Untergrenze für die Abkühlrate KR2 des Vormaterials kann 3,9 °C/s für ein Grobblech mit einer Dicke von 80 mm betragen.For example, the lower limit for the cooling rate KR2 of the starting material can be 16 °C/s for a heavy plate with a thickness of 25 mm. The lower limit for the cooling rate KR2 of the starting material can be 3.9 °C/s for a heavy plate with a thickness of 80 mm.
Als ausreichend kann sich herausstellen, wenn die zweite Abkühlrate (KR2) in Grad Celsius
Eine beispielhafte Obergrenze anhand obiger Formel für Abkühlraten KR2 für ein Grobblech mit einer Dicke von 25 mm beträgt 78,6 °C/s - für ein Grobblech mit einer Dicke von 80 mm beträgt diese 5,9 °C/s.An exemplary upper limit based on the above formula for cooling rates KR2 for a heavy plate with a thickness of 25 mm is 78.6 °C/s - for a heavy plate with a thickness of 80 mm this is 5.9 °C/s.
Dies bedeutet in Kombination, dass in diesem Beispiel der Bereich für die zweite Abkühlrate KR2 für das dünnere Grobblech (Vormaterial nach dem Endumformen) im Bereich von 16 °C/s bis 78,6 °C/s und für das dickere Grobblech (Vormaterial nach dem Endumformen) im Bereich von 3,9 °C/s bis 5,9 °C/s erfindungsgemäß liegen kann. Bei allen Formelangaben sind die Dicken in mm (Millimeter) und die Temperaturen in °C und die Kühlraten in °C/s zu verwenden.In combination, this means that in this example the range for the second cooling rate KR2 for the thinner heavy plate (starting material after final forming) is in the range from 16 °C/s to 78.6 °C/s and for the thicker heavy plate (starting material after the final forming) can be in the range from 3.9 °C/s to 5.9 °C/s according to the invention. For all formulas, the thicknesses are to be used in mm (millimeters) and the temperatures in °C and the cooling rates in °C/s.
Beträgt das Verhältnis von der zweiten Abkühlrate KR2 zur ersten Abkühlrate KR1 mindestens 2:1, kann dies bei ausreichend hoher Zähigkeit die Gleichmaßdehnung Ag weiter erhöhen. Insbesondere wenn Verhältnis von der zweiten Abkühlrate KR2 zur ersten Abkühlrate KR1 mindestens 3:1 beträgt, kann dies bei beanspruchten Stahllegierung zu einem Optimum in der Ausgewogenheit von Zähigkeit und Gleichmaßdehnung Ag führen.If the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 2:1, this can further increase the uniform elongation Ag if the toughness is sufficiently high. In particular, if the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 3:1, this can lead to an optimum balance between toughness and uniform elongation Ag in the case of stressed steel alloys.
Vorzugsweise beträgt die erste Abkühlrate (KR1) ≤ 5 °C/s, besonders bevorzugt ≤ 3 °C/s, was die Handhabung des Verfahrens erleichtern und auch die Reproduzierbarkeit für eine hohe Gleichmaßdehnung Ag bei hoher Zähigkeit weiter verbessern kann.The first cooling rate (KR1) is preferably ≦5° C./s, particularly preferably ≦3° C./s, which makes it easier to handle the method and can also further improve the reproducibility for a high uniform elongation Ag with high toughness.
Vorzugsweise ist die erste Temperatur T1 in Grad Celsius
Eine in diesem Bereich liegende erste Temperatur T1 kann unter anderem reproduzierbar zu einem Maximum an Gleichmaßdehnung Ag bei der erfindungsgemäßen Stahllegierung führen.A first temperature T1 in this range can, among other things, reproducibly lead to a maximum of uniform elongation Ag in the steel alloy according to the invention.
Vorzugsweise liegt die zweite Temperatur T2 im Bereich von 450 °C bis 100 °C bevorzugt im Bereich von 400 °C bis 150 °C, besonders bevorzugt im Bereich von 400 °C bis 250 °C, um damit das Gefüge für eine hohe Zähigkeit einzustellen und derart eine optimale Kombination aus hoher Festigkeit, Gleichmaßdehnung und Zähigkeit eingestellt werden kann.The second temperature T2 is preferably in the range from 450° C. to 100° C., preferably in the range from 400° C. to 150° C., particularly preferably in the range from 400° C. to 250° C., in order to set the structure for high toughness and in this way an optimum combination of high strength, uniform elongation and toughness can be set.
Wird in einer dritten Stufe mit einer dritten Abkühlrate KR3 von der zweiten Temperatur auf Raumtemperatur abgekühlt, wobei die dritte Abkühlrate KR3 < zweite Abkühlrate KR2 ist, kann dies die mechanischen Kennwerte der Stahllegierung weiter verbessern.Cooling from the second temperature to room temperature in a third stage at a third cooling rate KR3, with the third cooling rate KR3<second cooling rate KR2, can further improve the mechanical characteristics of the steel alloy.
Beispielsweise ist die dritte Abkühlrate KR3 ≤ 5 °C/s, bevorzugt ≤ 3 °C/s, weil damit - verfahrenstechnisch erleichtert - die Kühlung unbeschleunigt an Luft erfolgen kann.For example, the third cooling rate KR3 is ≦5° C./s, preferably ≦3° C./s, because—in terms of process technology—the cooling can be carried out unaccelerated in air.
Vorzugsweise wird auf die zweite Walzanfangstemperatur für ein zweites Walzen mit einer Heizrate von mindestens 12°C/min erwärmt.It is preferable to heat to the second rolling start temperature for a second rolling at a heating rate of at least 12° C./min.
Beispielsweise kann hierfür das Vormaterial induktiv erwärmt werden, was vorteilhaft für die Gesamtdauer der Herstellungsroute sein kann, da damit sowohl die Taktzeit reduziert als auch die Heizrate sehr hoch eingestellt werden können. Alternativ kann auch eine Erwärmung über eine Wärmestrahlung erfolgen - dies stellt ein besonders einfaches und robustes Verfahren zur Erwärmung dar.For example, the starting material can be inductively heated for this purpose, which can be advantageous for the overall duration of the production route, since this reduces both the cycle time and the heating rate can be set very high. Alternatively, heating can also take place via thermal radiation - this represents a particularly simple and robust method for heating.
Vorzugsweise wird auf eine Dicke des Grobblechs im Bereich von 8 bis 150 mm (Millimeter), insbesondere auf eine Dicke des Grobblechs im Bereich von 25 bis 120 mm, endumgeformt.End forming is preferably carried out to a thickness of the plate in the range from 8 to 150 mm (millimeters), in particular to a thickness of the plate in the range from 25 to 120 mm.
Es ist zudem die Aufgabe der Erfindung ein Grobblech zu schaffen, das trotz hoher Zähigkeitswerte eine verbesserte Gleichmaßdehnung Ag aufweist.It is also the object of the invention to create a heavy plate which, despite high toughness values, has improved uniform elongation Ag.
Die Erfindung löst die gestellte Aufgabe durch die Merkmale des Anspruchs 14.The invention solves the problem set by the features of claim 14.
Erfindungsgemäß kann das durch das thermomechanische Behandlungsverfahren hergestellte Grobblech ein Streckgrenzenverhältnis (Rp0.2/Rm) von < 0,7 aufweisen. Vorzugsweise kann dieses Grobblech ein Streckgrenzenverhältnis (Rp0.2/Rm) von < 0,70 aufweisen. Vorzugsweise kann dieses Grobblech ein Streckgrenzenverhältnis (Rp0.2/Rm) von < 0,65 aufweisen.According to the invention, the heavy plate produced by the thermomechanical treatment process can have a yield strength ratio (R p0.2 /R m ) of <0.7. This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of <0.70. This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of <0.65.
Beispielsweise weist das Grobblech eine Dicke im Bereich von 8 bis 150 mm auf. Insbesondere kann das Grobblech eine Dicke im Bereich von 25 bis 120 mm aufweisen.For example, the heavy plate has a thickness in the range from 8 to 150 mm. In particular, the heavy plate can have a thickness in the range from 25 to 120 mm.
Vorzugsweise weist das Grobblech eine Streckgrenze Rp0.2 > 550 N/mm2 (Newton pro Quadratmillimeter), insbesondere eine Streckgrenze Rp0,2 (0,2 %-Dehngrenze) > 590 N/mm2, auf, um eine vergleichsweise hohe Festigkeit garantieren zu können.The heavy plate preferably has a yield point R p0.2 >550 N/mm 2 (Newton per square millimeter), in particular a yield point R p0.2 (0.2% yield point) >590 N/mm 2 , in order to have a comparatively high to guarantee strength.
Damit kann sich dieses Grobblech als längsnahtgeschweißtes Rohr für eine Erdgaspipeline oder als Baumaterial, speziell auch in einer seismisch aktiven Region, besonders eignen.This heavy plate can therefore be particularly suitable as a longitudinally welded pipe for a natural gas pipeline or as a construction material, especially in a seismically active region.
Im Allgemeinen wird erwähnt, dass bei einem Vormaterial aufgrund dessen vergleichsweise hohen Dicke sich über die Dicke des Vormaterials verschiedenste Abkühlraten und/oder Heizraten ausbilden. Beispielsweise kann eine Abkühlrate auf der Außenseite des Vormaterials wesentlich höher sein als jene Abkühlrate in seinem Kern. Daher ist die jeweilige Abkühlrate (KR1, KR2, KR3) oder Heizrate von der Anfangstemperatur bis zur Endtemperatur ein Durchschnittswert, nämlich eine über die Dicke des Vormaterials gemittelte Abkühlrate oder Heizrate von der Anfangstemperatur bis zur Endtemperatur.In general, it is mentioned that in the case of a starting material, due to its comparatively high thickness, a wide variety of cooling rates and/or heating rates develop over the thickness of the starting material. For example, a cooling rate on the outside of the starting material can be significantly higher than that cooling rate in its core. Therefore, the respective cooling rate (KR1, KR2, KR3) or heating rate from the initial temperature to the final temperature is an average value, namely a cooling rate or heating rate from the initial temperature to the final temperature averaged over the thickness of the starting material.
In den Figuren ist beispielsweise der Erfindungsgegenstand anhand einer Ausführungsvariante näher dargestellt. Es zeigen
- Fig. 1
- Temperaturprofile von zwei thermomechanischen Behandlungsverfahren und
- Fig. 2
- ein Spannungs-Dehnungs-Diagramm zu zwei Grobblechen, hergestellt durch je ein thermomechanisches Behandlungsverfahren nach
Fig. 1 .
- 1
- Temperature profiles of two thermomechanical treatment processes and
- 2
- a stress-strain diagram for two heavy plates, each produced by a thermomechanical treatment process
1 .
Nach
Nach
So durchlauft das Vormaterial, nämlich Bramme, des jeweiligen Grobblechs A, B eine Erwärmung 4 auf über Ac3-Temperatur, nämlich 1100 °C (Grad Celsius), beispielsweise mit einer Einrichtung zur Brammenerwärmung.The primary material, namely the slab, of the respective heavy plate A, B is heated 4 to above the Ac3 temperature, namely 1100° C. (degrees Celsius), for example with a slab heating device.
Das Vormaterial wird anschließend durch erstes Walzen W1 teilumgeformt.The starting material is then partially formed by first rolling W1.
Dem schließt ein beschleunigtes Abkühlen 5, nämlich Abschrecken, vorzugsweise Wasserabschreckung, an, mit dem das Vormaterial von der ersten Walzendtemperatur, die über Ac3 liegt, auf unter Ar3-Temperatur abgekühlt wird, nämlich - wie in
Dem folgt unmittelbar eine schnelle, bevorzugt induktive, Erwärmung 6 auf über Ac3-Temperatur, mit welcher Temperatur als Walzanfangstemperatur das Vormaterial einem zweiten Walzen W2 auf eine Dicke des Grobblechs (Enddicke des Vormaterials) endumgeformt wird.This is immediately followed by rapid, preferably inductive, heating 6 to above the Ac3 temperature, at which temperature the starting material is finally formed in a second roller W2 to a thickness of the heavy plate (final thickness of the starting material).
Das Vormaterial verlässt das zweite Walzen W2 mit einer zweiten Endwalztemperatur EW2 ≥ Ar3, nämlich 830 °C. Anstatt des induktiven Erwärmens ist sind auch andere Heizquellen vorstellbar, beispielsweise Quellen mit Strahlungswärme. Dieses schnelle Erwärmen, sei es nun induktiv oder mit Strahlungswärme etc., erfolgt mit mindestens 12°C/min.The starting material leaves the second rolling W2 with a second final rolling temperature EW2 ≥ Ar3, namely 830 °C. Instead of inductive heating, other heating sources are also conceivable, for example sources with radiant heat. This rapid heating, be it inductive or with radiant heat etc., takes place at a minimum of 12°C/min.
An dieses zweite Walzen W2, was auch als Endwalzen bezeichnet werden kann, schließen zwei unterschiedliche mehrstufige Abkühlungen 3 auf Raumtemperatur (welche üblicherweise bei diesen Verfahren zwischen 0 und 60 Grad Celsius liegt, beispielsweise 20 Grad Celsius beträgt) an.This second roll W2, which can also be referred to as end rolls, is followed by two different
So wird das Vormaterial des Grobblechs A in einer ersten Stufe 7a der Abkühlung 3 nach dem zweiten Walzen W2 von der zweiten Endwalztemperatur auf eine Temperatur unter Ar1 beschleunigt durch Wasserabschrecken mit 30 °C/s abgekühlt, nämlich abgeschreckt. Daran schließt eine Abkühlung mit 0,1 °C/s an ruhender Luft bei Umgebungstemperatur als zweite unmittelbar nachfolgende zweite Stufe 7b der Abkühlung 3 auf Raumtemperatur RT an.Thus, in a
Die erfindungsgemäße mehrstufige Abkühlung 3 ist am Vormaterial des Grobblechs B zu erkennen. Hier wird nach dem zweiten Walzen W2 in einer ersten Stufe 8a das Vormaterial mit einer ersten Abkühlrate KR1, nämlich 0,6 °C/s, von der zweiten Endwalztemperatur EW2 auf eine erste Temperatur T1 zwischen Ar3 und Ar1 abgekühlt, nämlich auf 720 °C (Grad Celsius).The
In einer unmittelbar nachfolgenden zweiten Stufe 8b wird das Vormaterial mit einer zweiten Abkühlrate KR2, nämlich 30 °C/s, von der ersten Temperatur T1 auf eine zweite Temperatur T2 < Ar1, nämlich auf 150 °C, abgeschreckt. Es kann aber auch auf Raumtemperatur RT abgeschreckt werden, was nicht näher dargestellt worden ist.In an immediately following
Wie in der
Nach
Im Allgemeinen wird erwähnt, dass unter einem beschleunigten Abkühlen eine schnellere Abkühlung als eine Abkühlung bei Raumtemperatur und ruhender Luft verstanden werden kann, was auch oftmals als Abschrecken bezeichnet wird.In general, it is mentioned that accelerated cooling can be understood to mean faster cooling than cooling at room temperature and still air, which is also often referred to as quenching.
Als Vormaterial ist auch ein Block oder ein Knüppel denkbar.A block or a billet is also conceivable as the starting material.
Zudem kann das erste und/oder zweite Walzen aus einem oder mehreren Teilwalzen mit eventuell mehreren Teilwalzschritten (Stichen) bestehen, was beispielsweise durch ein reversierendes Walzen möglich ist.In addition, the first and/or second rolling can consist of one or more part-rolls with possibly several part-rolling steps (passes), which is possible, for example, by reversing rolling.
Dieser Verfahrensunterschied in der mehrstufigen Abkühlung 3 führt bei den Grobblechen A, B zu den nach Tabelle 2 angeführten mechanischen Kennwerten. Spannung σ und Dehnung ε wurden mit mittels Zugversuch (Zugprüfung laut Norm DIN EN 10002-1) und die Zähigkeit wurde mittels einer Kerbschlagbiegeprüfung laut Norm DIN EN ISO 148-1 ermittelt.
Wie der Tabelle 1 und auch der
Bei geringen Dehnungen (vgl. 0,2 %-Dehngrenze Rp0,2) erfolgt bei Grobblech B zwar eine plastische Verformung rascher als bei Grobblech A (vgl. 0,2 %-Dehngrenze Rp0,2), dennoch kommt es bei Grobblech B wesentlich später zum Versagen (vgl. Ag).At low strains (cf. 0.2% yield strength R p0.2 ), heavy plate B undergoes plastic deformation more quickly than heavy plate A (cf. 0.2% yield strength R p0.2 ), but it still occurs with heavy plate B much later to failure (cf. A g ).
Diese Eigenschaft ist besonders vorteilhaft in der Anwendung in erdbebengefährdeten Regionen bzw. seismisch aktiven Region, in denen das Dissipationsvermögen des Werkstoffs entscheidend ist.This property is particularly advantageous when used in earthquake-prone regions or seismically active regions, where the dissipation capacity of the material is crucial.
Das erfindungsgemäß hergestellte Grobbleche B kann sich daher beispielsweise als längsnahtgeschweißte Rohre für Erdgaspipelines oder im Stahlbau in seismisch aktiven Regionen besonders eignen. Durch die hohen Gleichmaßdehnungen weisen aus diesem Grobblech B hergestellte Bauteile ein hohes Energiedissipationsvermögen auf. Denkbar ist auch der Einsatz als Baumaterial im Stahlbau in der Erzeugung von geschweißten I-Trägern mit einem vorteilhaften Verhalten bei Lochlaibungsversagen.The heavy plate B produced according to the invention can therefore be particularly suitable, for example, as longitudinally welded pipes for natural gas pipelines or in steel construction in seismically active regions. Due to the high uniform elongations, components made from this heavy plate B have a high energy dissipation capacity. It is also conceivable to use it as a building material in steel construction in the production of welded I-beams with advantageous behavior in the event of a hole reveal failure.
Im Allgemeinen wird erwähnt, dass gemäß der DIN EN 10052 folgende Definitionen bestehen:
- Ac3: Temperatur, bei der die Umwandlung des Ferrits in Austenit bei einem Wärmen endet.
- Ar1: Temperatur, bei der die Umwandlung des Austenits in Ferrit oder in Ferrit und Zementit bei einem Abkühlen endet.
- Ar3: Temperatur, bei der die Bildung des Ferrits bei einem Abkühlen beginnt.
- Ac3: temperature at which the transformation of ferrite into austenite ends on heating.
- Ar1: temperature at which the transformation of austenite into ferrite or into ferrite and cementite ends on cooling.
- Ar3: temperature at which the formation of ferrite starts on cooling.
Claims (17)
und
and
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21218236.4A EP4206337A1 (en) | 2021-12-29 | 2021-12-29 | Plate and thermomechanical processing method of a raw material for producing a plate |
CN202280085265.9A CN118475708A (en) | 2021-12-29 | 2022-12-29 | Thick plate and thermomechanical treatment method for a raw material for producing a thick plate |
EP22844548.2A EP4457370A1 (en) | 2021-12-29 | 2022-12-29 | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
KR1020247025495A KR20240132323A (en) | 2021-12-29 | 2022-12-29 | Thermomechanical treatment method for starting materials for the production of plate and plate |
PCT/EP2022/088050 WO2023126506A1 (en) | 2021-12-29 | 2022-12-29 | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21218236.4A EP4206337A1 (en) | 2021-12-29 | 2021-12-29 | Plate and thermomechanical processing method of a raw material for producing a plate |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4206337A1 true EP4206337A1 (en) | 2023-07-05 |
Family
ID=79185526
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21218236.4A Withdrawn EP4206337A1 (en) | 2021-12-29 | 2021-12-29 | Plate and thermomechanical processing method of a raw material for producing a plate |
EP22844548.2A Pending EP4457370A1 (en) | 2021-12-29 | 2022-12-29 | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22844548.2A Pending EP4457370A1 (en) | 2021-12-29 | 2022-12-29 | Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP4206337A1 (en) |
KR (1) | KR20240132323A (en) |
CN (1) | CN118475708A (en) |
WO (1) | WO2023126506A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278656A (en) * | 1994-04-04 | 1995-10-24 | Nippon Steel Corp | Production of low yield ratio high tensile strength steel |
JPH07286232A (en) * | 1994-04-18 | 1995-10-31 | Nippon Steel Corp | Steel sheet for bending excellent in repeated bending deformability and its production |
EP2340897A1 (en) * | 2009-12-23 | 2011-07-06 | Voestalpine Grobblech GmbH | Thermomechanical processing method for rough sheet metal |
JP2015127447A (en) * | 2013-12-27 | 2015-07-09 | Jfeスチール株式会社 | High strength steel material excellent in fatigue crack propagation property and determination method therefor |
EP3272899A1 (en) * | 2015-03-20 | 2018-01-24 | Baoshan Iron & Steel Co., Ltd. | Low-yield-ratio high-strength-toughness thick steel plate with excellent low-temperature impact toughness and manufacturing method therefor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288512A (en) * | 2000-04-05 | 2001-10-19 | Nippon Steel Corp | Method of producing high tensile strength steel excellent in toughness and ductility |
PL2684975T3 (en) * | 2012-07-10 | 2017-08-31 | Thyssenkrupp Steel Europe Ag | Cold rolled steel flat product and method for its production |
-
2021
- 2021-12-29 EP EP21218236.4A patent/EP4206337A1/en not_active Withdrawn
-
2022
- 2022-12-29 KR KR1020247025495A patent/KR20240132323A/en unknown
- 2022-12-29 WO PCT/EP2022/088050 patent/WO2023126506A1/en active Application Filing
- 2022-12-29 EP EP22844548.2A patent/EP4457370A1/en active Pending
- 2022-12-29 CN CN202280085265.9A patent/CN118475708A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07278656A (en) * | 1994-04-04 | 1995-10-24 | Nippon Steel Corp | Production of low yield ratio high tensile strength steel |
JPH07286232A (en) * | 1994-04-18 | 1995-10-31 | Nippon Steel Corp | Steel sheet for bending excellent in repeated bending deformability and its production |
EP2340897A1 (en) * | 2009-12-23 | 2011-07-06 | Voestalpine Grobblech GmbH | Thermomechanical processing method for rough sheet metal |
WO2011079341A2 (en) | 2009-12-23 | 2011-07-07 | Voestalpine Grobblech Gmbh | Thermomechanical treatment method |
JP2015127447A (en) * | 2013-12-27 | 2015-07-09 | Jfeスチール株式会社 | High strength steel material excellent in fatigue crack propagation property and determination method therefor |
EP3272899A1 (en) * | 2015-03-20 | 2018-01-24 | Baoshan Iron & Steel Co., Ltd. | Low-yield-ratio high-strength-toughness thick steel plate with excellent low-temperature impact toughness and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
EP4457370A1 (en) | 2024-11-06 |
KR20240132323A (en) | 2024-09-03 |
CN118475708A (en) | 2024-08-09 |
WO2023126506A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1573075B8 (en) | Method for producing a steel product | |
EP1309734B1 (en) | Highly stable, steel and steel strips or steel sheets cold-formed, method for the production of steel strips and uses of said steel | |
EP3535431B1 (en) | Steel product with an intermediate manganese content for low temperature application and production method thereof | |
EP3504349B1 (en) | Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type | |
EP2905348B1 (en) | High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product | |
DE60300561T3 (en) | Process for producing a hot-rolled steel strip | |
DE102018132860A1 (en) | Process for the production of conventionally hot-rolled, profiled hot-rolled products | |
EP0910675A1 (en) | Hot-rolled steel strip and method of making it | |
EP2009120B1 (en) | Use of an extremely resistant steel alloy for producing steel pipes with high resistance and good plasticity | |
DE102015111866A1 (en) | Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel | |
DE3440752C2 (en) | ||
EP1319725B1 (en) | Hot strip manufacturing process | |
EP1398390B1 (en) | Steel with a very fine ferritic and martensitic microstructure having a high tensile strength | |
EP1399598B1 (en) | Method for producing high-strength cold-formed steel products from a hot rolled strip, said products exhibiting good malleability | |
DE102018132908A1 (en) | Process for the production of thermo-mechanically produced hot strip products | |
WO2020058244A1 (en) | Method of producing ultrahigh-strength steel sheets and steel sheet therefor | |
DE102016117494A1 (en) | Process for producing a formed component from a medium manganese steel flat product and such a component | |
DE102018132901A1 (en) | Process for the production of conventionally hot rolled hot rolled products | |
DE102016115618A1 (en) | Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip | |
EP3469108B1 (en) | Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel | |
EP4206337A1 (en) | Plate and thermomechanical processing method of a raw material for producing a plate | |
DE69832684T2 (en) | METHOD FOR THE PRODUCTION OF STEEL TUBE WITH ULTRA-FINE MEMBRANE | |
DE3507124A1 (en) | Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof | |
EP4206336A1 (en) | Plate and thermomechanical processing method of raw material for producing a plate | |
DE19719546C2 (en) | Hot steel strip and process for its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240106 |