EP4206336A1 - Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte - Google Patents

Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte Download PDF

Info

Publication number
EP4206336A1
EP4206336A1 EP21218235.6A EP21218235A EP4206336A1 EP 4206336 A1 EP4206336 A1 EP 4206336A1 EP 21218235 A EP21218235 A EP 21218235A EP 4206336 A1 EP4206336 A1 EP 4206336A1
Authority
EP
European Patent Office
Prior art keywords
temperature
rolling
thickness
cooling rate
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21218235.6A
Other languages
German (de)
English (en)
Inventor
Martin Egger
Martin Klima
Erik Parteder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Grobblech GmbH
Original Assignee
Voestalpine Grobblech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Grobblech GmbH filed Critical Voestalpine Grobblech GmbH
Priority to EP21218235.6A priority Critical patent/EP4206336A1/fr
Priority to PCT/EP2022/088053 priority patent/WO2023126507A1/fr
Publication of EP4206336A1 publication Critical patent/EP4206336A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the invention relates to a thermomechanical treatment method for producing heavy plate from a steel alloy.
  • thermomechanical treatment process In order to increase the toughness, especially the low-temperature toughness, of a heavy plate made of a steel alloy, WO2011/079341A2 a thermomechanical treatment process is known in which the heavy plate is hot-rolled in several stages and between two hot-rolling passes is accelerated cooled to below the Ar3 temperature and inductively heated to above the Ac3 temperature.
  • thermomechanical treatment method for the production of heavy plate with which a low-stress heavy plate with high toughness values can be created in a reproducible manner.
  • the invention solves the problem set by the features of claim 1.
  • This optimized, comparatively high yield strength ratio R p0.2 /R m which can be between 0.70 and 0.90, for example, offers the advantage that the formability of the material increases as the yield strength ratio increases, but it should not be too high so that a certain "safety cushion" can still be given in the event of overloading with regard to material overload or cracks.
  • the structure of the steel material can be further positively influenced by the accelerated cooling and the proportion of bainitic structures can be increased.
  • the heavy plate according to the invention with a steel alloy each having in % by weight 0.01 to 0.20 carbon (C), 0.5 to 2.50 manganese (Mn), 0.05 to 0.80 silicon (Si), 0.01 to 0.20 aluminum (Al), ⁇ 0.05 phosphorus (P), ⁇ 0.01 Sulfur (S) and the remainder iron (Fe) and impurities unavoidable due to production, for example with a maximum of 0.05% by weight each and a maximum of 0.15% by weight in total have a high yield strength ratio R p0.2 /R m .
  • this steel alloy can be used in % by weight individually or in combination from the group: 0 to 1.5 Chromium (Cr) 0 to 1.0 Molybdenum (Mo) 0 to 1.0 copper (Cu) 0 to 5.0 Nickel (Ni) 0 to 0.30 vanadium (V) 0 to 0.20 Titanium (Ti) 0 to 0.20 niobium (Nb) 0 to 0.005 boron (B) 0 to 0.015 nitrogen (N) 0 to 0.01 Calcium (Ca) exhibit.
  • Chromium (Cr) 0 to 1.0 Molybdenum (Mo) 0 to 1.0 copper (Cu) 0 to 5.0 Nickel (Ni) 0 to 0.30 vanadium (V) 0 to 0.20 Titanium (Ti) 0 to 0.20 niobium (Nb) 0 to 0.005 boron (B) 0 to 0.015 nitrogen (N) 0 to 0.01 Calcium (Ca) exhibit.
  • the steel alloy in each case in % by weight) 0.02 to 0.1 carbon (C), 1.0 to 2.0 manganese (Mn), 0.1 to 0.80 silicon (Si), 0.010 to 0.15 aluminum (Al), ⁇ 0.050 Phosphorus (P) and ⁇ 0.010 Sulfur (S) on. This can further improve the mechanical properties.
  • the steel alloy can be used individually or in combination from the group (each in % by weight): 0 to 0.75 copper (Cu) 0 to 3.0 Nickel (Ni) 0 to 0.20 vanadium (V) 0 to 0.003 boron (B) exhibit.
  • T1 the desired structural formation in the steel alloy according to the invention can still be achieved in the process be produced more reproducibly in order to achieve a high yield point ratio R p0.2 /R m with high toughness.
  • the ratio of the first cooling rate KR1 to the second cooling rate KR2 is at least 2:1, this can enable the desired microstructure, consisting of ferrite, bainite and possibly martensite, to be produced more reproducibly and thus a high yield strength ratio R p0.2 /R m at high to achieve toughness.
  • the ratio of the first cooling rate KR1 to the second cooling rate KR2 is at least 3:1.
  • the microstructure can be shifted further in the direction of martensite, which can be significantly influenced by the KR1 - therefore the value of the tensile strength can be higher, the higher the cooling rate ratio was selected.
  • the yield point on the other hand, can be negatively influenced by this.
  • the cooling rate ratio can be selected depending on the customer's requirements for the mechanical values of the desired product.
  • the second cooling rate (KR2) is ⁇ 5° C./s, in particular ⁇ 3° C./s, the structure formation and the mechanical properties are influenced comparatively little.
  • End forming is preferably carried out to a thickness of the heavy plate in the range from 8 to 150 mm (millimeters), in particular in the range from 25 to 120 mm.
  • the straightening preferably takes place at a straightening temperature within a temperature range from the first temperature (T1) to the first temperature (T1) minus 100°C.
  • the invention solves the problem set by the features of claim 11.
  • the heavy plate can have a yield point ratio R p0.2 /R m of ⁇ 0.9 as a result of the thermomechanical treatment process.
  • the yield point ratio R p0.2 /R m ⁇ 0.90.
  • the heavy plate has a yield point ratio R p0.2 /R m of >0.70.
  • the heavy plate preferably has a thickness in the range from 8 to 150 mm, in particular in the range from 25 to 120 mm.
  • the respective cooling rate (KR1, KR2) or heating rate from the initial temperature to the final temperature is an average value, namely a cooling rate or heating rate averaged over the thickness of the starting material from the initial temperature to the final temperature.
  • Both heavy plates A, B have the same steel alloy 0.060% by weight (C) carbon, 0.34% by weight (Si) silicon, 1.63% by weight (Mn) manganese, 0.012% by weight (P) phosphorus, 0.001% by weight (S) sulphur, 0.04% by weight (Al) aluminum, 0.40% by weight (Cr) chromium, 0.01% by weight (Ni) nickel, 0.20% by weight (Mo) molybdenum, 0.035% by weight (Nb) niobium, 0.014% by weight (Ti)titanium, 0.0003% by weight (B) boron, 0.0045% by weight (N) nitrogen, 0.0018% by weight (Ca) calcium and the remainder iron (Fe) and impurities that are unavoidable as a result of production, each with a maximum of 0.05% by weight and a maximum of
  • first temperature profile 1 and the second temperature profile 2 differ at the end of the process of multi-stage cooling 3 to room temperature RT.
  • the previous procedural steps are the same.
  • the starting material, namely the slab, of the respective heavy plate A, B is heated 4 to above the Ac3 temperature, namely 1100° C. (degrees Celsius), for example with a slab heating device.
  • the starting material is then partially formed by first rolling W1.
  • quenching preferably water quenching
  • the starting material is cooled from the first final rolling temperature, which is above Ac3, to below the Ar3 temperature, namely - as in 1 recognizable - the primary material is cooled or quenched to below Ar1 temperature.
  • the starting material leaves the second rolling W2 with a second final rolling temperature EW2 ⁇ Ar3, namely 830 °C.
  • EW2 ⁇ Ar3 a second final rolling temperature
  • other heating sources are also conceivable, for example sources with radiant heat. This rapid heating, be it inductive or with radiant heat etc., takes place at a minimum of 12°C/min.
  • This second roll W2 which can also be referred to as end rolls, is followed by two different multi-stage coolings 3 to room temperature RT (which is usually between 0 and 60 degrees Celsius, for example 20 degrees Celsius in these processes).
  • a first stage 7a of cooling 3 after finish rolling W2 the starting material of heavy plate A is cooled or quenched from the second finish rolling temperature to a temperature T, namely 100° C., in an accelerated manner by water quenching at 20° C./s. After that, the starting material is straightened at this temperature T. The quenching is followed by cooling at 0.1° C./s in still air at ambient temperature to room temperature RT as the subsequent second stage 7b of the multi-stage cooling 3 .
  • the multi-stage cooling 3 according to the invention can be seen from the starting material of the heavy plate B.
  • the starting material is accelerated at a first cooling rate KR1, namely 20 °C/s, by water quenching from the second final rolling temperature EW2 to a first temperature T1, namely 420 °C (degrees Celsius). cooled or quenched.
  • the starting material is warm-straightened with a degree of plasticization of 50%.
  • the starting material has a temperature of around 420 °C (degrees Celsius) when straightened.
  • a certain cooling before the start of straightening cannot be ruled out.
  • hot straightening takes place at 320 degrees Celsius on the primary material.
  • the primary material is cooled to room temperature (RT) at a second cooling rate KR2, namely 0.1° C./s in still air at ambient temperature.
  • RT room temperature
  • KR2 second cooling rate
  • accelerated cooling can be understood to mean faster cooling than cooling at room temperature and still air, which is also often referred to as quenching.
  • a block or a billet is also conceivable as the starting material.
  • first and/or second rolling can consist of one or more part-rolls with possibly several part-rolling steps (passes), which is possible, for example, by reversing rolling.
  • Heavy plate B therefore has higher toughness values compared to heavy plate A and a desired yield strength ratio R p0.2 /R m in the range from 0.70 to 0.90.
  • figure 2 shows two different alloy compositions according to the invention, the elements of which are each given in % by weight.
  • the remainder of these alloys is iron (Fe) and impurities that are unavoidable due to production, each with a maximum of 0.05% by weight and a maximum of 0.15% by weight in total.
  • Alloy 1 has slightly higher levels of carbon and chromium and can therefore achieve higher mechanical properties. Depending on customer requirements, however, a lower tensile strength can also be desired, as alloy 2 shows. Heavy plates with these alloys 1 and 2 were produced.
  • figure 4 shows schematically the optimal range of the first temperature T1, referred to as the cooling stop temperature, and provides corresponding explanations.
  • the customer needs a heavy plate with a specific range of tensile strength (R m ) and yield point R p0.2 (0.2% proof stress) - these should each be within a certain range in order to to process the product accordingly.
  • the inventors have recognized that by suitably setting the cooling stop temperature (T1), the mechanical properties can be influenced and, in particular, the yield point ratio (STV), namely R p0.2 /R m , can be optimized. If the first temperature T1 is too low, for example below 250° C., the tensile strength becomes too high and/or the yield point becomes too low. On the other hand, if the first temperature T1 is too high, the tensile strength falls again or the yield point may even become too high, as a result of which the yield point ratio becomes comparatively unfavorable.
  • An optimal range for T1 must therefore be selected, which according to the invention is in the range from 250°C to 500°C, in particular in the range from 300°C to 450°C.
  • the mechanical properties can be further influenced by suitable setting of the straightening temperature—and in particular the yield point ratio (STV), namely R p0.2 /R m , can be further optimized.
  • STV yield point ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
EP21218235.6A 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte Pending EP4206336A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21218235.6A EP4206336A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte
PCT/EP2022/088053 WO2023126507A1 (fr) 2021-12-29 2022-12-29 Plaque lourde et procédé de manipulation thermomécanique pour un matériau de départ pour la production d'une plaque lourde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21218235.6A EP4206336A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte

Publications (1)

Publication Number Publication Date
EP4206336A1 true EP4206336A1 (fr) 2023-07-05

Family

ID=80123361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21218235.6A Pending EP4206336A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte

Country Status (2)

Country Link
EP (1) EP4206336A1 (fr)
WO (1) WO2023126507A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320414A (ja) * 1986-07-14 1988-01-28 Sumitomo Metal Ind Ltd 高靭性高張力鋼板の製造法
EP2340897A1 (fr) * 2009-12-23 2011-07-06 Voestalpine Grobblech GmbH Procédé de traitement thermomécanique pour tôles épaisses
JP2012207237A (ja) * 2011-03-29 2012-10-25 Jfe Steel Corp 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法
JP2013139610A (ja) * 2012-01-05 2013-07-18 Jfe Steel Corp 引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP2015218360A (ja) * 2014-05-16 2015-12-07 新日鐵住金株式会社 圧延鋼材及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860738B1 (fr) 2003-10-13 2006-02-03 Vai Clecim Procede d'augmentation de la precision du controle de la trajectoire du produit dans une machine a planer a rouleaux imbriques et installation de planage permettant la mise en oeuvre du procede.
CN103320692B (zh) * 2013-06-19 2016-07-06 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
KR102307903B1 (ko) * 2019-11-04 2021-09-30 주식회사 포스코 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
CN113737088B (zh) * 2020-05-28 2022-10-21 宝山钢铁股份有限公司 低屈强比、高韧性及高焊接性800MPa级钢板及其制造方法
EP3964592A1 (fr) 2020-09-07 2022-03-09 ThyssenKrupp Steel Europe AG Produit en acier plat laminé à chaud et procédé de fabrication d'un produit en acier plat laminé à chaud

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320414A (ja) * 1986-07-14 1988-01-28 Sumitomo Metal Ind Ltd 高靭性高張力鋼板の製造法
EP2340897A1 (fr) * 2009-12-23 2011-07-06 Voestalpine Grobblech GmbH Procédé de traitement thermomécanique pour tôles épaisses
WO2011079341A2 (fr) 2009-12-23 2011-07-07 Voestalpine Grobblech Gmbh Procédé de traitement thermomécanique
JP2012207237A (ja) * 2011-03-29 2012-10-25 Jfe Steel Corp 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法
JP2013139610A (ja) * 2012-01-05 2013-07-18 Jfe Steel Corp 引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP2015218360A (ja) * 2014-05-16 2015-12-07 新日鐵住金株式会社 圧延鋼材及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEICHSNER WALTER ET AL: "Secondary steelmaking to ensure stringent quality demands in strand cast steels", THYSSEN TECHNISCHE BERICHTE,, vol. 22, no. 1, 1 January 1990 (1990-01-01), pages 13 - 34, XP009189819, ISSN: 0340-5060 *

Also Published As

Publication number Publication date
WO2023126507A1 (fr) 2023-07-06

Similar Documents

Publication Publication Date Title
EP1573075B8 (fr) Procede de fabrication d'un produit en acier
DE2551791C3 (de) Anwendung eines Verfahrens zur Herstellung von Kaltbändern
EP3305935B9 (fr) Produit plat en acier haute résistance et l'usage d'un produit plat en acier haute résistance
DE2426920C2 (de) Verfahren zum Herstellen von schweißbarem Stabstahl und Verwendung des Verfahrens
DE2362658C3 (de) Verfahren zum Herstellen von Stahlblech mit hervorragender Preßverformbarkeit
EP1918403B1 (fr) Procédé de fabrication de produits plats en acier à partir d'un acier formant une structure marténsitique
DE102008056844A1 (de) Manganstahlband und Verfahren zur Herstellung desselben
EP2905348B1 (fr) Produit en acier plat de haute résistance avec une structure bainitique-martensitique et procédé de fabrication d'un tel produit acier plat
EP2690183A1 (fr) Produit plat en acier laminé à chaud et son procédé de fabrication
EP3325678B1 (fr) Acier léger deformable de construction présentant des propriétés mécaniques améliorées et procédé de fabrication de produit semi-fini à partir de cet acier
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE102018132860A1 (de) Verfahren zur Herstellung von konventionell warmgewalzten, profilierten Warmbanderzeugnissen
EP3724359B1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d'une résistance à la fissuration de bords élevée ainsi que d'une capacité de durcissement à la cuisson élevée et procédé de fabrication d'un tel produit plat en acier
DE102007030207A1 (de) Verwendung einer hochfesten Stahllegierung zur Herstellung von Strahlrohren mit hoher Festigkeit und guter Umformbarkeit
DE3440752C2 (fr)
DE2133744A1 (de) Die verwendung eines vollberuhigten stahles fuer bauteile aus warmgewalztem band
EP1398390B1 (fr) Acier ferritique-martensitique possédant une resistance élevée ayant une fine microstructure
DE112008001181B4 (de) Verwendung einer Stahllegierung für Achsrohre sowie Achsrohr
DE2900022C3 (de) Verfahren zum Herstellen von Profilen
DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
WO2020058244A1 (fr) Procédé de fabrication de tôles en acier ultrarésistantes et tôle en acier correspondante
DE102016117494A1 (de) Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
DE102018132908A1 (de) Verfahren zur Herstellung von thermo-mechanisch hergestellten Warmbanderzeugnissen
EP4206336A1 (fr) Tôle forte et procédé de traitement thermomécanique d'une matière de départ destiné à la fabrication d'une tôle forte
EP3469108A1 (fr) Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN